1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
78 EXPORT_SYMBOL(memory_cgrp_subsys
);
80 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket
;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem
;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly
;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
103 static const char *const mem_cgroup_lru_names
[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node
{
121 struct rb_root rb_root
;
122 struct rb_node
*rb_rightmost
;
126 struct mem_cgroup_tree
{
127 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
133 struct mem_cgroup_eventfd_list
{
134 struct list_head list
;
135 struct eventfd_ctx
*eventfd
;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event
{
143 * memcg which the event belongs to.
145 struct mem_cgroup
*memcg
;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx
*eventfd
;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list
;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event
)(struct mem_cgroup
*memcg
,
160 struct eventfd_ctx
*eventfd
, const char *args
);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event
)(struct mem_cgroup
*memcg
,
167 struct eventfd_ctx
*eventfd
);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t
*wqh
;
174 wait_queue_entry_t wait
;
175 struct work_struct remove
;
178 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
179 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct
{
191 spinlock_t lock
; /* for from, to */
192 struct mm_struct
*mm
;
193 struct mem_cgroup
*from
;
194 struct mem_cgroup
*to
;
196 unsigned long precharge
;
197 unsigned long moved_charge
;
198 unsigned long moved_swap
;
199 struct task_struct
*moving_task
; /* a task moving charges */
200 wait_queue_head_t waitq
; /* a waitq for other context */
202 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
203 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON
,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
240 memcg
= root_mem_cgroup
;
241 return &memcg
->vmpressure
;
244 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
246 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
249 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
251 return (memcg
== root_mem_cgroup
);
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
266 static DEFINE_IDA(memcg_cache_ida
);
267 int memcg_nr_cache_ids
;
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem
);
272 void memcg_get_cache_ids(void)
274 down_read(&memcg_cache_ids_sem
);
277 void memcg_put_cache_ids(void)
279 up_read(&memcg_cache_ids_sem
);
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
306 struct workqueue_struct
*memcg_kmem_cache_wq
;
308 #endif /* !CONFIG_SLOB */
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
321 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
323 struct mem_cgroup
*memcg
;
325 memcg
= page
->mem_cgroup
;
327 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
328 memcg
= root_mem_cgroup
;
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
346 ino_t
page_cgroup_ino(struct page
*page
)
348 struct mem_cgroup
*memcg
;
349 unsigned long ino
= 0;
352 memcg
= READ_ONCE(page
->mem_cgroup
);
353 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
354 memcg
= parent_mem_cgroup(memcg
);
356 ino
= cgroup_ino(memcg
->css
.cgroup
);
361 static struct mem_cgroup_per_node
*
362 mem_cgroup_page_nodeinfo(struct mem_cgroup
*memcg
, struct page
*page
)
364 int nid
= page_to_nid(page
);
366 return memcg
->nodeinfo
[nid
];
369 static struct mem_cgroup_tree_per_node
*
370 soft_limit_tree_node(int nid
)
372 return soft_limit_tree
.rb_tree_per_node
[nid
];
375 static struct mem_cgroup_tree_per_node
*
376 soft_limit_tree_from_page(struct page
*page
)
378 int nid
= page_to_nid(page
);
380 return soft_limit_tree
.rb_tree_per_node
[nid
];
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node
*mz
,
384 struct mem_cgroup_tree_per_node
*mctz
,
385 unsigned long new_usage_in_excess
)
387 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
388 struct rb_node
*parent
= NULL
;
389 struct mem_cgroup_per_node
*mz_node
;
390 bool rightmost
= true;
395 mz
->usage_in_excess
= new_usage_in_excess
;
396 if (!mz
->usage_in_excess
)
400 mz_node
= rb_entry(parent
, struct mem_cgroup_per_node
,
402 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
) {
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
411 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
416 mctz
->rb_rightmost
= &mz
->tree_node
;
418 rb_link_node(&mz
->tree_node
, parent
, p
);
419 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
424 struct mem_cgroup_tree_per_node
*mctz
)
429 if (&mz
->tree_node
== mctz
->rb_rightmost
)
430 mctz
->rb_rightmost
= rb_prev(&mz
->tree_node
);
432 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node
*mz
,
437 struct mem_cgroup_tree_per_node
*mctz
)
441 spin_lock_irqsave(&mctz
->lock
, flags
);
442 __mem_cgroup_remove_exceeded(mz
, mctz
);
443 spin_unlock_irqrestore(&mctz
->lock
, flags
);
446 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
448 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
449 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
450 unsigned long excess
= 0;
452 if (nr_pages
> soft_limit
)
453 excess
= nr_pages
- soft_limit
;
458 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
460 unsigned long excess
;
461 struct mem_cgroup_per_node
*mz
;
462 struct mem_cgroup_tree_per_node
*mctz
;
464 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
472 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
473 excess
= soft_limit_excess(memcg
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
481 spin_lock_irqsave(&mctz
->lock
, flags
);
482 /* if on-tree, remove it */
484 __mem_cgroup_remove_exceeded(mz
, mctz
);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
490 spin_unlock_irqrestore(&mctz
->lock
, flags
);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
497 struct mem_cgroup_tree_per_node
*mctz
;
498 struct mem_cgroup_per_node
*mz
;
502 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
503 mctz
= soft_limit_tree_node(nid
);
505 mem_cgroup_remove_exceeded(mz
, mctz
);
509 static struct mem_cgroup_per_node
*
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
512 struct mem_cgroup_per_node
*mz
;
516 if (!mctz
->rb_rightmost
)
517 goto done
; /* Nothing to reclaim from */
519 mz
= rb_entry(mctz
->rb_rightmost
,
520 struct mem_cgroup_per_node
, tree_node
);
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
526 __mem_cgroup_remove_exceeded(mz
, mctz
);
527 if (!soft_limit_excess(mz
->memcg
) ||
528 !css_tryget_online(&mz
->memcg
->css
))
534 static struct mem_cgroup_per_node
*
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node
*mctz
)
537 struct mem_cgroup_per_node
*mz
;
539 spin_lock_irq(&mctz
->lock
);
540 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
541 spin_unlock_irq(&mctz
->lock
);
546 * Return page count for single (non recursive) @memcg.
548 * Implementation Note: reading percpu statistics for memcg.
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
553 * a periodic synchronization of counter in memcg's counter.
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
563 * common workload, threshold and synchronization as vmstat[] should be
566 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
569 static unsigned long memcg_sum_events(struct mem_cgroup
*memcg
,
572 unsigned long val
= 0;
575 for_each_possible_cpu(cpu
)
576 val
+= per_cpu(memcg
->stat
->events
[event
], cpu
);
580 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
582 bool compound
, int nr_pages
)
585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 * counted as CACHE even if it's on ANON LRU.
589 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS
], nr_pages
);
591 __this_cpu_add(memcg
->stat
->count
[MEMCG_CACHE
], nr_pages
);
592 if (PageSwapBacked(page
))
593 __this_cpu_add(memcg
->stat
->count
[NR_SHMEM
], nr_pages
);
597 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
598 __this_cpu_add(memcg
->stat
->count
[MEMCG_RSS_HUGE
], nr_pages
);
601 /* pagein of a big page is an event. So, ignore page size */
603 __this_cpu_inc(memcg
->stat
->events
[PGPGIN
]);
605 __this_cpu_inc(memcg
->stat
->events
[PGPGOUT
]);
606 nr_pages
= -nr_pages
; /* for event */
609 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
612 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
613 int nid
, unsigned int lru_mask
)
615 struct lruvec
*lruvec
= mem_cgroup_lruvec(NODE_DATA(nid
), memcg
);
616 unsigned long nr
= 0;
619 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
622 if (!(BIT(lru
) & lru_mask
))
624 nr
+= mem_cgroup_get_lru_size(lruvec
, lru
);
629 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
630 unsigned int lru_mask
)
632 unsigned long nr
= 0;
635 for_each_node_state(nid
, N_MEMORY
)
636 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
640 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
641 enum mem_cgroup_events_target target
)
643 unsigned long val
, next
;
645 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
646 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
647 /* from time_after() in jiffies.h */
648 if ((long)(next
- val
) < 0) {
650 case MEM_CGROUP_TARGET_THRESH
:
651 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
653 case MEM_CGROUP_TARGET_SOFTLIMIT
:
654 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
656 case MEM_CGROUP_TARGET_NUMAINFO
:
657 next
= val
+ NUMAINFO_EVENTS_TARGET
;
662 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
669 * Check events in order.
672 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
674 /* threshold event is triggered in finer grain than soft limit */
675 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
676 MEM_CGROUP_TARGET_THRESH
))) {
678 bool do_numainfo __maybe_unused
;
680 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
681 MEM_CGROUP_TARGET_SOFTLIMIT
);
683 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
684 MEM_CGROUP_TARGET_NUMAINFO
);
686 mem_cgroup_threshold(memcg
);
687 if (unlikely(do_softlimit
))
688 mem_cgroup_update_tree(memcg
, page
);
690 if (unlikely(do_numainfo
))
691 atomic_inc(&memcg
->numainfo_events
);
696 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
699 * mm_update_next_owner() may clear mm->owner to NULL
700 * if it races with swapoff, page migration, etc.
701 * So this can be called with p == NULL.
706 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
708 EXPORT_SYMBOL(mem_cgroup_from_task
);
710 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
712 struct mem_cgroup
*memcg
= NULL
;
717 * Page cache insertions can happen withou an
718 * actual mm context, e.g. during disk probing
719 * on boot, loopback IO, acct() writes etc.
722 memcg
= root_mem_cgroup
;
724 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
725 if (unlikely(!memcg
))
726 memcg
= root_mem_cgroup
;
728 } while (!css_tryget_online(&memcg
->css
));
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
746 * Reclaimers can specify a zone and a priority level in @reclaim to
747 * divide up the memcgs in the hierarchy among all concurrent
748 * reclaimers operating on the same zone and priority.
750 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
751 struct mem_cgroup
*prev
,
752 struct mem_cgroup_reclaim_cookie
*reclaim
)
754 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
755 struct cgroup_subsys_state
*css
= NULL
;
756 struct mem_cgroup
*memcg
= NULL
;
757 struct mem_cgroup
*pos
= NULL
;
759 if (mem_cgroup_disabled())
763 root
= root_mem_cgroup
;
765 if (prev
&& !reclaim
)
768 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
777 struct mem_cgroup_per_node
*mz
;
779 mz
= mem_cgroup_nodeinfo(root
, reclaim
->pgdat
->node_id
);
780 iter
= &mz
->iter
[reclaim
->priority
];
782 if (prev
&& reclaim
->generation
!= iter
->generation
)
786 pos
= READ_ONCE(iter
->position
);
787 if (!pos
|| css_tryget(&pos
->css
))
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
797 (void)cmpxchg(&iter
->position
, pos
, NULL
);
805 css
= css_next_descendant_pre(css
, &root
->css
);
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
823 memcg
= mem_cgroup_from_css(css
);
825 if (css
== &root
->css
)
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
840 (void)cmpxchg(&iter
->position
, pos
, memcg
);
848 reclaim
->generation
= iter
->generation
;
854 if (prev
&& prev
!= root
)
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
865 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
866 struct mem_cgroup
*prev
)
869 root
= root_mem_cgroup
;
870 if (prev
&& prev
!= root
)
874 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
876 struct mem_cgroup
*memcg
= dead_memcg
;
877 struct mem_cgroup_reclaim_iter
*iter
;
878 struct mem_cgroup_per_node
*mz
;
882 while ((memcg
= parent_mem_cgroup(memcg
))) {
884 mz
= mem_cgroup_nodeinfo(memcg
, nid
);
885 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
887 cmpxchg(&iter
->position
,
895 * Iteration constructs for visiting all cgroups (under a tree). If
896 * loops are exited prematurely (break), mem_cgroup_iter_break() must
897 * be used for reference counting.
899 #define for_each_mem_cgroup_tree(iter, root) \
900 for (iter = mem_cgroup_iter(root, NULL, NULL); \
902 iter = mem_cgroup_iter(root, iter, NULL))
904 #define for_each_mem_cgroup(iter) \
905 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
907 iter = mem_cgroup_iter(NULL, iter, NULL))
910 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
911 * @memcg: hierarchy root
912 * @fn: function to call for each task
913 * @arg: argument passed to @fn
915 * This function iterates over tasks attached to @memcg or to any of its
916 * descendants and calls @fn for each task. If @fn returns a non-zero
917 * value, the function breaks the iteration loop and returns the value.
918 * Otherwise, it will iterate over all tasks and return 0.
920 * This function must not be called for the root memory cgroup.
922 int mem_cgroup_scan_tasks(struct mem_cgroup
*memcg
,
923 int (*fn
)(struct task_struct
*, void *), void *arg
)
925 struct mem_cgroup
*iter
;
928 BUG_ON(memcg
== root_mem_cgroup
);
930 for_each_mem_cgroup_tree(iter
, memcg
) {
931 struct css_task_iter it
;
932 struct task_struct
*task
;
934 css_task_iter_start(&iter
->css
, 0, &it
);
935 while (!ret
&& (task
= css_task_iter_next(&it
)))
937 css_task_iter_end(&it
);
939 mem_cgroup_iter_break(memcg
, iter
);
947 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
949 * @zone: zone of the page
951 * This function is only safe when following the LRU page isolation
952 * and putback protocol: the LRU lock must be held, and the page must
953 * either be PageLRU() or the caller must have isolated/allocated it.
955 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct pglist_data
*pgdat
)
957 struct mem_cgroup_per_node
*mz
;
958 struct mem_cgroup
*memcg
;
959 struct lruvec
*lruvec
;
961 if (mem_cgroup_disabled()) {
962 lruvec
= &pgdat
->lruvec
;
966 memcg
= page
->mem_cgroup
;
968 * Swapcache readahead pages are added to the LRU - and
969 * possibly migrated - before they are charged.
972 memcg
= root_mem_cgroup
;
974 mz
= mem_cgroup_page_nodeinfo(memcg
, page
);
975 lruvec
= &mz
->lruvec
;
978 * Since a node can be onlined after the mem_cgroup was created,
979 * we have to be prepared to initialize lruvec->zone here;
980 * and if offlined then reonlined, we need to reinitialize it.
982 if (unlikely(lruvec
->pgdat
!= pgdat
))
983 lruvec
->pgdat
= pgdat
;
988 * mem_cgroup_update_lru_size - account for adding or removing an lru page
989 * @lruvec: mem_cgroup per zone lru vector
990 * @lru: index of lru list the page is sitting on
991 * @zid: zone id of the accounted pages
992 * @nr_pages: positive when adding or negative when removing
994 * This function must be called under lru_lock, just before a page is added
995 * to or just after a page is removed from an lru list (that ordering being
996 * so as to allow it to check that lru_size 0 is consistent with list_empty).
998 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
999 int zid
, int nr_pages
)
1001 struct mem_cgroup_per_node
*mz
;
1002 unsigned long *lru_size
;
1005 if (mem_cgroup_disabled())
1008 mz
= container_of(lruvec
, struct mem_cgroup_per_node
, lruvec
);
1009 lru_size
= &mz
->lru_zone_size
[zid
][lru
];
1012 *lru_size
+= nr_pages
;
1015 if (WARN_ONCE(size
< 0,
1016 "%s(%p, %d, %d): lru_size %ld\n",
1017 __func__
, lruvec
, lru
, nr_pages
, size
)) {
1023 *lru_size
+= nr_pages
;
1026 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1028 struct mem_cgroup
*task_memcg
;
1029 struct task_struct
*p
;
1032 p
= find_lock_task_mm(task
);
1034 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1038 * All threads may have already detached their mm's, but the oom
1039 * killer still needs to detect if they have already been oom
1040 * killed to prevent needlessly killing additional tasks.
1043 task_memcg
= mem_cgroup_from_task(task
);
1044 css_get(&task_memcg
->css
);
1047 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1048 css_put(&task_memcg
->css
);
1053 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1054 * @memcg: the memory cgroup
1056 * Returns the maximum amount of memory @mem can be charged with, in
1059 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1061 unsigned long margin
= 0;
1062 unsigned long count
;
1063 unsigned long limit
;
1065 count
= page_counter_read(&memcg
->memory
);
1066 limit
= READ_ONCE(memcg
->memory
.limit
);
1068 margin
= limit
- count
;
1070 if (do_memsw_account()) {
1071 count
= page_counter_read(&memcg
->memsw
);
1072 limit
= READ_ONCE(memcg
->memsw
.limit
);
1074 margin
= min(margin
, limit
- count
);
1083 * A routine for checking "mem" is under move_account() or not.
