2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/backing-dev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/gfp.h>
25 #include <linux/pagemap.h>
26 #include <linux/pagevec.h>
27 #include <linux/sched.h>
28 #include <linux/swap.h>
29 #include <linux/uio.h>
30 #include <linux/writeback.h>
31 #include <linux/aio.h>
34 #include <asm/uaccess.h>
46 * ntfs_file_open - called when an inode is about to be opened
47 * @vi: inode to be opened
48 * @filp: file structure describing the inode
50 * Limit file size to the page cache limit on architectures where unsigned long
51 * is 32-bits. This is the most we can do for now without overflowing the page
52 * cache page index. Doing it this way means we don't run into problems because
53 * of existing too large files. It would be better to allow the user to read
54 * the beginning of the file but I doubt very much anyone is going to hit this
55 * check on a 32-bit architecture, so there is no point in adding the extra
56 * complexity required to support this.
58 * On 64-bit architectures, the check is hopefully optimized away by the
61 * After the check passes, just call generic_file_open() to do its work.
63 static int ntfs_file_open(struct inode
*vi
, struct file
*filp
)
65 if (sizeof(unsigned long) < 8) {
66 if (i_size_read(vi
) > MAX_LFS_FILESIZE
)
69 return generic_file_open(vi
, filp
);
75 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
76 * @ni: ntfs inode of the attribute to extend
77 * @new_init_size: requested new initialized size in bytes
79 * Extend the initialized size of an attribute described by the ntfs inode @ni
80 * to @new_init_size bytes. This involves zeroing any non-sparse space between
81 * the old initialized size and @new_init_size both in the page cache and on
82 * disk (if relevant complete pages are already uptodate in the page cache then
83 * these are simply marked dirty).
85 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
86 * in the resident attribute case, it is tied to the initialized size and, in
87 * the non-resident attribute case, it may not fall below the initialized size.
89 * Note that if the attribute is resident, we do not need to touch the page
90 * cache at all. This is because if the page cache page is not uptodate we
91 * bring it uptodate later, when doing the write to the mft record since we
92 * then already have the page mapped. And if the page is uptodate, the
93 * non-initialized region will already have been zeroed when the page was
94 * brought uptodate and the region may in fact already have been overwritten
95 * with new data via mmap() based writes, so we cannot just zero it. And since
96 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
97 * is unspecified, we choose not to do zeroing and thus we do not need to touch
98 * the page at all. For a more detailed explanation see ntfs_truncate() in
101 * Return 0 on success and -errno on error. In the case that an error is
102 * encountered it is possible that the initialized size will already have been
103 * incremented some way towards @new_init_size but it is guaranteed that if
104 * this is the case, the necessary zeroing will also have happened and that all
105 * metadata is self-consistent.
107 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
108 * held by the caller.
110 static int ntfs_attr_extend_initialized(ntfs_inode
*ni
, const s64 new_init_size
)
114 pgoff_t index
, end_index
;
116 struct inode
*vi
= VFS_I(ni
);
118 MFT_RECORD
*m
= NULL
;
120 ntfs_attr_search_ctx
*ctx
= NULL
;
121 struct address_space
*mapping
;
122 struct page
*page
= NULL
;
127 read_lock_irqsave(&ni
->size_lock
, flags
);
128 old_init_size
= ni
->initialized_size
;
129 old_i_size
= i_size_read(vi
);
130 BUG_ON(new_init_size
> ni
->allocated_size
);
131 read_unlock_irqrestore(&ni
->size_lock
, flags
);
132 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
133 "old_initialized_size 0x%llx, "
134 "new_initialized_size 0x%llx, i_size 0x%llx.",
135 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
136 (unsigned long long)old_init_size
,
137 (unsigned long long)new_init_size
, old_i_size
);
141 base_ni
= ni
->ext
.base_ntfs_ino
;
142 /* Use goto to reduce indentation and we need the label below anyway. */
143 if (NInoNonResident(ni
))
144 goto do_non_resident_extend
;
145 BUG_ON(old_init_size
!= old_i_size
);
146 m
= map_mft_record(base_ni
);
152 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
153 if (unlikely(!ctx
)) {
157 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
158 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
166 BUG_ON(a
->non_resident
);
167 /* The total length of the attribute value. */
168 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
169 BUG_ON(old_i_size
!= (loff_t
)attr_len
);
171 * Do the zeroing in the mft record and update the attribute size in
174 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
175 memset(kattr
+ attr_len
, 0, new_init_size
- attr_len
);
176 a
->data
.resident
.value_length
= cpu_to_le32((u32
)new_init_size
);
177 /* Finally, update the sizes in the vfs and ntfs inodes. */
178 write_lock_irqsave(&ni
->size_lock
, flags
);
179 i_size_write(vi
, new_init_size
);
180 ni
->initialized_size
= new_init_size
;
181 write_unlock_irqrestore(&ni
->size_lock
, flags
);
183 do_non_resident_extend
:
185 * If the new initialized size @new_init_size exceeds the current file
186 * size (vfs inode->i_size), we need to extend the file size to the
187 * new initialized size.
189 if (new_init_size
> old_i_size
) {
190 m
= map_mft_record(base_ni
);
196 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
197 if (unlikely(!ctx
)) {
201 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
202 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
210 BUG_ON(!a
->non_resident
);
211 BUG_ON(old_i_size
!= (loff_t
)
212 sle64_to_cpu(a
->data
.non_resident
.data_size
));
213 a
->data
.non_resident
.data_size
= cpu_to_sle64(new_init_size
);
214 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
215 mark_mft_record_dirty(ctx
->ntfs_ino
);
216 /* Update the file size in the vfs inode. */
217 i_size_write(vi
, new_init_size
);
218 ntfs_attr_put_search_ctx(ctx
);
220 unmap_mft_record(base_ni
);
223 mapping
= vi
->i_mapping
;
224 index
= old_init_size
>> PAGE_CACHE_SHIFT
;
225 end_index
= (new_init_size
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
228 * Read the page. If the page is not present, this will zero
229 * the uninitialized regions for us.
231 page
= read_mapping_page(mapping
, index
, NULL
);
236 if (unlikely(PageError(page
))) {
237 page_cache_release(page
);
242 * Update the initialized size in the ntfs inode. This is
243 * enough to make ntfs_writepage() work.
245 write_lock_irqsave(&ni
->size_lock
, flags
);
246 ni
->initialized_size
= (s64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
247 if (ni
->initialized_size
> new_init_size
)
248 ni
->initialized_size
= new_init_size
;
249 write_unlock_irqrestore(&ni
->size_lock
, flags
);
250 /* Set the page dirty so it gets written out. */
251 set_page_dirty(page
);
252 page_cache_release(page
);
254 * Play nice with the vm and the rest of the system. This is
255 * very much needed as we can potentially be modifying the
256 * initialised size from a very small value to a really huge
258 * f = open(somefile, O_TRUNC);
259 * truncate(f, 10GiB);
262 * And this would mean we would be marking dirty hundreds of
263 * thousands of pages or as in the above example more than
264 * two and a half million pages!
266 * TODO: For sparse pages could optimize this workload by using
267 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
268 * would be set in readpage for sparse pages and here we would
269 * not need to mark dirty any pages which have this bit set.
270 * The only caveat is that we have to clear the bit everywhere
271 * where we allocate any clusters that lie in the page or that
274 * TODO: An even greater optimization would be for us to only
275 * call readpage() on pages which are not in sparse regions as
276 * determined from the runlist. This would greatly reduce the
277 * number of pages we read and make dirty in the case of sparse
280 balance_dirty_pages_ratelimited(mapping
);
282 } while (++index
< end_index
);
283 read_lock_irqsave(&ni
->size_lock
, flags
);
284 BUG_ON(ni
->initialized_size
!= new_init_size
);
285 read_unlock_irqrestore(&ni
->size_lock
, flags
);
286 /* Now bring in sync the initialized_size in the mft record. */
287 m
= map_mft_record(base_ni
);
293 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
294 if (unlikely(!ctx
)) {
298 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
299 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
307 BUG_ON(!a
->non_resident
);
308 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(new_init_size
);
310 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
311 mark_mft_record_dirty(ctx
->ntfs_ino
);
313 ntfs_attr_put_search_ctx(ctx
);
315 unmap_mft_record(base_ni
);
316 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
317 (unsigned long long)new_init_size
, i_size_read(vi
));
320 write_lock_irqsave(&ni
->size_lock
, flags
);
321 ni
->initialized_size
= old_init_size
;
322 write_unlock_irqrestore(&ni
->size_lock
, flags
);
325 ntfs_attr_put_search_ctx(ctx
);
327 unmap_mft_record(base_ni
);
328 ntfs_debug("Failed. Returning error code %i.", err
);
333 * ntfs_fault_in_pages_readable -
335 * Fault a number of userspace pages into pagetables.
