1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
62 #include <net/tcp_memcontrol.h>
65 #include <asm/uaccess.h>
67 #include <trace/events/vmscan.h>
69 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
70 EXPORT_SYMBOL(mem_cgroup_subsys
);
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup
*root_mem_cgroup __read_mostly
;
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly
;
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata
= 1;
83 static int really_do_swap_account __initdata
= 0;
87 #define do_swap_account 0
91 static const char * const mem_cgroup_stat_names
[] = {
100 enum mem_cgroup_events_index
{
101 MEM_CGROUP_EVENTS_PGPGIN
, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT
, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT
, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT
, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS
,
108 static const char * const mem_cgroup_events_names
[] = {
115 static const char * const mem_cgroup_lru_names
[] = {
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
129 enum mem_cgroup_events_target
{
130 MEM_CGROUP_TARGET_THRESH
,
131 MEM_CGROUP_TARGET_SOFTLIMIT
,
132 MEM_CGROUP_TARGET_NUMAINFO
,
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
139 struct mem_cgroup_stat_cpu
{
140 long count
[MEM_CGROUP_STAT_NSTATS
];
141 unsigned long events
[MEM_CGROUP_EVENTS_NSTATS
];
142 unsigned long nr_page_events
;
143 unsigned long targets
[MEM_CGROUP_NTARGETS
];
146 struct mem_cgroup_reclaim_iter
{
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
151 struct mem_cgroup
*last_visited
;
154 /* scan generation, increased every round-trip */
155 unsigned int generation
;
159 * per-zone information in memory controller.
161 struct mem_cgroup_per_zone
{
162 struct lruvec lruvec
;
163 unsigned long lru_size
[NR_LRU_LISTS
];
165 struct mem_cgroup_reclaim_iter reclaim_iter
[DEF_PRIORITY
+ 1];
167 struct rb_node tree_node
; /* RB tree node */
168 unsigned long long usage_in_excess
;/* Set to the value by which */
169 /* the soft limit is exceeded*/
171 struct mem_cgroup
*memcg
; /* Back pointer, we cannot */
172 /* use container_of */
175 struct mem_cgroup_per_node
{
176 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
184 struct mem_cgroup_tree_per_zone
{
185 struct rb_root rb_root
;
189 struct mem_cgroup_tree_per_node
{
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
193 struct mem_cgroup_tree
{
194 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
199 struct mem_cgroup_threshold
{
200 struct eventfd_ctx
*eventfd
;
205 struct mem_cgroup_threshold_ary
{
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold
;
208 /* Size of entries[] */
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries
[0];
214 struct mem_cgroup_thresholds
{
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary
*primary
;
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
222 struct mem_cgroup_threshold_ary
*spare
;
226 struct mem_cgroup_eventfd_list
{
227 struct list_head list
;
228 struct eventfd_ctx
*eventfd
;
232 * cgroup_event represents events which userspace want to receive.
234 struct mem_cgroup_event
{
236 * memcg which the event belongs to.
238 struct mem_cgroup
*memcg
;
240 * eventfd to signal userspace about the event.
242 struct eventfd_ctx
*eventfd
;
244 * Each of these stored in a list by the cgroup.
246 struct list_head list
;
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
252 int (*register_event
)(struct mem_cgroup
*memcg
,
253 struct eventfd_ctx
*eventfd
, const char *args
);
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
259 void (*unregister_event
)(struct mem_cgroup
*memcg
,
260 struct eventfd_ctx
*eventfd
);
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
266 wait_queue_head_t
*wqh
;
268 struct work_struct remove
;
271 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
272 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
286 struct cgroup_subsys_state css
;
288 * the counter to account for memory usage
290 struct res_counter res
;
292 /* vmpressure notifications */
293 struct vmpressure vmpressure
;
295 /* css_online() has been completed */
299 * the counter to account for mem+swap usage.
301 struct res_counter memsw
;
304 * the counter to account for kernel memory usage.
306 struct res_counter kmem
;
308 * Should the accounting and control be hierarchical, per subtree?
311 unsigned long kmem_account_flags
; /* See KMEM_ACCOUNTED_*, below */
315 atomic_t oom_wakeups
;
318 /* OOM-Killer disable */
319 int oom_kill_disable
;
321 /* set when res.limit == memsw.limit */
322 bool memsw_is_minimum
;
324 /* protect arrays of thresholds */
325 struct mutex thresholds_lock
;
327 /* thresholds for memory usage. RCU-protected */
328 struct mem_cgroup_thresholds thresholds
;
330 /* thresholds for mem+swap usage. RCU-protected */
331 struct mem_cgroup_thresholds memsw_thresholds
;
333 /* For oom notifier event fd */
334 struct list_head oom_notify
;
337 * Should we move charges of a task when a task is moved into this
338 * mem_cgroup ? And what type of charges should we move ?
340 unsigned long move_charge_at_immigrate
;
342 * set > 0 if pages under this cgroup are moving to other cgroup.
344 atomic_t moving_account
;
345 /* taken only while moving_account > 0 */
346 spinlock_t move_lock
;
350 struct mem_cgroup_stat_cpu __percpu
*stat
;
352 * used when a cpu is offlined or other synchronizations
353 * See mem_cgroup_read_stat().
355 struct mem_cgroup_stat_cpu nocpu_base
;
356 spinlock_t pcp_counter_lock
;
359 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
360 struct cg_proto tcp_mem
;
362 #if defined(CONFIG_MEMCG_KMEM)
363 /* analogous to slab_common's slab_caches list. per-memcg */
364 struct list_head memcg_slab_caches
;
365 /* Not a spinlock, we can take a lot of time walking the list */
366 struct mutex slab_caches_mutex
;
367 /* Index in the kmem_cache->memcg_params->memcg_caches array */
371 int last_scanned_node
;
373 nodemask_t scan_nodes
;
374 atomic_t numainfo_events
;
375 atomic_t numainfo_updating
;
378 /* List of events which userspace want to receive */
379 struct list_head event_list
;
380 spinlock_t event_list_lock
;
382 struct mem_cgroup_per_node
*nodeinfo
[0];
383 /* WARNING: nodeinfo must be the last member here */
386 /* internal only representation about the status of kmem accounting. */
388 KMEM_ACCOUNTED_ACTIVE
, /* accounted by this cgroup itself */
389 KMEM_ACCOUNTED_DEAD
, /* dead memcg with pending kmem charges */
392 #ifdef CONFIG_MEMCG_KMEM
393 static inline void memcg_kmem_set_active(struct mem_cgroup
*memcg
)
395 set_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
398 static bool memcg_kmem_is_active(struct mem_cgroup
*memcg
)
400 return test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
);
403 static void memcg_kmem_mark_dead(struct mem_cgroup
*memcg
)
406 * Our caller must use css_get() first, because memcg_uncharge_kmem()
407 * will call css_put() if it sees the memcg is dead.
410 if (test_bit(KMEM_ACCOUNTED_ACTIVE
, &memcg
->kmem_account_flags
))
411 set_bit(KMEM_ACCOUNTED_DEAD
, &memcg
->kmem_account_flags
);
414 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup
*memcg
)
416 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD
,
417 &memcg
->kmem_account_flags
);
421 /* Stuffs for move charges at task migration. */
423 * Types of charges to be moved. "move_charge_at_immitgrate" and
424 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
427 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
428 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
432 /* "mc" and its members are protected by cgroup_mutex */
433 static struct move_charge_struct
{
434 spinlock_t lock
; /* for from, to */
435 struct mem_cgroup
*from
;
436 struct mem_cgroup
*to
;
437 unsigned long immigrate_flags
;
438 unsigned long precharge
;
439 unsigned long moved_charge
;
440 unsigned long moved_swap
;
441 struct task_struct
*moving_task
; /* a task moving charges */
442 wait_queue_head_t waitq
; /* a waitq for other context */
444 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
445 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
448 static bool move_anon(void)
450 return test_bit(MOVE_CHARGE_TYPE_ANON
, &mc
.immigrate_flags
);
453 static bool move_file(void)
455 return test_bit(MOVE_CHARGE_TYPE_FILE
, &mc
.immigrate_flags
);
459 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
460 * limit reclaim to prevent infinite loops, if they ever occur.
462 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
463 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
466 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
467 MEM_CGROUP_CHARGE_TYPE_ANON
,
468 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
469 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
473 /* for encoding cft->private value on file */
481 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
482 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
483 #define MEMFILE_ATTR(val) ((val) & 0xffff)
484 /* Used for OOM nofiier */
485 #define OOM_CONTROL (0)
488 * Reclaim flags for mem_cgroup_hierarchical_reclaim
490 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
491 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
492 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
493 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
496 * The memcg_create_mutex will be held whenever a new cgroup is created.
497 * As a consequence, any change that needs to protect against new child cgroups
498 * appearing has to hold it as well.
500 static DEFINE_MUTEX(memcg_create_mutex
);
502 struct mem_cgroup
*mem_cgroup_from_css(struct cgroup_subsys_state
*s
)
504 return s
? container_of(s
, struct mem_cgroup
, css
) : NULL
;
507 /* Some nice accessors for the vmpressure. */
508 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
511 memcg
= root_mem_cgroup
;
512 return &memcg
->vmpressure
;
515 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
517 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
520 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
522 return (memcg
== root_mem_cgroup
);
526 * We restrict the id in the range of [1, 65535], so it can fit into
529 #define MEM_CGROUP_ID_MAX USHRT_MAX
531 static inline unsigned short mem_cgroup_id(struct mem_cgroup
*memcg
)
534 * The ID of the root cgroup is 0, but memcg treat 0 as an
535 * invalid ID, so we return (cgroup_id + 1).
537 return memcg
->css
.cgroup
->id
+ 1;
540 static inline struct mem_cgroup
*mem_cgroup_from_id(unsigned short id
)
542 struct cgroup_subsys_state
*css
;
544 css
= css_from_id(id
- 1, &mem_cgroup_subsys
);
545 return mem_cgroup_from_css(css
);
548 /* Writing them here to avoid exposing memcg's inner layout */
549 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
551 void sock_update_memcg(struct sock
*sk
)
553 if (mem_cgroup_sockets_enabled
) {
554 struct mem_cgroup
*memcg
;
555 struct cg_proto
*cg_proto
;
557 BUG_ON(!sk
->sk_prot
->proto_cgroup
);
559 /* Socket cloning can throw us here with sk_cgrp already
560 * filled. It won't however, necessarily happen from
561 * process context. So the test for root memcg given
562 * the current task's memcg won't help us in this case.
564 * Respecting the original socket's memcg is a better
565 * decision in this case.
568 BUG_ON(mem_cgroup_is_root(sk
->sk_cgrp
->memcg
));
569 css_get(&sk
->sk_cgrp
->memcg
->css
);
574 memcg
= mem_cgroup_from_task(current
);
575 cg_proto
= sk
->sk_prot
->proto_cgroup(memcg
);
576 if (!mem_cgroup_is_root(memcg
) &&
577 memcg_proto_active(cg_proto
) && css_tryget(&memcg
->css
)) {
578 sk
->sk_cgrp
= cg_proto
;
583 EXPORT_SYMBOL(sock_update_memcg
);
585 void sock_release_memcg(struct sock
*sk
)
587 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
) {
588 struct mem_cgroup
*memcg
;
589 WARN_ON(!sk
->sk_cgrp
->memcg
);
590 memcg
= sk
->sk_cgrp
->memcg
;
591 css_put(&sk
->sk_cgrp
->memcg
->css
);
595 struct cg_proto
*tcp_proto_cgroup(struct mem_cgroup
*memcg
)
597 if (!memcg
|| mem_cgroup_is_root(memcg
))
600 return &memcg
->tcp_mem
;
602 EXPORT_SYMBOL(tcp_proto_cgroup
);
604 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
606 if (!memcg_proto_activated(&memcg
->tcp_mem
))
608 static_key_slow_dec(&memcg_socket_limit_enabled
);
611 static void disarm_sock_keys(struct mem_cgroup
*memcg
)
616 #ifdef CONFIG_MEMCG_KMEM
618 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
619 * The main reason for not using cgroup id for this:
620 * this works better in sparse environments, where we have a lot of memcgs,
621 * but only a few kmem-limited. Or also, if we have, for instance, 200
622 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
623 * 200 entry array for that.
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
629 static DEFINE_IDA(kmem_limited_groups
);
630 int memcg_limited_groups_array_size
;
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
638 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * cgrp_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
644 #define MEMCG_CACHES_MIN_SIZE 4
645 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
653 struct static_key memcg_kmem_enabled_key
;
654 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
656 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
658 if (memcg_kmem_is_active(memcg
)) {
659 static_key_slow_dec(&memcg_kmem_enabled_key
);
660 ida_simple_remove(&kmem_limited_groups
, memcg
->kmemcg_id
);
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
666 WARN_ON(res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0);
669 static void disarm_kmem_keys(struct mem_cgroup
*memcg
)
672 #endif /* CONFIG_MEMCG_KMEM */
674 static void disarm_static_keys(struct mem_cgroup
*memcg
)
676 disarm_sock_keys(memcg
);
677 disarm_kmem_keys(memcg
);
680 static void drain_all_stock_async(struct mem_cgroup
*memcg
);
682 static struct mem_cgroup_per_zone
*
683 mem_cgroup_zoneinfo(struct mem_cgroup
*memcg
, int nid
, int zid
)
685 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
686 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
689 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*memcg
)
694 static struct mem_cgroup_per_zone
*
695 page_cgroup_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
697 int nid
= page_to_nid(page
);
698 int zid
= page_zonenum(page
);
700 return mem_cgroup_zoneinfo(memcg
, nid
, zid
);
703 static struct mem_cgroup_tree_per_zone
*
704 soft_limit_tree_node_zone(int nid
, int zid
)
706 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
709 static struct mem_cgroup_tree_per_zone
*
710 soft_limit_tree_from_page(struct page
*page
)
712 int nid
= page_to_nid(page
);
713 int zid
= page_zonenum(page
);
715 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
719 __mem_cgroup_insert_exceeded(struct mem_cgroup
*memcg
,
720 struct mem_cgroup_per_zone
*mz
,
721 struct mem_cgroup_tree_per_zone
*mctz
,
722 unsigned long long new_usage_in_excess
)
724 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
725 struct rb_node
*parent
= NULL
;
726 struct mem_cgroup_per_zone
*mz_node
;
731 mz
->usage_in_excess
= new_usage_in_excess
;
732 if (!mz
->usage_in_excess
)
736 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
738 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
744 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
747 rb_link_node(&mz
->tree_node
, parent
, p
);
748 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
753 __mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
754 struct mem_cgroup_per_zone
*mz
,
755 struct mem_cgroup_tree_per_zone
*mctz
)
759 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
764 mem_cgroup_remove_exceeded(struct mem_cgroup
*memcg
,
765 struct mem_cgroup_per_zone
*mz
,
766 struct mem_cgroup_tree_per_zone
*mctz
)
768 spin_lock(&mctz
->lock
);
769 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
770 spin_unlock(&mctz
->lock
);
774 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
776 unsigned long long excess
;
777 struct mem_cgroup_per_zone
*mz
;
778 struct mem_cgroup_tree_per_zone
*mctz
;
779 int nid
= page_to_nid(page
);
780 int zid
= page_zonenum(page
);
781 mctz
= soft_limit_tree_from_page(page
);
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
787 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
788 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
789 excess
= res_counter_soft_limit_excess(&memcg
->res
);
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
794 if (excess
|| mz
->on_tree
) {
795 spin_lock(&mctz
->lock
);
796 /* if on-tree, remove it */
798 __mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
803 __mem_cgroup_insert_exceeded(memcg
, mz
, mctz
, excess
);
804 spin_unlock(&mctz
->lock
);
809 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
812 struct mem_cgroup_per_zone
*mz
;
813 struct mem_cgroup_tree_per_zone
*mctz
;
815 for_each_node(node
) {
816 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
817 mz
= mem_cgroup_zoneinfo(memcg
, node
, zone
);
818 mctz
= soft_limit_tree_node_zone(node
, zone
);
819 mem_cgroup_remove_exceeded(memcg
, mz
, mctz
);
824 static struct mem_cgroup_per_zone
*
825 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
827 struct rb_node
*rightmost
= NULL
;
828 struct mem_cgroup_per_zone
*mz
;
832 rightmost
= rb_last(&mctz
->rb_root
);
834 goto done
; /* Nothing to reclaim from */
836 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
842 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
843 if (!res_counter_soft_limit_excess(&mz
->memcg
->res
) ||
844 !css_tryget(&mz
->memcg
->css
))
850 static struct mem_cgroup_per_zone
*
851 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
853 struct mem_cgroup_per_zone
*mz
;
855 spin_lock(&mctz
->lock
);
856 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
857 spin_unlock(&mctz
->lock
);
862 * Implementation Note: reading percpu statistics for memcg.