1085 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1086 * moving cgroups. This is for waiting at high-memory pressure
1089 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1091 struct mem_cgroup
*from
;
1092 struct mem_cgroup
*to
;
1095 * Unlike task_move routines, we access mc.to, mc.from not under
1096 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1098 spin_lock(&mc
.lock
);
1104 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1105 mem_cgroup_is_descendant(to
, memcg
);
1107 spin_unlock(&mc
.lock
);
1111 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1113 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1114 if (mem_cgroup_under_move(memcg
)) {
1116 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1117 /* moving charge context might have finished. */
1120 finish_wait(&mc
.waitq
, &wait
);
1127 unsigned int memcg1_stats
[] = {
1138 static const char *const memcg1_stat_names
[] = {
1149 #define K(x) ((x) << (PAGE_SHIFT-10))
1151 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1152 * @memcg: The memory cgroup that went over limit
1153 * @p: Task that is going to be killed
1155 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1158 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1160 struct mem_cgroup
*iter
;
1166 pr_info("Task in ");
1167 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1168 pr_cont(" killed as a result of limit of ");
1170 pr_info("Memory limit reached of cgroup ");
1173 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1178 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64
)page_counter_read(&memcg
->memory
)),
1180 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1181 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64
)page_counter_read(&memcg
->memsw
)),
1183 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1184 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64
)page_counter_read(&memcg
->kmem
)),
1186 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1188 for_each_mem_cgroup_tree(iter
, memcg
) {
1189 pr_info("Memory cgroup stats for ");
1190 pr_cont_cgroup_path(iter
->css
.cgroup
);
1193 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
1194 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_swap_account
)
1196 pr_cont(" %s:%luKB", memcg1_stat_names
[i
],
1197 K(memcg_page_state(iter
, memcg1_stats
[i
])));
1200 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1201 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1202 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1209 * This function returns the number of memcg under hierarchy tree. Returns
1210 * 1(self count) if no children.
1212 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1215 struct mem_cgroup
*iter
;
1217 for_each_mem_cgroup_tree(iter
, memcg
)
1223 * Return the memory (and swap, if configured) limit for a memcg.
1225 unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1227 unsigned long limit
;
1229 limit
= memcg
->memory
.limit
;
1230 if (mem_cgroup_swappiness(memcg
)) {
1231 unsigned long memsw_limit
;
1232 unsigned long swap_limit
;
1234 memsw_limit
= memcg
->memsw
.limit
;
1235 swap_limit
= memcg
->swap
.limit
;
1236 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1237 limit
= min(limit
+ swap_limit
, memsw_limit
);
1242 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1245 struct oom_control oc
= {
1249 .gfp_mask
= gfp_mask
,
1254 mutex_lock(&oom_lock
);
1255 ret
= out_of_memory(&oc
);
1256 mutex_unlock(&oom_lock
);
1260 #if MAX_NUMNODES > 1
1263 * test_mem_cgroup_node_reclaimable
1264 * @memcg: the target memcg
1265 * @nid: the node ID to be checked.
1266 * @noswap : specify true here if the user wants flle only information.
1268 * This function returns whether the specified memcg contains any
1269 * reclaimable pages on a node. Returns true if there are any reclaimable
1270 * pages in the node.
1272 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1273 int nid
, bool noswap
)
1275 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1277 if (noswap
|| !total_swap_pages
)
1279 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1286 * Always updating the nodemask is not very good - even if we have an empty
1287 * list or the wrong list here, we can start from some node and traverse all
1288 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1291 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1295 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1296 * pagein/pageout changes since the last update.
1298 if (!atomic_read(&memcg
->numainfo_events
))
1300 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1303 /* make a nodemask where this memcg uses memory from */
1304 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1306 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1308 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1309 node_clear(nid
, memcg
->scan_nodes
);
1312 atomic_set(&memcg
->numainfo_events
, 0);
1313 atomic_set(&memcg
->numainfo_updating
, 0);
1317 * Selecting a node where we start reclaim from. Because what we need is just
1318 * reducing usage counter, start from anywhere is O,K. Considering
1319 * memory reclaim from current node, there are pros. and cons.
1321 * Freeing memory from current node means freeing memory from a node which
1322 * we'll use or we've used. So, it may make LRU bad. And if several threads
1323 * hit limits, it will see a contention on a node. But freeing from remote
1324 * node means more costs for memory reclaim because of memory latency.
1326 * Now, we use round-robin. Better algorithm is welcomed.
1328 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1332 mem_cgroup_may_update_nodemask(memcg
);
1333 node
= memcg
->last_scanned_node
;
1335 node
= next_node_in(node
, memcg
->scan_nodes
);
1337 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1338 * last time it really checked all the LRUs due to rate limiting.
1339 * Fallback to the current node in that case for simplicity.
1341 if (unlikely(node
== MAX_NUMNODES
))
1342 node
= numa_node_id();
1344 memcg
->last_scanned_node
= node
;
1348 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1354 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1357 unsigned long *total_scanned
)
1359 struct mem_cgroup
*victim
= NULL
;
1362 unsigned long excess
;
1363 unsigned long nr_scanned
;
1364 struct mem_cgroup_reclaim_cookie reclaim
= {
1369 excess
= soft_limit_excess(root_memcg
);
1372 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1377 * If we have not been able to reclaim
1378 * anything, it might because there are
1379 * no reclaimable pages under this hierarchy
1384 * We want to do more targeted reclaim.
1385 * excess >> 2 is not to excessive so as to
1386 * reclaim too much, nor too less that we keep
1387 * coming back to reclaim from this cgroup
1389 if (total
>= (excess
>> 2) ||
1390 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1395 total
+= mem_cgroup_shrink_node(victim
, gfp_mask
, false,
1396 pgdat
, &nr_scanned
);
1397 *total_scanned
+= nr_scanned
;
1398 if (!soft_limit_excess(root_memcg
))
1401 mem_cgroup_iter_break(root_memcg
, victim
);
1405 #ifdef CONFIG_LOCKDEP
1406 static struct lockdep_map memcg_oom_lock_dep_map
= {
1407 .name
= "memcg_oom_lock",
1411 static DEFINE_SPINLOCK(memcg_oom_lock
);
1414 * Check OOM-Killer is already running under our hierarchy.
1415 * If someone is running, return false.
1417 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1419 struct mem_cgroup
*iter
, *failed
= NULL
;
1421 spin_lock(&memcg_oom_lock
);
1423 for_each_mem_cgroup_tree(iter
, memcg
) {
1424 if (iter
->oom_lock
) {
1426 * this subtree of our hierarchy is already locked
1427 * so we cannot give a lock.
1430 mem_cgroup_iter_break(memcg
, iter
);
1433 iter
->oom_lock
= true;
1438 * OK, we failed to lock the whole subtree so we have
1439 * to clean up what we set up to the failing subtree
1441 for_each_mem_cgroup_tree(iter
, memcg
) {
1442 if (iter
== failed
) {
1443 mem_cgroup_iter_break(memcg
, iter
);
1446 iter
->oom_lock
= false;
1449 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1451 spin_unlock(&memcg_oom_lock
);
1456 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1458 struct mem_cgroup
*iter
;
1460 spin_lock(&memcg_oom_lock
);
1461 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1462 for_each_mem_cgroup_tree(iter
, memcg
)
1463 iter
->oom_lock
= false;
1464 spin_unlock(&memcg_oom_lock
);
1467 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1469 struct mem_cgroup
*iter
;
1471 spin_lock(&memcg_oom_lock
);
1472 for_each_mem_cgroup_tree(iter
, memcg
)
1474 spin_unlock(&memcg_oom_lock
);
1477 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1479 struct mem_cgroup
*iter
;
1482 * When a new child is created while the hierarchy is under oom,
1483 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1485 spin_lock(&memcg_oom_lock
);
1486 for_each_mem_cgroup_tree(iter
, memcg
)
1487 if (iter
->under_oom
> 0)
1489 spin_unlock(&memcg_oom_lock
);
1492 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1494 struct oom_wait_info
{
1495 struct mem_cgroup
*memcg
;
1496 wait_queue_entry_t wait
;
1499 static int memcg_oom_wake_function(wait_queue_entry_t
*wait
,
1500 unsigned mode
, int sync
, void *arg
)
1502 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1503 struct mem_cgroup
*oom_wait_memcg
;
1504 struct oom_wait_info
*oom_wait_info
;
1506 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1507 oom_wait_memcg
= oom_wait_info
->memcg
;
1509 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1510 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1512 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1515 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1518 * For the following lockless ->under_oom test, the only required
1519 * guarantee is that it must see the state asserted by an OOM when
1520 * this function is called as a result of userland actions
1521 * triggered by the notification of the OOM. This is trivially
1522 * achieved by invoking mem_cgroup_mark_under_oom() before
1523 * triggering notification.
1525 if (memcg
&& memcg
->under_oom
)
1526 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1529 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1531 if (!current
->memcg_may_oom
)
1534 * We are in the middle of the charge context here, so we
1535 * don't want to block when potentially sitting on a callstack
1536 * that holds all kinds of filesystem and mm locks.
1538 * Also, the caller may handle a failed allocation gracefully
1539 * (like optional page cache readahead) and so an OOM killer
1540 * invocation might not even be necessary.
1542 * That's why we don't do anything here except remember the
1543 * OOM context and then deal with it at the end of the page
1544 * fault when the stack is unwound, the locks are released,
1545 * and when we know whether the fault was overall successful.
1547 css_get(&memcg
->css
);
1548 current
->memcg_in_oom
= memcg
;
1549 current
->memcg_oom_gfp_mask
= mask
;
1550 current
->memcg_oom_order
= order
;
1554 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1555 * @handle: actually kill/wait or just clean up the OOM state
1557 * This has to be called at the end of a page fault if the memcg OOM
1558 * handler was enabled.
1560 * Memcg supports userspace OOM handling where failed allocations must
1561 * sleep on a waitqueue until the userspace task resolves the
1562 * situation. Sleeping directly in the charge context with all kinds
1563 * of locks held is not a good idea, instead we remember an OOM state
1564 * in the task and mem_cgroup_oom_synchronize() has to be called at
1565 * the end of the page fault to complete the OOM handling.
1567 * Returns %true if an ongoing memcg OOM situation was detected and
1568 * completed, %false otherwise.
1570 bool mem_cgroup_oom_synchronize(bool handle
)
1572 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1573 struct oom_wait_info owait
;
1576 /* OOM is global, do not handle */
1583 owait
.memcg
= memcg
;
1584 owait
.wait
.flags
= 0;
1585 owait
.wait
.func
= memcg_oom_wake_function
;
1586 owait
.wait
.private = current
;
1587 INIT_LIST_HEAD(&owait
.wait
.entry
);
1589 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1590 mem_cgroup_mark_under_oom(memcg
);
1592 locked
= mem_cgroup_oom_trylock(memcg
);
1595 mem_cgroup_oom_notify(memcg
);
1597 if (locked
&& !memcg
->oom_kill_disable
) {
1598 mem_cgroup_unmark_under_oom(memcg
);
1599 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1600 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1601 current
->memcg_oom_order
);
1604 mem_cgroup_unmark_under_oom(memcg
);
1605 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1609 mem_cgroup_oom_unlock(memcg
);
1611 * There is no guarantee that an OOM-lock contender
1612 * sees the wakeups triggered by the OOM kill
1613 * uncharges. Wake any sleepers explicitely.
1615 memcg_oom_recover(memcg
);
1618 current
->memcg_in_oom
= NULL
;
1619 css_put(&memcg
->css
);
1624 * lock_page_memcg - lock a page->mem_cgroup binding
1627 * This function protects unlocked LRU pages from being moved to
1630 * It ensures lifetime of the returned memcg. Caller is responsible
1631 * for the lifetime of the page; __unlock_page_memcg() is available
1632 * when @page might get freed inside the locked section.
1634 struct mem_cgroup
*lock_page_memcg(struct page
*page
)
1636 struct mem_cgroup
*memcg
;
1637 unsigned long flags
;
1640 * The RCU lock is held throughout the transaction. The fast
1641 * path can get away without acquiring the memcg->move_lock
1642 * because page moving starts with an RCU grace period.
1644 * The RCU lock also protects the memcg from being freed when
1645 * the page state that is going to change is the only thing
1646 * preventing the page itself from being freed. E.g. writeback
1647 * doesn't hold a page reference and relies on PG_writeback to
1648 * keep off truncation, migration and so forth.
1652 if (mem_cgroup_disabled())
1655 memcg
= page
->mem_cgroup
;
1656 if (unlikely(!memcg
))
1659 if (atomic_read(&memcg
->moving_account
) <= 0)
1662 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1663 if (memcg
!= page
->mem_cgroup
) {
1664 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1669 * When charge migration first begins, we can have locked and
1670 * unlocked page stat updates happening concurrently. Track
1671 * the task who has the lock for unlock_page_memcg().
1673 memcg
->move_lock_task
= current
;
1674 memcg
->move_lock_flags
= flags
;
1678 EXPORT_SYMBOL(lock_page_memcg
);
1681 * __unlock_page_memcg - unlock and unpin a memcg
1684 * Unlock and unpin a memcg returned by lock_page_memcg().
1686 void __unlock_page_memcg(struct mem_cgroup
*memcg
)
1688 if (memcg
&& memcg
->move_lock_task
== current
) {
1689 unsigned long flags
= memcg
->move_lock_flags
;
1691 memcg
->move_lock_task
= NULL
;
1692 memcg
->move_lock_flags
= 0;
1694 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1701 * unlock_page_memcg - unlock a page->mem_cgroup binding
1704 void unlock_page_memcg(struct page
*page
)
1706 __unlock_page_memcg(page
->mem_cgroup
);
1708 EXPORT_SYMBOL(unlock_page_memcg
);
1711 * size of first charge trial. "32" comes from vmscan.c's magic value.
1712 * TODO: maybe necessary to use big numbers in big irons.
1714 #define CHARGE_BATCH 32U
1715 struct memcg_stock_pcp
{
1716 struct mem_cgroup
*cached
; /* this never be root cgroup */
1717 unsigned int nr_pages
;
1718 struct work_struct work
;
1719 unsigned long flags
;
1720 #define FLUSHING_CACHED_CHARGE 0
1722 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1723 static DEFINE_MUTEX(percpu_charge_mutex
);
1726 * consume_stock: Try to consume stocked charge on this cpu.
1727 * @memcg: memcg to consume from.
1728 * @nr_pages: how many pages to charge.
1730 * The charges will only happen if @memcg matches the current cpu's memcg
1731 * stock, and at least @nr_pages are available in that stock. Failure to
1732 * service an allocation will refill the stock.
1734 * returns true if successful, false otherwise.
1736 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1738 struct memcg_stock_pcp
*stock
;
1739 unsigned long flags
;
1742 if (nr_pages
> CHARGE_BATCH
)
1745 local_irq_save(flags
);
1747 stock
= this_cpu_ptr(&memcg_stock
);
1748 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1749 stock
->nr_pages
-= nr_pages
;
1753 local_irq_restore(flags
);
1759 * Returns stocks cached in percpu and reset cached information.
1761 static void drain_stock(struct memcg_stock_pcp
*stock
)
1763 struct mem_cgroup
*old
= stock
->cached
;
1765 if (stock
->nr_pages
) {
1766 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1767 if (do_memsw_account())
1768 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1769 css_put_many(&old
->css
, stock
->nr_pages
);
1770 stock
->nr_pages
= 0;
1772 stock
->cached
= NULL
;
1775 static void drain_local_stock(struct work_struct
*dummy
)
1777 struct memcg_stock_pcp
*stock
;
1778 unsigned long flags
;
1781 * The only protection from memory hotplug vs. drain_stock races is
1782 * that we always operate on local CPU stock here with IRQ disabled
1784 local_irq_save(flags
);
1786 stock
= this_cpu_ptr(&memcg_stock
);
1788 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1790 local_irq_restore(flags
);
1794 * Cache charges(val) to local per_cpu area.
1795 * This will be consumed by consume_stock() function, later.
1797 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1799 struct memcg_stock_pcp
*stock
;
1800 unsigned long flags
;
1802 local_irq_save(flags
);
1804 stock
= this_cpu_ptr(&memcg_stock
);
1805 if (stock
->cached
!= memcg
) { /* reset if necessary */
1807 stock
->cached
= memcg
;
1809 stock
->nr_pages
+= nr_pages
;
1811 if (stock
->nr_pages
> CHARGE_BATCH
)
1814 local_irq_restore(flags
);
1818 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1819 * of the hierarchy under it.