337 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
338 * with more than two userspace pages as well as handling the single page case
341 * If you find this difficult to understand, then think of the while loop being
342 * the following code, except that we do without the integer variable ret:
345 * ret = __get_user(c, uaddr);
346 * uaddr += PAGE_SIZE;
347 * } while (!ret && uaddr < end);
349 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
350 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
351 * this is only a read and not a write, and since it is still in the same page,
352 * it should not matter and this makes the code much simpler.
354 static inline void ntfs_fault_in_pages_readable(const char __user
*uaddr
,
357 const char __user
*end
;
360 /* Set @end to the first byte outside the last page we care about. */
361 end
= (const char __user
*)PAGE_ALIGN((unsigned long)uaddr
+ bytes
);
363 while (!__get_user(c
, uaddr
) && (uaddr
+= PAGE_SIZE
, uaddr
< end
))
368 * ntfs_fault_in_pages_readable_iovec -
370 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
372 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec
*iov
,
373 size_t iov_ofs
, int bytes
)
376 const char __user
*buf
;
379 buf
= iov
->iov_base
+ iov_ofs
;
380 len
= iov
->iov_len
- iov_ofs
;
383 ntfs_fault_in_pages_readable(buf
, len
);
391 * __ntfs_grab_cache_pages - obtain a number of locked pages
392 * @mapping: address space mapping from which to obtain page cache pages
393 * @index: starting index in @mapping at which to begin obtaining pages
394 * @nr_pages: number of page cache pages to obtain
395 * @pages: array of pages in which to return the obtained page cache pages
396 * @cached_page: allocated but as yet unused page
398 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
399 * starting at index @index.
401 * If a page is newly created, add it to lru list
403 * Note, the page locks are obtained in ascending page index order.
405 static inline int __ntfs_grab_cache_pages(struct address_space
*mapping
,
406 pgoff_t index
, const unsigned nr_pages
, struct page
**pages
,
407 struct page
**cached_page
)
414 pages
[nr
] = find_get_page_flags(mapping
, index
, FGP_LOCK
|
418 *cached_page
= page_cache_alloc(mapping
);
419 if (unlikely(!*cached_page
)) {
424 err
= add_to_page_cache_lru(*cached_page
, mapping
, index
,
431 pages
[nr
] = *cached_page
;
436 } while (nr
< nr_pages
);
441 unlock_page(pages
[--nr
]);
442 page_cache_release(pages
[nr
]);
447 static inline int ntfs_submit_bh_for_read(struct buffer_head
*bh
)
451 bh
->b_end_io
= end_buffer_read_sync
;
452 return submit_bh(READ
, bh
);
456 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
457 * @pages: array of destination pages
458 * @nr_pages: number of pages in @pages
459 * @pos: byte position in file at which the write begins
460 * @bytes: number of bytes to be written
462 * This is called for non-resident attributes from ntfs_file_buffered_write()
463 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
464 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
465 * data has not yet been copied into the @pages.
467 * Need to fill any holes with actual clusters, allocate buffers if necessary,
468 * ensure all the buffers are mapped, and bring uptodate any buffers that are
469 * only partially being written to.
471 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
472 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
473 * the same cluster and that they are the entirety of that cluster, and that
474 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
476 * i_size is not to be modified yet.
478 * Return 0 on success or -errno on error.
480 static int ntfs_prepare_pages_for_non_resident_write(struct page
**pages
,
481 unsigned nr_pages
, s64 pos
, size_t bytes
)
483 VCN vcn
, highest_vcn
= 0, cpos
, cend
, bh_cpos
, bh_cend
;
485 s64 bh_pos
, vcn_len
, end
, initialized_size
;
489 ntfs_inode
*ni
, *base_ni
= NULL
;
491 runlist_element
*rl
, *rl2
;
492 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
493 ntfs_attr_search_ctx
*ctx
= NULL
;
494 MFT_RECORD
*m
= NULL
;
495 ATTR_RECORD
*a
= NULL
;
497 u32 attr_rec_len
= 0;
498 unsigned blocksize
, u
;
500 bool rl_write_locked
, was_hole
, is_retry
;
501 unsigned char blocksize_bits
;
504 u8 mft_attr_mapped
:1;
507 } status
= { 0, 0, 0, 0 };
512 vi
= pages
[0]->mapping
->host
;
515 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
516 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
517 vi
->i_ino
, ni
->type
, pages
[0]->index
, nr_pages
,
518 (long long)pos
, bytes
);
519 blocksize
= vol
->sb
->s_blocksize
;
520 blocksize_bits
= vol
->sb
->s_blocksize_bits
;
526 * create_empty_buffers() will create uptodate/dirty buffers if
527 * the page is uptodate/dirty.
529 if (!page_has_buffers(page
)) {
530 create_empty_buffers(page
, blocksize
, 0);
531 if (unlikely(!page_has_buffers(page
)))
534 } while (++u
< nr_pages
);
535 rl_write_locked
= false;
542 cpos
= pos
>> vol
->cluster_size_bits
;
544 cend
= (end
+ vol
->cluster_size
- 1) >> vol
->cluster_size_bits
;
546 * Loop over each page and for each page over each buffer. Use goto to
547 * reduce indentation.
552 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
553 bh
= head
= page_buffers(page
);
559 /* Clear buffer_new on all buffers to reinitialise state. */
561 clear_buffer_new(bh
);
562 bh_end
= bh_pos
+ blocksize
;
563 bh_cpos
= bh_pos
>> vol
->cluster_size_bits
;
564 bh_cofs
= bh_pos
& vol
->cluster_size_mask
;
565 if (buffer_mapped(bh
)) {
567 * The buffer is already mapped. If it is uptodate,
570 if (buffer_uptodate(bh
))
573 * The buffer is not uptodate. If the page is uptodate
574 * set the buffer uptodate and otherwise ignore it.
576 if (PageUptodate(page
)) {
577 set_buffer_uptodate(bh
);
581 * Neither the page nor the buffer are uptodate. If
582 * the buffer is only partially being written to, we
583 * need to read it in before the write, i.e. now.
585 if ((bh_pos
< pos
&& bh_end
> pos
) ||
586 (bh_pos
< end
&& bh_end
> end
)) {
588 * If the buffer is fully or partially within
589 * the initialized size, do an actual read.
590 * Otherwise, simply zero the buffer.
592 read_lock_irqsave(&ni
->size_lock
, flags
);
593 initialized_size
= ni
->initialized_size
;
594 read_unlock_irqrestore(&ni
->size_lock
, flags
);
595 if (bh_pos
< initialized_size
) {
596 ntfs_submit_bh_for_read(bh
);
599 zero_user(page
, bh_offset(bh
),
601 set_buffer_uptodate(bh
);
606 /* Unmapped buffer. Need to map it. */
607 bh
->b_bdev
= vol
->sb
->s_bdev
;
609 * If the current buffer is in the same clusters as the map
610 * cache, there is no need to check the runlist again. The
611 * map cache is made up of @vcn, which is the first cached file
612 * cluster, @vcn_len which is the number of cached file
613 * clusters, @lcn is the device cluster corresponding to @vcn,
614 * and @lcn_block is the block number corresponding to @lcn.