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
880 static long mem_cgroup_read_stat(struct mem_cgroup
*memcg
,
881 enum mem_cgroup_stat_index idx
)
887 for_each_online_cpu(cpu
)
888 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
889 #ifdef CONFIG_HOTPLUG_CPU
890 spin_lock(&memcg
->pcp_counter_lock
);
891 val
+= memcg
->nocpu_base
.count
[idx
];
892 spin_unlock(&memcg
->pcp_counter_lock
);
898 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
901 int val
= (charge
) ? 1 : -1;
902 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
905 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
906 enum mem_cgroup_events_index idx
)
908 unsigned long val
= 0;
912 for_each_online_cpu(cpu
)
913 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
914 #ifdef CONFIG_HOTPLUG_CPU
915 spin_lock(&memcg
->pcp_counter_lock
);
916 val
+= memcg
->nocpu_base
.events
[idx
];
917 spin_unlock(&memcg
->pcp_counter_lock
);
923 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
925 bool anon
, int nr_pages
)
930 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
931 * counted as CACHE even if it's on ANON LRU.
934 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
937 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
940 if (PageTransHuge(page
))
941 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
944 /* pagein of a big page is an event. So, ignore page size */
946 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
948 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
949 nr_pages
= -nr_pages
; /* for event */
952 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
958 mem_cgroup_get_lru_size(struct lruvec
*lruvec
, enum lru_list lru
)
960 struct mem_cgroup_per_zone
*mz
;
962 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
963 return mz
->lru_size
[lru
];
967 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup
*memcg
, int nid
, int zid
,
968 unsigned int lru_mask
)
970 struct mem_cgroup_per_zone
*mz
;
972 unsigned long ret
= 0;
974 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
977 if (BIT(lru
) & lru_mask
)
978 ret
+= mz
->lru_size
[lru
];
984 mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
985 int nid
, unsigned int lru_mask
)
990 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++)
991 total
+= mem_cgroup_zone_nr_lru_pages(memcg
,
997 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
998 unsigned int lru_mask
)
1003 for_each_node_state(nid
, N_MEMORY
)
1004 total
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
1008 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
1009 enum mem_cgroup_events_target target
)
1011 unsigned long val
, next
;
1013 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
1014 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
1015 /* from time_after() in jiffies.h */
1016 if ((long)next
- (long)val
< 0) {
1018 case MEM_CGROUP_TARGET_THRESH
:
1019 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
1021 case MEM_CGROUP_TARGET_SOFTLIMIT
:
1022 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
1024 case MEM_CGROUP_TARGET_NUMAINFO
:
1025 next
= val
+ NUMAINFO_EVENTS_TARGET
;
1030 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
1037 * Check events in order.
1040 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
1043 /* threshold event is triggered in finer grain than soft limit */
1044 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
1045 MEM_CGROUP_TARGET_THRESH
))) {
1047 bool do_numainfo __maybe_unused
;
1049 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
1050 MEM_CGROUP_TARGET_SOFTLIMIT
);
1051 #if MAX_NUMNODES > 1
1052 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
1053 MEM_CGROUP_TARGET_NUMAINFO
);
1057 mem_cgroup_threshold(memcg
);
1058 if (unlikely(do_softlimit
))
1059 mem_cgroup_update_tree(memcg
, page
);
1060 #if MAX_NUMNODES > 1
1061 if (unlikely(do_numainfo
))
1062 atomic_inc(&memcg
->numainfo_events
);
1068 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
1071 * mm_update_next_owner() may clear mm->owner to NULL
1072 * if it races with swapoff, page migration, etc.
1073 * So this can be called with p == NULL.
1078 return mem_cgroup_from_css(task_css(p
, mem_cgroup_subsys_id
));
1081 struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
1083 struct mem_cgroup
*memcg
= NULL
;
1088 * Because we have no locks, mm->owner's may be being moved to other
1089 * cgroup. We use css_tryget() here even if this looks
1090 * pessimistic (rather than adding locks here).
1094 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1095 if (unlikely(!memcg
))
1097 } while (!css_tryget(&memcg
->css
));
1103 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1104 * ref. count) or NULL if the whole root's subtree has been visited.
1106 * helper function to be used by mem_cgroup_iter
1108 static struct mem_cgroup
*__mem_cgroup_iter_next(struct mem_cgroup
*root
,
1109 struct mem_cgroup
*last_visited
)
1111 struct cgroup_subsys_state
*prev_css
, *next_css
;
1113 prev_css
= last_visited
? &last_visited
->css
: NULL
;
1115 next_css
= css_next_descendant_pre(prev_css
, &root
->css
);
1118 * Even if we found a group we have to make sure it is
1119 * alive. css && !memcg means that the groups should be
1120 * skipped and we should continue the tree walk.
1121 * last_visited css is safe to use because it is
1122 * protected by css_get and the tree walk is rcu safe.
1124 * We do not take a reference on the root of the tree walk
1125 * because we might race with the root removal when it would
1126 * be the only node in the iterated hierarchy and mem_cgroup_iter
1127 * would end up in an endless loop because it expects that at
1128 * least one valid node will be returned. Root cannot disappear
1129 * because caller of the iterator should hold it already so
1130 * skipping css reference should be safe.
1133 struct mem_cgroup
*memcg
= mem_cgroup_from_css(next_css
);
1135 if (next_css
== &root
->css
)
1138 if (css_tryget(next_css
)) {
1140 * Make sure the memcg is initialized:
1141 * mem_cgroup_css_online() orders the the
1142 * initialization against setting the flag.
1144 if (smp_load_acquire(&memcg
->initialized
))
1149 prev_css
= next_css
;
1156 static void mem_cgroup_iter_invalidate(struct mem_cgroup
*root
)
1159 * When a group in the hierarchy below root is destroyed, the
1160 * hierarchy iterator can no longer be trusted since it might
1161 * have pointed to the destroyed group. Invalidate it.
1163 atomic_inc(&root
->dead_count
);
1166 static struct mem_cgroup
*
1167 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter
*iter
,
1168 struct mem_cgroup
*root
,
1171 struct mem_cgroup
*position
= NULL
;
1173 * A cgroup destruction happens in two stages: offlining and
1174 * release. They are separated by a RCU grace period.
1176 * If the iterator is valid, we may still race with an
1177 * offlining. The RCU lock ensures the object won't be
1178 * released, tryget will fail if we lost the race.
1180 *sequence
= atomic_read(&root
->dead_count
);
1181 if (iter
->last_dead_count
== *sequence
) {
1183 position
= iter
->last_visited
;
1186 * We cannot take a reference to root because we might race
1187 * with root removal and returning NULL would end up in
1188 * an endless loop on the iterator user level when root
1189 * would be returned all the time.
1191 if (position
&& position
!= root
&&
1192 !css_tryget(&position
->css
))
1198 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter
*iter
,
1199 struct mem_cgroup
*last_visited
,
1200 struct mem_cgroup
*new_position
,
1201 struct mem_cgroup
*root
,
1204 /* root reference counting symmetric to mem_cgroup_iter_load */
1205 if (last_visited
&& last_visited
!= root
)
1206 css_put(&last_visited
->css
);
1208 * We store the sequence count from the time @last_visited was
1209 * loaded successfully instead of rereading it here so that we
1210 * don't lose destruction events in between. We could have
1211 * raced with the destruction of @new_position after all.
1213 iter
->last_visited
= new_position
;
1215 iter
->last_dead_count
= sequence
;
1219 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1220 * @root: hierarchy root
1221 * @prev: previously returned memcg, NULL on first invocation
1222 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1224 * Returns references to children of the hierarchy below @root, or
1225 * @root itself, or %NULL after a full round-trip.
1227 * Caller must pass the return value in @prev on subsequent
1228 * invocations for reference counting, or use mem_cgroup_iter_break()
1229 * to cancel a hierarchy walk before the round-trip is complete.
1231 * Reclaimers can specify a zone and a priority level in @reclaim to
1232 * divide up the memcgs in the hierarchy among all concurrent
1233 * reclaimers operating on the same zone and priority.
1235 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
1236 struct mem_cgroup
*prev
,
1237 struct mem_cgroup_reclaim_cookie
*reclaim
)
1239 struct mem_cgroup
*memcg
= NULL
;
1240 struct mem_cgroup
*last_visited
= NULL
;
1242 if (mem_cgroup_disabled())
1246 root
= root_mem_cgroup
;
1248 if (prev
&& !reclaim
)
1249 last_visited
= prev
;
1251 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
1259 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
1260 int uninitialized_var(seq
);
1263 int nid
= zone_to_nid(reclaim
->zone
);
1264 int zid
= zone_idx(reclaim
->zone
);
1265 struct mem_cgroup_per_zone
*mz
;
1267 mz
= mem_cgroup_zoneinfo(root
, nid
, zid
);
1268 iter
= &mz
->reclaim_iter
[reclaim
->priority
];
1269 if (prev
&& reclaim
->generation
!= iter
->generation
) {
1270 iter
->last_visited
= NULL
;
1274 last_visited
= mem_cgroup_iter_load(iter
, root
, &seq
);
1277 memcg
= __mem_cgroup_iter_next(root
, last_visited
);
1280 mem_cgroup_iter_update(iter
, last_visited
, memcg
, root
,
1285 else if (!prev
&& memcg
)
1286 reclaim
->generation
= iter
->generation
;
1295 if (prev
&& prev
!= root
)
1296 css_put(&prev
->css
);
1302 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1303 * @root: hierarchy root
1304 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1306 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
1307 struct mem_cgroup
*prev
)
1310 root
= root_mem_cgroup
;
1311 if (prev
&& prev
!= root
)
1312 css_put(&prev
->css
);
1316 * Iteration constructs for visiting all cgroups (under a tree). If
1317 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1318 * be used for reference counting.
1320 #define for_each_mem_cgroup_tree(iter, root) \
1321 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1323 iter = mem_cgroup_iter(root, iter, NULL))
1325 #define for_each_mem_cgroup(iter) \
1326 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1328 iter = mem_cgroup_iter(NULL, iter, NULL))
1330 void __mem_cgroup_count_vm_event(struct mm_struct
*mm
, enum vm_event_item idx
)
1332 struct mem_cgroup
*memcg
;
1335 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1336 if (unlikely(!memcg
))
1341 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGFAULT
]);
1344 this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
1352 EXPORT_SYMBOL(__mem_cgroup_count_vm_event
);
1355 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1356 * @zone: zone of the wanted lruvec
1357 * @memcg: memcg of the wanted lruvec
1359 * Returns the lru list vector holding pages for the given @zone and
1360 * @mem. This can be the global zone lruvec, if the memory controller
1363 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
1364 struct mem_cgroup
*memcg
)
1366 struct mem_cgroup_per_zone
*mz
;
1367 struct lruvec
*lruvec
;
1369 if (mem_cgroup_disabled()) {
1370 lruvec
= &zone
->lruvec
;
1374 mz
= mem_cgroup_zoneinfo(memcg
, zone_to_nid(zone
), zone_idx(zone
));
1375 lruvec
= &mz
->lruvec
;
1378 * Since a node can be onlined after the mem_cgroup was created,
1379 * we have to be prepared to initialize lruvec->zone here;
1380 * and if offlined then reonlined, we need to reinitialize it.
1382 if (unlikely(lruvec
->zone
!= zone
))
1383 lruvec
->zone
= zone
;
1388 * Following LRU functions are allowed to be used without PCG_LOCK.
1389 * Operations are called by routine of global LRU independently from memcg.
1390 * What we have to take care of here is validness of pc->mem_cgroup.
1392 * Changes to pc->mem_cgroup happens when
1395 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1396 * It is added to LRU before charge.
1397 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1398 * When moving account, the page is not on LRU. It's isolated.
1402 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1404 * @zone: zone of the page
1406 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
1408 struct mem_cgroup_per_zone
*mz
;
1409 struct mem_cgroup
*memcg
;
1410 struct page_cgroup
*pc
;
1411 struct lruvec
*lruvec
;
1413 if (mem_cgroup_disabled()) {
1414 lruvec
= &zone
->lruvec
;
1418 pc
= lookup_page_cgroup(page
);
1419 memcg
= pc
->mem_cgroup
;
1422 * Surreptitiously switch any uncharged offlist page to root:
1423 * an uncharged page off lru does nothing to secure
1424 * its former mem_cgroup from sudden removal.
1426 * Our caller holds lru_lock, and PageCgroupUsed is updated
1427 * under page_cgroup lock: between them, they make all uses
1428 * of pc->mem_cgroup safe.
1430 if (!PageLRU(page
) && !PageCgroupUsed(pc
) && memcg
!= root_mem_cgroup
)
1431 pc
->mem_cgroup
= memcg
= root_mem_cgroup
;
1433 mz
= page_cgroup_zoneinfo(memcg
, page
);
1434 lruvec
= &mz
->lruvec
;
1437 * Since a node can be onlined after the mem_cgroup was created,
1438 * we have to be prepared to initialize lruvec->zone here;
1439 * and if offlined then reonlined, we need to reinitialize it.
1441 if (unlikely(lruvec
->zone
!= zone
))
1442 lruvec
->zone
= zone
;
1447 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1448 * @lruvec: mem_cgroup per zone lru vector
1449 * @lru: index of lru list the page is sitting on
1450 * @nr_pages: positive when adding or negative when removing
1452 * This function must be called when a page is added to or removed from an
1455 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1458 struct mem_cgroup_per_zone
*mz
;
1459 unsigned long *lru_size
;
1461 if (mem_cgroup_disabled())
1464 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1465 lru_size
= mz
->lru_size
+ lru
;
1466 *lru_size
+= nr_pages
;
1467 VM_BUG_ON((long)(*lru_size
) < 0);
1471 * Checks whether given mem is same or in the root_mem_cgroup's
1474 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1475 struct mem_cgroup
*memcg
)
1477 if (root_memcg
== memcg
)
1479 if (!root_memcg
->use_hierarchy
|| !memcg
)
1481 return cgroup_is_descendant(memcg
->css
.cgroup
, root_memcg
->css
.cgroup
);
1484 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup
*root_memcg
,
1485 struct mem_cgroup
*memcg
)
1490 ret
= __mem_cgroup_same_or_subtree(root_memcg
, memcg
);
1495 bool task_in_mem_cgroup(struct task_struct
*task
,
1496 const struct mem_cgroup
*memcg
)
1498 struct mem_cgroup
*curr
= NULL
;
1499 struct task_struct
*p
;
1502 p
= find_lock_task_mm(task
);
1504 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
1508 * All threads may have already detached their mm's, but the oom
1509 * killer still needs to detect if they have already been oom
1510 * killed to prevent needlessly killing additional tasks.
1513 curr
= mem_cgroup_from_task(task
);
1515 css_get(&curr
->css
);
1521 * We should check use_hierarchy of "memcg" not "curr". Because checking
1522 * use_hierarchy of "curr" here make this function true if hierarchy is
1523 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1524 * hierarchy(even if use_hierarchy is disabled in "memcg").
1526 ret
= mem_cgroup_same_or_subtree(memcg
, curr
);
1527 css_put(&curr
->css
);
1531 int mem_cgroup_inactive_anon_is_low(struct lruvec
*lruvec
)
1533 unsigned long inactive_ratio
;
1534 unsigned long inactive
;
1535 unsigned long active
;
1538 inactive
= mem_cgroup_get_lru_size(lruvec
, LRU_INACTIVE_ANON
);
1539 active
= mem_cgroup_get_lru_size(lruvec
, LRU_ACTIVE_ANON
);
1541 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
1543 inactive_ratio
= int_sqrt(10 * gb
);
1547 return inactive
* inactive_ratio
< active
;
1550 #define mem_cgroup_from_res_counter(counter, member) \
1551 container_of(counter, struct mem_cgroup, member)
1554 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1555 * @memcg: the memory cgroup
1557 * Returns the maximum amount of memory @mem can be charged with, in
1560 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1562 unsigned long long margin
;
1564 margin
= res_counter_margin(&memcg
->res
);
1565 if (do_swap_account
)
1566 margin
= min(margin
, res_counter_margin(&memcg
->memsw
));
1567 return margin
>> PAGE_SHIFT
;
1570 int mem_cgroup_swappiness(struct mem_cgroup
*memcg
)
1573 if (!css_parent(&memcg
->css
))
1574 return vm_swappiness
;
1576 return memcg
->swappiness
;
1580 * memcg->moving_account is used for checking possibility that some thread is
1581 * calling move_account(). When a thread on CPU-A starts moving pages under
1582 * a memcg, other threads should check memcg->moving_account under
1583 * rcu_read_lock(), like this:
1587 * memcg->moving_account+1 if (memcg->mocing_account)
1589 * synchronize_rcu() update something.