1821 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1825 /* If someone's already draining, avoid adding running more workers. */
1826 if (!mutex_trylock(&percpu_charge_mutex
))
1829 * Notify other cpus that system-wide "drain" is running
1830 * We do not care about races with the cpu hotplug because cpu down
1831 * as well as workers from this path always operate on the local
1832 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1835 for_each_online_cpu(cpu
) {
1836 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1837 struct mem_cgroup
*memcg
;
1839 memcg
= stock
->cached
;
1840 if (!memcg
|| !stock
->nr_pages
|| !css_tryget(&memcg
->css
))
1842 if (!mem_cgroup_is_descendant(memcg
, root_memcg
)) {
1843 css_put(&memcg
->css
);
1846 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1848 drain_local_stock(&stock
->work
);
1850 schedule_work_on(cpu
, &stock
->work
);
1852 css_put(&memcg
->css
);
1855 mutex_unlock(&percpu_charge_mutex
);
1858 static int memcg_hotplug_cpu_dead(unsigned int cpu
)
1860 struct memcg_stock_pcp
*stock
;
1862 stock
= &per_cpu(memcg_stock
, cpu
);
1867 static void reclaim_high(struct mem_cgroup
*memcg
,
1868 unsigned int nr_pages
,
1872 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1874 mem_cgroup_event(memcg
, MEMCG_HIGH
);
1875 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1876 } while ((memcg
= parent_mem_cgroup(memcg
)));
1879 static void high_work_func(struct work_struct
*work
)
1881 struct mem_cgroup
*memcg
;
1883 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1884 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1888 * Scheduled by try_charge() to be executed from the userland return path
1889 * and reclaims memory over the high limit.
1891 void mem_cgroup_handle_over_high(void)
1893 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1894 struct mem_cgroup
*memcg
;
1896 if (likely(!nr_pages
))
1899 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1900 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1901 css_put(&memcg
->css
);
1902 current
->memcg_nr_pages_over_high
= 0;
1905 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1906 unsigned int nr_pages
)
1908 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1909 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1910 struct mem_cgroup
*mem_over_limit
;
1911 struct page_counter
*counter
;
1912 unsigned long nr_reclaimed
;
1913 bool may_swap
= true;
1914 bool drained
= false;
1916 if (mem_cgroup_is_root(memcg
))
1919 if (consume_stock(memcg
, nr_pages
))
1922 if (!do_memsw_account() ||
1923 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1924 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1926 if (do_memsw_account())
1927 page_counter_uncharge(&memcg
->memsw
, batch
);
1928 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1930 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1934 if (batch
> nr_pages
) {
1940 * Unlike in global OOM situations, memcg is not in a physical
1941 * memory shortage. Allow dying and OOM-killed tasks to
1942 * bypass the last charges so that they can exit quickly and
1943 * free their memory.
1945 if (unlikely(tsk_is_oom_victim(current
) ||
1946 fatal_signal_pending(current
) ||
1947 current
->flags
& PF_EXITING
))
1951 * Prevent unbounded recursion when reclaim operations need to
1952 * allocate memory. This might exceed the limits temporarily,
1953 * but we prefer facilitating memory reclaim and getting back
1954 * under the limit over triggering OOM kills in these cases.
1956 if (unlikely(current
->flags
& PF_MEMALLOC
))
1959 if (unlikely(task_in_memcg_oom(current
)))
1962 if (!gfpflags_allow_blocking(gfp_mask
))
1965 mem_cgroup_event(mem_over_limit
, MEMCG_MAX
);
1967 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1968 gfp_mask
, may_swap
);
1970 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1974 drain_all_stock(mem_over_limit
);
1979 if (gfp_mask
& __GFP_NORETRY
)
1982 * Even though the limit is exceeded at this point, reclaim
1983 * may have been able to free some pages. Retry the charge
1984 * before killing the task.
1986 * Only for regular pages, though: huge pages are rather
1987 * unlikely to succeed so close to the limit, and we fall back
1988 * to regular pages anyway in case of failure.
1990 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
1993 * At task move, charge accounts can be doubly counted. So, it's
1994 * better to wait until the end of task_move if something is going on.
1996 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2002 if (gfp_mask
& __GFP_NOFAIL
)
2005 if (fatal_signal_pending(current
))
2008 mem_cgroup_event(mem_over_limit
, MEMCG_OOM
);
2010 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2011 get_order(nr_pages
* PAGE_SIZE
));
2013 if (!(gfp_mask
& __GFP_NOFAIL
))
2017 * The allocation either can't fail or will lead to more memory
2018 * being freed very soon. Allow memory usage go over the limit
2019 * temporarily by force charging it.
2021 page_counter_charge(&memcg
->memory
, nr_pages
);
2022 if (do_memsw_account())
2023 page_counter_charge(&memcg
->memsw
, nr_pages
);
2024 css_get_many(&memcg
->css
, nr_pages
);
2029 css_get_many(&memcg
->css
, batch
);
2030 if (batch
> nr_pages
)
2031 refill_stock(memcg
, batch
- nr_pages
);
2034 * If the hierarchy is above the normal consumption range, schedule
2035 * reclaim on returning to userland. We can perform reclaim here
2036 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2037 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2038 * not recorded as it most likely matches current's and won't
2039 * change in the meantime. As high limit is checked again before
2040 * reclaim, the cost of mismatch is negligible.
2043 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2044 /* Don't bother a random interrupted task */
2045 if (in_interrupt()) {
2046 schedule_work(&memcg
->high_work
);
2049 current
->memcg_nr_pages_over_high
+= batch
;
2050 set_notify_resume(current
);
2053 } while ((memcg
= parent_mem_cgroup(memcg
)));
2058 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2060 if (mem_cgroup_is_root(memcg
))
2063 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2064 if (do_memsw_account())
2065 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2067 css_put_many(&memcg
->css
, nr_pages
);
2070 static void lock_page_lru(struct page
*page
, int *isolated
)
2072 struct zone
*zone
= page_zone(page
);
2074 spin_lock_irq(zone_lru_lock(zone
));
2075 if (PageLRU(page
)) {
2076 struct lruvec
*lruvec
;
2078 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2080 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2086 static void unlock_page_lru(struct page
*page
, int isolated
)
2088 struct zone
*zone
= page_zone(page
);
2091 struct lruvec
*lruvec
;
2093 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
2094 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2096 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2098 spin_unlock_irq(zone_lru_lock(zone
));
2101 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2106 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2109 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2110 * may already be on some other mem_cgroup's LRU. Take care of it.
2113 lock_page_lru(page
, &isolated
);
2116 * Nobody should be changing or seriously looking at
2117 * page->mem_cgroup at this point:
2119 * - the page is uncharged
2121 * - the page is off-LRU
2123 * - an anonymous fault has exclusive page access, except for
2124 * a locked page table
2126 * - a page cache insertion, a swapin fault, or a migration
2127 * have the page locked
2129 page
->mem_cgroup
= memcg
;
2132 unlock_page_lru(page
, isolated
);
2136 static int memcg_alloc_cache_id(void)
2141 id
= ida_simple_get(&memcg_cache_ida
,
2142 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2146 if (id
< memcg_nr_cache_ids
)
2150 * There's no space for the new id in memcg_caches arrays,
2151 * so we have to grow them.
2153 down_write(&memcg_cache_ids_sem
);
2155 size
= 2 * (id
+ 1);
2156 if (size
< MEMCG_CACHES_MIN_SIZE
)
2157 size
= MEMCG_CACHES_MIN_SIZE
;
2158 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2159 size
= MEMCG_CACHES_MAX_SIZE
;
2161 err
= memcg_update_all_caches(size
);
2163 err
= memcg_update_all_list_lrus(size
);
2165 memcg_nr_cache_ids
= size
;
2167 up_write(&memcg_cache_ids_sem
);
2170 ida_simple_remove(&memcg_cache_ida
, id
);
2176 static void memcg_free_cache_id(int id
)
2178 ida_simple_remove(&memcg_cache_ida
, id
);
2181 struct memcg_kmem_cache_create_work
{
2182 struct mem_cgroup
*memcg
;
2183 struct kmem_cache
*cachep
;
2184 struct work_struct work
;
2187 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2189 struct memcg_kmem_cache_create_work
*cw
=
2190 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2191 struct mem_cgroup
*memcg
= cw
->memcg
;
2192 struct kmem_cache
*cachep
= cw
->cachep
;
2194 memcg_create_kmem_cache(memcg
, cachep
);
2196 css_put(&memcg
->css
);
2201 * Enqueue the creation of a per-memcg kmem_cache.
2203 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2204 struct kmem_cache
*cachep
)
2206 struct memcg_kmem_cache_create_work
*cw
;
2208 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2212 css_get(&memcg
->css
);
2215 cw
->cachep
= cachep
;
2216 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2218 queue_work(memcg_kmem_cache_wq
, &cw
->work
);
2221 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2222 struct kmem_cache
*cachep
)
2225 * We need to stop accounting when we kmalloc, because if the
2226 * corresponding kmalloc cache is not yet created, the first allocation
2227 * in __memcg_schedule_kmem_cache_create will recurse.
2229 * However, it is better to enclose the whole function. Depending on
2230 * the debugging options enabled, INIT_WORK(), for instance, can
2231 * trigger an allocation. This too, will make us recurse. Because at
2232 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2233 * the safest choice is to do it like this, wrapping the whole function.
2235 current
->memcg_kmem_skip_account
= 1;
2236 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2237 current
->memcg_kmem_skip_account
= 0;
2240 static inline bool memcg_kmem_bypass(void)
2242 if (in_interrupt() || !current
->mm
|| (current
->flags
& PF_KTHREAD
))
2248 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2249 * @cachep: the original global kmem cache
2251 * Return the kmem_cache we're supposed to use for a slab allocation.
2252 * We try to use the current memcg's version of the cache.
2254 * If the cache does not exist yet, if we are the first user of it, we
2255 * create it asynchronously in a workqueue and let the current allocation
2256 * go through with the original cache.
2258 * This function takes a reference to the cache it returns to assure it
2259 * won't get destroyed while we are working with it. Once the caller is
2260 * done with it, memcg_kmem_put_cache() must be called to release the
2263 struct kmem_cache
*memcg_kmem_get_cache(struct kmem_cache
*cachep
)
2265 struct mem_cgroup
*memcg
;
2266 struct kmem_cache
*memcg_cachep
;
2269 VM_BUG_ON(!is_root_cache(cachep
));
2271 if (memcg_kmem_bypass())
2274 if (current
->memcg_kmem_skip_account
)
2277 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2278 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2282 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2283 if (likely(memcg_cachep
))
2284 return memcg_cachep
;
2287 * If we are in a safe context (can wait, and not in interrupt
2288 * context), we could be be predictable and return right away.
2289 * This would guarantee that the allocation being performed
2290 * already belongs in the new cache.
2292 * However, there are some clashes that can arrive from locking.
2293 * For instance, because we acquire the slab_mutex while doing
2294 * memcg_create_kmem_cache, this means no further allocation
2295 * could happen with the slab_mutex held. So it's better to
2298 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2300 css_put(&memcg
->css
);
2305 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2306 * @cachep: the cache returned by memcg_kmem_get_cache
2308 void memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2310 if (!is_root_cache(cachep
))
2311 css_put(&cachep
->memcg_params
.memcg
->css
);
2315 * memcg_kmem_charge: charge a kmem page
2316 * @page: page to charge
2317 * @gfp: reclaim mode
2318 * @order: allocation order
2319 * @memcg: memory cgroup to charge
2321 * Returns 0 on success, an error code on failure.
2323 int memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2324 struct mem_cgroup
*memcg
)
2326 unsigned int nr_pages
= 1 << order
;
2327 struct page_counter
*counter
;
2330 ret
= try_charge(memcg
, gfp
, nr_pages
);
2334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2335 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2336 cancel_charge(memcg
, nr_pages
);
2340 page
->mem_cgroup
= memcg
;
2346 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2347 * @page: page to charge
2348 * @gfp: reclaim mode
2349 * @order: allocation order
2351 * Returns 0 on success, an error code on failure.
2353 int memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2355 struct mem_cgroup
*memcg
;
2358 if (memcg_kmem_bypass())
2361 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2362 if (!mem_cgroup_is_root(memcg
)) {
2363 ret
= memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2365 __SetPageKmemcg(page
);
2367 css_put(&memcg
->css
);
2371 * memcg_kmem_uncharge: uncharge a kmem page
2372 * @page: page to uncharge
2373 * @order: allocation order
2375 void memcg_kmem_uncharge(struct page
*page
, int order
)
2377 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2378 unsigned int nr_pages
= 1 << order
;
2383 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2386 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2388 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2389 if (do_memsw_account())
2390 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2392 page
->mem_cgroup
= NULL
;
2394 /* slab pages do not have PageKmemcg flag set */
2395 if (PageKmemcg(page
))
2396 __ClearPageKmemcg(page
);
2398 css_put_many(&memcg
->css
, nr_pages
);
2400 #endif /* !CONFIG_SLOB */
2402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2405 * Because tail pages are not marked as "used", set it. We're under
2406 * zone_lru_lock and migration entries setup in all page mappings.
2408 void mem_cgroup_split_huge_fixup(struct page
*head
)
2412 if (mem_cgroup_disabled())
2415 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2416 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2418 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEMCG_RSS_HUGE
],
2421 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2423 #ifdef CONFIG_MEMCG_SWAP
2424 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2427 this_cpu_add(memcg
->stat
->count
[MEMCG_SWAP
], nr_entries
);
2431 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2432 * @entry: swap entry to be moved
2433 * @from: mem_cgroup which the entry is moved from
2434 * @to: mem_cgroup which the entry is moved to
2436 * It succeeds only when the swap_cgroup's record for this entry is the same
2437 * as the mem_cgroup's id of @from.
2439 * Returns 0 on success, -EINVAL on failure.
2441 * The caller must have charged to @to, IOW, called page_counter_charge() about
2442 * both res and memsw, and called css_get().
2444 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2445 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2447 unsigned short old_id
, new_id
;
2449 old_id
= mem_cgroup_id(from
);
2450 new_id
= mem_cgroup_id(to
);
2452 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2453 mem_cgroup_swap_statistics(from
, -1);
2454 mem_cgroup_swap_statistics(to
, 1);
2460 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2461 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2467 static DEFINE_MUTEX(memcg_limit_mutex
);
2469 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2470 unsigned long limit
)
2472 unsigned long curusage
;
2473 unsigned long oldusage
;
2474 bool enlarge
= false;
2479 * For keeping hierarchical_reclaim simple, how long we should retry
2480 * is depends on callers. We set our retry-count to be function
2481 * of # of children which we should visit in this loop.
2483 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2484 mem_cgroup_count_children(memcg
);
2486 oldusage
= page_counter_read(&memcg
->memory
);
2489 if (signal_pending(current
)) {
2494 mutex_lock(&memcg_limit_mutex
);
2495 if (limit
> memcg
->memsw
.limit
) {
2496 mutex_unlock(&memcg_limit_mutex
);
2500 if (limit
> memcg
->memory
.limit
)
2502 ret
= page_counter_limit(&memcg
->memory
, limit
);
2503 mutex_unlock(&memcg_limit_mutex
);
2508 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2510 curusage
= page_counter_read(&memcg
->memory
);
2511 /* Usage is reduced ? */
2512 if (curusage
>= oldusage
)
2515 oldusage
= curusage
;
2516 } while (retry_count
);
2518 if (!ret
&& enlarge
)
2519 memcg_oom_recover(memcg
);
2524 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2525 unsigned long limit
)
2527 unsigned long curusage
;
2528 unsigned long oldusage
;
2529 bool enlarge
= false;
2533 /* see mem_cgroup_resize_res_limit */
2534 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2535 mem_cgroup_count_children(memcg
);
2537 oldusage
= page_counter_read(&memcg
->memsw
);
2540 if (signal_pending(current
)) {
2545 mutex_lock(&memcg_limit_mutex
);
2546 if (limit
< memcg
->memory
.limit
) {
2547 mutex_unlock(&memcg_limit_mutex
);
2551 if (limit
> memcg
->memsw
.limit
)
2553 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2554 mutex_unlock(&memcg_limit_mutex
);
2559 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2561 curusage
= page_counter_read(&memcg
->memsw
);
2562 /* Usage is reduced ? */
2563 if (curusage
>= oldusage
)
2566 oldusage
= curusage
;
2567 } while (retry_count
);
2569 if (!ret
&& enlarge
)
2570 memcg_oom_recover(memcg
);
2575 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t
*pgdat
, int order
,
2577 unsigned long *total_scanned
)
2579 unsigned long nr_reclaimed
= 0;
2580 struct mem_cgroup_per_node
*mz
, *next_mz
= NULL
;
2581 unsigned long reclaimed
;
2583 struct mem_cgroup_tree_per_node
*mctz
;
2584 unsigned long excess
;
2585 unsigned long nr_scanned
;
2590 mctz
= soft_limit_tree_node(pgdat
->node_id
);
2593 * Do not even bother to check the largest node if the root
2594 * is empty. Do it lockless to prevent lock bouncing. Races
2595 * are acceptable as soft limit is best effort anyway.
2597 if (!mctz
|| RB_EMPTY_ROOT(&mctz
->rb_root
))
2601 * This loop can run a while, specially if mem_cgroup's continuously
2602 * keep exceeding their soft limit and putting the system under
2609 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2614 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, pgdat
,
2615 gfp_mask
, &nr_scanned
);
2616 nr_reclaimed
+= reclaimed
;
2617 *total_scanned
+= nr_scanned
;
2618 spin_lock_irq(&mctz
->lock
);
2619 __mem_cgroup_remove_exceeded(mz
, mctz
);
2622 * If we failed to reclaim anything from this memory cgroup
2623 * it is time to move on to the next cgroup
2627 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2629 excess
= soft_limit_excess(mz
->memcg
);
2631 * One school of thought says that we should not add
2632 * back the node to the tree if reclaim returns 0.