616 cdelta
= bh_cpos
- vcn
;
617 if (likely(!cdelta
|| (cdelta
> 0 && cdelta
< vcn_len
))) {
620 bh
->b_blocknr
= lcn_block
+
621 (cdelta
<< (vol
->cluster_size_bits
-
623 (bh_cofs
>> blocksize_bits
);
624 set_buffer_mapped(bh
);
626 * If the page is uptodate so is the buffer. If the
627 * buffer is fully outside the write, we ignore it if
628 * it was already allocated and we mark it dirty so it
629 * gets written out if we allocated it. On the other
630 * hand, if we allocated the buffer but we are not
631 * marking it dirty we set buffer_new so we can do
634 if (PageUptodate(page
)) {
635 if (!buffer_uptodate(bh
))
636 set_buffer_uptodate(bh
);
637 if (unlikely(was_hole
)) {
638 /* We allocated the buffer. */
639 unmap_underlying_metadata(bh
->b_bdev
,
641 if (bh_end
<= pos
|| bh_pos
>= end
)
642 mark_buffer_dirty(bh
);
648 /* Page is _not_ uptodate. */
649 if (likely(!was_hole
)) {
651 * Buffer was already allocated. If it is not
652 * uptodate and is only partially being written
653 * to, we need to read it in before the write,
656 if (!buffer_uptodate(bh
) && bh_pos
< end
&&
661 * If the buffer is fully or partially
662 * within the initialized size, do an
663 * actual read. Otherwise, simply zero
666 read_lock_irqsave(&ni
->size_lock
,
668 initialized_size
= ni
->initialized_size
;
669 read_unlock_irqrestore(&ni
->size_lock
,
671 if (bh_pos
< initialized_size
) {
672 ntfs_submit_bh_for_read(bh
);
675 zero_user(page
, bh_offset(bh
),
677 set_buffer_uptodate(bh
);
682 /* We allocated the buffer. */
683 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
685 * If the buffer is fully outside the write, zero it,
686 * set it uptodate, and mark it dirty so it gets
687 * written out. If it is partially being written to,
688 * zero region surrounding the write but leave it to
689 * commit write to do anything else. Finally, if the
690 * buffer is fully being overwritten, do nothing.
692 if (bh_end
<= pos
|| bh_pos
>= end
) {
693 if (!buffer_uptodate(bh
)) {
694 zero_user(page
, bh_offset(bh
),
696 set_buffer_uptodate(bh
);
698 mark_buffer_dirty(bh
);
702 if (!buffer_uptodate(bh
) &&
703 (bh_pos
< pos
|| bh_end
> end
)) {
707 kaddr
= kmap_atomic(page
);
709 pofs
= bh_pos
& ~PAGE_CACHE_MASK
;
710 memset(kaddr
+ pofs
, 0, pos
- bh_pos
);
713 pofs
= end
& ~PAGE_CACHE_MASK
;
714 memset(kaddr
+ pofs
, 0, bh_end
- end
);
716 kunmap_atomic(kaddr
);
717 flush_dcache_page(page
);
722 * Slow path: this is the first buffer in the cluster. If it
723 * is outside allocated size and is not uptodate, zero it and
726 read_lock_irqsave(&ni
->size_lock
, flags
);
727 initialized_size
= ni
->allocated_size
;
728 read_unlock_irqrestore(&ni
->size_lock
, flags
);
729 if (bh_pos
> initialized_size
) {
730 if (PageUptodate(page
)) {
731 if (!buffer_uptodate(bh
))
732 set_buffer_uptodate(bh
);
733 } else if (!buffer_uptodate(bh
)) {
734 zero_user(page
, bh_offset(bh
), blocksize
);
735 set_buffer_uptodate(bh
);
741 down_read(&ni
->runlist
.lock
);
745 if (likely(rl
!= NULL
)) {
746 /* Seek to element containing target cluster. */
747 while (rl
->length
&& rl
[1].vcn
<= bh_cpos
)
749 lcn
= ntfs_rl_vcn_to_lcn(rl
, bh_cpos
);
750 if (likely(lcn
>= 0)) {
752 * Successful remap, setup the map cache and
753 * use that to deal with the buffer.
757 vcn_len
= rl
[1].vcn
- vcn
;
758 lcn_block
= lcn
<< (vol
->cluster_size_bits
-
762 * If the number of remaining clusters touched
763 * by the write is smaller or equal to the
764 * number of cached clusters, unlock the
765 * runlist as the map cache will be used from
768 if (likely(vcn
+ vcn_len
>= cend
)) {
769 if (rl_write_locked
) {
770 up_write(&ni
->runlist
.lock
);
771 rl_write_locked
= false;
773 up_read(&ni
->runlist
.lock
);
776 goto map_buffer_cached
;
779 lcn
= LCN_RL_NOT_MAPPED
;
781 * If it is not a hole and not out of bounds, the runlist is
782 * probably unmapped so try to map it now.
784 if (unlikely(lcn
!= LCN_HOLE
&& lcn
!= LCN_ENOENT
)) {
785 if (likely(!is_retry
&& lcn
== LCN_RL_NOT_MAPPED
)) {
786 /* Attempt to map runlist. */
787 if (!rl_write_locked
) {
789 * We need the runlist locked for
790 * writing, so if it is locked for
791 * reading relock it now and retry in
792 * case it changed whilst we dropped
795 up_read(&ni
->runlist
.lock
);
796 down_write(&ni
->runlist
.lock
);
797 rl_write_locked
= true;
800 err
= ntfs_map_runlist_nolock(ni
, bh_cpos
,
807 * If @vcn is out of bounds, pretend @lcn is
808 * LCN_ENOENT. As long as the buffer is out
809 * of bounds this will work fine.
811 if (err
== -ENOENT
) {
814 goto rl_not_mapped_enoent
;
818 /* Failed to map the buffer, even after retrying. */
820 ntfs_error(vol
->sb
, "Failed to write to inode 0x%lx, "
821 "attribute type 0x%x, vcn 0x%llx, "
822 "vcn offset 0x%x, because its "
823 "location on disk could not be "
824 "determined%s (error code %i).",
825 ni
->mft_no
, ni
->type
,
826 (unsigned long long)bh_cpos
,
828 vol
->cluster_size_mask
,
829 is_retry
? " even after retrying" : "",
833 rl_not_mapped_enoent
:
835 * The buffer is in a hole or out of bounds. We need to fill
836 * the hole, unless the buffer is in a cluster which is not
837 * touched by the write, in which case we just leave the buffer
838 * unmapped. This can only happen when the cluster size is
839 * less than the page cache size.
841 if (unlikely(vol
->cluster_size
< PAGE_CACHE_SIZE
)) {
842 bh_cend
= (bh_end
+ vol
->cluster_size
- 1) >>
843 vol
->cluster_size_bits
;
844 if ((bh_cend
<= cpos
|| bh_cpos
>= cend
)) {
847 * If the buffer is uptodate we skip it. If it
848 * is not but the page is uptodate, we can set
849 * the buffer uptodate. If the page is not
850 * uptodate, we can clear the buffer and set it
851 * uptodate. Whether this is worthwhile is
852 * debatable and this could be removed.
854 if (PageUptodate(page
)) {
855 if (!buffer_uptodate(bh
))
856 set_buffer_uptodate(bh
);
857 } else if (!buffer_uptodate(bh
)) {
858 zero_user(page
, bh_offset(bh
),
860 set_buffer_uptodate(bh
);
866 * Out of bounds buffer is invalid if it was not really out of
869 BUG_ON(lcn
!= LCN_HOLE
);
871 * We need the runlist locked for writing, so if it is locked
872 * for reading relock it now and retry in case it changed
873 * whilst we dropped the lock.
876 if (!rl_write_locked
) {
877 up_read(&ni
->runlist
.lock
);
878 down_write(&ni
->runlist
.lock
);
879 rl_write_locked
= true;
882 /* Find the previous last allocated cluster. */
883 BUG_ON(rl
->lcn
!= LCN_HOLE
);
886 while (--rl2
>= ni
->runlist
.rl
) {
888 lcn
= rl2
->lcn
+ rl2
->length
;
892 rl2
= ntfs_cluster_alloc(vol
, bh_cpos
, 1, lcn
, DATA_ZONE
,
896 ntfs_debug("Failed to allocate cluster, error code %i.",
901 rl
= ntfs_runlists_merge(ni
->runlist
.rl
, rl2
);
906 if (ntfs_cluster_free_from_rl(vol
, rl2
)) {
907 ntfs_error(vol
->sb
, "Failed to release "
908 "allocated cluster in error "
909 "code path. Run chkdsk to "
910 "recover the lost cluster.");
917 status
.runlist_merged
= 1;
918 ntfs_debug("Allocated cluster, lcn 0x%llx.",
919 (unsigned long long)lcn
);
920 /* Map and lock the mft record and get the attribute record. */
924 base_ni
= ni
->ext
.base_ntfs_ino
;
925 m
= map_mft_record(base_ni
);
930 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
931 if (unlikely(!ctx
)) {
933 unmap_mft_record(base_ni
);
936 status
.mft_attr_mapped
= 1;
937 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
938 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
);
947 * Find the runlist element with which the attribute extent
948 * starts. Note, we cannot use the _attr_ version because we
949 * have mapped the mft record. That is ok because we know the
950 * runlist fragment must be mapped already to have ever gotten
951 * here, so we can just use the _rl_ version.