1594 /* for quick checking without looking up memcg */
1595 atomic_t memcg_moving __read_mostly
;
1597 static void mem_cgroup_start_move(struct mem_cgroup
*memcg
)
1599 atomic_inc(&memcg_moving
);
1600 atomic_inc(&memcg
->moving_account
);
1604 static void mem_cgroup_end_move(struct mem_cgroup
*memcg
)
1607 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1608 * We check NULL in callee rather than caller.
1611 atomic_dec(&memcg_moving
);
1612 atomic_dec(&memcg
->moving_account
);
1617 * 2 routines for checking "mem" is under move_account() or not.
1619 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1620 * is used for avoiding races in accounting. If true,
1621 * pc->mem_cgroup may be overwritten.
1623 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1624 * under hierarchy of moving cgroups. This is for
1625 * waiting at hith-memory prressure caused by "move".
1628 static bool mem_cgroup_stolen(struct mem_cgroup
*memcg
)
1630 VM_BUG_ON(!rcu_read_lock_held());
1631 return atomic_read(&memcg
->moving_account
) > 0;
1634 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1636 struct mem_cgroup
*from
;
1637 struct mem_cgroup
*to
;
1640 * Unlike task_move routines, we access mc.to, mc.from not under
1641 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1643 spin_lock(&mc
.lock
);
1649 ret
= mem_cgroup_same_or_subtree(memcg
, from
)
1650 || mem_cgroup_same_or_subtree(memcg
, to
);
1652 spin_unlock(&mc
.lock
);
1656 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1658 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1659 if (mem_cgroup_under_move(memcg
)) {
1661 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1662 /* moving charge context might have finished. */
1665 finish_wait(&mc
.waitq
, &wait
);
1673 * Take this lock when
1674 * - a code tries to modify page's memcg while it's USED.
1675 * - a code tries to modify page state accounting in a memcg.
1676 * see mem_cgroup_stolen(), too.
1678 static void move_lock_mem_cgroup(struct mem_cgroup
*memcg
,
1679 unsigned long *flags
)
1681 spin_lock_irqsave(&memcg
->move_lock
, *flags
);
1684 static void move_unlock_mem_cgroup(struct mem_cgroup
*memcg
,
1685 unsigned long *flags
)
1687 spin_unlock_irqrestore(&memcg
->move_lock
, *flags
);
1690 #define K(x) ((x) << (PAGE_SHIFT-10))
1692 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1693 * @memcg: The memory cgroup that went over limit
1694 * @p: Task that is going to be killed
1696 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1699 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1702 * protects memcg_name and makes sure that parallel ooms do not
1705 static DEFINE_MUTEX(oom_info_lock
);
1706 struct cgroup
*task_cgrp
;
1707 struct cgroup
*mem_cgrp
;
1708 static char memcg_name
[PATH_MAX
];
1710 struct mem_cgroup
*iter
;
1716 mutex_lock(&oom_info_lock
);
1719 mem_cgrp
= memcg
->css
.cgroup
;
1720 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1722 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1725 * Unfortunately, we are unable to convert to a useful name
1726 * But we'll still print out the usage information
1733 pr_info("Task in %s killed", memcg_name
);
1736 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1744 * Continues from above, so we don't need an KERN_ level
1746 pr_cont(" as a result of limit of %s\n", memcg_name
);
1749 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1750 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1751 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1752 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1753 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1754 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1755 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1756 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1757 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1758 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) >> 10,
1759 res_counter_read_u64(&memcg
->kmem
, RES_LIMIT
) >> 10,
1760 res_counter_read_u64(&memcg
->kmem
, RES_FAILCNT
));
1762 for_each_mem_cgroup_tree(iter
, memcg
) {
1763 pr_info("Memory cgroup stats");
1766 ret
= cgroup_path(iter
->css
.cgroup
, memcg_name
, PATH_MAX
);
1768 pr_cont(" for %s", memcg_name
);
1772 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1773 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1775 pr_cont(" %s:%ldKB", mem_cgroup_stat_names
[i
],
1776 K(mem_cgroup_read_stat(iter
, i
)));
1779 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1780 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1781 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1785 mutex_unlock(&oom_info_lock
);
1789 * This function returns the number of memcg under hierarchy tree. Returns
1790 * 1(self count) if no children.
1792 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1795 struct mem_cgroup
*iter
;
1797 for_each_mem_cgroup_tree(iter
, memcg
)
1803 * Return the memory (and swap, if configured) limit for a memcg.
1805 static u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1809 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1812 * Do not consider swap space if we cannot swap due to swappiness
1814 if (mem_cgroup_swappiness(memcg
)) {
1817 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1818 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1821 * If memsw is finite and limits the amount of swap space
1822 * available to this memcg, return that limit.
1824 limit
= min(limit
, memsw
);
1830 static void mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1833 struct mem_cgroup
*iter
;
1834 unsigned long chosen_points
= 0;
1835 unsigned long totalpages
;
1836 unsigned int points
= 0;
1837 struct task_struct
*chosen
= NULL
;
1840 * If current has a pending SIGKILL or is exiting, then automatically
1841 * select it. The goal is to allow it to allocate so that it may
1842 * quickly exit and free its memory.
1844 if (fatal_signal_pending(current
) || current
->flags
& PF_EXITING
) {
1845 set_thread_flag(TIF_MEMDIE
);
1849 check_panic_on_oom(CONSTRAINT_MEMCG
, gfp_mask
, order
, NULL
);
1850 totalpages
= mem_cgroup_get_limit(memcg
) >> PAGE_SHIFT
? : 1;
1851 for_each_mem_cgroup_tree(iter
, memcg
) {
1852 struct css_task_iter it
;
1853 struct task_struct
*task
;
1855 css_task_iter_start(&iter
->css
, &it
);
1856 while ((task
= css_task_iter_next(&it
))) {
1857 switch (oom_scan_process_thread(task
, totalpages
, NULL
,
1859 case OOM_SCAN_SELECT
:
1861 put_task_struct(chosen
);
1863 chosen_points
= ULONG_MAX
;
1864 get_task_struct(chosen
);
1866 case OOM_SCAN_CONTINUE
:
1868 case OOM_SCAN_ABORT
:
1869 css_task_iter_end(&it
);
1870 mem_cgroup_iter_break(memcg
, iter
);
1872 put_task_struct(chosen
);
1877 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1878 if (!points
|| points
< chosen_points
)
1880 /* Prefer thread group leaders for display purposes */
1881 if (points
== chosen_points
&&
1882 thread_group_leader(chosen
))
1886 put_task_struct(chosen
);
1888 chosen_points
= points
;
1889 get_task_struct(chosen
);
1891 css_task_iter_end(&it
);
1896 points
= chosen_points
* 1000 / totalpages
;
1897 oom_kill_process(chosen
, gfp_mask
, order
, points
, totalpages
, memcg
,
1898 NULL
, "Memory cgroup out of memory");
1901 static unsigned long mem_cgroup_reclaim(struct mem_cgroup
*memcg
,
1903 unsigned long flags
)
1905 unsigned long total
= 0;
1906 bool noswap
= false;
1909 if (flags
& MEM_CGROUP_RECLAIM_NOSWAP
)
1911 if (!(flags
& MEM_CGROUP_RECLAIM_SHRINK
) && memcg
->memsw_is_minimum
)
1914 for (loop
= 0; loop
< MEM_CGROUP_MAX_RECLAIM_LOOPS
; loop
++) {
1916 drain_all_stock_async(memcg
);
1917 total
+= try_to_free_mem_cgroup_pages(memcg
, gfp_mask
, noswap
);
1919 * Allow limit shrinkers, which are triggered directly
1920 * by userspace, to catch signals and stop reclaim
1921 * after minimal progress, regardless of the margin.
1923 if (total
&& (flags
& MEM_CGROUP_RECLAIM_SHRINK
))
1925 if (mem_cgroup_margin(memcg
))
1928 * If nothing was reclaimed after two attempts, there
1929 * may be no reclaimable pages in this hierarchy.
1938 * test_mem_cgroup_node_reclaimable
1939 * @memcg: the target memcg
1940 * @nid: the node ID to be checked.
1941 * @noswap : specify true here if the user wants flle only information.
1943 * This function returns whether the specified memcg contains any
1944 * reclaimable pages on a node. Returns true if there are any reclaimable
1945 * pages in the node.
1947 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1948 int nid
, bool noswap
)
1950 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1952 if (noswap
|| !total_swap_pages
)
1954 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1959 #if MAX_NUMNODES > 1
1962 * Always updating the nodemask is not very good - even if we have an empty
1963 * list or the wrong list here, we can start from some node and traverse all
1964 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1967 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1971 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1972 * pagein/pageout changes since the last update.
1974 if (!atomic_read(&memcg
->numainfo_events
))
1976 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1979 /* make a nodemask where this memcg uses memory from */
1980 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1982 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1984 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1985 node_clear(nid
, memcg
->scan_nodes
);
1988 atomic_set(&memcg
->numainfo_events
, 0);
1989 atomic_set(&memcg
->numainfo_updating
, 0);
1993 * Selecting a node where we start reclaim from. Because what we need is just
1994 * reducing usage counter, start from anywhere is O,K. Considering
1995 * memory reclaim from current node, there are pros. and cons.
1997 * Freeing memory from current node means freeing memory from a node which
1998 * we'll use or we've used. So, it may make LRU bad. And if several threads
1999 * hit limits, it will see a contention on a node. But freeing from remote
2000 * node means more costs for memory reclaim because of memory latency.
2002 * Now, we use round-robin. Better algorithm is welcomed.
2004 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
2008 mem_cgroup_may_update_nodemask(memcg
);
2009 node
= memcg
->last_scanned_node
;
2011 node
= next_node(node
, memcg
->scan_nodes
);
2012 if (node
== MAX_NUMNODES
)
2013 node
= first_node(memcg
->scan_nodes
);
2015 * We call this when we hit limit, not when pages are added to LRU.
2016 * No LRU may hold pages because all pages are UNEVICTABLE or
2017 * memcg is too small and all pages are not on LRU. In that case,
2018 * we use curret node.
2020 if (unlikely(node
== MAX_NUMNODES
))
2021 node
= numa_node_id();
2023 memcg
->last_scanned_node
= node
;
2028 * Check all nodes whether it contains reclaimable pages or not.
2029 * For quick scan, we make use of scan_nodes. This will allow us to skip
2030 * unused nodes. But scan_nodes is lazily updated and may not cotain
2031 * enough new information. We need to do double check.
2033 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
2038 * quick check...making use of scan_node.
2039 * We can skip unused nodes.
2041 if (!nodes_empty(memcg
->scan_nodes
)) {
2042 for (nid
= first_node(memcg
->scan_nodes
);
2044 nid
= next_node(nid
, memcg
->scan_nodes
)) {
2046 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2051 * Check rest of nodes.
2053 for_each_node_state(nid
, N_MEMORY
) {
2054 if (node_isset(nid
, memcg
->scan_nodes
))
2056 if (test_mem_cgroup_node_reclaimable(memcg
, nid
, noswap
))
2063 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
2068 static bool mem_cgroup_reclaimable(struct mem_cgroup
*memcg
, bool noswap
)
2070 return test_mem_cgroup_node_reclaimable(memcg
, 0, noswap
);
2074 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
2077 unsigned long *total_scanned
)
2079 struct mem_cgroup
*victim
= NULL
;
2082 unsigned long excess
;
2083 unsigned long nr_scanned
;
2084 struct mem_cgroup_reclaim_cookie reclaim
= {
2089 excess
= res_counter_soft_limit_excess(&root_memcg
->res
) >> PAGE_SHIFT
;
2092 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
2097 * If we have not been able to reclaim
2098 * anything, it might because there are
2099 * no reclaimable pages under this hierarchy
2104 * We want to do more targeted reclaim.
2105 * excess >> 2 is not to excessive so as to
2106 * reclaim too much, nor too less that we keep
2107 * coming back to reclaim from this cgroup
2109 if (total
>= (excess
>> 2) ||
2110 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
2115 if (!mem_cgroup_reclaimable(victim
, false))
2117 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
2119 *total_scanned
+= nr_scanned
;
2120 if (!res_counter_soft_limit_excess(&root_memcg
->res
))
2123 mem_cgroup_iter_break(root_memcg
, victim
);
2127 #ifdef CONFIG_LOCKDEP
2128 static struct lockdep_map memcg_oom_lock_dep_map
= {
2129 .name
= "memcg_oom_lock",
2133 static DEFINE_SPINLOCK(memcg_oom_lock
);
2136 * Check OOM-Killer is already running under our hierarchy.
2137 * If someone is running, return false.
2139 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
2141 struct mem_cgroup
*iter
, *failed
= NULL
;
2143 spin_lock(&memcg_oom_lock
);
2145 for_each_mem_cgroup_tree(iter
, memcg
) {
2146 if (iter
->oom_lock
) {
2148 * this subtree of our hierarchy is already locked
2149 * so we cannot give a lock.
2152 mem_cgroup_iter_break(memcg
, iter
);
2155 iter
->oom_lock
= true;
2160 * OK, we failed to lock the whole subtree so we have
2161 * to clean up what we set up to the failing subtree
2163 for_each_mem_cgroup_tree(iter
, memcg
) {
2164 if (iter
== failed
) {
2165 mem_cgroup_iter_break(memcg
, iter
);
2168 iter
->oom_lock
= false;
2171 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
2173 spin_unlock(&memcg_oom_lock
);
2178 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
2180 struct mem_cgroup
*iter
;
2182 spin_lock(&memcg_oom_lock
);
2183 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
2184 for_each_mem_cgroup_tree(iter
, memcg
)
2185 iter
->oom_lock
= false;
2186 spin_unlock(&memcg_oom_lock
);
2189 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
2191 struct mem_cgroup
*iter
;
2193 for_each_mem_cgroup_tree(iter
, memcg
)
2194 atomic_inc(&iter
->under_oom
);
2197 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
2199 struct mem_cgroup
*iter
;
2202 * When a new child is created while the hierarchy is under oom,
2203 * mem_cgroup_oom_lock() may not be called. We have to use
2204 * atomic_add_unless() here.
2206 for_each_mem_cgroup_tree(iter
, memcg
)
2207 atomic_add_unless(&iter
->under_oom
, -1, 0);
2210 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
2212 struct oom_wait_info
{
2213 struct mem_cgroup
*memcg
;
2217 static int memcg_oom_wake_function(wait_queue_t
*wait
,
2218 unsigned mode
, int sync
, void *arg
)
2220 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
2221 struct mem_cgroup
*oom_wait_memcg
;
2222 struct oom_wait_info
*oom_wait_info
;
2224 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
2225 oom_wait_memcg
= oom_wait_info
->memcg
;
2228 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2229 * Then we can use css_is_ancestor without taking care of RCU.
2231 if (!mem_cgroup_same_or_subtree(oom_wait_memcg
, wake_memcg
)
2232 && !mem_cgroup_same_or_subtree(wake_memcg
, oom_wait_memcg
))
2234 return autoremove_wake_function(wait
, mode
, sync
, arg
);
2237 static void memcg_wakeup_oom(struct mem_cgroup
*memcg
)
2239 atomic_inc(&memcg
->oom_wakeups
);
2240 /* for filtering, pass "memcg" as argument. */
2241 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
2244 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
2246 if (memcg
&& atomic_read(&memcg
->under_oom
))
2247 memcg_wakeup_oom(memcg
);
2250 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
2252 if (!current
->memcg_oom
.may_oom
)
2255 * We are in the middle of the charge context here, so we
2256 * don't want to block when potentially sitting on a callstack
2257 * that holds all kinds of filesystem and mm locks.
2259 * Also, the caller may handle a failed allocation gracefully
2260 * (like optional page cache readahead) and so an OOM killer
2261 * invocation might not even be necessary.
2263 * That's why we don't do anything here except remember the
2264 * OOM context and then deal with it at the end of the page
2265 * fault when the stack is unwound, the locks are released,
2266 * and when we know whether the fault was overall successful.
2268 css_get(&memcg
->css
);
2269 current
->memcg_oom
.memcg
= memcg
;
2270 current
->memcg_oom
.gfp_mask
= mask
;
2271 current
->memcg_oom
.order
= order
;
2275 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2276 * @handle: actually kill/wait or just clean up the OOM state
2278 * This has to be called at the end of a page fault if the memcg OOM
2279 * handler was enabled.
2281 * Memcg supports userspace OOM handling where failed allocations must
2282 * sleep on a waitqueue until the userspace task resolves the
2283 * situation. Sleeping directly in the charge context with all kinds
2284 * of locks held is not a good idea, instead we remember an OOM state
2285 * in the task and mem_cgroup_oom_synchronize() has to be called at
2286 * the end of the page fault to complete the OOM handling.
2288 * Returns %true if an ongoing memcg OOM situation was detected and
2289 * completed, %false otherwise.
