ovl: hash non-indexed dir by upper inode for NFS export
[linux/fpc-iii.git] / net / tls / tls_main.c
blobe07ee3ae002300932f8fd41a907cee2fc042738f
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/module.h>
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
42 #include <net/tls.h>
44 MODULE_AUTHOR("Mellanox Technologies");
45 MODULE_DESCRIPTION("Transport Layer Security Support");
46 MODULE_LICENSE("Dual BSD/GPL");
48 enum {
49 TLS_BASE_TX,
50 TLS_SW_TX,
51 TLS_NUM_CONFIG,
54 static struct proto tls_prots[TLS_NUM_CONFIG];
56 static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
58 sk->sk_prot = &tls_prots[ctx->tx_conf];
61 int wait_on_pending_writer(struct sock *sk, long *timeo)
63 int rc = 0;
64 DEFINE_WAIT_FUNC(wait, woken_wake_function);
66 add_wait_queue(sk_sleep(sk), &wait);
67 while (1) {
68 if (!*timeo) {
69 rc = -EAGAIN;
70 break;
73 if (signal_pending(current)) {
74 rc = sock_intr_errno(*timeo);
75 break;
78 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
79 break;
81 remove_wait_queue(sk_sleep(sk), &wait);
82 return rc;
85 int tls_push_sg(struct sock *sk,
86 struct tls_context *ctx,
87 struct scatterlist *sg,
88 u16 first_offset,
89 int flags)
91 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
92 int ret = 0;
93 struct page *p;
94 size_t size;
95 int offset = first_offset;
97 size = sg->length - offset;
98 offset += sg->offset;
100 while (1) {
101 if (sg_is_last(sg))
102 sendpage_flags = flags;
104 /* is sending application-limited? */
105 tcp_rate_check_app_limited(sk);
106 p = sg_page(sg);
107 retry:
108 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
110 if (ret != size) {
111 if (ret > 0) {
112 offset += ret;
113 size -= ret;
114 goto retry;
117 offset -= sg->offset;
118 ctx->partially_sent_offset = offset;
119 ctx->partially_sent_record = (void *)sg;
120 return ret;
123 put_page(p);
124 sk_mem_uncharge(sk, sg->length);
125 sg = sg_next(sg);
126 if (!sg)
127 break;
129 offset = sg->offset;
130 size = sg->length;
133 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
135 return 0;
138 static int tls_handle_open_record(struct sock *sk, int flags)
140 struct tls_context *ctx = tls_get_ctx(sk);
142 if (tls_is_pending_open_record(ctx))
143 return ctx->push_pending_record(sk, flags);
145 return 0;
148 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
149 unsigned char *record_type)
151 struct cmsghdr *cmsg;
152 int rc = -EINVAL;
154 for_each_cmsghdr(cmsg, msg) {
155 if (!CMSG_OK(msg, cmsg))
156 return -EINVAL;
157 if (cmsg->cmsg_level != SOL_TLS)
158 continue;
160 switch (cmsg->cmsg_type) {
161 case TLS_SET_RECORD_TYPE:
162 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
163 return -EINVAL;
165 if (msg->msg_flags & MSG_MORE)
166 return -EINVAL;
168 rc = tls_handle_open_record(sk, msg->msg_flags);
169 if (rc)
170 return rc;
172 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
173 rc = 0;
174 break;
175 default:
176 return -EINVAL;
180 return rc;
183 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
184 int flags, long *timeo)
186 struct scatterlist *sg;
187 u16 offset;
189 if (!tls_is_partially_sent_record(ctx))
190 return ctx->push_pending_record(sk, flags);
192 sg = ctx->partially_sent_record;
193 offset = ctx->partially_sent_offset;
195 ctx->partially_sent_record = NULL;
196 return tls_push_sg(sk, ctx, sg, offset, flags);