953 vcn
= sle64_to_cpu(a
->data
.non_resident
.lowest_vcn
);
954 rl2
= ntfs_rl_find_vcn_nolock(rl
, vcn
);
956 BUG_ON(!rl2
->length
);
957 BUG_ON(rl2
->lcn
< LCN_HOLE
);
958 highest_vcn
= sle64_to_cpu(a
->data
.non_resident
.highest_vcn
);
960 * If @highest_vcn is zero, calculate the real highest_vcn
961 * (which can really be zero).
964 highest_vcn
= (sle64_to_cpu(
965 a
->data
.non_resident
.allocated_size
) >>
966 vol
->cluster_size_bits
) - 1;
968 * Determine the size of the mapping pairs array for the new
969 * extent, i.e. the old extent with the hole filled.
971 mp_size
= ntfs_get_size_for_mapping_pairs(vol
, rl2
, vcn
,
973 if (unlikely(mp_size
<= 0)) {
974 if (!(err
= mp_size
))
976 ntfs_debug("Failed to get size for mapping pairs "
977 "array, error code %i.", err
);
981 * Resize the attribute record to fit the new mapping pairs
984 attr_rec_len
= le32_to_cpu(a
->length
);
985 err
= ntfs_attr_record_resize(m
, a
, mp_size
+ le16_to_cpu(
986 a
->data
.non_resident
.mapping_pairs_offset
));
988 BUG_ON(err
!= -ENOSPC
);
989 // TODO: Deal with this by using the current attribute
990 // and fill it with as much of the mapping pairs
991 // array as possible. Then loop over each attribute
992 // extent rewriting the mapping pairs arrays as we go
993 // along and if when we reach the end we have not
994 // enough space, try to resize the last attribute
995 // extent and if even that fails, add a new attribute
997 // We could also try to resize at each step in the hope
998 // that we will not need to rewrite every single extent.
999 // Note, we may need to decompress some extents to fill
1000 // the runlist as we are walking the extents...
1001 ntfs_error(vol
->sb
, "Not enough space in the mft "
1002 "record for the extended attribute "
1003 "record. This case is not "
1004 "implemented yet.");
1008 status
.mp_rebuilt
= 1;
1010 * Generate the mapping pairs array directly into the attribute
1013 err
= ntfs_mapping_pairs_build(vol
, (u8
*)a
+ le16_to_cpu(
1014 a
->data
.non_resident
.mapping_pairs_offset
),
1015 mp_size
, rl2
, vcn
, highest_vcn
, NULL
);
1016 if (unlikely(err
)) {
1017 ntfs_error(vol
->sb
, "Cannot fill hole in inode 0x%lx, "
1018 "attribute type 0x%x, because building "
1019 "the mapping pairs failed with error "
1020 "code %i.", vi
->i_ino
,
1021 (unsigned)le32_to_cpu(ni
->type
), err
);
1025 /* Update the highest_vcn but only if it was not set. */
1026 if (unlikely(!a
->data
.non_resident
.highest_vcn
))
1027 a
->data
.non_resident
.highest_vcn
=
1028 cpu_to_sle64(highest_vcn
);
1030 * If the attribute is sparse/compressed, update the compressed
1031 * size in the ntfs_inode structure and the attribute record.
1033 if (likely(NInoSparse(ni
) || NInoCompressed(ni
))) {
1035 * If we are not in the first attribute extent, switch
1036 * to it, but first ensure the changes will make it to
1039 if (a
->data
.non_resident
.lowest_vcn
) {
1040 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1041 mark_mft_record_dirty(ctx
->ntfs_ino
);
1042 ntfs_attr_reinit_search_ctx(ctx
);
1043 err
= ntfs_attr_lookup(ni
->type
, ni
->name
,
1044 ni
->name_len
, CASE_SENSITIVE
,
1046 if (unlikely(err
)) {
1047 status
.attr_switched
= 1;
1050 /* @m is not used any more so do not set it. */
1053 write_lock_irqsave(&ni
->size_lock
, flags
);
1054 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1055 a
->data
.non_resident
.compressed_size
=
1056 cpu_to_sle64(ni
->itype
.compressed
.size
);
1057 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1059 /* Ensure the changes make it to disk. */
1060 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1061 mark_mft_record_dirty(ctx
->ntfs_ino
);
1062 ntfs_attr_put_search_ctx(ctx
);
1063 unmap_mft_record(base_ni
);
1064 /* Successfully filled the hole. */
1065 status
.runlist_merged
= 0;
1066 status
.mft_attr_mapped
= 0;
1067 status
.mp_rebuilt
= 0;
1068 /* Setup the map cache and use that to deal with the buffer. */
1072 lcn_block
= lcn
<< (vol
->cluster_size_bits
- blocksize_bits
);
1075 * If the number of remaining clusters in the @pages is smaller
1076 * or equal to the number of cached clusters, unlock the
1077 * runlist as the map cache will be used from now on.
1079 if (likely(vcn
+ vcn_len
>= cend
)) {
1080 up_write(&ni
->runlist
.lock
);
1081 rl_write_locked
= false;
1084 goto map_buffer_cached
;
1085 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1086 /* If there are no errors, do the next page. */
1087 if (likely(!err
&& ++u
< nr_pages
))
1089 /* If there are no errors, release the runlist lock if we took it. */
1091 if (unlikely(rl_write_locked
)) {
1092 up_write(&ni
->runlist
.lock
);
1093 rl_write_locked
= false;
1094 } else if (unlikely(rl
))
1095 up_read(&ni
->runlist
.lock
);
1098 /* If we issued read requests, let them complete. */
1099 read_lock_irqsave(&ni
->size_lock
, flags
);
1100 initialized_size
= ni
->initialized_size
;
1101 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1102 while (wait_bh
> wait
) {
1105 if (likely(buffer_uptodate(bh
))) {
1107 bh_pos
= ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1110 * If the buffer overflows the initialized size, need
1111 * to zero the overflowing region.
1113 if (unlikely(bh_pos
+ blocksize
> initialized_size
)) {
1116 if (likely(bh_pos
< initialized_size
))
1117 ofs
= initialized_size
- bh_pos
;
1118 zero_user_segment(page
, bh_offset(bh
) + ofs
,
1121 } else /* if (unlikely(!buffer_uptodate(bh))) */
1125 /* Clear buffer_new on all buffers. */
1128 bh
= head
= page_buffers(pages
[u
]);
1131 clear_buffer_new(bh
);
1132 } while ((bh
= bh
->b_this_page
) != head
);
1133 } while (++u
< nr_pages
);
1134 ntfs_debug("Done.");
1137 if (status
.attr_switched
) {
1138 /* Get back to the attribute extent we modified. */
1139 ntfs_attr_reinit_search_ctx(ctx
);
1140 if (ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1141 CASE_SENSITIVE
, bh_cpos
, NULL
, 0, ctx
)) {
1142 ntfs_error(vol
->sb
, "Failed to find required "
1143 "attribute extent of attribute in "
1144 "error code path. Run chkdsk to "
1146 write_lock_irqsave(&ni
->size_lock
, flags
);
1147 ni
->itype
.compressed
.size
+= vol
->cluster_size
;
1148 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1149 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1150 mark_mft_record_dirty(ctx
->ntfs_ino
);
1152 * The only thing that is now wrong is the compressed
1153 * size of the base attribute extent which chkdsk
1154 * should be able to fix.