2291 bool mem_cgroup_oom_synchronize(bool handle
)
2293 struct mem_cgroup
*memcg
= current
->memcg_oom
.memcg
;
2294 struct oom_wait_info owait
;
2297 /* OOM is global, do not handle */
2304 owait
.memcg
= memcg
;
2305 owait
.wait
.flags
= 0;
2306 owait
.wait
.func
= memcg_oom_wake_function
;
2307 owait
.wait
.private = current
;
2308 INIT_LIST_HEAD(&owait
.wait
.task_list
);
2310 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
2311 mem_cgroup_mark_under_oom(memcg
);
2313 locked
= mem_cgroup_oom_trylock(memcg
);
2316 mem_cgroup_oom_notify(memcg
);
2318 if (locked
&& !memcg
->oom_kill_disable
) {
2319 mem_cgroup_unmark_under_oom(memcg
);
2320 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2321 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom
.gfp_mask
,
2322 current
->memcg_oom
.order
);
2325 mem_cgroup_unmark_under_oom(memcg
);
2326 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
2330 mem_cgroup_oom_unlock(memcg
);
2332 * There is no guarantee that an OOM-lock contender
2333 * sees the wakeups triggered by the OOM kill
2334 * uncharges. Wake any sleepers explicitely.
2336 memcg_oom_recover(memcg
);
2339 current
->memcg_oom
.memcg
= NULL
;
2340 css_put(&memcg
->css
);
2345 * Currently used to update mapped file statistics, but the routine can be
2346 * generalized to update other statistics as well.
2348 * Notes: Race condition
2350 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2351 * it tends to be costly. But considering some conditions, we doesn't need
2352 * to do so _always_.
2354 * Considering "charge", lock_page_cgroup() is not required because all
2355 * file-stat operations happen after a page is attached to radix-tree. There
2356 * are no race with "charge".
2358 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2359 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2360 * if there are race with "uncharge". Statistics itself is properly handled
2363 * Considering "move", this is an only case we see a race. To make the race
2364 * small, we check mm->moving_account and detect there are possibility of race
2365 * If there is, we take a lock.
2368 void __mem_cgroup_begin_update_page_stat(struct page
*page
,
2369 bool *locked
, unsigned long *flags
)
2371 struct mem_cgroup
*memcg
;
2372 struct page_cgroup
*pc
;
2374 pc
= lookup_page_cgroup(page
);
2376 memcg
= pc
->mem_cgroup
;
2377 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2380 * If this memory cgroup is not under account moving, we don't
2381 * need to take move_lock_mem_cgroup(). Because we already hold
2382 * rcu_read_lock(), any calls to move_account will be delayed until
2383 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2385 if (!mem_cgroup_stolen(memcg
))
2388 move_lock_mem_cgroup(memcg
, flags
);
2389 if (memcg
!= pc
->mem_cgroup
|| !PageCgroupUsed(pc
)) {
2390 move_unlock_mem_cgroup(memcg
, flags
);
2396 void __mem_cgroup_end_update_page_stat(struct page
*page
, unsigned long *flags
)
2398 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2401 * It's guaranteed that pc->mem_cgroup never changes while
2402 * lock is held because a routine modifies pc->mem_cgroup
2403 * should take move_lock_mem_cgroup().
2405 move_unlock_mem_cgroup(pc
->mem_cgroup
, flags
);
2408 void mem_cgroup_update_page_stat(struct page
*page
,
2409 enum mem_cgroup_stat_index idx
, int val
)
2411 struct mem_cgroup
*memcg
;
2412 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2413 unsigned long uninitialized_var(flags
);
2415 if (mem_cgroup_disabled())
2418 VM_BUG_ON(!rcu_read_lock_held());
2419 memcg
= pc
->mem_cgroup
;
2420 if (unlikely(!memcg
|| !PageCgroupUsed(pc
)))
2423 this_cpu_add(memcg
->stat
->count
[idx
], val
);
2427 * size of first charge trial. "32" comes from vmscan.c's magic value.
2428 * TODO: maybe necessary to use big numbers in big irons.
2430 #define CHARGE_BATCH 32U
2431 struct memcg_stock_pcp
{
2432 struct mem_cgroup
*cached
; /* this never be root cgroup */
2433 unsigned int nr_pages
;
2434 struct work_struct work
;
2435 unsigned long flags
;
2436 #define FLUSHING_CACHED_CHARGE 0
2438 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
2439 static DEFINE_MUTEX(percpu_charge_mutex
);
2442 * consume_stock: Try to consume stocked charge on this cpu.
2443 * @memcg: memcg to consume from.
2444 * @nr_pages: how many pages to charge.
2446 * The charges will only happen if @memcg matches the current cpu's memcg
2447 * stock, and at least @nr_pages are available in that stock. Failure to
2448 * service an allocation will refill the stock.
2450 * returns true if successful, false otherwise.
2452 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2454 struct memcg_stock_pcp
*stock
;
2457 if (nr_pages
> CHARGE_BATCH
)
2460 stock
= &get_cpu_var(memcg_stock
);
2461 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
)
2462 stock
->nr_pages
-= nr_pages
;
2463 else /* need to call res_counter_charge */
2465 put_cpu_var(memcg_stock
);
2470 * Returns stocks cached in percpu to res_counter and reset cached information.
2472 static void drain_stock(struct memcg_stock_pcp
*stock
)
2474 struct mem_cgroup
*old
= stock
->cached
;
2476 if (stock
->nr_pages
) {
2477 unsigned long bytes
= stock
->nr_pages
* PAGE_SIZE
;
2479 res_counter_uncharge(&old
->res
, bytes
);
2480 if (do_swap_account
)
2481 res_counter_uncharge(&old
->memsw
, bytes
);
2482 stock
->nr_pages
= 0;
2484 stock
->cached
= NULL
;
2488 * This must be called under preempt disabled or must be called by
2489 * a thread which is pinned to local cpu.
2491 static void drain_local_stock(struct work_struct
*dummy
)
2493 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
2495 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
2498 static void __init
memcg_stock_init(void)
2502 for_each_possible_cpu(cpu
) {
2503 struct memcg_stock_pcp
*stock
=
2504 &per_cpu(memcg_stock
, cpu
);
2505 INIT_WORK(&stock
->work
, drain_local_stock
);
2510 * Cache charges(val) which is from res_counter, to local per_cpu area.
2511 * This will be consumed by consume_stock() function, later.
2513 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2515 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
2517 if (stock
->cached
!= memcg
) { /* reset if necessary */
2519 stock
->cached
= memcg
;
2521 stock
->nr_pages
+= nr_pages
;
2522 put_cpu_var(memcg_stock
);
2526 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2527 * of the hierarchy under it. sync flag says whether we should block
2528 * until the work is done.
2530 static void drain_all_stock(struct mem_cgroup
*root_memcg
, bool sync
)
2534 /* Notify other cpus that system-wide "drain" is running */
2537 for_each_online_cpu(cpu
) {
2538 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2539 struct mem_cgroup
*memcg
;
2541 memcg
= stock
->cached
;
2542 if (!memcg
|| !stock
->nr_pages
)
2544 if (!mem_cgroup_same_or_subtree(root_memcg
, memcg
))
2546 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
2548 drain_local_stock(&stock
->work
);
2550 schedule_work_on(cpu
, &stock
->work
);
2558 for_each_online_cpu(cpu
) {
2559 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
2560 if (test_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
))
2561 flush_work(&stock
->work
);
2568 * Tries to drain stocked charges in other cpus. This function is asynchronous
2569 * and just put a work per cpu for draining localy on each cpu. Caller can
2570 * expects some charges will be back to res_counter later but cannot wait for
2573 static void drain_all_stock_async(struct mem_cgroup
*root_memcg
)
2576 * If someone calls draining, avoid adding more kworker runs.
2578 if (!mutex_trylock(&percpu_charge_mutex
))
2580 drain_all_stock(root_memcg
, false);
2581 mutex_unlock(&percpu_charge_mutex
);
2584 /* This is a synchronous drain interface. */
2585 static void drain_all_stock_sync(struct mem_cgroup
*root_memcg
)
2587 /* called when force_empty is called */
2588 mutex_lock(&percpu_charge_mutex
);
2589 drain_all_stock(root_memcg
, true);
2590 mutex_unlock(&percpu_charge_mutex
);
2594 * This function drains percpu counter value from DEAD cpu and
2595 * move it to local cpu. Note that this function can be preempted.
2597 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*memcg
, int cpu
)
2601 spin_lock(&memcg
->pcp_counter_lock
);
2602 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
2603 long x
= per_cpu(memcg
->stat
->count
[i
], cpu
);
2605 per_cpu(memcg
->stat
->count
[i
], cpu
) = 0;
2606 memcg
->nocpu_base
.count
[i
] += x
;
2608 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
2609 unsigned long x
= per_cpu(memcg
->stat
->events
[i
], cpu
);
2611 per_cpu(memcg
->stat
->events
[i
], cpu
) = 0;
2612 memcg
->nocpu_base
.events
[i
] += x
;
2614 spin_unlock(&memcg
->pcp_counter_lock
);
2617 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
2618 unsigned long action
,
2621 int cpu
= (unsigned long)hcpu
;
2622 struct memcg_stock_pcp
*stock
;
2623 struct mem_cgroup
*iter
;
2625 if (action
== CPU_ONLINE
)
2628 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
2631 for_each_mem_cgroup(iter
)
2632 mem_cgroup_drain_pcp_counter(iter
, cpu
);
2634 stock
= &per_cpu(memcg_stock
, cpu
);
2640 /* See __mem_cgroup_try_charge() for details */
2642 CHARGE_OK
, /* success */
2643 CHARGE_RETRY
, /* need to retry but retry is not bad */
2644 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
2645 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
2648 static int mem_cgroup_do_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
2649 unsigned int nr_pages
, unsigned int min_pages
,
2652 unsigned long csize
= nr_pages
* PAGE_SIZE
;
2653 struct mem_cgroup
*mem_over_limit
;
2654 struct res_counter
*fail_res
;
2655 unsigned long flags
= 0;
2658 ret
= res_counter_charge(&memcg
->res
, csize
, &fail_res
);
2661 if (!do_swap_account
)
2663 ret
= res_counter_charge(&memcg
->memsw
, csize
, &fail_res
);
2667 res_counter_uncharge(&memcg
->res
, csize
);
2668 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
2669 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
2671 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
2673 * Never reclaim on behalf of optional batching, retry with a
2674 * single page instead.
2676 if (nr_pages
> min_pages
)
2677 return CHARGE_RETRY
;
2679 if (!(gfp_mask
& __GFP_WAIT
))
2680 return CHARGE_WOULDBLOCK
;
2682 if (gfp_mask
& __GFP_NORETRY
)
2683 return CHARGE_NOMEM
;
2685 ret
= mem_cgroup_reclaim(mem_over_limit
, gfp_mask
, flags
);
2686 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
2687 return CHARGE_RETRY
;
2689 * Even though the limit is exceeded at this point, reclaim
2690 * may have been able to free some pages. Retry the charge
2691 * before killing the task.
2693 * Only for regular pages, though: huge pages are rather
2694 * unlikely to succeed so close to the limit, and we fall back
2695 * to regular pages anyway in case of failure.
2697 if (nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
) && ret
)
2698 return CHARGE_RETRY
;
2701 * At task move, charge accounts can be doubly counted. So, it's
2702 * better to wait until the end of task_move if something is going on.
2704 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2705 return CHARGE_RETRY
;
2708 mem_cgroup_oom(mem_over_limit
, gfp_mask
, get_order(csize
));
2710 return CHARGE_NOMEM
;
2714 * __mem_cgroup_try_charge() does
2715 * 1. detect memcg to be charged against from passed *mm and *ptr,
2716 * 2. update res_counter
2717 * 3. call memory reclaim if necessary.
2719 * In some special case, if the task is fatal, fatal_signal_pending() or
2720 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2721 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2722 * as possible without any hazards. 2: all pages should have a valid
2723 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2724 * pointer, that is treated as a charge to root_mem_cgroup.
2726 * So __mem_cgroup_try_charge() will return
2727 * 0 ... on success, filling *ptr with a valid memcg pointer.
2728 * -ENOMEM ... charge failure because of resource limits.
2729 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2731 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2732 * the oom-killer can be invoked.
2734 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
2736 unsigned int nr_pages
,
2737 struct mem_cgroup
**ptr
,
2740 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
2741 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2742 struct mem_cgroup
*memcg
= NULL
;
2746 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2747 * in system level. So, allow to go ahead dying process in addition to
2750 if (unlikely(test_thread_flag(TIF_MEMDIE
)
2751 || fatal_signal_pending(current
)))
2754 if (unlikely(task_in_memcg_oom(current
)))
2757 if (gfp_mask
& __GFP_NOFAIL
)
2761 * We always charge the cgroup the mm_struct belongs to.
2762 * The mm_struct's mem_cgroup changes on task migration if the
2763 * thread group leader migrates. It's possible that mm is not
2764 * set, if so charge the root memcg (happens for pagecache usage).
2767 *ptr
= root_mem_cgroup
;
2769 if (*ptr
) { /* css should be a valid one */
2771 if (mem_cgroup_is_root(memcg
))
2773 if (consume_stock(memcg
, nr_pages
))
2775 css_get(&memcg
->css
);
2777 struct task_struct
*p
;
2780 p
= rcu_dereference(mm
->owner
);
2782 * Because we don't have task_lock(), "p" can exit.
2783 * In that case, "memcg" can point to root or p can be NULL with
2784 * race with swapoff. Then, we have small risk of mis-accouning.
2785 * But such kind of mis-account by race always happens because
2786 * we don't have cgroup_mutex(). It's overkill and we allo that
2788 * (*) swapoff at el will charge against mm-struct not against
2789 * task-struct. So, mm->owner can be NULL.
2791 memcg
= mem_cgroup_from_task(p
);
2793 memcg
= root_mem_cgroup
;
2794 if (mem_cgroup_is_root(memcg
)) {
2798 if (consume_stock(memcg
, nr_pages
)) {
2800 * It seems dagerous to access memcg without css_get().
2801 * But considering how consume_stok works, it's not
2802 * necessary. If consume_stock success, some charges
2803 * from this memcg are cached on this cpu. So, we
2804 * don't need to call css_get()/css_tryget() before
2805 * calling consume_stock().
2810 /* after here, we may be blocked. we need to get refcnt */
2811 if (!css_tryget(&memcg
->css
)) {
2819 bool invoke_oom
= oom
&& !nr_oom_retries
;
2821 /* If killed, bypass charge */
2822 if (fatal_signal_pending(current
)) {
2823 css_put(&memcg
->css
);
2827 ret
= mem_cgroup_do_charge(memcg
, gfp_mask
, batch
,
2828 nr_pages
, invoke_oom
);
2832 case CHARGE_RETRY
: /* not in OOM situation but retry */
2834 css_put(&memcg
->css
);
2837 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2838 css_put(&memcg
->css
);
2840 case CHARGE_NOMEM
: /* OOM routine works */
2841 if (!oom
|| invoke_oom
) {
2842 css_put(&memcg
->css
);
2848 } while (ret
!= CHARGE_OK
);
2850 if (batch
> nr_pages
)
2851 refill_stock(memcg
, batch
- nr_pages
);
2852 css_put(&memcg
->css
);
2857 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2862 *ptr
= root_mem_cgroup
;
2867 * Somemtimes we have to undo a charge we got by try_charge().
2868 * This function is for that and do uncharge, put css's refcnt.
2869 * gotten by try_charge().
2871 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*memcg
,
2872 unsigned int nr_pages
)
2874 if (!mem_cgroup_is_root(memcg
)) {
2875 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2877 res_counter_uncharge(&memcg
->res
, bytes
);
2878 if (do_swap_account
)
2879 res_counter_uncharge(&memcg
->memsw
, bytes
);
2884 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2885 * This is useful when moving usage to parent cgroup.
2887 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup
*memcg
,
2888 unsigned int nr_pages
)
2890 unsigned long bytes
= nr_pages
* PAGE_SIZE
;
2892 if (mem_cgroup_is_root(memcg
))
2895 res_counter_uncharge_until(&memcg
->res
, memcg
->res
.parent
, bytes
);
2896 if (do_swap_account
)
2897 res_counter_uncharge_until(&memcg
->memsw
,
2898 memcg
->memsw
.parent
, bytes
);
2902 * A helper function to get mem_cgroup from ID. must be called under
2903 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2904 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2905 * called against removed memcg.)