2633 * But our reclaim could return 0, simply because due
2634 * to priority we are exposing a smaller subset of
2635 * memory to reclaim from. Consider this as a longer
2638 /* If excess == 0, no tree ops */
2639 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2640 spin_unlock_irq(&mctz
->lock
);
2641 css_put(&mz
->memcg
->css
);
2644 * Could not reclaim anything and there are no more
2645 * mem cgroups to try or we seem to be looping without
2646 * reclaiming anything.
2648 if (!nr_reclaimed
&&
2650 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2652 } while (!nr_reclaimed
);
2654 css_put(&next_mz
->memcg
->css
);
2655 return nr_reclaimed
;
2659 * Test whether @memcg has children, dead or alive. Note that this
2660 * function doesn't care whether @memcg has use_hierarchy enabled and
2661 * returns %true if there are child csses according to the cgroup
2662 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2664 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2669 ret
= css_next_child(NULL
, &memcg
->css
);
2675 * Reclaims as many pages from the given memcg as possible.
2677 * Caller is responsible for holding css reference for memcg.
2679 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2681 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2683 /* we call try-to-free pages for make this cgroup empty */
2684 lru_add_drain_all();
2685 /* try to free all pages in this cgroup */
2686 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2689 if (signal_pending(current
))
2692 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2696 /* maybe some writeback is necessary */
2697 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2705 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2706 char *buf
, size_t nbytes
,
2709 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2711 if (mem_cgroup_is_root(memcg
))
2713 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2716 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2719 return mem_cgroup_from_css(css
)->use_hierarchy
;
2722 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2723 struct cftype
*cft
, u64 val
)
2726 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2727 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2729 if (memcg
->use_hierarchy
== val
)
2733 * If parent's use_hierarchy is set, we can't make any modifications
2734 * in the child subtrees. If it is unset, then the change can
2735 * occur, provided the current cgroup has no children.
2737 * For the root cgroup, parent_mem is NULL, we allow value to be
2738 * set if there are no children.
2740 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2741 (val
== 1 || val
== 0)) {
2742 if (!memcg_has_children(memcg
))
2743 memcg
->use_hierarchy
= val
;
2752 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2754 struct mem_cgroup
*iter
;
2757 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2759 for_each_mem_cgroup_tree(iter
, memcg
) {
2760 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2761 stat
[i
] += memcg_page_state(iter
, i
);
2765 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2767 struct mem_cgroup
*iter
;
2770 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2772 for_each_mem_cgroup_tree(iter
, memcg
) {
2773 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2774 events
[i
] += memcg_sum_events(iter
, i
);
2778 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2780 unsigned long val
= 0;
2782 if (mem_cgroup_is_root(memcg
)) {
2783 struct mem_cgroup
*iter
;
2785 for_each_mem_cgroup_tree(iter
, memcg
) {
2786 val
+= memcg_page_state(iter
, MEMCG_CACHE
);
2787 val
+= memcg_page_state(iter
, MEMCG_RSS
);
2789 val
+= memcg_page_state(iter
, MEMCG_SWAP
);
2793 val
= page_counter_read(&memcg
->memory
);
2795 val
= page_counter_read(&memcg
->memsw
);
2808 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2811 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2812 struct page_counter
*counter
;
2814 switch (MEMFILE_TYPE(cft
->private)) {
2816 counter
= &memcg
->memory
;
2819 counter
= &memcg
->memsw
;
2822 counter
= &memcg
->kmem
;
2825 counter
= &memcg
->tcpmem
;
2831 switch (MEMFILE_ATTR(cft
->private)) {
2833 if (counter
== &memcg
->memory
)
2834 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2835 if (counter
== &memcg
->memsw
)
2836 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2837 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2839 return (u64
)counter
->limit
* PAGE_SIZE
;
2841 return (u64
)counter
->watermark
* PAGE_SIZE
;
2843 return counter
->failcnt
;
2844 case RES_SOFT_LIMIT
:
2845 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2852 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2856 if (cgroup_memory_nokmem
)
2859 BUG_ON(memcg
->kmemcg_id
>= 0);
2860 BUG_ON(memcg
->kmem_state
);
2862 memcg_id
= memcg_alloc_cache_id();
2866 static_branch_inc(&memcg_kmem_enabled_key
);
2868 * A memory cgroup is considered kmem-online as soon as it gets
2869 * kmemcg_id. Setting the id after enabling static branching will
2870 * guarantee no one starts accounting before all call sites are
2873 memcg
->kmemcg_id
= memcg_id
;
2874 memcg
->kmem_state
= KMEM_ONLINE
;
2875 INIT_LIST_HEAD(&memcg
->kmem_caches
);
2880 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2882 struct cgroup_subsys_state
*css
;
2883 struct mem_cgroup
*parent
, *child
;
2886 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2889 * Clear the online state before clearing memcg_caches array
2890 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2891 * guarantees that no cache will be created for this cgroup
2892 * after we are done (see memcg_create_kmem_cache()).
2894 memcg
->kmem_state
= KMEM_ALLOCATED
;
2896 memcg_deactivate_kmem_caches(memcg
);
2898 kmemcg_id
= memcg
->kmemcg_id
;
2899 BUG_ON(kmemcg_id
< 0);
2901 parent
= parent_mem_cgroup(memcg
);
2903 parent
= root_mem_cgroup
;
2906 * Change kmemcg_id of this cgroup and all its descendants to the
2907 * parent's id, and then move all entries from this cgroup's list_lrus
2908 * to ones of the parent. After we have finished, all list_lrus
2909 * corresponding to this cgroup are guaranteed to remain empty. The
2910 * ordering is imposed by list_lru_node->lock taken by
2911 * memcg_drain_all_list_lrus().
2913 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2914 css_for_each_descendant_pre(css
, &memcg
->css
) {
2915 child
= mem_cgroup_from_css(css
);
2916 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2917 child
->kmemcg_id
= parent
->kmemcg_id
;
2918 if (!memcg
->use_hierarchy
)
2923 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2925 memcg_free_cache_id(kmemcg_id
);
2928 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2930 /* css_alloc() failed, offlining didn't happen */
2931 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2932 memcg_offline_kmem(memcg
);
2934 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2935 memcg_destroy_kmem_caches(memcg
);
2936 static_branch_dec(&memcg_kmem_enabled_key
);
2937 WARN_ON(page_counter_read(&memcg
->kmem
));
2941 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2945 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2948 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2951 #endif /* !CONFIG_SLOB */
2953 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2954 unsigned long limit
)
2958 mutex_lock(&memcg_limit_mutex
);
2959 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2960 mutex_unlock(&memcg_limit_mutex
);
2964 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2968 mutex_lock(&memcg_limit_mutex
);
2970 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2974 if (!memcg
->tcpmem_active
) {
2976 * The active flag needs to be written after the static_key
2977 * update. This is what guarantees that the socket activation
2978 * function is the last one to run. See mem_cgroup_sk_alloc()
2979 * for details, and note that we don't mark any socket as
2980 * belonging to this memcg until that flag is up.
2982 * We need to do this, because static_keys will span multiple
2983 * sites, but we can't control their order. If we mark a socket
2984 * as accounted, but the accounting functions are not patched in
2985 * yet, we'll lose accounting.
2987 * We never race with the readers in mem_cgroup_sk_alloc(),
2988 * because when this value change, the code to process it is not
2991 static_branch_inc(&memcg_sockets_enabled_key
);
2992 memcg
->tcpmem_active
= true;
2995 mutex_unlock(&memcg_limit_mutex
);
3000 * The user of this function is...
3003 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
3004 char *buf
, size_t nbytes
, loff_t off
)
3006 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3007 unsigned long nr_pages
;
3010 buf
= strstrip(buf
);
3011 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
3015 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3017 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3021 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3023 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
3026 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
3029 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
3032 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3036 case RES_SOFT_LIMIT
:
3037 memcg
->soft_limit
= nr_pages
;
3041 return ret
?: nbytes
;
3044 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3045 size_t nbytes
, loff_t off
)
3047 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3048 struct page_counter
*counter
;
3050 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3052 counter
= &memcg
->memory
;
3055 counter
= &memcg
->memsw
;
3058 counter
= &memcg
->kmem
;
3061 counter
= &memcg
->tcpmem
;
3067 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3069 page_counter_reset_watermark(counter
);
3072 counter
->failcnt
= 0;
3081 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3084 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3088 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3089 struct cftype
*cft
, u64 val
)
3091 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3093 if (val
& ~MOVE_MASK
)
3097 * No kind of locking is needed in here, because ->can_attach() will
3098 * check this value once in the beginning of the process, and then carry
3099 * on with stale data. This means that changes to this value will only
3100 * affect task migrations starting after the change.
3102 memcg
->move_charge_at_immigrate
= val
;
3106 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3107 struct cftype
*cft
, u64 val
)
3114 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3118 unsigned int lru_mask
;
3121 static const struct numa_stat stats
[] = {
3122 { "total", LRU_ALL
},
3123 { "file", LRU_ALL_FILE
},
3124 { "anon", LRU_ALL_ANON
},
3125 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3127 const struct numa_stat
*stat
;
3130 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3132 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3133 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3134 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3135 for_each_node_state(nid
, N_MEMORY
) {
3136 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3138 seq_printf(m
, " N%d=%lu", nid
, nr
);
3143 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3144 struct mem_cgroup
*iter
;
3147 for_each_mem_cgroup_tree(iter
, memcg
)
3148 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3149 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3150 for_each_node_state(nid
, N_MEMORY
) {
3152 for_each_mem_cgroup_tree(iter
, memcg
)
3153 nr
+= mem_cgroup_node_nr_lru_pages(
3154 iter
, nid
, stat
->lru_mask
);
3155 seq_printf(m
, " N%d=%lu", nid
, nr
);
3162 #endif /* CONFIG_NUMA */
3164 /* Universal VM events cgroup1 shows, original sort order */
3165 unsigned int memcg1_events
[] = {
3172 static const char *const memcg1_event_names
[] = {
3179 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3181 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3182 unsigned long memory
, memsw
;
3183 struct mem_cgroup
*mi
;
3186 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names
) != ARRAY_SIZE(memcg1_stats
));
3187 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3189 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3190 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3192 seq_printf(m
, "%s %lu\n", memcg1_stat_names
[i
],
3193 memcg_page_state(memcg
, memcg1_stats
[i
]) *
3197 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++)
3198 seq_printf(m
, "%s %lu\n", memcg1_event_names
[i
],
3199 memcg_sum_events(memcg
, memcg1_events
[i
]));
3201 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3202 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3203 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3205 /* Hierarchical information */
3206 memory
= memsw
= PAGE_COUNTER_MAX
;
3207 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3208 memory
= min(memory
, mi
->memory
.limit
);
3209 memsw
= min(memsw
, mi
->memsw
.limit
);
3211 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3212 (u64
)memory
* PAGE_SIZE
);
3213 if (do_memsw_account())
3214 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3215 (u64
)memsw
* PAGE_SIZE
);
3217 for (i
= 0; i
< ARRAY_SIZE(memcg1_stats
); i
++) {
3218 unsigned long long val
= 0;
3220 if (memcg1_stats
[i
] == MEMCG_SWAP
&& !do_memsw_account())
3222 for_each_mem_cgroup_tree(mi
, memcg
)
3223 val
+= memcg_page_state(mi
, memcg1_stats
[i
]) *
3225 seq_printf(m
, "total_%s %llu\n", memcg1_stat_names
[i
], val
);
3228 for (i
= 0; i
< ARRAY_SIZE(memcg1_events
); i
++) {
3229 unsigned long long val
= 0;
3231 for_each_mem_cgroup_tree(mi
, memcg
)
3232 val
+= memcg_sum_events(mi
, memcg1_events
[i
]);
3233 seq_printf(m
, "total_%s %llu\n", memcg1_event_names
[i
], val
);
3236 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3237 unsigned long long val
= 0;
3239 for_each_mem_cgroup_tree(mi
, memcg
)
3240 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3241 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3244 #ifdef CONFIG_DEBUG_VM
3247 struct mem_cgroup_per_node
*mz
;
3248 struct zone_reclaim_stat
*rstat
;
3249 unsigned long recent_rotated
[2] = {0, 0};
3250 unsigned long recent_scanned
[2] = {0, 0};
3252 for_each_online_pgdat(pgdat
) {
3253 mz
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
3254 rstat
= &mz
->lruvec
.reclaim_stat
;
3256 recent_rotated
[0] += rstat
->recent_rotated
[0];
3257 recent_rotated
[1] += rstat
->recent_rotated
[1];
3258 recent_scanned
[0] += rstat
->recent_scanned
[0];
3259 recent_scanned
[1] += rstat
->recent_scanned
[1];
3261 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3262 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3263 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3264 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3271 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3274 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3276 return mem_cgroup_swappiness(memcg
);
3279 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3280 struct cftype
*cft
, u64 val
)
3282 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3288 memcg
->swappiness
= val
;
3290 vm_swappiness
= val
;
3295 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3297 struct mem_cgroup_threshold_ary
*t
;
3298 unsigned long usage
;
3303 t
= rcu_dereference(memcg
->thresholds
.primary
);
3305 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3310 usage
= mem_cgroup_usage(memcg
, swap
);
3313 * current_threshold points to threshold just below or equal to usage.
3314 * If it's not true, a threshold was crossed after last
3315 * call of __mem_cgroup_threshold().
3317 i
= t
->current_threshold
;
3320 * Iterate backward over array of thresholds starting from
3321 * current_threshold and check if a threshold is crossed.
3322 * If none of thresholds below usage is crossed, we read
3323 * only one element of the array here.
3325 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3326 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3328 /* i = current_threshold + 1 */
3332 * Iterate forward over array of thresholds starting from
3333 * current_threshold+1 and check if a threshold is crossed.
3334 * If none of thresholds above usage is crossed, we read
3335 * only one element of the array here.