1160 status
.attr_switched
= 0;
1164 * If the runlist has been modified, need to restore it by punching a
1165 * hole into it and we then need to deallocate the on-disk cluster as
1166 * well. Note, we only modify the runlist if we are able to generate a
1167 * new mapping pairs array, i.e. only when the mapped attribute extent
1170 if (status
.runlist_merged
&& !status
.attr_switched
) {
1171 BUG_ON(!rl_write_locked
);
1172 /* Make the file cluster we allocated sparse in the runlist. */
1173 if (ntfs_rl_punch_nolock(vol
, &ni
->runlist
, bh_cpos
, 1)) {
1174 ntfs_error(vol
->sb
, "Failed to punch hole into "
1175 "attribute runlist in error code "
1176 "path. Run chkdsk to recover the "
1179 } else /* if (success) */ {
1180 status
.runlist_merged
= 0;
1182 * Deallocate the on-disk cluster we allocated but only
1183 * if we succeeded in punching its vcn out of the
1186 down_write(&vol
->lcnbmp_lock
);
1187 if (ntfs_bitmap_clear_bit(vol
->lcnbmp_ino
, lcn
)) {
1188 ntfs_error(vol
->sb
, "Failed to release "
1189 "allocated cluster in error "
1190 "code path. Run chkdsk to "
1191 "recover the lost cluster.");
1194 up_write(&vol
->lcnbmp_lock
);
1198 * Resize the attribute record to its old size and rebuild the mapping
1199 * pairs array. Note, we only can do this if the runlist has been
1200 * restored to its old state which also implies that the mapped
1201 * attribute extent is not switched.
1203 if (status
.mp_rebuilt
&& !status
.runlist_merged
) {
1204 if (ntfs_attr_record_resize(m
, a
, attr_rec_len
)) {
1205 ntfs_error(vol
->sb
, "Failed to restore attribute "
1206 "record in error code path. Run "
1207 "chkdsk to recover.");
1209 } else /* if (success) */ {
1210 if (ntfs_mapping_pairs_build(vol
, (u8
*)a
+
1211 le16_to_cpu(a
->data
.non_resident
.
1212 mapping_pairs_offset
), attr_rec_len
-
1213 le16_to_cpu(a
->data
.non_resident
.
1214 mapping_pairs_offset
), ni
->runlist
.rl
,
1215 vcn
, highest_vcn
, NULL
)) {
1216 ntfs_error(vol
->sb
, "Failed to restore "
1217 "mapping pairs array in error "
1218 "code path. Run chkdsk to "
1222 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1223 mark_mft_record_dirty(ctx
->ntfs_ino
);
1226 /* Release the mft record and the attribute. */
1227 if (status
.mft_attr_mapped
) {
1228 ntfs_attr_put_search_ctx(ctx
);
1229 unmap_mft_record(base_ni
);
1231 /* Release the runlist lock. */
1232 if (rl_write_locked
)
1233 up_write(&ni
->runlist
.lock
);
1235 up_read(&ni
->runlist
.lock
);
1237 * Zero out any newly allocated blocks to avoid exposing stale data.
1238 * If BH_New is set, we know that the block was newly allocated above
1239 * and that it has not been fully zeroed and marked dirty yet.
1243 end
= bh_cpos
<< vol
->cluster_size_bits
;
1246 bh
= head
= page_buffers(page
);
1248 if (u
== nr_pages
&&
1249 ((s64
)page
->index
<< PAGE_CACHE_SHIFT
) +
1250 bh_offset(bh
) >= end
)
1252 if (!buffer_new(bh
))
1254 clear_buffer_new(bh
);
1255 if (!buffer_uptodate(bh
)) {
1256 if (PageUptodate(page
))
1257 set_buffer_uptodate(bh
);
1259 zero_user(page
, bh_offset(bh
),
1261 set_buffer_uptodate(bh
);
1264 mark_buffer_dirty(bh
);
1265 } while ((bh
= bh
->b_this_page
) != head
);
1266 } while (++u
<= nr_pages
);
1267 ntfs_error(vol
->sb
, "Failed. Returning error code %i.", err
);
1272 * Copy as much as we can into the pages and return the number of bytes which
1273 * were successfully copied. If a fault is encountered then clear the pages
1274 * out to (ofs + bytes) and return the number of bytes which were copied.
1276 static inline size_t ntfs_copy_from_user(struct page
**pages
,
1277 unsigned nr_pages
, unsigned ofs
, const char __user
*buf
,
1280 struct page
**last_page
= pages
+ nr_pages
;
1287 len
= PAGE_CACHE_SIZE
- ofs
;
1290 addr
= kmap_atomic(*pages
);
1291 left
= __copy_from_user_inatomic(addr
+ ofs
, buf
, len
);
1292 kunmap_atomic(addr
);
1293 if (unlikely(left
)) {
1294 /* Do it the slow way. */
1295 addr
= kmap(*pages
);
1296 left
= __copy_from_user(addr
+ ofs
, buf
, len
);
1307 } while (++pages
< last_page
);
1311 total
+= len
- left
;
1312 /* Zero the rest of the target like __copy_from_user(). */
1313 while (++pages
< last_page
) {
1317 len
= PAGE_CACHE_SIZE
;
1320 zero_user(*pages
, 0, len
);
1325 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr
,
1326 const struct iovec
*iov
, size_t iov_ofs
, size_t bytes
)
1331 const char __user
*buf
= iov
->iov_base
+ iov_ofs
;
1335 len
= iov
->iov_len
- iov_ofs
;
1338 left
= __copy_from_user_inatomic(vaddr
, buf
, len
);
1342 if (unlikely(left
)) {
1354 static inline void ntfs_set_next_iovec(const struct iovec
**iovp
,
1355 size_t *iov_ofsp
, size_t bytes
)
1357 const struct iovec
*iov
= *iovp
;
1358 size_t iov_ofs
= *iov_ofsp
;
1363 len
= iov
->iov_len
- iov_ofs
;
1368 if (iov
->iov_len
== iov_ofs
) {
1374 *iov_ofsp
= iov_ofs
;
1378 * This has the same side-effects and return value as ntfs_copy_from_user().
1379 * The difference is that on a fault we need to memset the remainder of the
1380 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1381 * single-segment behaviour.
1383 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both when
1384 * atomic and when not atomic. This is ok because it calls
1385 * __copy_from_user_inatomic() and it is ok to call this when non-atomic. In
1386 * fact, the only difference between __copy_from_user_inatomic() and
1387 * __copy_from_user() is that the latter calls might_sleep() and the former
1388 * should not zero the tail of the buffer on error. And on many architectures
1389 * __copy_from_user_inatomic() is just defined to __copy_from_user() so it
1390 * makes no difference at all on those architectures.
1392 static inline size_t ntfs_copy_from_user_iovec(struct page
**pages
,
1393 unsigned nr_pages
, unsigned ofs
, const struct iovec
**iov
,
1394 size_t *iov_ofs
, size_t bytes
)
1396 struct page
**last_page
= pages
+ nr_pages
;
1398 size_t copied
, len
, total
= 0;
1401 len
= PAGE_CACHE_SIZE
- ofs
;
1404 addr
= kmap_atomic(*pages
);
1405 copied
= __ntfs_copy_from_user_iovec_inatomic(addr
+ ofs
,
1406 *iov
, *iov_ofs
, len
);
1407 kunmap_atomic(addr
);
1408 if (unlikely(copied
!= len
)) {
1409 /* Do it the slow way. */
1410 addr
= kmap(*pages
);
1411 copied
= __ntfs_copy_from_user_iovec_inatomic(addr
+
1412 ofs
, *iov
, *iov_ofs
, len
);
1413 if (unlikely(copied
!= len
))
1418 ntfs_set_next_iovec(iov
, iov_ofs
, len
);
1423 } while (++pages
< last_page
);
1427 BUG_ON(copied
> len
);
1428 /* Zero the rest of the target like __copy_from_user(). */
1429 memset(addr
+ ofs
+ copied
, 0, len
- copied
);
1432 ntfs_set_next_iovec(iov
, iov_ofs
, copied
);
1433 while (++pages
< last_page
) {
1437 len
= PAGE_CACHE_SIZE
;
1440 zero_user(*pages
, 0, len
);
1445 static inline void ntfs_flush_dcache_pages(struct page
**pages
,
1450 * Warning: Do not do the decrement at the same time as the call to
1451 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1452 * decrement never happens so the loop never terminates.