2907 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2909 /* ID 0 is unused ID */
2912 return mem_cgroup_from_id(id
);
2915 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2917 struct mem_cgroup
*memcg
= NULL
;
2918 struct page_cgroup
*pc
;
2922 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2924 pc
= lookup_page_cgroup(page
);
2925 lock_page_cgroup(pc
);
2926 if (PageCgroupUsed(pc
)) {
2927 memcg
= pc
->mem_cgroup
;
2928 if (memcg
&& !css_tryget(&memcg
->css
))
2930 } else if (PageSwapCache(page
)) {
2931 ent
.val
= page_private(page
);
2932 id
= lookup_swap_cgroup_id(ent
);
2934 memcg
= mem_cgroup_lookup(id
);
2935 if (memcg
&& !css_tryget(&memcg
->css
))
2939 unlock_page_cgroup(pc
);
2943 static void __mem_cgroup_commit_charge(struct mem_cgroup
*memcg
,
2945 unsigned int nr_pages
,
2946 enum charge_type ctype
,
2949 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
2950 struct zone
*uninitialized_var(zone
);
2951 struct lruvec
*lruvec
;
2952 bool was_on_lru
= false;
2955 lock_page_cgroup(pc
);
2956 VM_BUG_ON_PAGE(PageCgroupUsed(pc
), page
);
2958 * we don't need page_cgroup_lock about tail pages, becase they are not
2959 * accessed by any other context at this point.
2963 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2964 * may already be on some other mem_cgroup's LRU. Take care of it.
2967 zone
= page_zone(page
);
2968 spin_lock_irq(&zone
->lru_lock
);
2969 if (PageLRU(page
)) {
2970 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2972 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2977 pc
->mem_cgroup
= memcg
;
2979 * We access a page_cgroup asynchronously without lock_page_cgroup().
2980 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2981 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2982 * before USED bit, we need memory barrier here.
2983 * See mem_cgroup_add_lru_list(), etc.
2986 SetPageCgroupUsed(pc
);
2990 lruvec
= mem_cgroup_zone_lruvec(zone
, pc
->mem_cgroup
);
2991 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2993 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2995 spin_unlock_irq(&zone
->lru_lock
);
2998 if (ctype
== MEM_CGROUP_CHARGE_TYPE_ANON
)
3003 mem_cgroup_charge_statistics(memcg
, page
, anon
, nr_pages
);
3004 unlock_page_cgroup(pc
);
3007 * "charge_statistics" updated event counter. Then, check it.
3008 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
3009 * if they exceeds softlimit.
3011 memcg_check_events(memcg
, page
);
3014 static DEFINE_MUTEX(set_limit_mutex
);
3016 #ifdef CONFIG_MEMCG_KMEM
3017 static DEFINE_MUTEX(activate_kmem_mutex
);
3019 static inline bool memcg_can_account_kmem(struct mem_cgroup
*memcg
)
3021 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg
) &&
3022 memcg_kmem_is_active(memcg
);
3026 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
3027 * in the memcg_cache_params struct.
3029 static struct kmem_cache
*memcg_params_to_cache(struct memcg_cache_params
*p
)
3031 struct kmem_cache
*cachep
;
3033 VM_BUG_ON(p
->is_root_cache
);
3034 cachep
= p
->root_cache
;
3035 return cache_from_memcg_idx(cachep
, memcg_cache_id(p
->memcg
));
3038 #ifdef CONFIG_SLABINFO
3039 static int mem_cgroup_slabinfo_read(struct seq_file
*m
, void *v
)
3041 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3042 struct memcg_cache_params
*params
;
3044 if (!memcg_can_account_kmem(memcg
))
3047 print_slabinfo_header(m
);
3049 mutex_lock(&memcg
->slab_caches_mutex
);
3050 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
)
3051 cache_show(memcg_params_to_cache(params
), m
);
3052 mutex_unlock(&memcg
->slab_caches_mutex
);
3058 static int memcg_charge_kmem(struct mem_cgroup
*memcg
, gfp_t gfp
, u64 size
)
3060 struct res_counter
*fail_res
;
3061 struct mem_cgroup
*_memcg
;
3064 ret
= res_counter_charge(&memcg
->kmem
, size
, &fail_res
);
3069 ret
= __mem_cgroup_try_charge(NULL
, gfp
, size
>> PAGE_SHIFT
,
3070 &_memcg
, oom_gfp_allowed(gfp
));
3072 if (ret
== -EINTR
) {
3074 * __mem_cgroup_try_charge() chosed to bypass to root due to
3075 * OOM kill or fatal signal. Since our only options are to
3076 * either fail the allocation or charge it to this cgroup, do
3077 * it as a temporary condition. But we can't fail. From a
3078 * kmem/slab perspective, the cache has already been selected,
3079 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3082 * This condition will only trigger if the task entered
3083 * memcg_charge_kmem in a sane state, but was OOM-killed during
3084 * __mem_cgroup_try_charge() above. Tasks that were already
3085 * dying when the allocation triggers should have been already
3086 * directed to the root cgroup in memcontrol.h
3088 res_counter_charge_nofail(&memcg
->res
, size
, &fail_res
);
3089 if (do_swap_account
)
3090 res_counter_charge_nofail(&memcg
->memsw
, size
,
3094 res_counter_uncharge(&memcg
->kmem
, size
);
3099 static void memcg_uncharge_kmem(struct mem_cgroup
*memcg
, u64 size
)
3101 res_counter_uncharge(&memcg
->res
, size
);
3102 if (do_swap_account
)
3103 res_counter_uncharge(&memcg
->memsw
, size
);
3106 if (res_counter_uncharge(&memcg
->kmem
, size
))
3110 * Releases a reference taken in kmem_cgroup_css_offline in case
3111 * this last uncharge is racing with the offlining code or it is
3112 * outliving the memcg existence.
3114 * The memory barrier imposed by test&clear is paired with the
3115 * explicit one in memcg_kmem_mark_dead().
3117 if (memcg_kmem_test_and_clear_dead(memcg
))
3118 css_put(&memcg
->css
);
3122 * helper for acessing a memcg's index. It will be used as an index in the
3123 * child cache array in kmem_cache, and also to derive its name. This function
3124 * will return -1 when this is not a kmem-limited memcg.
3126 int memcg_cache_id(struct mem_cgroup
*memcg
)
3128 return memcg
? memcg
->kmemcg_id
: -1;
3131 static size_t memcg_caches_array_size(int num_groups
)
3134 if (num_groups
<= 0)
3137 size
= 2 * num_groups
;
3138 if (size
< MEMCG_CACHES_MIN_SIZE
)
3139 size
= MEMCG_CACHES_MIN_SIZE
;
3140 else if (size
> MEMCG_CACHES_MAX_SIZE
)
3141 size
= MEMCG_CACHES_MAX_SIZE
;
3147 * We should update the current array size iff all caches updates succeed. This
3148 * can only be done from the slab side. The slab mutex needs to be held when
3151 void memcg_update_array_size(int num
)
3153 if (num
> memcg_limited_groups_array_size
)
3154 memcg_limited_groups_array_size
= memcg_caches_array_size(num
);
3157 static void kmem_cache_destroy_work_func(struct work_struct
*w
);
3159 int memcg_update_cache_size(struct kmem_cache
*s
, int num_groups
)
3161 struct memcg_cache_params
*cur_params
= s
->memcg_params
;
3163 VM_BUG_ON(!is_root_cache(s
));
3165 if (num_groups
> memcg_limited_groups_array_size
) {
3167 struct memcg_cache_params
*new_params
;
3168 ssize_t size
= memcg_caches_array_size(num_groups
);
3170 size
*= sizeof(void *);
3171 size
+= offsetof(struct memcg_cache_params
, memcg_caches
);
3173 new_params
= kzalloc(size
, GFP_KERNEL
);
3177 new_params
->is_root_cache
= true;
3180 * There is the chance it will be bigger than
3181 * memcg_limited_groups_array_size, if we failed an allocation
3182 * in a cache, in which case all caches updated before it, will
3183 * have a bigger array.
3185 * But if that is the case, the data after
3186 * memcg_limited_groups_array_size is certainly unused
3188 for (i
= 0; i
< memcg_limited_groups_array_size
; i
++) {
3189 if (!cur_params
->memcg_caches
[i
])
3191 new_params
->memcg_caches
[i
] =
3192 cur_params
->memcg_caches
[i
];
3196 * Ideally, we would wait until all caches succeed, and only
3197 * then free the old one. But this is not worth the extra
3198 * pointer per-cache we'd have to have for this.
3200 * It is not a big deal if some caches are left with a size
3201 * bigger than the others. And all updates will reset this
3204 rcu_assign_pointer(s
->memcg_params
, new_params
);
3206 kfree_rcu(cur_params
, rcu_head
);
3211 int memcg_alloc_cache_params(struct mem_cgroup
*memcg
, struct kmem_cache
*s
,
3212 struct kmem_cache
*root_cache
)
3216 if (!memcg_kmem_enabled())
3220 size
= offsetof(struct memcg_cache_params
, memcg_caches
);
3221 size
+= memcg_limited_groups_array_size
* sizeof(void *);
3223 size
= sizeof(struct memcg_cache_params
);
3225 s
->memcg_params
= kzalloc(size
, GFP_KERNEL
);
3226 if (!s
->memcg_params
)
3230 s
->memcg_params
->memcg
= memcg
;
3231 s
->memcg_params
->root_cache
= root_cache
;
3232 INIT_WORK(&s
->memcg_params
->destroy
,
3233 kmem_cache_destroy_work_func
);
3235 s
->memcg_params
->is_root_cache
= true;
3240 void memcg_free_cache_params(struct kmem_cache
*s
)
3242 kfree(s
->memcg_params
);
3245 void memcg_register_cache(struct kmem_cache
*s
)
3247 struct kmem_cache
*root
;
3248 struct mem_cgroup
*memcg
;
3251 if (is_root_cache(s
))
3255 * Holding the slab_mutex assures nobody will touch the memcg_caches
3256 * array while we are modifying it.
3258 lockdep_assert_held(&slab_mutex
);
3260 root
= s
->memcg_params
->root_cache
;
3261 memcg
= s
->memcg_params
->memcg
;
3262 id
= memcg_cache_id(memcg
);
3264 css_get(&memcg
->css
);
3268 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3269 * barrier here to ensure nobody will see the kmem_cache partially
3275 * Initialize the pointer to this cache in its parent's memcg_params
3276 * before adding it to the memcg_slab_caches list, otherwise we can
3277 * fail to convert memcg_params_to_cache() while traversing the list.
3279 VM_BUG_ON(root
->memcg_params
->memcg_caches
[id
]);
3280 root
->memcg_params
->memcg_caches
[id
] = s
;
3282 mutex_lock(&memcg
->slab_caches_mutex
);
3283 list_add(&s
->memcg_params
->list
, &memcg
->memcg_slab_caches
);
3284 mutex_unlock(&memcg
->slab_caches_mutex
);
3287 void memcg_unregister_cache(struct kmem_cache
*s
)
3289 struct kmem_cache
*root
;
3290 struct mem_cgroup
*memcg
;
3293 if (is_root_cache(s
))
3297 * Holding the slab_mutex assures nobody will touch the memcg_caches
3298 * array while we are modifying it.
3300 lockdep_assert_held(&slab_mutex
);
3302 root
= s
->memcg_params
->root_cache
;
3303 memcg
= s
->memcg_params
->memcg
;
3304 id
= memcg_cache_id(memcg
);
3306 mutex_lock(&memcg
->slab_caches_mutex
);
3307 list_del(&s
->memcg_params
->list
);
3308 mutex_unlock(&memcg
->slab_caches_mutex
);
3311 * Clear the pointer to this cache in its parent's memcg_params only
3312 * after removing it from the memcg_slab_caches list, otherwise we can
3313 * fail to convert memcg_params_to_cache() while traversing the list.
3315 VM_BUG_ON(!root
->memcg_params
->memcg_caches
[id
]);
3316 root
->memcg_params
->memcg_caches
[id
] = NULL
;
3318 css_put(&memcg
->css
);
3322 * During the creation a new cache, we need to disable our accounting mechanism
3323 * altogether. This is true even if we are not creating, but rather just
3324 * enqueing new caches to be created.
3326 * This is because that process will trigger allocations; some visible, like
3327 * explicit kmallocs to auxiliary data structures, name strings and internal
3328 * cache structures; some well concealed, like INIT_WORK() that can allocate
3329 * objects during debug.
3331 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3332 * to it. This may not be a bounded recursion: since the first cache creation
3333 * failed to complete (waiting on the allocation), we'll just try to create the
3334 * cache again, failing at the same point.
3336 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3337 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3338 * inside the following two functions.
3340 static inline void memcg_stop_kmem_account(void)
3342 VM_BUG_ON(!current
->mm
);
3343 current
->memcg_kmem_skip_account
++;
3346 static inline void memcg_resume_kmem_account(void)
3348 VM_BUG_ON(!current
->mm
);
3349 current
->memcg_kmem_skip_account
--;
3352 static void kmem_cache_destroy_work_func(struct work_struct
*w
)
3354 struct kmem_cache
*cachep
;
3355 struct memcg_cache_params
*p
;
3357 p
= container_of(w
, struct memcg_cache_params
, destroy
);
3359 cachep
= memcg_params_to_cache(p
);
3362 * If we get down to 0 after shrink, we could delete right away.
3363 * However, memcg_release_pages() already puts us back in the workqueue
3364 * in that case. If we proceed deleting, we'll get a dangling
3365 * reference, and removing the object from the workqueue in that case
3366 * is unnecessary complication. We are not a fast path.
3368 * Note that this case is fundamentally different from racing with
3369 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3370 * kmem_cache_shrink, not only we would be reinserting a dead cache
3371 * into the queue, but doing so from inside the worker racing to
3374 * So if we aren't down to zero, we'll just schedule a worker and try
3377 if (atomic_read(&cachep
->memcg_params
->nr_pages
) != 0)
3378 kmem_cache_shrink(cachep
);
3380 kmem_cache_destroy(cachep
);
3383 void mem_cgroup_destroy_cache(struct kmem_cache
*cachep
)
3385 if (!cachep
->memcg_params
->dead
)
3389 * There are many ways in which we can get here.
3391 * We can get to a memory-pressure situation while the delayed work is
3392 * still pending to run. The vmscan shrinkers can then release all
3393 * cache memory and get us to destruction. If this is the case, we'll
3394 * be executed twice, which is a bug (the second time will execute over
3395 * bogus data). In this case, cancelling the work should be fine.
3397 * But we can also get here from the worker itself, if
3398 * kmem_cache_shrink is enough to shake all the remaining objects and
3399 * get the page count to 0. In this case, we'll deadlock if we try to
3400 * cancel the work (the worker runs with an internal lock held, which
3401 * is the same lock we would hold for cancel_work_sync().)
3403 * Since we can't possibly know who got us here, just refrain from
3404 * running if there is already work pending
3406 if (work_pending(&cachep
->memcg_params
->destroy
))
3409 * We have to defer the actual destroying to a workqueue, because
3410 * we might currently be in a context that cannot sleep.
3412 schedule_work(&cachep
->memcg_params
->destroy
);
3415 static struct kmem_cache
*memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
3416 struct kmem_cache
*s
)
3418 struct kmem_cache
*new = NULL
;
3419 static char *tmp_name
= NULL
;
3420 static DEFINE_MUTEX(mutex
); /* protects tmp_name */
3422 BUG_ON(!memcg_can_account_kmem(memcg
));
3426 * kmem_cache_create_memcg duplicates the given name and
3427 * cgroup_name for this name requires RCU context.
3428 * This static temporary buffer is used to prevent from
3429 * pointless shortliving allocation.
3432 tmp_name
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3438 snprintf(tmp_name
, PATH_MAX
, "%s(%d:%s)", s
->name
,
3439 memcg_cache_id(memcg
), cgroup_name(memcg
->css
.cgroup
));
3442 new = kmem_cache_create_memcg(memcg
, tmp_name
, s
->object_size
, s
->align
,
3443 (s
->flags
& ~SLAB_PANIC
), s
->ctor
, s
);
3445 new->allocflags
|= __GFP_KMEMCG
;
3449 mutex_unlock(&mutex
);
3453 void kmem_cache_destroy_memcg_children(struct kmem_cache
*s
)
3455 struct kmem_cache
*c
;
3458 if (!s
->memcg_params
)
3460 if (!s
->memcg_params
->is_root_cache
)
3464 * If the cache is being destroyed, we trust that there is no one else
3465 * requesting objects from it. Even if there are, the sanity checks in
3466 * kmem_cache_destroy should caught this ill-case.
3468 * Still, we don't want anyone else freeing memcg_caches under our
3469 * noses, which can happen if a new memcg comes to life. As usual,
3470 * we'll take the activate_kmem_mutex to protect ourselves against
3473 mutex_lock(&activate_kmem_mutex
);
3474 for_each_memcg_cache_index(i
) {
3475 c
= cache_from_memcg_idx(s
, i
);
3480 * We will now manually delete the caches, so to avoid races
3481 * we need to cancel all pending destruction workers and
3482 * proceed with destruction ourselves.