3337 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3338 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3340 /* Update current_threshold */
3341 t
->current_threshold
= i
- 1;
3346 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3349 __mem_cgroup_threshold(memcg
, false);
3350 if (do_memsw_account())
3351 __mem_cgroup_threshold(memcg
, true);
3353 memcg
= parent_mem_cgroup(memcg
);
3357 static int compare_thresholds(const void *a
, const void *b
)
3359 const struct mem_cgroup_threshold
*_a
= a
;
3360 const struct mem_cgroup_threshold
*_b
= b
;
3362 if (_a
->threshold
> _b
->threshold
)
3365 if (_a
->threshold
< _b
->threshold
)
3371 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3373 struct mem_cgroup_eventfd_list
*ev
;
3375 spin_lock(&memcg_oom_lock
);
3377 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3378 eventfd_signal(ev
->eventfd
, 1);
3380 spin_unlock(&memcg_oom_lock
);
3384 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3386 struct mem_cgroup
*iter
;
3388 for_each_mem_cgroup_tree(iter
, memcg
)
3389 mem_cgroup_oom_notify_cb(iter
);
3392 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3393 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3395 struct mem_cgroup_thresholds
*thresholds
;
3396 struct mem_cgroup_threshold_ary
*new;
3397 unsigned long threshold
;
3398 unsigned long usage
;
3401 ret
= page_counter_memparse(args
, "-1", &threshold
);
3405 mutex_lock(&memcg
->thresholds_lock
);
3408 thresholds
= &memcg
->thresholds
;
3409 usage
= mem_cgroup_usage(memcg
, false);
3410 } else if (type
== _MEMSWAP
) {
3411 thresholds
= &memcg
->memsw_thresholds
;
3412 usage
= mem_cgroup_usage(memcg
, true);
3416 /* Check if a threshold crossed before adding a new one */
3417 if (thresholds
->primary
)
3418 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3420 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3422 /* Allocate memory for new array of thresholds */
3423 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3431 /* Copy thresholds (if any) to new array */
3432 if (thresholds
->primary
) {
3433 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3434 sizeof(struct mem_cgroup_threshold
));
3437 /* Add new threshold */
3438 new->entries
[size
- 1].eventfd
= eventfd
;
3439 new->entries
[size
- 1].threshold
= threshold
;
3441 /* Sort thresholds. Registering of new threshold isn't time-critical */
3442 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3443 compare_thresholds
, NULL
);
3445 /* Find current threshold */
3446 new->current_threshold
= -1;
3447 for (i
= 0; i
< size
; i
++) {
3448 if (new->entries
[i
].threshold
<= usage
) {
3450 * new->current_threshold will not be used until
3451 * rcu_assign_pointer(), so it's safe to increment
3454 ++new->current_threshold
;
3459 /* Free old spare buffer and save old primary buffer as spare */
3460 kfree(thresholds
->spare
);
3461 thresholds
->spare
= thresholds
->primary
;
3463 rcu_assign_pointer(thresholds
->primary
, new);
3465 /* To be sure that nobody uses thresholds */
3469 mutex_unlock(&memcg
->thresholds_lock
);
3474 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3475 struct eventfd_ctx
*eventfd
, const char *args
)
3477 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3480 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3481 struct eventfd_ctx
*eventfd
, const char *args
)
3483 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3486 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3487 struct eventfd_ctx
*eventfd
, enum res_type type
)
3489 struct mem_cgroup_thresholds
*thresholds
;
3490 struct mem_cgroup_threshold_ary
*new;
3491 unsigned long usage
;
3494 mutex_lock(&memcg
->thresholds_lock
);
3497 thresholds
= &memcg
->thresholds
;
3498 usage
= mem_cgroup_usage(memcg
, false);
3499 } else if (type
== _MEMSWAP
) {
3500 thresholds
= &memcg
->memsw_thresholds
;
3501 usage
= mem_cgroup_usage(memcg
, true);
3505 if (!thresholds
->primary
)
3508 /* Check if a threshold crossed before removing */
3509 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3511 /* Calculate new number of threshold */
3513 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3514 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3518 new = thresholds
->spare
;
3520 /* Set thresholds array to NULL if we don't have thresholds */
3529 /* Copy thresholds and find current threshold */
3530 new->current_threshold
= -1;
3531 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3532 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3535 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3536 if (new->entries
[j
].threshold
<= usage
) {
3538 * new->current_threshold will not be used
3539 * until rcu_assign_pointer(), so it's safe to increment
3542 ++new->current_threshold
;
3548 /* Swap primary and spare array */
3549 thresholds
->spare
= thresholds
->primary
;
3551 rcu_assign_pointer(thresholds
->primary
, new);
3553 /* To be sure that nobody uses thresholds */
3556 /* If all events are unregistered, free the spare array */
3558 kfree(thresholds
->spare
);
3559 thresholds
->spare
= NULL
;
3562 mutex_unlock(&memcg
->thresholds_lock
);
3565 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3566 struct eventfd_ctx
*eventfd
)
3568 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3571 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3572 struct eventfd_ctx
*eventfd
)
3574 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3577 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3578 struct eventfd_ctx
*eventfd
, const char *args
)
3580 struct mem_cgroup_eventfd_list
*event
;
3582 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3586 spin_lock(&memcg_oom_lock
);
3588 event
->eventfd
= eventfd
;
3589 list_add(&event
->list
, &memcg
->oom_notify
);
3591 /* already in OOM ? */
3592 if (memcg
->under_oom
)
3593 eventfd_signal(eventfd
, 1);
3594 spin_unlock(&memcg_oom_lock
);
3599 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3600 struct eventfd_ctx
*eventfd
)
3602 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3604 spin_lock(&memcg_oom_lock
);
3606 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3607 if (ev
->eventfd
== eventfd
) {
3608 list_del(&ev
->list
);
3613 spin_unlock(&memcg_oom_lock
);
3616 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3618 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3620 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3621 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3622 seq_printf(sf
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
3626 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3627 struct cftype
*cft
, u64 val
)
3629 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3631 /* cannot set to root cgroup and only 0 and 1 are allowed */
3632 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3635 memcg
->oom_kill_disable
= val
;
3637 memcg_oom_recover(memcg
);
3642 #ifdef CONFIG_CGROUP_WRITEBACK
3644 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3646 return &memcg
->cgwb_list
;
3649 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3651 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3654 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3656 wb_domain_exit(&memcg
->cgwb_domain
);
3659 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3661 wb_domain_size_changed(&memcg
->cgwb_domain
);
3664 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3666 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3668 if (!memcg
->css
.parent
)
3671 return &memcg
->cgwb_domain
;
3675 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3676 * @wb: bdi_writeback in question
3677 * @pfilepages: out parameter for number of file pages
3678 * @pheadroom: out parameter for number of allocatable pages according to memcg
3679 * @pdirty: out parameter for number of dirty pages
3680 * @pwriteback: out parameter for number of pages under writeback
3682 * Determine the numbers of file, headroom, dirty, and writeback pages in
3683 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3684 * is a bit more involved.
3686 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3687 * headroom is calculated as the lowest headroom of itself and the
3688 * ancestors. Note that this doesn't consider the actual amount of
3689 * available memory in the system. The caller should further cap
3690 * *@pheadroom accordingly.
3692 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3693 unsigned long *pheadroom
, unsigned long *pdirty
,
3694 unsigned long *pwriteback
)
3696 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3697 struct mem_cgroup
*parent
;
3699 *pdirty
= memcg_page_state(memcg
, NR_FILE_DIRTY
);
3701 /* this should eventually include NR_UNSTABLE_NFS */
3702 *pwriteback
= memcg_page_state(memcg
, NR_WRITEBACK
);
3703 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3704 (1 << LRU_ACTIVE_FILE
));
3705 *pheadroom
= PAGE_COUNTER_MAX
;
3707 while ((parent
= parent_mem_cgroup(memcg
))) {
3708 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3709 unsigned long used
= page_counter_read(&memcg
->memory
);
3711 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3716 #else /* CONFIG_CGROUP_WRITEBACK */
3718 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3723 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3727 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3731 #endif /* CONFIG_CGROUP_WRITEBACK */
3734 * DO NOT USE IN NEW FILES.
3736 * "cgroup.event_control" implementation.
3738 * This is way over-engineered. It tries to support fully configurable
3739 * events for each user. Such level of flexibility is completely
3740 * unnecessary especially in the light of the planned unified hierarchy.
3742 * Please deprecate this and replace with something simpler if at all
3747 * Unregister event and free resources.
3749 * Gets called from workqueue.
3751 static void memcg_event_remove(struct work_struct
*work
)
3753 struct mem_cgroup_event
*event
=
3754 container_of(work
, struct mem_cgroup_event
, remove
);
3755 struct mem_cgroup
*memcg
= event
->memcg
;
3757 remove_wait_queue(event
->wqh
, &event
->wait
);
3759 event
->unregister_event(memcg
, event
->eventfd
);
3761 /* Notify userspace the event is going away. */
3762 eventfd_signal(event
->eventfd
, 1);
3764 eventfd_ctx_put(event
->eventfd
);
3766 css_put(&memcg
->css
);
3770 * Gets called on POLLHUP on eventfd when user closes it.
3772 * Called with wqh->lock held and interrupts disabled.
3774 static int memcg_event_wake(wait_queue_entry_t
*wait
, unsigned mode
,
3775 int sync
, void *key
)
3777 struct mem_cgroup_event
*event
=
3778 container_of(wait
, struct mem_cgroup_event
, wait
);
3779 struct mem_cgroup
*memcg
= event
->memcg
;
3780 unsigned long flags
= (unsigned long)key
;
3782 if (flags
& POLLHUP
) {
3784 * If the event has been detached at cgroup removal, we
3785 * can simply return knowing the other side will cleanup
3788 * We can't race against event freeing since the other
3789 * side will require wqh->lock via remove_wait_queue(),
3792 spin_lock(&memcg
->event_list_lock
);
3793 if (!list_empty(&event
->list
)) {
3794 list_del_init(&event
->list
);
3796 * We are in atomic context, but cgroup_event_remove()
3797 * may sleep, so we have to call it in workqueue.
3799 schedule_work(&event
->remove
);
3801 spin_unlock(&memcg
->event_list_lock
);
3807 static void memcg_event_ptable_queue_proc(struct file
*file
,
3808 wait_queue_head_t
*wqh
, poll_table
*pt
)
3810 struct mem_cgroup_event
*event
=
3811 container_of(pt
, struct mem_cgroup_event
, pt
);
3814 add_wait_queue(wqh
, &event
->wait
);
3818 * DO NOT USE IN NEW FILES.
3820 * Parse input and register new cgroup event handler.
3822 * Input must be in format '<event_fd> <control_fd> <args>'.
3823 * Interpretation of args is defined by control file implementation.
3825 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3826 char *buf
, size_t nbytes
, loff_t off
)
3828 struct cgroup_subsys_state
*css
= of_css(of
);
3829 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3830 struct mem_cgroup_event
*event
;
3831 struct cgroup_subsys_state
*cfile_css
;
3832 unsigned int efd
, cfd
;
3839 buf
= strstrip(buf
);
3841 efd
= simple_strtoul(buf
, &endp
, 10);
3846 cfd
= simple_strtoul(buf
, &endp
, 10);
3847 if ((*endp
!= ' ') && (*endp
!= '\0'))
3851 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3855 event
->memcg
= memcg
;
3856 INIT_LIST_HEAD(&event
->list
);
3857 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3858 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3859 INIT_WORK(&event
->remove
, memcg_event_remove
);
3867 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3868 if (IS_ERR(event
->eventfd
)) {
3869 ret
= PTR_ERR(event
->eventfd
);
3876 goto out_put_eventfd
;
3879 /* the process need read permission on control file */
3880 /* AV: shouldn't we check that it's been opened for read instead? */
3881 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3886 * Determine the event callbacks and set them in @event. This used
3887 * to be done via struct cftype but cgroup core no longer knows
3888 * about these events. The following is crude but the whole thing
3889 * is for compatibility anyway.
3891 * DO NOT ADD NEW FILES.
3893 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3895 if (!strcmp(name
, "memory.usage_in_bytes")) {
3896 event
->register_event
= mem_cgroup_usage_register_event
;
3897 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3898 } else if (!strcmp(name
, "memory.oom_control")) {
3899 event
->register_event
= mem_cgroup_oom_register_event
;
3900 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3901 } else if (!strcmp(name
, "memory.pressure_level")) {
3902 event
->register_event
= vmpressure_register_event
;
3903 event
->unregister_event
= vmpressure_unregister_event
;
3904 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3905 event
->register_event
= memsw_cgroup_usage_register_event
;
3906 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3913 * Verify @cfile should belong to @css. Also, remaining events are
3914 * automatically removed on cgroup destruction but the removal is
3915 * asynchronous, so take an extra ref on @css.
3917 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3918 &memory_cgrp_subsys
);
3920 if (IS_ERR(cfile_css
))
3922 if (cfile_css
!= css
) {
3927 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3931 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3933 spin_lock(&memcg
->event_list_lock
);
3934 list_add(&event
->list
, &memcg
->event_list
);
3935 spin_unlock(&memcg
->event_list_lock
);
3947 eventfd_ctx_put(event
->eventfd
);
3956 static struct cftype mem_cgroup_legacy_files
[] = {
3958 .name
= "usage_in_bytes",
3959 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3960 .read_u64
= mem_cgroup_read_u64
,
3963 .name
= "max_usage_in_bytes",
3964 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3965 .write
= mem_cgroup_reset
,
3966 .read_u64
= mem_cgroup_read_u64
,
3969 .name
= "limit_in_bytes",
3970 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3971 .write
= mem_cgroup_write
,
3972 .read_u64
= mem_cgroup_read_u64
,
3975 .name
= "soft_limit_in_bytes",
3976 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3977 .write
= mem_cgroup_write
,
3978 .read_u64
= mem_cgroup_read_u64
,
3982 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3983 .write
= mem_cgroup_reset
,
3984 .read_u64
= mem_cgroup_read_u64
,
3988 .seq_show
= memcg_stat_show
,
3991 .name
= "force_empty",
3992 .write
= mem_cgroup_force_empty_write
,
3995 .name
= "use_hierarchy",
3996 .write_u64
= mem_cgroup_hierarchy_write
,
3997 .read_u64
= mem_cgroup_hierarchy_read
,
4000 .name
= "cgroup.event_control", /* XXX: for compat */
4001 .write
= memcg_write_event_control
,
4002 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
4005 .name
= "swappiness",
4006 .read_u64
= mem_cgroup_swappiness_read
,
4007 .write_u64
= mem_cgroup_swappiness_write
,
4010 .name
= "move_charge_at_immigrate",
4011 .read_u64
= mem_cgroup_move_charge_read
,
4012 .write_u64
= mem_cgroup_move_charge_write
,
4015 .name
= "oom_control",
4016 .seq_show
= mem_cgroup_oom_control_read
,
4017 .write_u64
= mem_cgroup_oom_control_write
,
4018 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4021 .name
= "pressure_level",
4025 .name
= "numa_stat",
4026 .seq_show
= memcg_numa_stat_show
,
4030 .name
= "kmem.limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
4032 .write
= mem_cgroup_write
,
4033 .read_u64
= mem_cgroup_read_u64
,
4036 .name
= "kmem.usage_in_bytes",
4037 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
4038 .read_u64
= mem_cgroup_read_u64
,
4041 .name
= "kmem.failcnt",
4042 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
4043 .write
= mem_cgroup_reset
,
4044 .read_u64
= mem_cgroup_read_u64
,
4047 .name
= "kmem.max_usage_in_bytes",
4048 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4049 .write
= mem_cgroup_reset
,
4050 .read_u64
= mem_cgroup_read_u64
,
4052 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4054 .name
= "kmem.slabinfo",
4055 .seq_start
= memcg_slab_start
,
4056 .seq_next
= memcg_slab_next
,
4057 .seq_stop
= memcg_slab_stop
,
4058 .seq_show
= memcg_slab_show
,
4062 .name
= "kmem.tcp.limit_in_bytes",
4063 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4064 .write
= mem_cgroup_write
,
4065 .read_u64
= mem_cgroup_read_u64
,
4068 .name
= "kmem.tcp.usage_in_bytes",
4069 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4070 .read_u64
= mem_cgroup_read_u64
,
4073 .name
= "kmem.tcp.failcnt",
4074 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4075 .write
= mem_cgroup_reset
,
4076 .read_u64
= mem_cgroup_read_u64
,
4079 .name
= "kmem.tcp.max_usage_in_bytes",
4080 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4081 .write
= mem_cgroup_reset
,
4082 .read_u64
= mem_cgroup_read_u64
,
4084 { }, /* terminate */
4088 * Private memory cgroup IDR
4090 * Swap-out records and page cache shadow entries need to store memcg
4091 * references in constrained space, so we maintain an ID space that is
4092 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4093 * memory-controlled cgroups to 64k.
4095 * However, there usually are many references to the oflline CSS after
4096 * the cgroup has been destroyed, such as page cache or reclaimable
4097 * slab objects, that don't need to hang on to the ID. We want to keep
4098 * those dead CSS from occupying IDs, or we might quickly exhaust the
4099 * relatively small ID space and prevent the creation of new cgroups
4100 * even when there are much fewer than 64k cgroups - possibly none.
4102 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4103 * be freed and recycled when it's no longer needed, which is usually
4104 * when the CSS is offlined.
4106 * The only exception to that are records of swapped out tmpfs/shmem
4107 * pages that need to be attributed to live ancestors on swapin. But
4108 * those references are manageable from userspace.
4111 static DEFINE_IDR(mem_cgroup_idr
);
4113 static void mem_cgroup_id_get_many(struct mem_cgroup
*memcg
, unsigned int n
)
4115 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) <= 0);
4116 atomic_add(n
, &memcg
->id
.ref
);
4119 static void mem_cgroup_id_put_many(struct mem_cgroup
*memcg
, unsigned int n
)
4121 VM_BUG_ON(atomic_read(&memcg
->id
.ref
) < n
);
4122 if (atomic_sub_and_test(n
, &memcg
->id
.ref
)) {
4123 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4126 /* Memcg ID pins CSS */
4127 css_put(&memcg
->css
);
4131 static inline void mem_cgroup_id_get(struct mem_cgroup
*memcg
)
4133 mem_cgroup_id_get_many(memcg
, 1);
4136 static inline void mem_cgroup_id_put(struct mem_cgroup
*memcg
)
4138 mem_cgroup_id_put_many(memcg
, 1);
4142 * mem_cgroup_from_id - look up a memcg from a memcg id
4143 * @id: the memcg id to look up
4145 * Caller must hold rcu_read_lock().
4147 struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
4149 WARN_ON_ONCE(!rcu_read_lock_held());
4150 return idr_find(&mem_cgroup_idr
, id
);
4153 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4155 struct mem_cgroup_per_node
*pn
;
4158 * This routine is called against possible nodes.
4159 * But it's BUG to call kmalloc() against offline node.