1456 flush_dcache_page(pages
[nr_pages
]);
1457 } while (nr_pages
> 0);
1461 * ntfs_commit_pages_after_non_resident_write - commit the received data
1462 * @pages: array of destination pages
1463 * @nr_pages: number of pages in @pages
1464 * @pos: byte position in file at which the write begins
1465 * @bytes: number of bytes to be written
1467 * See description of ntfs_commit_pages_after_write(), below.
1469 static inline int ntfs_commit_pages_after_non_resident_write(
1470 struct page
**pages
, const unsigned nr_pages
,
1471 s64 pos
, size_t bytes
)
1473 s64 end
, initialized_size
;
1475 ntfs_inode
*ni
, *base_ni
;
1476 struct buffer_head
*bh
, *head
;
1477 ntfs_attr_search_ctx
*ctx
;
1480 unsigned long flags
;
1481 unsigned blocksize
, u
;
1484 vi
= pages
[0]->mapping
->host
;
1486 blocksize
= vi
->i_sb
->s_blocksize
;
1495 bh_pos
= (s64
)page
->index
<< PAGE_CACHE_SHIFT
;
1496 bh
= head
= page_buffers(page
);
1501 bh_end
= bh_pos
+ blocksize
;
1502 if (bh_end
<= pos
|| bh_pos
>= end
) {
1503 if (!buffer_uptodate(bh
))
1506 set_buffer_uptodate(bh
);
1507 mark_buffer_dirty(bh
);
1509 } while (bh_pos
+= blocksize
, (bh
= bh
->b_this_page
) != head
);
1511 * If all buffers are now uptodate but the page is not, set the
1514 if (!partial
&& !PageUptodate(page
))
1515 SetPageUptodate(page
);
1516 } while (++u
< nr_pages
);
1518 * Finally, if we do not need to update initialized_size or i_size we
1521 read_lock_irqsave(&ni
->size_lock
, flags
);
1522 initialized_size
= ni
->initialized_size
;
1523 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1524 if (end
<= initialized_size
) {
1525 ntfs_debug("Done.");
1529 * Update initialized_size/i_size as appropriate, both in the inode and
1535 base_ni
= ni
->ext
.base_ntfs_ino
;
1536 /* Map, pin, and lock the mft record. */
1537 m
= map_mft_record(base_ni
);
1544 BUG_ON(!NInoNonResident(ni
));
1545 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1546 if (unlikely(!ctx
)) {
1550 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1551 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1552 if (unlikely(err
)) {
1558 BUG_ON(!a
->non_resident
);
1559 write_lock_irqsave(&ni
->size_lock
, flags
);
1560 BUG_ON(end
> ni
->allocated_size
);
1561 ni
->initialized_size
= end
;
1562 a
->data
.non_resident
.initialized_size
= cpu_to_sle64(end
);
1563 if (end
> i_size_read(vi
)) {
1564 i_size_write(vi
, end
);
1565 a
->data
.non_resident
.data_size
=
1566 a
->data
.non_resident
.initialized_size
;
1568 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1569 /* Mark the mft record dirty, so it gets written back. */
1570 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1571 mark_mft_record_dirty(ctx
->ntfs_ino
);
1572 ntfs_attr_put_search_ctx(ctx
);
1573 unmap_mft_record(base_ni
);
1574 ntfs_debug("Done.");
1578 ntfs_attr_put_search_ctx(ctx
);
1580 unmap_mft_record(base_ni
);
1581 ntfs_error(vi
->i_sb
, "Failed to update initialized_size/i_size (error "
1584 NVolSetErrors(ni
->vol
);
1589 * ntfs_commit_pages_after_write - commit the received data
1590 * @pages: array of destination pages
1591 * @nr_pages: number of pages in @pages
1592 * @pos: byte position in file at which the write begins
1593 * @bytes: number of bytes to be written
1595 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1596 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1597 * locked but not kmap()ped. The source data has already been copied into the
1598 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1599 * the data was copied (for non-resident attributes only) and it returned
1602 * Need to set uptodate and mark dirty all buffers within the boundary of the
1603 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1605 * Setting the buffers dirty ensures that they get written out later when
1606 * ntfs_writepage() is invoked by the VM.
1608 * Finally, we need to update i_size and initialized_size as appropriate both
1609 * in the inode and the mft record.
1611 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1612 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1613 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1614 * that case, it also marks the inode dirty.
1616 * If things have gone as outlined in
1617 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1618 * content modifications here for non-resident attributes. For resident
1619 * attributes we need to do the uptodate bringing here which we combine with
1620 * the copying into the mft record which means we save one atomic kmap.
1622 * Return 0 on success or -errno on error.
1624 static int ntfs_commit_pages_after_write(struct page
**pages
,
1625 const unsigned nr_pages
, s64 pos
, size_t bytes
)
1627 s64 end
, initialized_size
;
1630 ntfs_inode
*ni
, *base_ni
;
1632 ntfs_attr_search_ctx
*ctx
;
1635 char *kattr
, *kaddr
;
1636 unsigned long flags
;
1644 vi
= page
->mapping
->host
;
1646 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1647 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1648 vi
->i_ino
, ni
->type
, page
->index
, nr_pages
,
1649 (long long)pos
, bytes
);
1650 if (NInoNonResident(ni
))
1651 return ntfs_commit_pages_after_non_resident_write(pages
,
1652 nr_pages
, pos
, bytes
);
1653 BUG_ON(nr_pages
> 1);
1655 * Attribute is resident, implying it is not compressed, encrypted, or
1661 base_ni
= ni
->ext
.base_ntfs_ino
;
1662 BUG_ON(NInoNonResident(ni
));
1663 /* Map, pin, and lock the mft record. */
1664 m
= map_mft_record(base_ni
);
1671 ctx
= ntfs_attr_get_search_ctx(base_ni
, m
);
1672 if (unlikely(!ctx
)) {
1676 err
= ntfs_attr_lookup(ni
->type
, ni
->name
, ni
->name_len
,
1677 CASE_SENSITIVE
, 0, NULL
, 0, ctx
);
1678 if (unlikely(err
)) {
1684 BUG_ON(a
->non_resident
);
1685 /* The total length of the attribute value. */
1686 attr_len
= le32_to_cpu(a
->data
.resident
.value_length
);
1687 i_size
= i_size_read(vi
);
1688 BUG_ON(attr_len
!= i_size
);
1689 BUG_ON(pos
> attr_len
);
1691 BUG_ON(end
> le32_to_cpu(a
->length
) -
1692 le16_to_cpu(a
->data
.resident
.value_offset
));
1693 kattr
= (u8
*)a
+ le16_to_cpu(a
->data
.resident
.value_offset
);
1694 kaddr
= kmap_atomic(page
);
1695 /* Copy the received data from the page to the mft record. */
1696 memcpy(kattr
+ pos
, kaddr
+ pos
, bytes
);
1697 /* Update the attribute length if necessary. */
1698 if (end
> attr_len
) {
1700 a
->data
.resident
.value_length
= cpu_to_le32(attr_len
);
1703 * If the page is not uptodate, bring the out of bounds area(s)
1704 * uptodate by copying data from the mft record to the page.
1706 if (!PageUptodate(page
)) {
1708 memcpy(kaddr
, kattr
, pos
);
1710 memcpy(kaddr
+ end
, kattr
+ end
, attr_len
- end
);
1711 /* Zero the region outside the end of the attribute value. */
1712 memset(kaddr
+ attr_len
, 0, PAGE_CACHE_SIZE
- attr_len
);
1713 flush_dcache_page(page
);
1714 SetPageUptodate(page
);
1716 kunmap_atomic(kaddr
);
1717 /* Update initialized_size/i_size if necessary. */
1718 read_lock_irqsave(&ni
->size_lock
, flags
);
1719 initialized_size
= ni
->initialized_size
;
1720 BUG_ON(end
> ni
->allocated_size
);
1721 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1722 BUG_ON(initialized_size
!= i_size
);
1723 if (end
> initialized_size
) {
1724 write_lock_irqsave(&ni
->size_lock
, flags
);
1725 ni
->initialized_size
= end
;
1726 i_size_write(vi
, end
);
1727 write_unlock_irqrestore(&ni
->size_lock
, flags
);
1729 /* Mark the mft record dirty, so it gets written back. */
1730 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
1731 mark_mft_record_dirty(ctx
->ntfs_ino
);
1732 ntfs_attr_put_search_ctx(ctx
);
1733 unmap_mft_record(base_ni
);
1734 ntfs_debug("Done.");
1737 if (err
== -ENOMEM
) {
1738 ntfs_warning(vi
->i_sb
, "Error allocating memory required to "
1739 "commit the write.");
1740 if (PageUptodate(page
)) {
1741 ntfs_warning(vi
->i_sb
, "Page is uptodate, setting "
1742 "dirty so the write will be retried "
1743 "later on by the VM.");
1745 * Put the page on mapping->dirty_pages, but leave its
1746 * buffers' dirty state as-is.