3484 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3485 * and that could spawn the workers again: it is likely that
3486 * the cache still have active pages until this very moment.
3487 * This would lead us back to mem_cgroup_destroy_cache.
3489 * But that will not execute at all if the "dead" flag is not
3490 * set, so flip it down to guarantee we are in control.
3492 c
->memcg_params
->dead
= false;
3493 cancel_work_sync(&c
->memcg_params
->destroy
);
3494 kmem_cache_destroy(c
);
3496 mutex_unlock(&activate_kmem_mutex
);
3499 struct create_work
{
3500 struct mem_cgroup
*memcg
;
3501 struct kmem_cache
*cachep
;
3502 struct work_struct work
;
3505 static void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3507 struct kmem_cache
*cachep
;
3508 struct memcg_cache_params
*params
;
3510 if (!memcg_kmem_is_active(memcg
))
3513 mutex_lock(&memcg
->slab_caches_mutex
);
3514 list_for_each_entry(params
, &memcg
->memcg_slab_caches
, list
) {
3515 cachep
= memcg_params_to_cache(params
);
3516 cachep
->memcg_params
->dead
= true;
3517 schedule_work(&cachep
->memcg_params
->destroy
);
3519 mutex_unlock(&memcg
->slab_caches_mutex
);
3522 static void memcg_create_cache_work_func(struct work_struct
*w
)
3524 struct create_work
*cw
;
3526 cw
= container_of(w
, struct create_work
, work
);
3527 memcg_create_kmem_cache(cw
->memcg
, cw
->cachep
);
3528 css_put(&cw
->memcg
->css
);
3533 * Enqueue the creation of a per-memcg kmem_cache.
3535 static void __memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3536 struct kmem_cache
*cachep
)
3538 struct create_work
*cw
;
3540 cw
= kmalloc(sizeof(struct create_work
), GFP_NOWAIT
);
3542 css_put(&memcg
->css
);
3547 cw
->cachep
= cachep
;
3549 INIT_WORK(&cw
->work
, memcg_create_cache_work_func
);
3550 schedule_work(&cw
->work
);
3553 static void memcg_create_cache_enqueue(struct mem_cgroup
*memcg
,
3554 struct kmem_cache
*cachep
)
3557 * We need to stop accounting when we kmalloc, because if the
3558 * corresponding kmalloc cache is not yet created, the first allocation
3559 * in __memcg_create_cache_enqueue will recurse.
3561 * However, it is better to enclose the whole function. Depending on
3562 * the debugging options enabled, INIT_WORK(), for instance, can
3563 * trigger an allocation. This too, will make us recurse. Because at
3564 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3565 * the safest choice is to do it like this, wrapping the whole function.
3567 memcg_stop_kmem_account();
3568 __memcg_create_cache_enqueue(memcg
, cachep
);
3569 memcg_resume_kmem_account();
3572 * Return the kmem_cache we're supposed to use for a slab allocation.
3573 * We try to use the current memcg's version of the cache.
3575 * If the cache does not exist yet, if we are the first user of it,
3576 * we either create it immediately, if possible, or create it asynchronously
3578 * In the latter case, we will let the current allocation go through with
3579 * the original cache.
3581 * Can't be called in interrupt context or from kernel threads.
3582 * This function needs to be called with rcu_read_lock() held.
3584 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
,
3587 struct mem_cgroup
*memcg
;
3588 struct kmem_cache
*memcg_cachep
;
3590 VM_BUG_ON(!cachep
->memcg_params
);
3591 VM_BUG_ON(!cachep
->memcg_params
->is_root_cache
);
3593 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3597 memcg
= mem_cgroup_from_task(rcu_dereference(current
->mm
->owner
));
3599 if (!memcg_can_account_kmem(memcg
))
3602 memcg_cachep
= cache_from_memcg_idx(cachep
, memcg_cache_id(memcg
));
3603 if (likely(memcg_cachep
)) {
3604 cachep
= memcg_cachep
;
3608 /* The corresponding put will be done in the workqueue. */
3609 if (!css_tryget(&memcg
->css
))
3614 * If we are in a safe context (can wait, and not in interrupt
3615 * context), we could be be predictable and return right away.
3616 * This would guarantee that the allocation being performed
3617 * already belongs in the new cache.
3619 * However, there are some clashes that can arrive from locking.
3620 * For instance, because we acquire the slab_mutex while doing
3621 * kmem_cache_dup, this means no further allocation could happen
3622 * with the slab_mutex held.
3624 * Also, because cache creation issue get_online_cpus(), this
3625 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3626 * that ends up reversed during cpu hotplug. (cpuset allocates
3627 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3628 * better to defer everything.
3630 memcg_create_cache_enqueue(memcg
, cachep
);
3636 EXPORT_SYMBOL(__memcg_kmem_get_cache
);
3639 * We need to verify if the allocation against current->mm->owner's memcg is
3640 * possible for the given order. But the page is not allocated yet, so we'll
3641 * need a further commit step to do the final arrangements.
3643 * It is possible for the task to switch cgroups in this mean time, so at
3644 * commit time, we can't rely on task conversion any longer. We'll then use
3645 * the handle argument to return to the caller which cgroup we should commit
3646 * against. We could also return the memcg directly and avoid the pointer
3647 * passing, but a boolean return value gives better semantics considering
3648 * the compiled-out case as well.
3650 * Returning true means the allocation is possible.
3653 __memcg_kmem_newpage_charge(gfp_t gfp
, struct mem_cgroup
**_memcg
, int order
)
3655 struct mem_cgroup
*memcg
;
3661 * Disabling accounting is only relevant for some specific memcg
3662 * internal allocations. Therefore we would initially not have such
3663 * check here, since direct calls to the page allocator that are marked
3664 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3665 * concerned with cache allocations, and by having this test at
3666 * memcg_kmem_get_cache, we are already able to relay the allocation to
3667 * the root cache and bypass the memcg cache altogether.
3669 * There is one exception, though: the SLUB allocator does not create
3670 * large order caches, but rather service large kmallocs directly from
3671 * the page allocator. Therefore, the following sequence when backed by
3672 * the SLUB allocator:
3674 * memcg_stop_kmem_account();
3675 * kmalloc(<large_number>)
3676 * memcg_resume_kmem_account();
3678 * would effectively ignore the fact that we should skip accounting,
3679 * since it will drive us directly to this function without passing
3680 * through the cache selector memcg_kmem_get_cache. Such large
3681 * allocations are extremely rare but can happen, for instance, for the
3682 * cache arrays. We bring this test here.
3684 if (!current
->mm
|| current
->memcg_kmem_skip_account
)
3687 memcg
= try_get_mem_cgroup_from_mm(current
->mm
);
3690 * very rare case described in mem_cgroup_from_task. Unfortunately there
3691 * isn't much we can do without complicating this too much, and it would
3692 * be gfp-dependent anyway. Just let it go
3694 if (unlikely(!memcg
))
3697 if (!memcg_can_account_kmem(memcg
)) {
3698 css_put(&memcg
->css
);
3702 ret
= memcg_charge_kmem(memcg
, gfp
, PAGE_SIZE
<< order
);
3706 css_put(&memcg
->css
);
3710 void __memcg_kmem_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
3713 struct page_cgroup
*pc
;
3715 VM_BUG_ON(mem_cgroup_is_root(memcg
));
3717 /* The page allocation failed. Revert */
3719 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3723 pc
= lookup_page_cgroup(page
);
3724 lock_page_cgroup(pc
);
3725 pc
->mem_cgroup
= memcg
;
3726 SetPageCgroupUsed(pc
);
3727 unlock_page_cgroup(pc
);
3730 void __memcg_kmem_uncharge_pages(struct page
*page
, int order
)
3732 struct mem_cgroup
*memcg
= NULL
;
3733 struct page_cgroup
*pc
;
3736 pc
= lookup_page_cgroup(page
);
3738 * Fast unlocked return. Theoretically might have changed, have to
3739 * check again after locking.
3741 if (!PageCgroupUsed(pc
))
3744 lock_page_cgroup(pc
);
3745 if (PageCgroupUsed(pc
)) {
3746 memcg
= pc
->mem_cgroup
;
3747 ClearPageCgroupUsed(pc
);
3749 unlock_page_cgroup(pc
);
3752 * We trust that only if there is a memcg associated with the page, it
3753 * is a valid allocation
3758 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
3759 memcg_uncharge_kmem(memcg
, PAGE_SIZE
<< order
);
3762 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup
*memcg
)
3765 #endif /* CONFIG_MEMCG_KMEM */
3767 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3769 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3771 * Because tail pages are not marked as "used", set it. We're under
3772 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3773 * charge/uncharge will be never happen and move_account() is done under
3774 * compound_lock(), so we don't have to take care of races.
3776 void mem_cgroup_split_huge_fixup(struct page
*head
)
3778 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
3779 struct page_cgroup
*pc
;
3780 struct mem_cgroup
*memcg
;
3783 if (mem_cgroup_disabled())
3786 memcg
= head_pc
->mem_cgroup
;
3787 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
3789 pc
->mem_cgroup
= memcg
;
3790 smp_wmb();/* see __commit_charge() */
3791 pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
3793 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
3796 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3799 void mem_cgroup_move_account_page_stat(struct mem_cgroup
*from
,
3800 struct mem_cgroup
*to
,
3801 unsigned int nr_pages
,
3802 enum mem_cgroup_stat_index idx
)
3804 /* Update stat data for mem_cgroup */
3806 __this_cpu_sub(from
->stat
->count
[idx
], nr_pages
);
3807 __this_cpu_add(to
->stat
->count
[idx
], nr_pages
);
3812 * mem_cgroup_move_account - move account of the page
3814 * @nr_pages: number of regular pages (>1 for huge pages)
3815 * @pc: page_cgroup of the page.
3816 * @from: mem_cgroup which the page is moved from.
3817 * @to: mem_cgroup which the page is moved to. @from != @to.
3819 * The caller must confirm following.
3820 * - page is not on LRU (isolate_page() is useful.)
3821 * - compound_lock is held when nr_pages > 1
3823 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3826 static int mem_cgroup_move_account(struct page
*page
,
3827 unsigned int nr_pages
,
3828 struct page_cgroup
*pc
,
3829 struct mem_cgroup
*from
,
3830 struct mem_cgroup
*to
)
3832 unsigned long flags
;
3834 bool anon
= PageAnon(page
);
3836 VM_BUG_ON(from
== to
);
3837 VM_BUG_ON_PAGE(PageLRU(page
), page
);
3839 * The page is isolated from LRU. So, collapse function
3840 * will not handle this page. But page splitting can happen.
3841 * Do this check under compound_page_lock(). The caller should
3845 if (nr_pages
> 1 && !PageTransHuge(page
))
3848 lock_page_cgroup(pc
);
3851 if (!PageCgroupUsed(pc
) || pc
->mem_cgroup
!= from
)
3854 move_lock_mem_cgroup(from
, &flags
);
3856 if (!anon
&& page_mapped(page
))
3857 mem_cgroup_move_account_page_stat(from
, to
, nr_pages
,
3858 MEM_CGROUP_STAT_FILE_MAPPED
);
3860 if (PageWriteback(page
))
3861 mem_cgroup_move_account_page_stat(from
, to
, nr_pages
,
3862 MEM_CGROUP_STAT_WRITEBACK
);
3864 mem_cgroup_charge_statistics(from
, page
, anon
, -nr_pages
);
3866 /* caller should have done css_get */
3867 pc
->mem_cgroup
= to
;
3868 mem_cgroup_charge_statistics(to
, page
, anon
, nr_pages
);
3869 move_unlock_mem_cgroup(from
, &flags
);
3872 unlock_page_cgroup(pc
);
3876 memcg_check_events(to
, page
);
3877 memcg_check_events(from
, page
);
3883 * mem_cgroup_move_parent - moves page to the parent group
3884 * @page: the page to move
3885 * @pc: page_cgroup of the page
3886 * @child: page's cgroup
3888 * move charges to its parent or the root cgroup if the group has no
3889 * parent (aka use_hierarchy==0).
3890 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3891 * mem_cgroup_move_account fails) the failure is always temporary and
3892 * it signals a race with a page removal/uncharge or migration. In the
3893 * first case the page is on the way out and it will vanish from the LRU
3894 * on the next attempt and the call should be retried later.
3895 * Isolation from the LRU fails only if page has been isolated from
3896 * the LRU since we looked at it and that usually means either global
3897 * reclaim or migration going on. The page will either get back to the
3899 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3900 * (!PageCgroupUsed) or moved to a different group. The page will
3901 * disappear in the next attempt.
3903 static int mem_cgroup_move_parent(struct page
*page
,
3904 struct page_cgroup
*pc
,
3905 struct mem_cgroup
*child
)
3907 struct mem_cgroup
*parent
;
3908 unsigned int nr_pages
;
3909 unsigned long uninitialized_var(flags
);
3912 VM_BUG_ON(mem_cgroup_is_root(child
));
3915 if (!get_page_unless_zero(page
))
3917 if (isolate_lru_page(page
))
3920 nr_pages
= hpage_nr_pages(page
);
3922 parent
= parent_mem_cgroup(child
);
3924 * If no parent, move charges to root cgroup.
3927 parent
= root_mem_cgroup
;
3930 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3931 flags
= compound_lock_irqsave(page
);
3934 ret
= mem_cgroup_move_account(page
, nr_pages
,
3937 __mem_cgroup_cancel_local_charge(child
, nr_pages
);
3940 compound_unlock_irqrestore(page
, flags
);
3941 putback_lru_page(page
);
3949 * Charge the memory controller for page usage.
3951 * 0 if the charge was successful
3952 * < 0 if the cgroup is over its limit
3954 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
3955 gfp_t gfp_mask
, enum charge_type ctype
)
3957 struct mem_cgroup
*memcg
= NULL
;
3958 unsigned int nr_pages
= 1;
3962 if (PageTransHuge(page
)) {
3963 nr_pages
<<= compound_order(page
);
3964 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
3966 * Never OOM-kill a process for a huge page. The
3967 * fault handler will fall back to regular pages.
3972 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, nr_pages
, &memcg
, oom
);
3975 __mem_cgroup_commit_charge(memcg
, page
, nr_pages
, ctype
, false);
3979 int mem_cgroup_newpage_charge(struct page
*page
,
3980 struct mm_struct
*mm
, gfp_t gfp_mask
)
3982 if (mem_cgroup_disabled())
3984 VM_BUG_ON_PAGE(page_mapped(page
), page
);
3985 VM_BUG_ON_PAGE(page
->mapping
&& !PageAnon(page
), page
);
3987 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
3988 MEM_CGROUP_CHARGE_TYPE_ANON
);
3992 * While swap-in, try_charge -> commit or cancel, the page is locked.
3993 * And when try_charge() successfully returns, one refcnt to memcg without
3994 * struct page_cgroup is acquired. This refcnt will be consumed by
3995 * "commit()" or removed by "cancel()"
3997 static int __mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
4000 struct mem_cgroup
**memcgp
)
4002 struct mem_cgroup
*memcg
;
4003 struct page_cgroup
*pc
;
4006 pc
= lookup_page_cgroup(page
);
4008 * Every swap fault against a single page tries to charge the
4009 * page, bail as early as possible. shmem_unuse() encounters
4010 * already charged pages, too. The USED bit is protected by
4011 * the page lock, which serializes swap cache removal, which
4012 * in turn serializes uncharging.
4014 if (PageCgroupUsed(pc
))
4016 if (!do_swap_account
)
4018 memcg
= try_get_mem_cgroup_from_page(page
);
4022 ret
= __mem_cgroup_try_charge(NULL
, mask
, 1, memcgp
, true);
4023 css_put(&memcg
->css
);
4028 ret
= __mem_cgroup_try_charge(mm
, mask
, 1, memcgp
, true);
4034 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
, struct page
*page
,
4035 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
)
4038 if (mem_cgroup_disabled())
4041 * A racing thread's fault, or swapoff, may have already
4042 * updated the pte, and even removed page from swap cache: in
4043 * those cases unuse_pte()'s pte_same() test will fail; but
4044 * there's also a KSM case which does need to charge the page.
4046 if (!PageSwapCache(page
)) {
4049 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, 1, memcgp
, true);
4054 return __mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, memcgp
);
4057 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*memcg
)
4059 if (mem_cgroup_disabled())
4063 __mem_cgroup_cancel_charge(memcg
, 1);
4067 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*memcg
,
4068 enum charge_type ctype
)
4070 if (mem_cgroup_disabled())
4075 __mem_cgroup_commit_charge(memcg
, page
, 1, ctype
, true);
4077 * Now swap is on-memory. This means this page may be
4078 * counted both as mem and swap....double count.