4161 * TODO: this routine can waste much memory for nodes which will
4162 * never be onlined. It's better to use memory hotplug callback
4165 if (!node_state(node
, N_NORMAL_MEMORY
))
4167 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4171 pn
->lruvec_stat
= alloc_percpu(struct lruvec_stat
);
4172 if (!pn
->lruvec_stat
) {
4177 lruvec_init(&pn
->lruvec
);
4178 pn
->usage_in_excess
= 0;
4179 pn
->on_tree
= false;
4182 memcg
->nodeinfo
[node
] = pn
;
4186 static void free_mem_cgroup_per_node_info(struct mem_cgroup
*memcg
, int node
)
4188 struct mem_cgroup_per_node
*pn
= memcg
->nodeinfo
[node
];
4190 free_percpu(pn
->lruvec_stat
);
4194 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
4199 free_mem_cgroup_per_node_info(memcg
, node
);
4200 free_percpu(memcg
->stat
);
4204 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4206 memcg_wb_domain_exit(memcg
);
4207 __mem_cgroup_free(memcg
);
4210 static struct mem_cgroup
*mem_cgroup_alloc(void)
4212 struct mem_cgroup
*memcg
;
4216 size
= sizeof(struct mem_cgroup
);
4217 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4219 memcg
= kzalloc(size
, GFP_KERNEL
);
4223 memcg
->id
.id
= idr_alloc(&mem_cgroup_idr
, NULL
,
4224 1, MEM_CGROUP_ID_MAX
,
4226 if (memcg
->id
.id
< 0)
4229 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4234 if (alloc_mem_cgroup_per_node_info(memcg
, node
))
4237 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4240 INIT_WORK(&memcg
->high_work
, high_work_func
);
4241 memcg
->last_scanned_node
= MAX_NUMNODES
;
4242 INIT_LIST_HEAD(&memcg
->oom_notify
);
4243 mutex_init(&memcg
->thresholds_lock
);
4244 spin_lock_init(&memcg
->move_lock
);
4245 vmpressure_init(&memcg
->vmpressure
);
4246 INIT_LIST_HEAD(&memcg
->event_list
);
4247 spin_lock_init(&memcg
->event_list_lock
);
4248 memcg
->socket_pressure
= jiffies
;
4250 memcg
->kmemcg_id
= -1;
4252 #ifdef CONFIG_CGROUP_WRITEBACK
4253 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4255 idr_replace(&mem_cgroup_idr
, memcg
, memcg
->id
.id
);
4258 if (memcg
->id
.id
> 0)
4259 idr_remove(&mem_cgroup_idr
, memcg
->id
.id
);
4260 __mem_cgroup_free(memcg
);
4264 static struct cgroup_subsys_state
* __ref
4265 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4267 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4268 struct mem_cgroup
*memcg
;
4269 long error
= -ENOMEM
;
4271 memcg
= mem_cgroup_alloc();
4273 return ERR_PTR(error
);
4275 memcg
->high
= PAGE_COUNTER_MAX
;
4276 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4278 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4279 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4281 if (parent
&& parent
->use_hierarchy
) {
4282 memcg
->use_hierarchy
= true;
4283 page_counter_init(&memcg
->memory
, &parent
->memory
);
4284 page_counter_init(&memcg
->swap
, &parent
->swap
);
4285 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4286 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4287 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4289 page_counter_init(&memcg
->memory
, NULL
);
4290 page_counter_init(&memcg
->swap
, NULL
);
4291 page_counter_init(&memcg
->memsw
, NULL
);
4292 page_counter_init(&memcg
->kmem
, NULL
);
4293 page_counter_init(&memcg
->tcpmem
, NULL
);
4295 * Deeper hierachy with use_hierarchy == false doesn't make
4296 * much sense so let cgroup subsystem know about this
4297 * unfortunate state in our controller.
4299 if (parent
!= root_mem_cgroup
)
4300 memory_cgrp_subsys
.broken_hierarchy
= true;
4303 /* The following stuff does not apply to the root */
4305 root_mem_cgroup
= memcg
;
4309 error
= memcg_online_kmem(memcg
);
4313 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4314 static_branch_inc(&memcg_sockets_enabled_key
);
4318 mem_cgroup_free(memcg
);
4319 return ERR_PTR(-ENOMEM
);
4322 static int mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4324 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4326 /* Online state pins memcg ID, memcg ID pins CSS */
4327 atomic_set(&memcg
->id
.ref
, 1);
4332 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4334 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4335 struct mem_cgroup_event
*event
, *tmp
;
4338 * Unregister events and notify userspace.
4339 * Notify userspace about cgroup removing only after rmdir of cgroup
4340 * directory to avoid race between userspace and kernelspace.
4342 spin_lock(&memcg
->event_list_lock
);
4343 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4344 list_del_init(&event
->list
);
4345 schedule_work(&event
->remove
);
4347 spin_unlock(&memcg
->event_list_lock
);
4351 memcg_offline_kmem(memcg
);
4352 wb_memcg_offline(memcg
);
4354 mem_cgroup_id_put(memcg
);
4357 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4359 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4361 invalidate_reclaim_iterators(memcg
);
4364 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4366 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4368 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4369 static_branch_dec(&memcg_sockets_enabled_key
);
4371 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4372 static_branch_dec(&memcg_sockets_enabled_key
);
4374 vmpressure_cleanup(&memcg
->vmpressure
);
4375 cancel_work_sync(&memcg
->high_work
);
4376 mem_cgroup_remove_from_trees(memcg
);
4377 memcg_free_kmem(memcg
);
4378 mem_cgroup_free(memcg
);
4382 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4383 * @css: the target css
4385 * Reset the states of the mem_cgroup associated with @css. This is
4386 * invoked when the userland requests disabling on the default hierarchy
4387 * but the memcg is pinned through dependency. The memcg should stop
4388 * applying policies and should revert to the vanilla state as it may be
4389 * made visible again.
4391 * The current implementation only resets the essential configurations.
4392 * This needs to be expanded to cover all the visible parts.
4394 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4396 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4398 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4399 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4400 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4401 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4402 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4404 memcg
->high
= PAGE_COUNTER_MAX
;
4405 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4406 memcg_wb_domain_size_changed(memcg
);
4410 /* Handlers for move charge at task migration. */
4411 static int mem_cgroup_do_precharge(unsigned long count
)
4415 /* Try a single bulk charge without reclaim first, kswapd may wake */
4416 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4418 mc
.precharge
+= count
;
4422 /* Try charges one by one with reclaim, but do not retry */
4424 ret
= try_charge(mc
.to
, GFP_KERNEL
| __GFP_NORETRY
, 1);
4438 enum mc_target_type
{
4445 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4446 unsigned long addr
, pte_t ptent
)
4448 struct page
*page
= _vm_normal_page(vma
, addr
, ptent
, true);
4450 if (!page
|| !page_mapped(page
))
4452 if (PageAnon(page
)) {
4453 if (!(mc
.flags
& MOVE_ANON
))
4456 if (!(mc
.flags
& MOVE_FILE
))
4459 if (!get_page_unless_zero(page
))
4465 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4466 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4467 pte_t ptent
, swp_entry_t
*entry
)
4469 struct page
*page
= NULL
;
4470 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4472 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4476 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4477 * a device and because they are not accessible by CPU they are store
4478 * as special swap entry in the CPU page table.
4480 if (is_device_private_entry(ent
)) {
4481 page
= device_private_entry_to_page(ent
);
4483 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4484 * a refcount of 1 when free (unlike normal page)
4486 if (!page_ref_add_unless(page
, 1, 1))
4492 * Because lookup_swap_cache() updates some statistics counter,
4493 * we call find_get_page() with swapper_space directly.
4495 page
= find_get_page(swap_address_space(ent
), swp_offset(ent
));
4496 if (do_memsw_account())
4497 entry
->val
= ent
.val
;
4502 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4503 pte_t ptent
, swp_entry_t
*entry
)
4509 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4510 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4512 struct page
*page
= NULL
;
4513 struct address_space
*mapping
;
4516 if (!vma
->vm_file
) /* anonymous vma */
4518 if (!(mc
.flags
& MOVE_FILE
))
4521 mapping
= vma
->vm_file
->f_mapping
;
4522 pgoff
= linear_page_index(vma
, addr
);
4524 /* page is moved even if it's not RSS of this task(page-faulted). */
4526 /* shmem/tmpfs may report page out on swap: account for that too. */
4527 if (shmem_mapping(mapping
)) {
4528 page
= find_get_entry(mapping
, pgoff
);
4529 if (radix_tree_exceptional_entry(page
)) {
4530 swp_entry_t swp
= radix_to_swp_entry(page
);
4531 if (do_memsw_account())
4533 page
= find_get_page(swap_address_space(swp
),
4537 page
= find_get_page(mapping
, pgoff
);
4539 page
= find_get_page(mapping
, pgoff
);
4545 * mem_cgroup_move_account - move account of the page
4547 * @compound: charge the page as compound or small page
4548 * @from: mem_cgroup which the page is moved from.
4549 * @to: mem_cgroup which the page is moved to. @from != @to.
4551 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4553 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4556 static int mem_cgroup_move_account(struct page
*page
,
4558 struct mem_cgroup
*from
,
4559 struct mem_cgroup
*to
)
4561 unsigned long flags
;
4562 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4566 VM_BUG_ON(from
== to
);
4567 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4568 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4571 * Prevent mem_cgroup_migrate() from looking at
4572 * page->mem_cgroup of its source page while we change it.
4575 if (!trylock_page(page
))
4579 if (page
->mem_cgroup
!= from
)
4582 anon
= PageAnon(page
);
4584 spin_lock_irqsave(&from
->move_lock
, flags
);
4586 if (!anon
&& page_mapped(page
)) {
4587 __this_cpu_sub(from
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4588 __this_cpu_add(to
->stat
->count
[NR_FILE_MAPPED
], nr_pages
);
4592 * move_lock grabbed above and caller set from->moving_account, so
4593 * mod_memcg_page_state will serialize updates to PageDirty.
4594 * So mapping should be stable for dirty pages.
4596 if (!anon
&& PageDirty(page
)) {
4597 struct address_space
*mapping
= page_mapping(page
);
4599 if (mapping_cap_account_dirty(mapping
)) {
4600 __this_cpu_sub(from
->stat
->count
[NR_FILE_DIRTY
],
4602 __this_cpu_add(to
->stat
->count
[NR_FILE_DIRTY
],
4607 if (PageWriteback(page
)) {
4608 __this_cpu_sub(from
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4609 __this_cpu_add(to
->stat
->count
[NR_WRITEBACK
], nr_pages
);
4613 * It is safe to change page->mem_cgroup here because the page
4614 * is referenced, charged, and isolated - we can't race with
4615 * uncharging, charging, migration, or LRU putback.
4618 /* caller should have done css_get */
4619 page
->mem_cgroup
= to
;
4620 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4624 local_irq_disable();
4625 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4626 memcg_check_events(to
, page
);
4627 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4628 memcg_check_events(from
, page
);
4637 * get_mctgt_type - get target type of moving charge
4638 * @vma: the vma the pte to be checked belongs
4639 * @addr: the address corresponding to the pte to be checked
4640 * @ptent: the pte to be checked
4641 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4644 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4645 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4646 * move charge. if @target is not NULL, the page is stored in target->page
4647 * with extra refcnt got(Callers should handle it).
4648 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4649 * target for charge migration. if @target is not NULL, the entry is stored
4651 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4652 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4653 * For now we such page is charge like a regular page would be as for all
4654 * intent and purposes it is just special memory taking the place of a
4657 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4659 * Called with pte lock held.
4662 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4663 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4665 struct page
*page
= NULL
;
4666 enum mc_target_type ret
= MC_TARGET_NONE
;
4667 swp_entry_t ent
= { .val
= 0 };
4669 if (pte_present(ptent
))
4670 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4671 else if (is_swap_pte(ptent
))
4672 page
= mc_handle_swap_pte(vma
, ptent
, &ent
);
4673 else if (pte_none(ptent
))
4674 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4676 if (!page
&& !ent
.val
)
4680 * Do only loose check w/o serialization.
4681 * mem_cgroup_move_account() checks the page is valid or
4682 * not under LRU exclusion.
4684 if (page
->mem_cgroup
== mc
.from
) {
4685 ret
= MC_TARGET_PAGE
;
4686 if (is_device_private_page(page
) ||
4687 is_device_public_page(page
))
4688 ret
= MC_TARGET_DEVICE
;
4690 target
->page
= page
;
4692 if (!ret
|| !target
)
4696 * There is a swap entry and a page doesn't exist or isn't charged.
4697 * But we cannot move a tail-page in a THP.
4699 if (ent
.val
&& !ret
&& (!page
|| !PageTransCompound(page
)) &&
4700 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4701 ret
= MC_TARGET_SWAP
;
4708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4710 * We don't consider PMD mapped swapping or file mapped pages because THP does
4711 * not support them for now.
4712 * Caller should make sure that pmd_trans_huge(pmd) is true.
4714 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4715 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4717 struct page
*page
= NULL
;
4718 enum mc_target_type ret
= MC_TARGET_NONE
;
4720 if (unlikely(is_swap_pmd(pmd
))) {
4721 VM_BUG_ON(thp_migration_supported() &&
4722 !is_pmd_migration_entry(pmd
));
4725 page
= pmd_page(pmd
);
4726 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4727 if (!(mc
.flags
& MOVE_ANON
))
4729 if (page
->mem_cgroup
== mc
.from
) {
4730 ret
= MC_TARGET_PAGE
;
4733 target
->page
= page
;
4739 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4740 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4742 return MC_TARGET_NONE
;
4746 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4747 unsigned long addr
, unsigned long end
,
4748 struct mm_walk
*walk
)
4750 struct vm_area_struct
*vma
= walk
->vma
;
4754 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4757 * Note their can not be MC_TARGET_DEVICE for now as we do not
4758 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4759 * MEMORY_DEVICE_PRIVATE but this might change.
4761 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4762 mc
.precharge
+= HPAGE_PMD_NR
;
4767 if (pmd_trans_unstable(pmd
))
4769 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4770 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4771 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4772 mc
.precharge
++; /* increment precharge temporarily */
4773 pte_unmap_unlock(pte
- 1, ptl
);
4779 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4781 unsigned long precharge
;
4783 struct mm_walk mem_cgroup_count_precharge_walk
= {
4784 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4787 down_read(&mm
->mmap_sem
);
4788 walk_page_range(0, mm
->highest_vm_end
,
4789 &mem_cgroup_count_precharge_walk
);
4790 up_read(&mm
->mmap_sem
);
4792 precharge
= mc
.precharge
;
4798 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4800 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4802 VM_BUG_ON(mc
.moving_task
);
4803 mc
.moving_task
= current
;
4804 return mem_cgroup_do_precharge(precharge
);
4807 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4808 static void __mem_cgroup_clear_mc(void)
4810 struct mem_cgroup
*from
= mc
.from
;
4811 struct mem_cgroup
*to
= mc
.to
;
4813 /* we must uncharge all the leftover precharges from mc.to */
4815 cancel_charge(mc
.to
, mc
.precharge
);
4819 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4820 * we must uncharge here.
4822 if (mc
.moved_charge
) {
4823 cancel_charge(mc
.from
, mc
.moved_charge
);
4824 mc
.moved_charge
= 0;
4826 /* we must fixup refcnts and charges */
4827 if (mc
.moved_swap
) {
4828 /* uncharge swap account from the old cgroup */
4829 if (!mem_cgroup_is_root(mc
.from
))
4830 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4832 mem_cgroup_id_put_many(mc
.from
, mc
.moved_swap
);
4835 * we charged both to->memory and to->memsw, so we
4836 * should uncharge to->memory.
4838 if (!mem_cgroup_is_root(mc
.to
))
4839 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4841 mem_cgroup_id_get_many(mc
.to
, mc
.moved_swap
);
4842 css_put_many(&mc
.to
->css
, mc
.moved_swap
);
4846 memcg_oom_recover(from
);
4847 memcg_oom_recover(to
);
4848 wake_up_all(&mc
.waitq
);
4851 static void mem_cgroup_clear_mc(void)
4853 struct mm_struct
*mm
= mc
.mm
;
4856 * we must clear moving_task before waking up waiters at the end of
4859 mc
.moving_task
= NULL
;
4860 __mem_cgroup_clear_mc();
4861 spin_lock(&mc
.lock
);
4865 spin_unlock(&mc
.lock
);
4870 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4872 struct cgroup_subsys_state
*css
;
4873 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4874 struct mem_cgroup
*from
;
4875 struct task_struct
*leader
, *p
;
4876 struct mm_struct
*mm
;
4877 unsigned long move_flags
;
4880 /* charge immigration isn't supported on the default hierarchy */
4881 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4885 * Multi-process migrations only happen on the default hierarchy
4886 * where charge immigration is not used. Perform charge
4887 * immigration if @tset contains a leader and whine if there are
4891 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4894 memcg
= mem_cgroup_from_css(css
);
4900 * We are now commited to this value whatever it is. Changes in this
4901 * tunable will only affect upcoming migrations, not the current one.
4902 * So we need to save it, and keep it going.