1748 __set_page_dirty_nobuffers(page
);
1751 ntfs_error(vi
->i_sb
, "Page is not uptodate. Written "
1752 "data has been lost.");
1754 ntfs_error(vi
->i_sb
, "Resident attribute commit write failed "
1755 "with error %i.", err
);
1756 NVolSetErrors(ni
->vol
);
1759 ntfs_attr_put_search_ctx(ctx
);
1761 unmap_mft_record(base_ni
);
1765 static void ntfs_write_failed(struct address_space
*mapping
, loff_t to
)
1767 struct inode
*inode
= mapping
->host
;
1769 if (to
> inode
->i_size
) {
1770 truncate_pagecache(inode
, inode
->i_size
);
1771 ntfs_truncate_vfs(inode
);
1776 * ntfs_file_buffered_write -
1778 * Locking: The vfs is holding ->i_mutex on the inode.
1780 static ssize_t
ntfs_file_buffered_write(struct kiocb
*iocb
,
1781 const struct iovec
*iov
, unsigned long nr_segs
,
1782 loff_t pos
, loff_t
*ppos
, size_t count
)
1784 struct file
*file
= iocb
->ki_filp
;
1785 struct address_space
*mapping
= file
->f_mapping
;
1786 struct inode
*vi
= mapping
->host
;
1787 ntfs_inode
*ni
= NTFS_I(vi
);
1788 ntfs_volume
*vol
= ni
->vol
;
1789 struct page
*pages
[NTFS_MAX_PAGES_PER_CLUSTER
];
1790 struct page
*cached_page
= NULL
;
1791 char __user
*buf
= NULL
;
1795 unsigned long flags
;
1796 size_t bytes
, iov_ofs
= 0; /* Offset in the current iovec. */
1797 ssize_t status
, written
;
1801 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1802 "pos 0x%llx, count 0x%lx.",
1803 vi
->i_ino
, (unsigned)le32_to_cpu(ni
->type
),
1804 (unsigned long long)pos
, (unsigned long)count
);
1805 if (unlikely(!count
))
1807 BUG_ON(NInoMstProtected(ni
));
1809 * If the attribute is not an index root and it is encrypted or
1810 * compressed, we cannot write to it yet. Note we need to check for
1811 * AT_INDEX_ALLOCATION since this is the type of both directory and
1814 if (ni
->type
!= AT_INDEX_ALLOCATION
) {
1815 /* If file is encrypted, deny access, just like NT4. */
1816 if (NInoEncrypted(ni
)) {
1818 * Reminder for later: Encrypted files are _always_
1819 * non-resident so that the content can always be
1822 ntfs_debug("Denying write access to encrypted file.");
1825 if (NInoCompressed(ni
)) {
1826 /* Only unnamed $DATA attribute can be compressed. */
1827 BUG_ON(ni
->type
!= AT_DATA
);
1828 BUG_ON(ni
->name_len
);
1830 * Reminder for later: If resident, the data is not
1831 * actually compressed. Only on the switch to non-
1832 * resident does compression kick in. This is in
1833 * contrast to encrypted files (see above).
1835 ntfs_error(vi
->i_sb
, "Writing to compressed files is "
1836 "not implemented yet. Sorry.");
1841 * If a previous ntfs_truncate() failed, repeat it and abort if it
1844 if (unlikely(NInoTruncateFailed(ni
))) {
1846 err
= ntfs_truncate(vi
);
1847 if (err
|| NInoTruncateFailed(ni
)) {
1850 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1851 "0x%lx, attribute type 0x%x, because "
1852 "ntfs_truncate() failed (error code "
1854 (unsigned)le32_to_cpu(ni
->type
), err
);
1858 /* The first byte after the write. */
1861 * If the write goes beyond the allocated size, extend the allocation
1862 * to cover the whole of the write, rounded up to the nearest cluster.
1864 read_lock_irqsave(&ni
->size_lock
, flags
);
1865 ll
= ni
->allocated_size
;
1866 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1868 /* Extend the allocation without changing the data size. */
1869 ll
= ntfs_attr_extend_allocation(ni
, end
, -1, pos
);
1870 if (likely(ll
>= 0)) {
1872 /* If the extension was partial truncate the write. */
1874 ntfs_debug("Truncating write to inode 0x%lx, "
1875 "attribute type 0x%x, because "
1876 "the allocation was only "
1877 "partially extended.",
1878 vi
->i_ino
, (unsigned)
1879 le32_to_cpu(ni
->type
));
1885 read_lock_irqsave(&ni
->size_lock
, flags
);
1886 ll
= ni
->allocated_size
;
1887 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1888 /* Perform a partial write if possible or fail. */
1890 ntfs_debug("Truncating write to inode 0x%lx, "
1891 "attribute type 0x%x, because "
1892 "extending the allocation "
1893 "failed (error code %i).",
1894 vi
->i_ino
, (unsigned)
1895 le32_to_cpu(ni
->type
), err
);
1899 ntfs_error(vol
->sb
, "Cannot perform write to "
1900 "inode 0x%lx, attribute type "
1901 "0x%x, because extending the "
1902 "allocation failed (error "
1903 "code %i).", vi
->i_ino
,
1905 le32_to_cpu(ni
->type
), err
);
1912 * If the write starts beyond the initialized size, extend it up to the
1913 * beginning of the write and initialize all non-sparse space between
1914 * the old initialized size and the new one. This automatically also
1915 * increments the vfs inode->i_size to keep it above or equal to the
1918 read_lock_irqsave(&ni
->size_lock
, flags
);
1919 ll
= ni
->initialized_size
;
1920 read_unlock_irqrestore(&ni
->size_lock
, flags
);
1922 err
= ntfs_attr_extend_initialized(ni
, pos
);
1924 ntfs_error(vol
->sb
, "Cannot perform write to inode "
1925 "0x%lx, attribute type 0x%x, because "
1926 "extending the initialized size "
1927 "failed (error code %i).", vi
->i_ino
,
1928 (unsigned)le32_to_cpu(ni
->type
), err
);
1934 * Determine the number of pages per cluster for non-resident
1938 if (vol
->cluster_size
> PAGE_CACHE_SIZE
&& NInoNonResident(ni
))
1939 nr_pages
= vol
->cluster_size
>> PAGE_CACHE_SHIFT
;
1940 /* Finally, perform the actual write. */
1942 if (likely(nr_segs
== 1))
1943 buf
= iov
->iov_base
;
1946 pgoff_t idx
, start_idx
;
1947 unsigned ofs
, do_pages
, u
;
1950 start_idx
= idx
= pos
>> PAGE_CACHE_SHIFT
;
1951 ofs
= pos
& ~PAGE_CACHE_MASK
;
1952 bytes
= PAGE_CACHE_SIZE
- ofs
;
1955 vcn
= pos
>> vol
->cluster_size_bits
;
1956 if (vcn
!= last_vcn
) {
1959 * Get the lcn of the vcn the write is in. If
1960 * it is a hole, need to lock down all pages in
1963 down_read(&ni
->runlist
.lock
);
1964 lcn
= ntfs_attr_vcn_to_lcn_nolock(ni
, pos
>>
1965 vol
->cluster_size_bits
, false);
1966 up_read(&ni
->runlist
.lock
);
1967 if (unlikely(lcn
< LCN_HOLE
)) {
1969 if (lcn
== LCN_ENOMEM
)
1972 ntfs_error(vol
->sb
, "Cannot "
1975 "attribute type 0x%x, "
1976 "because the attribute "
1978 vi
->i_ino
, (unsigned)
1979 le32_to_cpu(ni
->type
));
1982 if (lcn
== LCN_HOLE
) {
1983 start_idx
= (pos
& ~(s64
)
1984 vol
->cluster_size_mask
)
1985 >> PAGE_CACHE_SHIFT
;
1986 bytes
= vol
->cluster_size
- (pos
&
1987 vol
->cluster_size_mask
);
1988 do_pages
= nr_pages
;
1995 * Bring in the user page(s) that we will copy from _first_.