4079 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4080 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4081 * may call delete_from_swap_cache() before reach here.
4083 if (do_swap_account
&& PageSwapCache(page
)) {
4084 swp_entry_t ent
= {.val
= page_private(page
)};
4085 mem_cgroup_uncharge_swap(ent
);
4089 void mem_cgroup_commit_charge_swapin(struct page
*page
,
4090 struct mem_cgroup
*memcg
)
4092 __mem_cgroup_commit_charge_swapin(page
, memcg
,
4093 MEM_CGROUP_CHARGE_TYPE_ANON
);
4096 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
4099 struct mem_cgroup
*memcg
= NULL
;
4100 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4103 if (mem_cgroup_disabled())
4105 if (PageCompound(page
))
4108 if (!PageSwapCache(page
))
4109 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
, type
);
4110 else { /* page is swapcache/shmem */
4111 ret
= __mem_cgroup_try_charge_swapin(mm
, page
,
4114 __mem_cgroup_commit_charge_swapin(page
, memcg
, type
);
4119 static void mem_cgroup_do_uncharge(struct mem_cgroup
*memcg
,
4120 unsigned int nr_pages
,
4121 const enum charge_type ctype
)
4123 struct memcg_batch_info
*batch
= NULL
;
4124 bool uncharge_memsw
= true;
4126 /* If swapout, usage of swap doesn't decrease */
4127 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
4128 uncharge_memsw
= false;
4130 batch
= ¤t
->memcg_batch
;
4132 * In usual, we do css_get() when we remember memcg pointer.
4133 * But in this case, we keep res->usage until end of a series of
4134 * uncharges. Then, it's ok to ignore memcg's refcnt.
4137 batch
->memcg
= memcg
;
4139 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4140 * In those cases, all pages freed continuously can be expected to be in
4141 * the same cgroup and we have chance to coalesce uncharges.
4142 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4143 * because we want to do uncharge as soon as possible.
4146 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
4147 goto direct_uncharge
;
4150 goto direct_uncharge
;
4153 * In typical case, batch->memcg == mem. This means we can
4154 * merge a series of uncharges to an uncharge of res_counter.
4155 * If not, we uncharge res_counter ony by one.
4157 if (batch
->memcg
!= memcg
)
4158 goto direct_uncharge
;
4159 /* remember freed charge and uncharge it later */
4162 batch
->memsw_nr_pages
++;
4165 res_counter_uncharge(&memcg
->res
, nr_pages
* PAGE_SIZE
);
4167 res_counter_uncharge(&memcg
->memsw
, nr_pages
* PAGE_SIZE
);
4168 if (unlikely(batch
->memcg
!= memcg
))
4169 memcg_oom_recover(memcg
);
4173 * uncharge if !page_mapped(page)
4175 static struct mem_cgroup
*
4176 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
,
4179 struct mem_cgroup
*memcg
= NULL
;
4180 unsigned int nr_pages
= 1;
4181 struct page_cgroup
*pc
;
4184 if (mem_cgroup_disabled())
4187 if (PageTransHuge(page
)) {
4188 nr_pages
<<= compound_order(page
);
4189 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
4192 * Check if our page_cgroup is valid
4194 pc
= lookup_page_cgroup(page
);
4195 if (unlikely(!PageCgroupUsed(pc
)))
4198 lock_page_cgroup(pc
);
4200 memcg
= pc
->mem_cgroup
;
4202 if (!PageCgroupUsed(pc
))
4205 anon
= PageAnon(page
);
4208 case MEM_CGROUP_CHARGE_TYPE_ANON
:
4210 * Generally PageAnon tells if it's the anon statistics to be
4211 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4212 * used before page reached the stage of being marked PageAnon.
4216 case MEM_CGROUP_CHARGE_TYPE_DROP
:
4217 /* See mem_cgroup_prepare_migration() */
4218 if (page_mapped(page
))
4221 * Pages under migration may not be uncharged. But
4222 * end_migration() /must/ be the one uncharging the
4223 * unused post-migration page and so it has to call
4224 * here with the migration bit still set. See the
4225 * res_counter handling below.
4227 if (!end_migration
&& PageCgroupMigration(pc
))
4230 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
4231 if (!PageAnon(page
)) { /* Shared memory */
4232 if (page
->mapping
&& !page_is_file_cache(page
))
4234 } else if (page_mapped(page
)) /* Anon */
4241 mem_cgroup_charge_statistics(memcg
, page
, anon
, -nr_pages
);
4243 ClearPageCgroupUsed(pc
);
4245 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4246 * freed from LRU. This is safe because uncharged page is expected not
4247 * to be reused (freed soon). Exception is SwapCache, it's handled by
4248 * special functions.
4251 unlock_page_cgroup(pc
);
4253 * even after unlock, we have memcg->res.usage here and this memcg
4254 * will never be freed, so it's safe to call css_get().
4256 memcg_check_events(memcg
, page
);
4257 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
4258 mem_cgroup_swap_statistics(memcg
, true);
4259 css_get(&memcg
->css
);
4262 * Migration does not charge the res_counter for the
4263 * replacement page, so leave it alone when phasing out the
4264 * page that is unused after the migration.
4266 if (!end_migration
&& !mem_cgroup_is_root(memcg
))
4267 mem_cgroup_do_uncharge(memcg
, nr_pages
, ctype
);
4272 unlock_page_cgroup(pc
);
4276 void mem_cgroup_uncharge_page(struct page
*page
)
4279 if (page_mapped(page
))
4281 VM_BUG_ON_PAGE(page
->mapping
&& !PageAnon(page
), page
);
4283 * If the page is in swap cache, uncharge should be deferred
4284 * to the swap path, which also properly accounts swap usage
4285 * and handles memcg lifetime.
4287 * Note that this check is not stable and reclaim may add the
4288 * page to swap cache at any time after this. However, if the
4289 * page is not in swap cache by the time page->mapcount hits
4290 * 0, there won't be any page table references to the swap
4291 * slot, and reclaim will free it and not actually write the
4294 if (PageSwapCache(page
))
4296 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_ANON
, false);
4299 void mem_cgroup_uncharge_cache_page(struct page
*page
)
4301 VM_BUG_ON_PAGE(page_mapped(page
), page
);
4302 VM_BUG_ON_PAGE(page
->mapping
, page
);
4303 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
, false);
4307 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4308 * In that cases, pages are freed continuously and we can expect pages
4309 * are in the same memcg. All these calls itself limits the number of
4310 * pages freed at once, then uncharge_start/end() is called properly.
4311 * This may be called prural(2) times in a context,
4314 void mem_cgroup_uncharge_start(void)
4316 current
->memcg_batch
.do_batch
++;
4317 /* We can do nest. */
4318 if (current
->memcg_batch
.do_batch
== 1) {
4319 current
->memcg_batch
.memcg
= NULL
;
4320 current
->memcg_batch
.nr_pages
= 0;
4321 current
->memcg_batch
.memsw_nr_pages
= 0;
4325 void mem_cgroup_uncharge_end(void)
4327 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
4329 if (!batch
->do_batch
)
4333 if (batch
->do_batch
) /* If stacked, do nothing. */
4339 * This "batch->memcg" is valid without any css_get/put etc...
4340 * bacause we hide charges behind us.
4342 if (batch
->nr_pages
)
4343 res_counter_uncharge(&batch
->memcg
->res
,
4344 batch
->nr_pages
* PAGE_SIZE
);
4345 if (batch
->memsw_nr_pages
)
4346 res_counter_uncharge(&batch
->memcg
->memsw
,
4347 batch
->memsw_nr_pages
* PAGE_SIZE
);
4348 memcg_oom_recover(batch
->memcg
);
4349 /* forget this pointer (for sanity check) */
4350 batch
->memcg
= NULL
;
4355 * called after __delete_from_swap_cache() and drop "page" account.
4356 * memcg information is recorded to swap_cgroup of "ent"
4359 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
4361 struct mem_cgroup
*memcg
;
4362 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
4364 if (!swapout
) /* this was a swap cache but the swap is unused ! */
4365 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
4367 memcg
= __mem_cgroup_uncharge_common(page
, ctype
, false);
4370 * record memcg information, if swapout && memcg != NULL,
4371 * css_get() was called in uncharge().
4373 if (do_swap_account
&& swapout
&& memcg
)
4374 swap_cgroup_record(ent
, mem_cgroup_id(memcg
));
4378 #ifdef CONFIG_MEMCG_SWAP
4380 * called from swap_entry_free(). remove record in swap_cgroup and
4381 * uncharge "memsw" account.
4383 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
4385 struct mem_cgroup
*memcg
;
4388 if (!do_swap_account
)
4391 id
= swap_cgroup_record(ent
, 0);
4393 memcg
= mem_cgroup_lookup(id
);
4396 * We uncharge this because swap is freed.
4397 * This memcg can be obsolete one. We avoid calling css_tryget
4399 if (!mem_cgroup_is_root(memcg
))
4400 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
4401 mem_cgroup_swap_statistics(memcg
, false);
4402 css_put(&memcg
->css
);
4408 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4409 * @entry: swap entry to be moved
4410 * @from: mem_cgroup which the entry is moved from
4411 * @to: mem_cgroup which the entry is moved to
4413 * It succeeds only when the swap_cgroup's record for this entry is the same
4414 * as the mem_cgroup's id of @from.
4416 * Returns 0 on success, -EINVAL on failure.
4418 * The caller must have charged to @to, IOW, called res_counter_charge() about
4419 * both res and memsw, and called css_get().
4421 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
4422 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4424 unsigned short old_id
, new_id
;
4426 old_id
= mem_cgroup_id(from
);
4427 new_id
= mem_cgroup_id(to
);
4429 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
4430 mem_cgroup_swap_statistics(from
, false);
4431 mem_cgroup_swap_statistics(to
, true);
4433 * This function is only called from task migration context now.
4434 * It postpones res_counter and refcount handling till the end
4435 * of task migration(mem_cgroup_clear_mc()) for performance
4436 * improvement. But we cannot postpone css_get(to) because if
4437 * the process that has been moved to @to does swap-in, the
4438 * refcount of @to might be decreased to 0.
4440 * We are in attach() phase, so the cgroup is guaranteed to be
4441 * alive, so we can just call css_get().
4449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
4450 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
4457 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4460 void mem_cgroup_prepare_migration(struct page
*page
, struct page
*newpage
,
4461 struct mem_cgroup
**memcgp
)
4463 struct mem_cgroup
*memcg
= NULL
;
4464 unsigned int nr_pages
= 1;
4465 struct page_cgroup
*pc
;
4466 enum charge_type ctype
;
4470 if (mem_cgroup_disabled())
4473 if (PageTransHuge(page
))
4474 nr_pages
<<= compound_order(page
);
4476 pc
= lookup_page_cgroup(page
);
4477 lock_page_cgroup(pc
);
4478 if (PageCgroupUsed(pc
)) {
4479 memcg
= pc
->mem_cgroup
;
4480 css_get(&memcg
->css
);
4482 * At migrating an anonymous page, its mapcount goes down
4483 * to 0 and uncharge() will be called. But, even if it's fully
4484 * unmapped, migration may fail and this page has to be
4485 * charged again. We set MIGRATION flag here and delay uncharge
4486 * until end_migration() is called
4488 * Corner Case Thinking
4490 * When the old page was mapped as Anon and it's unmap-and-freed
4491 * while migration was ongoing.
4492 * If unmap finds the old page, uncharge() of it will be delayed
4493 * until end_migration(). If unmap finds a new page, it's
4494 * uncharged when it make mapcount to be 1->0. If unmap code
4495 * finds swap_migration_entry, the new page will not be mapped
4496 * and end_migration() will find it(mapcount==0).
4499 * When the old page was mapped but migraion fails, the kernel
4500 * remaps it. A charge for it is kept by MIGRATION flag even
4501 * if mapcount goes down to 0. We can do remap successfully
4502 * without charging it again.
4505 * The "old" page is under lock_page() until the end of
4506 * migration, so, the old page itself will not be swapped-out.
4507 * If the new page is swapped out before end_migraton, our
4508 * hook to usual swap-out path will catch the event.
4511 SetPageCgroupMigration(pc
);
4513 unlock_page_cgroup(pc
);
4515 * If the page is not charged at this point,
4523 * We charge new page before it's used/mapped. So, even if unlock_page()
4524 * is called before end_migration, we can catch all events on this new
4525 * page. In the case new page is migrated but not remapped, new page's
4526 * mapcount will be finally 0 and we call uncharge in end_migration().
4529 ctype
= MEM_CGROUP_CHARGE_TYPE_ANON
;
4531 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4533 * The page is committed to the memcg, but it's not actually
4534 * charged to the res_counter since we plan on replacing the
4535 * old one and only one page is going to be left afterwards.
4537 __mem_cgroup_commit_charge(memcg
, newpage
, nr_pages
, ctype
, false);
4540 /* remove redundant charge if migration failed*/
4541 void mem_cgroup_end_migration(struct mem_cgroup
*memcg
,
4542 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
4544 struct page
*used
, *unused
;
4545 struct page_cgroup
*pc
;
4551 if (!migration_ok
) {
4558 anon
= PageAnon(used
);
4559 __mem_cgroup_uncharge_common(unused
,
4560 anon
? MEM_CGROUP_CHARGE_TYPE_ANON
4561 : MEM_CGROUP_CHARGE_TYPE_CACHE
,
4563 css_put(&memcg
->css
);
4565 * We disallowed uncharge of pages under migration because mapcount
4566 * of the page goes down to zero, temporarly.
4567 * Clear the flag and check the page should be charged.
4569 pc
= lookup_page_cgroup(oldpage
);
4570 lock_page_cgroup(pc
);
4571 ClearPageCgroupMigration(pc
);
4572 unlock_page_cgroup(pc
);
4575 * If a page is a file cache, radix-tree replacement is very atomic
4576 * and we can skip this check. When it was an Anon page, its mapcount
4577 * goes down to 0. But because we added MIGRATION flage, it's not
4578 * uncharged yet. There are several case but page->mapcount check
4579 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4580 * check. (see prepare_charge() also)
4583 mem_cgroup_uncharge_page(used
);
4587 * At replace page cache, newpage is not under any memcg but it's on
4588 * LRU. So, this function doesn't touch res_counter but handles LRU
4589 * in correct way. Both pages are locked so we cannot race with uncharge.
4591 void mem_cgroup_replace_page_cache(struct page
*oldpage
,
4592 struct page
*newpage
)
4594 struct mem_cgroup
*memcg
= NULL
;
4595 struct page_cgroup
*pc
;
4596 enum charge_type type
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
4598 if (mem_cgroup_disabled())
4601 pc
= lookup_page_cgroup(oldpage
);
4602 /* fix accounting on old pages */
4603 lock_page_cgroup(pc
);
4604 if (PageCgroupUsed(pc
)) {
4605 memcg
= pc
->mem_cgroup
;
4606 mem_cgroup_charge_statistics(memcg
, oldpage
, false, -1);
4607 ClearPageCgroupUsed(pc
);
4609 unlock_page_cgroup(pc
);
4612 * When called from shmem_replace_page(), in some cases the
4613 * oldpage has already been charged, and in some cases not.
4618 * Even if newpage->mapping was NULL before starting replacement,
4619 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4620 * LRU while we overwrite pc->mem_cgroup.
4622 __mem_cgroup_commit_charge(memcg
, newpage
, 1, type
, true);
4625 #ifdef CONFIG_DEBUG_VM
4626 static struct page_cgroup
*lookup_page_cgroup_used(struct page
*page
)
4628 struct page_cgroup
*pc
;
4630 pc
= lookup_page_cgroup(page
);
4632 * Can be NULL while feeding pages into the page allocator for
4633 * the first time, i.e. during boot or memory hotplug;
4634 * or when mem_cgroup_disabled().
4636 if (likely(pc
) && PageCgroupUsed(pc
))
4641 bool mem_cgroup_bad_page_check(struct page
*page
)
4643 if (mem_cgroup_disabled())
4646 return lookup_page_cgroup_used(page
) != NULL
;
4649 void mem_cgroup_print_bad_page(struct page
*page
)
4651 struct page_cgroup
*pc
;
4653 pc
= lookup_page_cgroup_used(page
);
4655 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4656 pc
, pc
->flags
, pc
->mem_cgroup
);
4661 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
4662 unsigned long long val
)
4665 u64 memswlimit
, memlimit
;
4667 int children
= mem_cgroup_count_children(memcg
);
4668 u64 curusage
, oldusage
;
4672 * For keeping hierarchical_reclaim simple, how long we should retry
4673 * is depends on callers. We set our retry-count to be function
4674 * of # of children which we should visit in this loop.
4676 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
4678 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4681 while (retry_count
) {
4682 if (signal_pending(current
)) {
4687 * Rather than hide all in some function, I do this in
4688 * open coded manner. You see what this really does.