4904 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4908 from
= mem_cgroup_from_task(p
);
4910 VM_BUG_ON(from
== memcg
);
4912 mm
= get_task_mm(p
);
4915 /* We move charges only when we move a owner of the mm */
4916 if (mm
->owner
== p
) {
4919 VM_BUG_ON(mc
.precharge
);
4920 VM_BUG_ON(mc
.moved_charge
);
4921 VM_BUG_ON(mc
.moved_swap
);
4923 spin_lock(&mc
.lock
);
4927 mc
.flags
= move_flags
;
4928 spin_unlock(&mc
.lock
);
4929 /* We set mc.moving_task later */
4931 ret
= mem_cgroup_precharge_mc(mm
);
4933 mem_cgroup_clear_mc();
4940 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4943 mem_cgroup_clear_mc();
4946 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4947 unsigned long addr
, unsigned long end
,
4948 struct mm_walk
*walk
)
4951 struct vm_area_struct
*vma
= walk
->vma
;
4954 enum mc_target_type target_type
;
4955 union mc_target target
;
4958 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4960 if (mc
.precharge
< HPAGE_PMD_NR
) {
4964 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4965 if (target_type
== MC_TARGET_PAGE
) {
4967 if (!isolate_lru_page(page
)) {
4968 if (!mem_cgroup_move_account(page
, true,
4970 mc
.precharge
-= HPAGE_PMD_NR
;
4971 mc
.moved_charge
+= HPAGE_PMD_NR
;
4973 putback_lru_page(page
);
4976 } else if (target_type
== MC_TARGET_DEVICE
) {
4978 if (!mem_cgroup_move_account(page
, true,
4980 mc
.precharge
-= HPAGE_PMD_NR
;
4981 mc
.moved_charge
+= HPAGE_PMD_NR
;
4989 if (pmd_trans_unstable(pmd
))
4992 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4993 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4994 pte_t ptent
= *(pte
++);
4995 bool device
= false;
5001 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
5002 case MC_TARGET_DEVICE
:
5005 case MC_TARGET_PAGE
:
5008 * We can have a part of the split pmd here. Moving it
5009 * can be done but it would be too convoluted so simply
5010 * ignore such a partial THP and keep it in original
5011 * memcg. There should be somebody mapping the head.
5013 if (PageTransCompound(page
))
5015 if (!device
&& isolate_lru_page(page
))
5017 if (!mem_cgroup_move_account(page
, false,
5020 /* we uncharge from mc.from later. */
5024 putback_lru_page(page
);
5025 put
: /* get_mctgt_type() gets the page */
5028 case MC_TARGET_SWAP
:
5030 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
5032 /* we fixup refcnts and charges later. */
5040 pte_unmap_unlock(pte
- 1, ptl
);
5045 * We have consumed all precharges we got in can_attach().
5046 * We try charge one by one, but don't do any additional
5047 * charges to mc.to if we have failed in charge once in attach()
5050 ret
= mem_cgroup_do_precharge(1);
5058 static void mem_cgroup_move_charge(void)
5060 struct mm_walk mem_cgroup_move_charge_walk
= {
5061 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5065 lru_add_drain_all();
5067 * Signal lock_page_memcg() to take the memcg's move_lock
5068 * while we're moving its pages to another memcg. Then wait
5069 * for already started RCU-only updates to finish.
5071 atomic_inc(&mc
.from
->moving_account
);
5074 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
5076 * Someone who are holding the mmap_sem might be waiting in
5077 * waitq. So we cancel all extra charges, wake up all waiters,
5078 * and retry. Because we cancel precharges, we might not be able
5079 * to move enough charges, but moving charge is a best-effort
5080 * feature anyway, so it wouldn't be a big problem.
5082 __mem_cgroup_clear_mc();
5087 * When we have consumed all precharges and failed in doing
5088 * additional charge, the page walk just aborts.
5090 walk_page_range(0, mc
.mm
->highest_vm_end
, &mem_cgroup_move_charge_walk
);
5092 up_read(&mc
.mm
->mmap_sem
);
5093 atomic_dec(&mc
.from
->moving_account
);
5096 static void mem_cgroup_move_task(void)
5099 mem_cgroup_move_charge();
5100 mem_cgroup_clear_mc();
5103 #else /* !CONFIG_MMU */
5104 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
5108 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
5111 static void mem_cgroup_move_task(void)
5117 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5118 * to verify whether we're attached to the default hierarchy on each mount
5121 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
5124 * use_hierarchy is forced on the default hierarchy. cgroup core
5125 * guarantees that @root doesn't have any children, so turning it
5126 * on for the root memcg is enough.
5128 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5129 root_mem_cgroup
->use_hierarchy
= true;
5131 root_mem_cgroup
->use_hierarchy
= false;
5134 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
5137 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5139 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
5142 static int memory_low_show(struct seq_file
*m
, void *v
)
5144 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5145 unsigned long low
= READ_ONCE(memcg
->low
);
5147 if (low
== PAGE_COUNTER_MAX
)
5148 seq_puts(m
, "max\n");
5150 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
5155 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
5156 char *buf
, size_t nbytes
, loff_t off
)
5158 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5162 buf
= strstrip(buf
);
5163 err
= page_counter_memparse(buf
, "max", &low
);
5172 static int memory_high_show(struct seq_file
*m
, void *v
)
5174 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5175 unsigned long high
= READ_ONCE(memcg
->high
);
5177 if (high
== PAGE_COUNTER_MAX
)
5178 seq_puts(m
, "max\n");
5180 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
5185 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
5186 char *buf
, size_t nbytes
, loff_t off
)
5188 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5189 unsigned long nr_pages
;
5193 buf
= strstrip(buf
);
5194 err
= page_counter_memparse(buf
, "max", &high
);
5200 nr_pages
= page_counter_read(&memcg
->memory
);
5201 if (nr_pages
> high
)
5202 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5205 memcg_wb_domain_size_changed(memcg
);
5209 static int memory_max_show(struct seq_file
*m
, void *v
)
5211 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5212 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5214 if (max
== PAGE_COUNTER_MAX
)
5215 seq_puts(m
, "max\n");
5217 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5222 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5223 char *buf
, size_t nbytes
, loff_t off
)
5225 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5226 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5227 bool drained
= false;
5231 buf
= strstrip(buf
);
5232 err
= page_counter_memparse(buf
, "max", &max
);
5236 xchg(&memcg
->memory
.limit
, max
);
5239 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5241 if (nr_pages
<= max
)
5244 if (signal_pending(current
)) {
5250 drain_all_stock(memcg
);
5256 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5262 mem_cgroup_event(memcg
, MEMCG_OOM
);
5263 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5267 memcg_wb_domain_size_changed(memcg
);
5271 static int memory_events_show(struct seq_file
*m
, void *v
)
5273 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5275 seq_printf(m
, "low %lu\n", memcg_sum_events(memcg
, MEMCG_LOW
));
5276 seq_printf(m
, "high %lu\n", memcg_sum_events(memcg
, MEMCG_HIGH
));
5277 seq_printf(m
, "max %lu\n", memcg_sum_events(memcg
, MEMCG_MAX
));
5278 seq_printf(m
, "oom %lu\n", memcg_sum_events(memcg
, MEMCG_OOM
));
5279 seq_printf(m
, "oom_kill %lu\n", memcg_sum_events(memcg
, OOM_KILL
));
5284 static int memory_stat_show(struct seq_file
*m
, void *v
)
5286 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5287 unsigned long stat
[MEMCG_NR_STAT
];
5288 unsigned long events
[MEMCG_NR_EVENTS
];
5292 * Provide statistics on the state of the memory subsystem as
5293 * well as cumulative event counters that show past behavior.
5295 * This list is ordered following a combination of these gradients:
5296 * 1) generic big picture -> specifics and details
5297 * 2) reflecting userspace activity -> reflecting kernel heuristics
5299 * Current memory state:
5302 tree_stat(memcg
, stat
);
5303 tree_events(memcg
, events
);
5305 seq_printf(m
, "anon %llu\n",
5306 (u64
)stat
[MEMCG_RSS
] * PAGE_SIZE
);
5307 seq_printf(m
, "file %llu\n",
5308 (u64
)stat
[MEMCG_CACHE
] * PAGE_SIZE
);
5309 seq_printf(m
, "kernel_stack %llu\n",
5310 (u64
)stat
[MEMCG_KERNEL_STACK_KB
] * 1024);
5311 seq_printf(m
, "slab %llu\n",
5312 (u64
)(stat
[NR_SLAB_RECLAIMABLE
] +
5313 stat
[NR_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5314 seq_printf(m
, "sock %llu\n",
5315 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5317 seq_printf(m
, "shmem %llu\n",
5318 (u64
)stat
[NR_SHMEM
] * PAGE_SIZE
);
5319 seq_printf(m
, "file_mapped %llu\n",
5320 (u64
)stat
[NR_FILE_MAPPED
] * PAGE_SIZE
);
5321 seq_printf(m
, "file_dirty %llu\n",
5322 (u64
)stat
[NR_FILE_DIRTY
] * PAGE_SIZE
);
5323 seq_printf(m
, "file_writeback %llu\n",
5324 (u64
)stat
[NR_WRITEBACK
] * PAGE_SIZE
);
5326 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5327 struct mem_cgroup
*mi
;
5328 unsigned long val
= 0;
5330 for_each_mem_cgroup_tree(mi
, memcg
)
5331 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5332 seq_printf(m
, "%s %llu\n",
5333 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5336 seq_printf(m
, "slab_reclaimable %llu\n",
5337 (u64
)stat
[NR_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5338 seq_printf(m
, "slab_unreclaimable %llu\n",
5339 (u64
)stat
[NR_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5341 /* Accumulated memory events */
5343 seq_printf(m
, "pgfault %lu\n", events
[PGFAULT
]);
5344 seq_printf(m
, "pgmajfault %lu\n", events
[PGMAJFAULT
]);
5346 seq_printf(m
, "pgrefill %lu\n", events
[PGREFILL
]);
5347 seq_printf(m
, "pgscan %lu\n", events
[PGSCAN_KSWAPD
] +
5348 events
[PGSCAN_DIRECT
]);
5349 seq_printf(m
, "pgsteal %lu\n", events
[PGSTEAL_KSWAPD
] +
5350 events
[PGSTEAL_DIRECT
]);
5351 seq_printf(m
, "pgactivate %lu\n", events
[PGACTIVATE
]);
5352 seq_printf(m
, "pgdeactivate %lu\n", events
[PGDEACTIVATE
]);
5353 seq_printf(m
, "pglazyfree %lu\n", events
[PGLAZYFREE
]);
5354 seq_printf(m
, "pglazyfreed %lu\n", events
[PGLAZYFREED
]);
5356 seq_printf(m
, "workingset_refault %lu\n",
5357 stat
[WORKINGSET_REFAULT
]);
5358 seq_printf(m
, "workingset_activate %lu\n",
5359 stat
[WORKINGSET_ACTIVATE
]);
5360 seq_printf(m
, "workingset_nodereclaim %lu\n",
5361 stat
[WORKINGSET_NODERECLAIM
]);
5366 static struct cftype memory_files
[] = {
5369 .flags
= CFTYPE_NOT_ON_ROOT
,
5370 .read_u64
= memory_current_read
,
5374 .flags
= CFTYPE_NOT_ON_ROOT
,
5375 .seq_show
= memory_low_show
,
5376 .write
= memory_low_write
,
5380 .flags
= CFTYPE_NOT_ON_ROOT
,
5381 .seq_show
= memory_high_show
,
5382 .write
= memory_high_write
,
5386 .flags
= CFTYPE_NOT_ON_ROOT
,
5387 .seq_show
= memory_max_show
,
5388 .write
= memory_max_write
,
5392 .flags
= CFTYPE_NOT_ON_ROOT
,
5393 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5394 .seq_show
= memory_events_show
,
5398 .flags
= CFTYPE_NOT_ON_ROOT
,
5399 .seq_show
= memory_stat_show
,
5404 struct cgroup_subsys memory_cgrp_subsys
= {
5405 .css_alloc
= mem_cgroup_css_alloc
,
5406 .css_online
= mem_cgroup_css_online
,
5407 .css_offline
= mem_cgroup_css_offline
,
5408 .css_released
= mem_cgroup_css_released
,
5409 .css_free
= mem_cgroup_css_free
,
5410 .css_reset
= mem_cgroup_css_reset
,
5411 .can_attach
= mem_cgroup_can_attach
,
5412 .cancel_attach
= mem_cgroup_cancel_attach
,
5413 .post_attach
= mem_cgroup_move_task
,
5414 .bind
= mem_cgroup_bind
,
5415 .dfl_cftypes
= memory_files
,
5416 .legacy_cftypes
= mem_cgroup_legacy_files
,
5421 * mem_cgroup_low - check if memory consumption is below the normal range
5422 * @root: the top ancestor of the sub-tree being checked
5423 * @memcg: the memory cgroup to check
5425 * Returns %true if memory consumption of @memcg, and that of all
5426 * ancestors up to (but not including) @root, is below the normal range.
5428 * @root is exclusive; it is never low when looked at directly and isn't
5429 * checked when traversing the hierarchy.
5431 * Excluding @root enables using memory.low to prioritize memory usage
5432 * between cgroups within a subtree of the hierarchy that is limited by
5433 * memory.high or memory.max.
5435 * For example, given cgroup A with children B and C:
5443 * 1. A/memory.current > A/memory.high
5444 * 2. A/B/memory.current < A/B/memory.low
5445 * 3. A/C/memory.current >= A/C/memory.low
5447 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5448 * should reclaim from 'C' until 'A' is no longer high or until we can
5449 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5450 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5451 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5453 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5455 if (mem_cgroup_disabled())
5459 root
= root_mem_cgroup
;
5463 for (; memcg
!= root
; memcg
= parent_mem_cgroup(memcg
)) {
5464 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5472 * mem_cgroup_try_charge - try charging a page
5473 * @page: page to charge
5474 * @mm: mm context of the victim
5475 * @gfp_mask: reclaim mode
5476 * @memcgp: charged memcg return
5477 * @compound: charge the page as compound or small page
5479 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5480 * pages according to @gfp_mask if necessary.
5482 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5483 * Otherwise, an error code is returned.
5485 * After page->mapping has been set up, the caller must finalize the
5486 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5487 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5489 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5490 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5493 struct mem_cgroup
*memcg
= NULL
;
5494 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5497 if (mem_cgroup_disabled())
5500 if (PageSwapCache(page
)) {
5502 * Every swap fault against a single page tries to charge the
5503 * page, bail as early as possible. shmem_unuse() encounters
5504 * already charged pages, too. The USED bit is protected by
5505 * the page lock, which serializes swap cache removal, which
5506 * in turn serializes uncharging.
5508 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5509 if (compound_head(page
)->mem_cgroup
)
5512 if (do_swap_account
) {
5513 swp_entry_t ent
= { .val
= page_private(page
), };
5514 unsigned short id
= lookup_swap_cgroup_id(ent
);
5517 memcg
= mem_cgroup_from_id(id
);
5518 if (memcg
&& !css_tryget_online(&memcg
->css
))
5525 memcg
= get_mem_cgroup_from_mm(mm
);
5527 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5529 css_put(&memcg
->css
);
5536 * mem_cgroup_commit_charge - commit a page charge
5537 * @page: page to charge
5538 * @memcg: memcg to charge the page to
5539 * @lrucare: page might be on LRU already
5540 * @compound: charge the page as compound or small page
5542 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5543 * after page->mapping has been set up. This must happen atomically
5544 * as part of the page instantiation, i.e. under the page table lock
5545 * for anonymous pages, under the page lock for page and swap cache.
5547 * In addition, the page must not be on the LRU during the commit, to
5548 * prevent racing with task migration. If it might be, use @lrucare.
5550 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5552 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5553 bool lrucare
, bool compound
)
5555 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5557 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5558 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5560 if (mem_cgroup_disabled())
5563 * Swap faults will attempt to charge the same page multiple
5564 * times. But reuse_swap_page() might have removed the page
5565 * from swapcache already, so we can't check PageSwapCache().
5570 commit_charge(page
, memcg
, lrucare
);
5572 local_irq_disable();
5573 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5574 memcg_check_events(memcg
, page
);
5577 if (do_memsw_account() && PageSwapCache(page
)) {
5578 swp_entry_t entry
= { .val
= page_private(page
) };
5580 * The swap entry might not get freed for a long time,
5581 * let's not wait for it. The page already received a
5582 * memory+swap charge, drop the swap entry duplicate.
5584 mem_cgroup_uncharge_swap(entry
, nr_pages
);
5589 * mem_cgroup_cancel_charge - cancel a page charge
5590 * @page: page to charge
5591 * @memcg: memcg to charge the page to
5592 * @compound: charge the page as compound or small page
5594 * Cancel a charge transaction started by mem_cgroup_try_charge().
5596 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5599 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5601 if (mem_cgroup_disabled())
5604 * Swap faults will attempt to charge the same page multiple
5605 * times. But reuse_swap_page() might have removed the page
5606 * from swapcache already, so we can't check PageSwapCache().