1996 * Otherwise there is a nasty deadlock on copying from the same
1997 * page(s) as we are writing to, without it/them being marked
1998 * up-to-date. Note, at present there is nothing to stop the
1999 * pages being swapped out between us bringing them into memory
2000 * and doing the actual copying.
2002 if (likely(nr_segs
== 1))
2003 ntfs_fault_in_pages_readable(buf
, bytes
);
2005 ntfs_fault_in_pages_readable_iovec(iov
, iov_ofs
, bytes
);
2006 /* Get and lock @do_pages starting at index @start_idx. */
2007 status
= __ntfs_grab_cache_pages(mapping
, start_idx
, do_pages
,
2008 pages
, &cached_page
);
2009 if (unlikely(status
))
2012 * For non-resident attributes, we need to fill any holes with
2013 * actual clusters and ensure all bufferes are mapped. We also
2014 * need to bring uptodate any buffers that are only partially
2017 if (NInoNonResident(ni
)) {
2018 status
= ntfs_prepare_pages_for_non_resident_write(
2019 pages
, do_pages
, pos
, bytes
);
2020 if (unlikely(status
)) {
2024 unlock_page(pages
[--do_pages
]);
2025 page_cache_release(pages
[do_pages
]);
2028 * The write preparation may have instantiated
2029 * allocated space outside i_size. Trim this
2030 * off again. We can ignore any errors in this
2031 * case as we will just be waisting a bit of
2032 * allocated space, which is not a disaster.
2034 i_size
= i_size_read(vi
);
2035 if (pos
+ bytes
> i_size
) {
2036 ntfs_write_failed(mapping
, pos
+ bytes
);
2041 u
= (pos
>> PAGE_CACHE_SHIFT
) - pages
[0]->index
;
2042 if (likely(nr_segs
== 1)) {
2043 copied
= ntfs_copy_from_user(pages
+ u
, do_pages
- u
,
2047 copied
= ntfs_copy_from_user_iovec(pages
+ u
,
2048 do_pages
- u
, ofs
, &iov
, &iov_ofs
,
2050 ntfs_flush_dcache_pages(pages
+ u
, do_pages
- u
);
2051 status
= ntfs_commit_pages_after_write(pages
, do_pages
, pos
,
2053 if (likely(!status
)) {
2057 if (unlikely(copied
!= bytes
))
2061 unlock_page(pages
[--do_pages
]);
2062 page_cache_release(pages
[do_pages
]);
2064 if (unlikely(status
))
2066 balance_dirty_pages_ratelimited(mapping
);
2072 page_cache_release(cached_page
);
2073 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2074 written
? "written" : "status", (unsigned long)written
,
2076 return written
? written
: status
;
2080 * ntfs_file_aio_write_nolock -
2082 static ssize_t
ntfs_file_aio_write_nolock(struct kiocb
*iocb
,
2083 const struct iovec
*iov
, unsigned long nr_segs
, loff_t
*ppos
)
2085 struct file
*file
= iocb
->ki_filp
;
2086 struct address_space
*mapping
= file
->f_mapping
;
2087 struct inode
*inode
= mapping
->host
;
2089 size_t count
; /* after file limit checks */
2090 ssize_t written
, err
;
2092 count
= iov_length(iov
, nr_segs
);
2094 /* We can write back this queue in page reclaim. */
2095 current
->backing_dev_info
= inode_to_bdi(inode
);
2097 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2102 err
= file_remove_suid(file
);
2105 err
= file_update_time(file
);
2108 written
= ntfs_file_buffered_write(iocb
, iov
, nr_segs
, pos
, ppos
,
2111 current
->backing_dev_info
= NULL
;
2112 return written
? written
: err
;
2116 * ntfs_file_aio_write -
2118 static ssize_t
ntfs_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2119 unsigned long nr_segs
, loff_t pos
)
2121 struct file
*file
= iocb
->ki_filp
;
2122 struct address_space
*mapping
= file
->f_mapping
;
2123 struct inode
*inode
= mapping
->host
;
2126 BUG_ON(iocb
->ki_pos
!= pos
);
2128 mutex_lock(&inode
->i_mutex
);
2129 ret
= ntfs_file_aio_write_nolock(iocb
, iov
, nr_segs
, &iocb
->ki_pos
);
2130 mutex_unlock(&inode
->i_mutex
);
2132 int err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
2140 * ntfs_file_fsync - sync a file to disk
2141 * @filp: file to be synced
2142 * @datasync: if non-zero only flush user data and not metadata
2144 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2145 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2147 * If @datasync is false, write the mft record and all associated extent mft
2148 * records as well as the $DATA attribute and then sync the block device.
2150 * If @datasync is true and the attribute is non-resident, we skip the writing
2151 * of the mft record and all associated extent mft records (this might still
2152 * happen due to the write_inode_now() call).
2154 * Also, if @datasync is true, we do not wait on the inode to be written out
2155 * but we always wait on the page cache pages to be written out.
2157 * Locking: Caller must hold i_mutex on the inode.
2159 * TODO: We should probably also write all attribute/index inodes associated
2160 * with this inode but since we have no simple way of getting to them we ignore
2161 * this problem for now.
2163 static int ntfs_file_fsync(struct file
*filp
, loff_t start
, loff_t end
,
2166 struct inode
*vi
= filp
->f_mapping
->host
;
2169 ntfs_debug("Entering for inode 0x%lx.", vi
->i_ino
);
2171 err
= filemap_write_and_wait_range(vi
->i_mapping
, start
, end
);
2174 mutex_lock(&vi
->i_mutex
);
2176 BUG_ON(S_ISDIR(vi
->i_mode
));
2177 if (!datasync
|| !NInoNonResident(NTFS_I(vi
)))
2178 ret
= __ntfs_write_inode(vi
, 1);
2179 write_inode_now(vi
, !datasync
);
2181 * NOTE: If we were to use mapping->private_list (see ext2 and
2182 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2183 * sync_mapping_buffers(vi->i_mapping).
2185 err
= sync_blockdev(vi
->i_sb
->s_bdev
);
2186 if (unlikely(err
&& !ret
))
2189 ntfs_debug("Done.");
2191 ntfs_warning(vi
->i_sb
, "Failed to f%ssync inode 0x%lx. Error "
2192 "%u.", datasync
? "data" : "", vi
->i_ino
, -ret
);
2193 mutex_unlock(&vi
->i_mutex
);
2197 #endif /* NTFS_RW */
2199 const struct file_operations ntfs_file_ops
= {
2200 .llseek
= generic_file_llseek
, /* Seek inside file. */
2201 .read
= new_sync_read
, /* Read from file. */
2202 .read_iter
= generic_file_read_iter
, /* Async read from file. */
2204 .write
= do_sync_write
, /* Write to file. */
2205 .aio_write
= ntfs_file_aio_write
, /* Async write to file. */
2206 /*.release = ,*/ /* Last file is closed. See
2208 ext2_release_file() for
2209 how to use this to discard
2210 preallocated space for
2211 write opened files. */
2212 .fsync
= ntfs_file_fsync
, /* Sync a file to disk. */
2213 /*.aio_fsync = ,*/ /* Sync all outstanding async
2216 #endif /* NTFS_RW */
2217 /*.ioctl = ,*/ /* Perform function on the
2218 mounted filesystem. */
2219 .mmap
= generic_file_mmap
, /* Mmap file. */
2220 .open
= ntfs_file_open
, /* Open file. */
2221 .splice_read
= generic_file_splice_read
/* Zero-copy data send with
2222 the data source being on
2223 the ntfs partition. We do
2224 not need to care about the
2225 data destination. */
2226 /*.sendpage = ,*/ /* Zero-copy data send with
2227 the data destination being
2228 on the ntfs partition. We
2229 do not need to care about
2233 const struct inode_operations ntfs_file_inode_ops
= {
2235 .setattr
= ntfs_setattr
,
2236 #endif /* NTFS_RW */
2239 const struct file_operations ntfs_empty_file_ops
= {};
2241 const struct inode_operations ntfs_empty_inode_ops
= {};