199 static void tls_write_space(struct sock *sk)
201 struct tls_context *ctx = tls_get_ctx(sk);
203 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
204 gfp_t sk_allocation = sk->sk_allocation;
205 int rc;
206 long timeo = 0;
208 sk->sk_allocation = GFP_ATOMIC;
209 rc = tls_push_pending_closed_record(sk, ctx,
210 MSG_DONTWAIT |
211 MSG_NOSIGNAL,
212 &timeo);
213 sk->sk_allocation = sk_allocation;
215 if (rc < 0)
216 return;
219 ctx->sk_write_space(sk);
222 static void tls_sk_proto_close(struct sock *sk, long timeout)
224 struct tls_context *ctx = tls_get_ctx(sk);
225 long timeo = sock_sndtimeo(sk, 0);
226 void (*sk_proto_close)(struct sock *sk, long timeout);
228 lock_sock(sk);
229 sk_proto_close = ctx->sk_proto_close;
231 if (ctx->tx_conf == TLS_BASE_TX) {
232 kfree(ctx);
233 goto skip_tx_cleanup;
236 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
237 tls_handle_open_record(sk, 0);
239 if (ctx->partially_sent_record) {
240 struct scatterlist *sg = ctx->partially_sent_record;
242 while (1) {
243 put_page(sg_page(sg));
244 sk_mem_uncharge(sk, sg->length);
246 if (sg_is_last(sg))
247 break;
248 sg++;
252 kfree(ctx->rec_seq);
253 kfree(ctx->iv);
255 if (ctx->tx_conf == TLS_SW_TX)
256 tls_sw_free_tx_resources(sk);
258 skip_tx_cleanup:
259 release_sock(sk);
260 sk_proto_close(sk, timeout);
263 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
264 int __user *optlen)
266 int rc = 0;
267 struct tls_context *ctx = tls_get_ctx(sk);
268 struct tls_crypto_info *crypto_info;
269 int len;
271 if (get_user(len, optlen))
272 return -EFAULT;
274 if (!optval || (len < sizeof(*crypto_info))) {
275 rc = -EINVAL;
276 goto out;
279 if (!ctx) {
280 rc = -EBUSY;
281 goto out;
284 /* get user crypto info */
285 crypto_info = &ctx->crypto_send;
287 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
288 rc = -EBUSY;
289 goto out;
292 if (len == sizeof(*crypto_info)) {
293 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
294 rc = -EFAULT;
295 goto out;
298 switch (crypto_info->cipher_type) {
299 case TLS_CIPHER_AES_GCM_128: {
300 struct tls12_crypto_info_aes_gcm_128 *
301 crypto_info_aes_gcm_128 =
302 container_of(crypto_info,
303 struct tls12_crypto_info_aes_gcm_128,
304 info);
306 if (len != sizeof(*crypto_info_aes_gcm_128)) {
307 rc = -EINVAL;
308 goto out;
310 lock_sock(sk);
311 memcpy(crypto_info_aes_gcm_128->iv, ctx->iv,
312 TLS_CIPHER_AES_GCM_128_IV_SIZE);
313 release_sock(sk);
314 if (copy_to_user(optval,
315 crypto_info_aes_gcm_128,
316 sizeof(*crypto_info_aes_gcm_128)))
317 rc = -EFAULT;
318 break;
320 default:
321 rc = -EINVAL;
324 out:
325 return rc;
328 static int do_tls_getsockopt(struct sock *sk, int optname,
329 char __user *optval, int __user *optlen)
331 int rc = 0;
333 switch (optname) {
334 case TLS_TX:
335 rc = do_tls_getsockopt_tx(sk, optval, optlen);
336 break;
337 default:
338 rc = -ENOPROTOOPT;
339 break;
341 return rc;
344 static int tls_getsockopt(struct sock *sk, int level, int optname,
345 char __user *optval, int __user *optlen)
347 struct tls_context *ctx = tls_get_ctx(sk);
349 if (level != SOL_TLS)
350 return ctx->getsockopt(sk, level, optname, optval, optlen);
352 return do_tls_getsockopt(sk, optname, optval, optlen);
355 static int do_tls_setsockopt_tx(struct sock *sk, char __user *optval,
356 unsigned int optlen)
358 struct tls_crypto_info *crypto_info;