5611 cancel_charge(memcg
, nr_pages
);
5614 struct uncharge_gather
{
5615 struct mem_cgroup
*memcg
;
5616 unsigned long pgpgout
;
5617 unsigned long nr_anon
;
5618 unsigned long nr_file
;
5619 unsigned long nr_kmem
;
5620 unsigned long nr_huge
;
5621 unsigned long nr_shmem
;
5622 struct page
*dummy_page
;
5625 static inline void uncharge_gather_clear(struct uncharge_gather
*ug
)
5627 memset(ug
, 0, sizeof(*ug
));
5630 static void uncharge_batch(const struct uncharge_gather
*ug
)
5632 unsigned long nr_pages
= ug
->nr_anon
+ ug
->nr_file
+ ug
->nr_kmem
;
5633 unsigned long flags
;
5635 if (!mem_cgroup_is_root(ug
->memcg
)) {
5636 page_counter_uncharge(&ug
->memcg
->memory
, nr_pages
);
5637 if (do_memsw_account())
5638 page_counter_uncharge(&ug
->memcg
->memsw
, nr_pages
);
5639 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && ug
->nr_kmem
)
5640 page_counter_uncharge(&ug
->memcg
->kmem
, ug
->nr_kmem
);
5641 memcg_oom_recover(ug
->memcg
);
5644 local_irq_save(flags
);
5645 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_RSS
], ug
->nr_anon
);
5646 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_CACHE
], ug
->nr_file
);
5647 __this_cpu_sub(ug
->memcg
->stat
->count
[MEMCG_RSS_HUGE
], ug
->nr_huge
);
5648 __this_cpu_sub(ug
->memcg
->stat
->count
[NR_SHMEM
], ug
->nr_shmem
);
5649 __this_cpu_add(ug
->memcg
->stat
->events
[PGPGOUT
], ug
->pgpgout
);
5650 __this_cpu_add(ug
->memcg
->stat
->nr_page_events
, nr_pages
);
5651 memcg_check_events(ug
->memcg
, ug
->dummy_page
);
5652 local_irq_restore(flags
);
5654 if (!mem_cgroup_is_root(ug
->memcg
))
5655 css_put_many(&ug
->memcg
->css
, nr_pages
);
5658 static void uncharge_page(struct page
*page
, struct uncharge_gather
*ug
)
5660 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5661 VM_BUG_ON_PAGE(page_count(page
) && !is_zone_device_page(page
) &&
5662 !PageHWPoison(page
) , page
);
5664 if (!page
->mem_cgroup
)
5668 * Nobody should be changing or seriously looking at
5669 * page->mem_cgroup at this point, we have fully
5670 * exclusive access to the page.
5673 if (ug
->memcg
!= page
->mem_cgroup
) {
5676 uncharge_gather_clear(ug
);
5678 ug
->memcg
= page
->mem_cgroup
;
5681 if (!PageKmemcg(page
)) {
5682 unsigned int nr_pages
= 1;
5684 if (PageTransHuge(page
)) {
5685 nr_pages
<<= compound_order(page
);
5686 ug
->nr_huge
+= nr_pages
;
5689 ug
->nr_anon
+= nr_pages
;
5691 ug
->nr_file
+= nr_pages
;
5692 if (PageSwapBacked(page
))
5693 ug
->nr_shmem
+= nr_pages
;
5697 ug
->nr_kmem
+= 1 << compound_order(page
);
5698 __ClearPageKmemcg(page
);
5701 ug
->dummy_page
= page
;
5702 page
->mem_cgroup
= NULL
;
5705 static void uncharge_list(struct list_head
*page_list
)
5707 struct uncharge_gather ug
;
5708 struct list_head
*next
;
5710 uncharge_gather_clear(&ug
);
5713 * Note that the list can be a single page->lru; hence the
5714 * do-while loop instead of a simple list_for_each_entry().
5716 next
= page_list
->next
;
5720 page
= list_entry(next
, struct page
, lru
);
5721 next
= page
->lru
.next
;
5723 uncharge_page(page
, &ug
);
5724 } while (next
!= page_list
);
5727 uncharge_batch(&ug
);
5731 * mem_cgroup_uncharge - uncharge a page
5732 * @page: page to uncharge
5734 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5735 * mem_cgroup_commit_charge().
5737 void mem_cgroup_uncharge(struct page
*page
)
5739 struct uncharge_gather ug
;
5741 if (mem_cgroup_disabled())
5744 /* Don't touch page->lru of any random page, pre-check: */
5745 if (!page
->mem_cgroup
)
5748 uncharge_gather_clear(&ug
);
5749 uncharge_page(page
, &ug
);
5750 uncharge_batch(&ug
);
5754 * mem_cgroup_uncharge_list - uncharge a list of page
5755 * @page_list: list of pages to uncharge
5757 * Uncharge a list of pages previously charged with
5758 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5760 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5762 if (mem_cgroup_disabled())
5765 if (!list_empty(page_list
))
5766 uncharge_list(page_list
);
5770 * mem_cgroup_migrate - charge a page's replacement
5771 * @oldpage: currently circulating page
5772 * @newpage: replacement page
5774 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5775 * be uncharged upon free.
5777 * Both pages must be locked, @newpage->mapping must be set up.
5779 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5781 struct mem_cgroup
*memcg
;
5782 unsigned int nr_pages
;
5784 unsigned long flags
;
5786 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5787 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5788 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5789 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5792 if (mem_cgroup_disabled())
5795 /* Page cache replacement: new page already charged? */
5796 if (newpage
->mem_cgroup
)
5799 /* Swapcache readahead pages can get replaced before being charged */
5800 memcg
= oldpage
->mem_cgroup
;
5804 /* Force-charge the new page. The old one will be freed soon */
5805 compound
= PageTransHuge(newpage
);
5806 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5808 page_counter_charge(&memcg
->memory
, nr_pages
);
5809 if (do_memsw_account())
5810 page_counter_charge(&memcg
->memsw
, nr_pages
);
5811 css_get_many(&memcg
->css
, nr_pages
);
5813 commit_charge(newpage
, memcg
, false);
5815 local_irq_save(flags
);
5816 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5817 memcg_check_events(memcg
, newpage
);
5818 local_irq_restore(flags
);
5821 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5822 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5824 void mem_cgroup_sk_alloc(struct sock
*sk
)
5826 struct mem_cgroup
*memcg
;
5828 if (!mem_cgroup_sockets_enabled
)
5832 * Socket cloning can throw us here with sk_memcg already
5833 * filled. It won't however, necessarily happen from
5834 * process context. So the test for root memcg given
5835 * the current task's memcg won't help us in this case.
5837 * Respecting the original socket's memcg is a better
5838 * decision in this case.
5841 css_get(&sk
->sk_memcg
->css
);
5846 memcg
= mem_cgroup_from_task(current
);
5847 if (memcg
== root_mem_cgroup
)
5849 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5851 if (css_tryget_online(&memcg
->css
))
5852 sk
->sk_memcg
= memcg
;
5857 void mem_cgroup_sk_free(struct sock
*sk
)
5860 css_put(&sk
->sk_memcg
->css
);
5864 * mem_cgroup_charge_skmem - charge socket memory
5865 * @memcg: memcg to charge
5866 * @nr_pages: number of pages to charge
5868 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5869 * @memcg's configured limit, %false if the charge had to be forced.
5871 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5873 gfp_t gfp_mask
= GFP_KERNEL
;
5875 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5876 struct page_counter
*fail
;
5878 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5879 memcg
->tcpmem_pressure
= 0;
5882 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5883 memcg
->tcpmem_pressure
= 1;
5887 /* Don't block in the packet receive path */
5889 gfp_mask
= GFP_NOWAIT
;
5891 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5893 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5896 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5901 * mem_cgroup_uncharge_skmem - uncharge socket memory
5902 * @memcg - memcg to uncharge
5903 * @nr_pages - number of pages to uncharge
5905 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5908 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5912 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5914 refill_stock(memcg
, nr_pages
);
5917 static int __init
cgroup_memory(char *s
)
5921 while ((token
= strsep(&s
, ",")) != NULL
) {
5924 if (!strcmp(token
, "nosocket"))
5925 cgroup_memory_nosocket
= true;
5926 if (!strcmp(token
, "nokmem"))
5927 cgroup_memory_nokmem
= true;
5931 __setup("cgroup.memory=", cgroup_memory
);
5934 * subsys_initcall() for memory controller.
5936 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5937 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5938 * basically everything that doesn't depend on a specific mem_cgroup structure
5939 * should be initialized from here.
5941 static int __init
mem_cgroup_init(void)
5947 * Kmem cache creation is mostly done with the slab_mutex held,
5948 * so use a workqueue with limited concurrency to avoid stalling
5949 * all worker threads in case lots of cgroups are created and
5950 * destroyed simultaneously.
5952 memcg_kmem_cache_wq
= alloc_workqueue("memcg_kmem_cache", 0, 1);
5953 BUG_ON(!memcg_kmem_cache_wq
);
5956 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD
, "mm/memctrl:dead", NULL
,
5957 memcg_hotplug_cpu_dead
);
5959 for_each_possible_cpu(cpu
)
5960 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5963 for_each_node(node
) {
5964 struct mem_cgroup_tree_per_node
*rtpn
;
5966 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5967 node_online(node
) ? node
: NUMA_NO_NODE
);
5969 rtpn
->rb_root
= RB_ROOT
;
5970 rtpn
->rb_rightmost
= NULL
;
5971 spin_lock_init(&rtpn
->lock
);
5972 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5977 subsys_initcall(mem_cgroup_init
);
5979 #ifdef CONFIG_MEMCG_SWAP
5980 static struct mem_cgroup
*mem_cgroup_id_get_online(struct mem_cgroup
*memcg
)
5982 while (!atomic_inc_not_zero(&memcg
->id
.ref
)) {
5984 * The root cgroup cannot be destroyed, so it's refcount must
5987 if (WARN_ON_ONCE(memcg
== root_mem_cgroup
)) {
5991 memcg
= parent_mem_cgroup(memcg
);
5993 memcg
= root_mem_cgroup
;
5999 * mem_cgroup_swapout - transfer a memsw charge to swap
6000 * @page: page whose memsw charge to transfer
6001 * @entry: swap entry to move the charge to
6003 * Transfer the memsw charge of @page to @entry.
6005 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
6007 struct mem_cgroup
*memcg
, *swap_memcg
;
6008 unsigned int nr_entries
;
6009 unsigned short oldid
;
6011 VM_BUG_ON_PAGE(PageLRU(page
), page
);
6012 VM_BUG_ON_PAGE(page_count(page
), page
);
6014 if (!do_memsw_account())
6017 memcg
= page
->mem_cgroup
;
6019 /* Readahead page, never charged */
6024 * In case the memcg owning these pages has been offlined and doesn't
6025 * have an ID allocated to it anymore, charge the closest online
6026 * ancestor for the swap instead and transfer the memory+swap charge.
6028 swap_memcg
= mem_cgroup_id_get_online(memcg
);
6029 nr_entries
= hpage_nr_pages(page
);
6030 /* Get references for the tail pages, too */
6032 mem_cgroup_id_get_many(swap_memcg
, nr_entries
- 1);
6033 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(swap_memcg
),
6035 VM_BUG_ON_PAGE(oldid
, page
);
6036 mem_cgroup_swap_statistics(swap_memcg
, nr_entries
);
6038 page
->mem_cgroup
= NULL
;
6040 if (!mem_cgroup_is_root(memcg
))
6041 page_counter_uncharge(&memcg
->memory
, nr_entries
);
6043 if (memcg
!= swap_memcg
) {
6044 if (!mem_cgroup_is_root(swap_memcg
))
6045 page_counter_charge(&swap_memcg
->memsw
, nr_entries
);
6046 page_counter_uncharge(&memcg
->memsw
, nr_entries
);
6050 * Interrupts should be disabled here because the caller holds the
6051 * mapping->tree_lock lock which is taken with interrupts-off. It is
6052 * important here to have the interrupts disabled because it is the
6053 * only synchronisation we have for udpating the per-CPU variables.
6055 VM_BUG_ON(!irqs_disabled());
6056 mem_cgroup_charge_statistics(memcg
, page
, PageTransHuge(page
),
6058 memcg_check_events(memcg
, page
);
6060 if (!mem_cgroup_is_root(memcg
))
6061 css_put_many(&memcg
->css
, nr_entries
);
6065 * mem_cgroup_try_charge_swap - try charging swap space for a page
6066 * @page: page being added to swap
6067 * @entry: swap entry to charge
6069 * Try to charge @page's memcg for the swap space at @entry.
6071 * Returns 0 on success, -ENOMEM on failure.
6073 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
6075 unsigned int nr_pages
= hpage_nr_pages(page
);
6076 struct page_counter
*counter
;
6077 struct mem_cgroup
*memcg
;
6078 unsigned short oldid
;
6080 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
6083 memcg
= page
->mem_cgroup
;
6085 /* Readahead page, never charged */
6089 memcg
= mem_cgroup_id_get_online(memcg
);
6091 if (!mem_cgroup_is_root(memcg
) &&
6092 !page_counter_try_charge(&memcg
->swap
, nr_pages
, &counter
)) {
6093 mem_cgroup_id_put(memcg
);
6097 /* Get references for the tail pages, too */
6099 mem_cgroup_id_get_many(memcg
, nr_pages
- 1);
6100 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
), nr_pages
);
6101 VM_BUG_ON_PAGE(oldid
, page
);
6102 mem_cgroup_swap_statistics(memcg
, nr_pages
);
6108 * mem_cgroup_uncharge_swap - uncharge swap space
6109 * @entry: swap entry to uncharge
6110 * @nr_pages: the amount of swap space to uncharge
6112 void mem_cgroup_uncharge_swap(swp_entry_t entry
, unsigned int nr_pages
)
6114 struct mem_cgroup
*memcg
;
6117 if (!do_swap_account
)
6120 id
= swap_cgroup_record(entry
, 0, nr_pages
);
6122 memcg
= mem_cgroup_from_id(id
);
6124 if (!mem_cgroup_is_root(memcg
)) {
6125 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6126 page_counter_uncharge(&memcg
->swap
, nr_pages
);
6128 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
6130 mem_cgroup_swap_statistics(memcg
, -nr_pages
);
6131 mem_cgroup_id_put_many(memcg
, nr_pages
);
6136 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
6138 long nr_swap_pages
= get_nr_swap_pages();
6140 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6141 return nr_swap_pages
;
6142 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6143 nr_swap_pages
= min_t(long, nr_swap_pages
,
6144 READ_ONCE(memcg
->swap
.limit
) -
6145 page_counter_read(&memcg
->swap
));
6146 return nr_swap_pages
;
6149 bool mem_cgroup_swap_full(struct page
*page
)
6151 struct mem_cgroup
*memcg
;
6153 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
6157 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
6160 memcg
= page
->mem_cgroup
;
6164 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
6165 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
6171 /* for remember boot option*/
6172 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6173 static int really_do_swap_account __initdata
= 1;
6175 static int really_do_swap_account __initdata
;
6178 static int __init
enable_swap_account(char *s
)
6180 if (!strcmp(s
, "1"))
6181 really_do_swap_account
= 1;
6182 else if (!strcmp(s
, "0"))
6183 really_do_swap_account
= 0;
6186 __setup("swapaccount=", enable_swap_account
);
6188 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
6191 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6193 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
6196 static int swap_max_show(struct seq_file
*m
, void *v
)
6198 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
6199 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
6201 if (max
== PAGE_COUNTER_MAX
)
6202 seq_puts(m
, "max\n");
6204 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
6209 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
6210 char *buf
, size_t nbytes
, loff_t off
)
6212 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
6216 buf
= strstrip(buf
);
6217 err
= page_counter_memparse(buf
, "max", &max
);
6221 mutex_lock(&memcg_limit_mutex
);
6222 err
= page_counter_limit(&memcg
->swap
, max
);
6223 mutex_unlock(&memcg_limit_mutex
);
6230 static struct cftype swap_files
[] = {
6232 .name
= "swap.current",
6233 .flags
= CFTYPE_NOT_ON_ROOT
,
6234 .read_u64
= swap_current_read
,
6238 .flags
= CFTYPE_NOT_ON_ROOT
,
6239 .seq_show
= swap_max_show
,
6240 .write
= swap_max_write
,
6245 static struct cftype memsw_cgroup_files
[] = {
6247 .name
= "memsw.usage_in_bytes",
6248 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6249 .read_u64
= mem_cgroup_read_u64
,
6252 .name
= "memsw.max_usage_in_bytes",
6253 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6254 .write
= mem_cgroup_reset
,
6255 .read_u64
= mem_cgroup_read_u64
,
6258 .name
= "memsw.limit_in_bytes",
6259 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6260 .write
= mem_cgroup_write
,
6261 .read_u64
= mem_cgroup_read_u64
,
6264 .name
= "memsw.failcnt",
6265 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6266 .write
= mem_cgroup_reset
,
6267 .read_u64
= mem_cgroup_read_u64
,
6269 { }, /* terminate */
6272 static int __init
mem_cgroup_swap_init(void)
6274 if (!mem_cgroup_disabled() && really_do_swap_account
) {
6275 do_swap_account
= 1;
6276 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
6278 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
6279 memsw_cgroup_files
));
6283 subsys_initcall(mem_cgroup_swap_init
);
6285 #endif /* CONFIG_MEMCG_SWAP */