359 struct tls_context *ctx = tls_get_ctx(sk);
360 int rc = 0;
361 int tx_conf;
363 if (!optval || (optlen < sizeof(*crypto_info))) {
364 rc = -EINVAL;
365 goto out;
368 crypto_info = &ctx->crypto_send;
369 /* Currently we don't support set crypto info more than one time */
370 if (TLS_CRYPTO_INFO_READY(crypto_info))
371 goto out;
373 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
374 if (rc) {
375 rc = -EFAULT;
376 goto out;
379 /* check version */
380 if (crypto_info->version != TLS_1_2_VERSION) {
381 rc = -ENOTSUPP;
382 goto err_crypto_info;
385 switch (crypto_info->cipher_type) {
386 case TLS_CIPHER_AES_GCM_128: {
387 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
388 rc = -EINVAL;
389 goto out;
391 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
392 optlen - sizeof(*crypto_info));
393 if (rc) {
394 rc = -EFAULT;
395 goto err_crypto_info;
397 break;
399 default:
400 rc = -EINVAL;
401 goto out;
404 /* currently SW is default, we will have ethtool in future */
405 rc = tls_set_sw_offload(sk, ctx);
406 tx_conf = TLS_SW_TX;
407 if (rc)
408 goto err_crypto_info;
410 ctx->tx_conf = tx_conf;
411 update_sk_prot(sk, ctx);
412 ctx->sk_write_space = sk->sk_write_space;
413 sk->sk_write_space = tls_write_space;
414 goto out;
416 err_crypto_info:
417 memset(crypto_info, 0, sizeof(*crypto_info));
418 out:
419 return rc;
422 static int do_tls_setsockopt(struct sock *sk, int optname,
423 char __user *optval, unsigned int optlen)
425 int rc = 0;
427 switch (optname) {
428 case TLS_TX:
429 lock_sock(sk);
430 rc = do_tls_setsockopt_tx(sk, optval, optlen);
431 release_sock(sk);
432 break;
433 default:
434 rc = -ENOPROTOOPT;
435 break;
437 return rc;
440 static int tls_setsockopt(struct sock *sk, int level, int optname,
441 char __user *optval, unsigned int optlen)
443 struct tls_context *ctx = tls_get_ctx(sk);
445 if (level != SOL_TLS)
446 return ctx->setsockopt(sk, level, optname, optval, optlen);
448 return do_tls_setsockopt(sk, optname, optval, optlen);
451 static int tls_init(struct sock *sk)
453 struct inet_connection_sock *icsk = inet_csk(sk);
454 struct tls_context *ctx;
455 int rc = 0;
457 /* allocate tls context */
458 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
459 if (!ctx) {
460 rc = -ENOMEM;
461 goto out;
463 icsk->icsk_ulp_data = ctx;
464 ctx->setsockopt = sk->sk_prot->setsockopt;
465 ctx->getsockopt = sk->sk_prot->getsockopt;
466 ctx->sk_proto_close = sk->sk_prot->close;
468 ctx->tx_conf = TLS_BASE_TX;
469 update_sk_prot(sk, ctx);
470 out:
471 return rc;
474 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
475 .name = "tls",
476 .owner = THIS_MODULE,
477 .init = tls_init,
480 static void build_protos(struct proto *prot, struct proto *base)
482 prot[TLS_BASE_TX] = *base;
483 prot[TLS_BASE_TX].setsockopt = tls_setsockopt;
484 prot[TLS_BASE_TX].getsockopt = tls_getsockopt;
485 prot[TLS_BASE_TX].close = tls_sk_proto_close;
487 prot[TLS_SW_TX] = prot[TLS_BASE_TX];
488 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
489 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
492 static int __init tls_register(void)
494 build_protos(tls_prots, &tcp_prot);
496 tcp_register_ulp(&tcp_tls_ulp_ops);
498 return 0;
501 static void __exit tls_unregister(void)
503 tcp_unregister_ulp(&tcp_tls_ulp_ops);
506 module_init(tls_register);
507 module_exit(tls_unregister);