4689 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4691 mutex_lock(&set_limit_mutex
);
4692 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4693 if (memswlimit
< val
) {
4695 mutex_unlock(&set_limit_mutex
);
4699 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4703 ret
= res_counter_set_limit(&memcg
->res
, val
);
4705 if (memswlimit
== val
)
4706 memcg
->memsw_is_minimum
= true;
4708 memcg
->memsw_is_minimum
= false;
4710 mutex_unlock(&set_limit_mutex
);
4715 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4716 MEM_CGROUP_RECLAIM_SHRINK
);
4717 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
4718 /* Usage is reduced ? */
4719 if (curusage
>= oldusage
)
4722 oldusage
= curusage
;
4724 if (!ret
&& enlarge
)
4725 memcg_oom_recover(memcg
);
4730 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
4731 unsigned long long val
)
4734 u64 memlimit
, memswlimit
, oldusage
, curusage
;
4735 int children
= mem_cgroup_count_children(memcg
);
4739 /* see mem_cgroup_resize_res_limit */
4740 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
4741 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4742 while (retry_count
) {
4743 if (signal_pending(current
)) {
4748 * Rather than hide all in some function, I do this in
4749 * open coded manner. You see what this really does.
4750 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4752 mutex_lock(&set_limit_mutex
);
4753 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
4754 if (memlimit
> val
) {
4756 mutex_unlock(&set_limit_mutex
);
4759 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
4760 if (memswlimit
< val
)
4762 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
4764 if (memlimit
== val
)
4765 memcg
->memsw_is_minimum
= true;
4767 memcg
->memsw_is_minimum
= false;
4769 mutex_unlock(&set_limit_mutex
);
4774 mem_cgroup_reclaim(memcg
, GFP_KERNEL
,
4775 MEM_CGROUP_RECLAIM_NOSWAP
|
4776 MEM_CGROUP_RECLAIM_SHRINK
);
4777 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
4778 /* Usage is reduced ? */
4779 if (curusage
>= oldusage
)
4782 oldusage
= curusage
;
4784 if (!ret
&& enlarge
)
4785 memcg_oom_recover(memcg
);
4789 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
4791 unsigned long *total_scanned
)
4793 unsigned long nr_reclaimed
= 0;
4794 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
4795 unsigned long reclaimed
;
4797 struct mem_cgroup_tree_per_zone
*mctz
;
4798 unsigned long long excess
;
4799 unsigned long nr_scanned
;
4804 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
4806 * This loop can run a while, specially if mem_cgroup's continuously
4807 * keep exceeding their soft limit and putting the system under
4814 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
4819 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
4820 gfp_mask
, &nr_scanned
);
4821 nr_reclaimed
+= reclaimed
;
4822 *total_scanned
+= nr_scanned
;
4823 spin_lock(&mctz
->lock
);
4826 * If we failed to reclaim anything from this memory cgroup
4827 * it is time to move on to the next cgroup
4833 * Loop until we find yet another one.
4835 * By the time we get the soft_limit lock
4836 * again, someone might have aded the
4837 * group back on the RB tree. Iterate to
4838 * make sure we get a different mem.
4839 * mem_cgroup_largest_soft_limit_node returns
4840 * NULL if no other cgroup is present on
4844 __mem_cgroup_largest_soft_limit_node(mctz
);
4846 css_put(&next_mz
->memcg
->css
);
4847 else /* next_mz == NULL or other memcg */
4851 __mem_cgroup_remove_exceeded(mz
->memcg
, mz
, mctz
);
4852 excess
= res_counter_soft_limit_excess(&mz
->memcg
->res
);
4854 * One school of thought says that we should not add
4855 * back the node to the tree if reclaim returns 0.
4856 * But our reclaim could return 0, simply because due
4857 * to priority we are exposing a smaller subset of
4858 * memory to reclaim from. Consider this as a longer
4861 /* If excess == 0, no tree ops */
4862 __mem_cgroup_insert_exceeded(mz
->memcg
, mz
, mctz
, excess
);
4863 spin_unlock(&mctz
->lock
);
4864 css_put(&mz
->memcg
->css
);
4867 * Could not reclaim anything and there are no more
4868 * mem cgroups to try or we seem to be looping without
4869 * reclaiming anything.
4871 if (!nr_reclaimed
&&
4873 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
4875 } while (!nr_reclaimed
);
4877 css_put(&next_mz
->memcg
->css
);
4878 return nr_reclaimed
;
4882 * mem_cgroup_force_empty_list - clears LRU of a group
4883 * @memcg: group to clear
4886 * @lru: lru to to clear
4888 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4889 * reclaim the pages page themselves - pages are moved to the parent (or root)
4892 static void mem_cgroup_force_empty_list(struct mem_cgroup
*memcg
,
4893 int node
, int zid
, enum lru_list lru
)
4895 struct lruvec
*lruvec
;
4896 unsigned long flags
;
4897 struct list_head
*list
;
4901 zone
= &NODE_DATA(node
)->node_zones
[zid
];
4902 lruvec
= mem_cgroup_zone_lruvec(zone
, memcg
);
4903 list
= &lruvec
->lists
[lru
];
4907 struct page_cgroup
*pc
;
4910 spin_lock_irqsave(&zone
->lru_lock
, flags
);
4911 if (list_empty(list
)) {
4912 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4915 page
= list_entry(list
->prev
, struct page
, lru
);
4917 list_move(&page
->lru
, list
);
4919 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4922 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
4924 pc
= lookup_page_cgroup(page
);
4926 if (mem_cgroup_move_parent(page
, pc
, memcg
)) {
4927 /* found lock contention or "pc" is obsolete. */
4932 } while (!list_empty(list
));
4936 * make mem_cgroup's charge to be 0 if there is no task by moving
4937 * all the charges and pages to the parent.
4938 * This enables deleting this mem_cgroup.
4940 * Caller is responsible for holding css reference on the memcg.
4942 static void mem_cgroup_reparent_charges(struct mem_cgroup
*memcg
)
4948 /* This is for making all *used* pages to be on LRU. */
4949 lru_add_drain_all();
4950 drain_all_stock_sync(memcg
);
4951 mem_cgroup_start_move(memcg
);
4952 for_each_node_state(node
, N_MEMORY
) {
4953 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
4956 mem_cgroup_force_empty_list(memcg
,
4961 mem_cgroup_end_move(memcg
);
4962 memcg_oom_recover(memcg
);
4966 * Kernel memory may not necessarily be trackable to a specific
4967 * process. So they are not migrated, and therefore we can't
4968 * expect their value to drop to 0 here.
4969 * Having res filled up with kmem only is enough.
4971 * This is a safety check because mem_cgroup_force_empty_list
4972 * could have raced with mem_cgroup_replace_page_cache callers
4973 * so the lru seemed empty but the page could have been added
4974 * right after the check. RES_USAGE should be safe as we always
4975 * charge before adding to the LRU.
4977 usage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
) -
4978 res_counter_read_u64(&memcg
->kmem
, RES_USAGE
);
4979 } while (usage
> 0);
4982 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
4984 lockdep_assert_held(&memcg_create_mutex
);
4986 * The lock does not prevent addition or deletion to the list
4987 * of children, but it prevents a new child from being
4988 * initialized based on this parent in css_online(), so it's
4989 * enough to decide whether hierarchically inherited
4990 * attributes can still be changed or not.
4992 return memcg
->use_hierarchy
&&
4993 !list_empty(&memcg
->css
.cgroup
->children
);
4997 * Reclaims as many pages from the given memcg as possible and moves
4998 * the rest to the parent.
5000 * Caller is responsible for holding css reference for memcg.
5002 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
5004 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
5005 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
5007 /* returns EBUSY if there is a task or if we come here twice. */
5008 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
5011 /* we call try-to-free pages for make this cgroup empty */
5012 lru_add_drain_all();
5013 /* try to free all pages in this cgroup */
5014 while (nr_retries
&& res_counter_read_u64(&memcg
->res
, RES_USAGE
) > 0) {
5017 if (signal_pending(current
))
5020 progress
= try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
,
5024 /* maybe some writeback is necessary */
5025 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
5030 mem_cgroup_reparent_charges(memcg
);
5035 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state
*css
,
5038 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5040 if (mem_cgroup_is_root(memcg
))
5042 return mem_cgroup_force_empty(memcg
);
5045 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
5048 return mem_cgroup_from_css(css
)->use_hierarchy
;
5051 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
5052 struct cftype
*cft
, u64 val
)
5055 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5056 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5058 mutex_lock(&memcg_create_mutex
);
5060 if (memcg
->use_hierarchy
== val
)
5064 * If parent's use_hierarchy is set, we can't make any modifications
5065 * in the child subtrees. If it is unset, then the change can
5066 * occur, provided the current cgroup has no children.
5068 * For the root cgroup, parent_mem is NULL, we allow value to be
5069 * set if there are no children.
5071 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
5072 (val
== 1 || val
== 0)) {
5073 if (list_empty(&memcg
->css
.cgroup
->children
))
5074 memcg
->use_hierarchy
= val
;
5081 mutex_unlock(&memcg_create_mutex
);
5087 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup
*memcg
,
5088 enum mem_cgroup_stat_index idx
)
5090 struct mem_cgroup
*iter
;
5093 /* Per-cpu values can be negative, use a signed accumulator */
5094 for_each_mem_cgroup_tree(iter
, memcg
)
5095 val
+= mem_cgroup_read_stat(iter
, idx
);
5097 if (val
< 0) /* race ? */
5102 static inline u64
mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
5106 if (!mem_cgroup_is_root(memcg
)) {
5108 return res_counter_read_u64(&memcg
->res
, RES_USAGE
);
5110 return res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
5114 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5115 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5117 val
= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_CACHE
);
5118 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_RSS
);
5121 val
+= mem_cgroup_recursive_stat(memcg
, MEM_CGROUP_STAT_SWAP
);
5123 return val
<< PAGE_SHIFT
;
5126 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
5129 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5134 type
= MEMFILE_TYPE(cft
->private);
5135 name
= MEMFILE_ATTR(cft
->private);
5139 if (name
== RES_USAGE
)
5140 val
= mem_cgroup_usage(memcg
, false);
5142 val
= res_counter_read_u64(&memcg
->res
, name
);
5145 if (name
== RES_USAGE
)
5146 val
= mem_cgroup_usage(memcg
, true);
5148 val
= res_counter_read_u64(&memcg
->memsw
, name
);
5151 val
= res_counter_read_u64(&memcg
->kmem
, name
);
5160 #ifdef CONFIG_MEMCG_KMEM
5161 /* should be called with activate_kmem_mutex held */
5162 static int __memcg_activate_kmem(struct mem_cgroup
*memcg
,
5163 unsigned long long limit
)
5168 if (memcg_kmem_is_active(memcg
))
5172 * We are going to allocate memory for data shared by all memory
5173 * cgroups so let's stop accounting here.
5175 memcg_stop_kmem_account();
5178 * For simplicity, we won't allow this to be disabled. It also can't
5179 * be changed if the cgroup has children already, or if tasks had
5182 * If tasks join before we set the limit, a person looking at
5183 * kmem.usage_in_bytes will have no way to determine when it took
5184 * place, which makes the value quite meaningless.
5186 * After it first became limited, changes in the value of the limit are
5187 * of course permitted.
5189 mutex_lock(&memcg_create_mutex
);
5190 if (cgroup_task_count(memcg
->css
.cgroup
) || memcg_has_children(memcg
))
5192 mutex_unlock(&memcg_create_mutex
);
5196 memcg_id
= ida_simple_get(&kmem_limited_groups
,
5197 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
5204 * Make sure we have enough space for this cgroup in each root cache's
5207 err
= memcg_update_all_caches(memcg_id
+ 1);
5211 memcg
->kmemcg_id
= memcg_id
;
5212 INIT_LIST_HEAD(&memcg
->memcg_slab_caches
);
5213 mutex_init(&memcg
->slab_caches_mutex
);
5216 * We couldn't have accounted to this cgroup, because it hasn't got the
5217 * active bit set yet, so this should succeed.
5219 err
= res_counter_set_limit(&memcg
->kmem
, limit
);
5222 static_key_slow_inc(&memcg_kmem_enabled_key
);
5224 * Setting the active bit after enabling static branching will
5225 * guarantee no one starts accounting before all call sites are
5228 memcg_kmem_set_active(memcg
);
5230 memcg_resume_kmem_account();
5234 ida_simple_remove(&kmem_limited_groups
, memcg_id
);
5238 static int memcg_activate_kmem(struct mem_cgroup
*memcg
,
5239 unsigned long long limit
)
5243 mutex_lock(&activate_kmem_mutex
);
5244 ret
= __memcg_activate_kmem(memcg
, limit
);
5245 mutex_unlock(&activate_kmem_mutex
);
5249 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
5250 unsigned long long val
)
5254 if (!memcg_kmem_is_active(memcg
))
5255 ret
= memcg_activate_kmem(memcg
, val
);
5257 ret
= res_counter_set_limit(&memcg
->kmem
, val
);
5261 static int memcg_propagate_kmem(struct mem_cgroup
*memcg
)
5264 struct mem_cgroup
*parent
= parent_mem_cgroup(memcg
);
5269 mutex_lock(&activate_kmem_mutex
);
5271 * If the parent cgroup is not kmem-active now, it cannot be activated
5272 * after this point, because it has at least one child already.
5274 if (memcg_kmem_is_active(parent
))
5275 ret
= __memcg_activate_kmem(memcg
, RES_COUNTER_MAX
);
5276 mutex_unlock(&activate_kmem_mutex
);
5280 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
5281 unsigned long long val
)
5285 #endif /* CONFIG_MEMCG_KMEM */
5288 * The user of this function is...
5291 static int mem_cgroup_write(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
5294 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5297 unsigned long long val
;
5300 type
= MEMFILE_TYPE(cft
->private);
5301 name
= MEMFILE_ATTR(cft
->private);
5305 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
5309 /* This function does all necessary parse...reuse it */
5310 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5314 ret
= mem_cgroup_resize_limit(memcg
, val
);
5315 else if (type
== _MEMSWAP
)
5316 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
5317 else if (type
== _KMEM
)
5318 ret
= memcg_update_kmem_limit(memcg
, val
);
5322 case RES_SOFT_LIMIT
:
5323 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
5327 * For memsw, soft limits are hard to implement in terms
5328 * of semantics, for now, we support soft limits for
5329 * control without swap
5332 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
5337 ret
= -EINVAL
; /* should be BUG() ? */
5343 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
5344 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
5346 unsigned long long min_limit
, min_memsw_limit
, tmp
;
5348 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5349 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5350 if (!memcg
->use_hierarchy
)
5353 while (css_parent(&memcg
->css
)) {
5354 memcg
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5355 if (!memcg
->use_hierarchy
)
5357 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
5358 min_limit
= min(min_limit
, tmp
);
5359 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
5360 min_memsw_limit
= min(min_memsw_limit
, tmp
);
5363 *mem_limit
= min_limit
;
5364 *memsw_limit
= min_memsw_limit
;
5367 static int mem_cgroup_reset(struct cgroup_subsys_state
*css
, unsigned int event
)
5369 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5373 type
= MEMFILE_TYPE(event
);
5374 name
= MEMFILE_ATTR(event
);
5379 res_counter_reset_max(&memcg
->res
);
5380 else if (type
== _MEMSWAP
)
5381 res_counter_reset_max(&memcg
->memsw
);
5382 else if (type
== _KMEM
)
5383 res_counter_reset_max(&memcg
->kmem
);
5389 res_counter_reset_failcnt(&memcg
->res
);
5390 else if (type
== _MEMSWAP
)
5391 res_counter_reset_failcnt(&memcg
->memsw
);
5392 else if (type
== _KMEM
)
5393 res_counter_reset_failcnt(&memcg
->kmem
);
5402 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
5405 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
5409 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5410 struct cftype
*cft
, u64 val
)
5412 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5414 if (val
>= (1 << NR_MOVE_TYPE
))
5418 * No kind of locking is needed in here, because ->can_attach() will
5419 * check this value once in the beginning of the process, and then carry
5420 * on with stale data. This means that changes to this value will only
5421 * affect task migrations starting after the change.
5423 memcg
->move_charge_at_immigrate
= val
;
5427 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
5428 struct cftype
*cft
, u64 val
)
5435 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
5439 unsigned int lru_mask
;
5442 static const struct numa_stat stats
[] = {
5443 { "total", LRU_ALL
},
5444 { "file", LRU_ALL_FILE
},
5445 { "anon", LRU_ALL_ANON
},
5446 { "unevictable", BIT(LRU_UNEVICTABLE
) },
5448 const struct numa_stat
*stat
;
5451 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5453 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
5454 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
5455 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
5456 for_each_node_state(nid
, N_MEMORY
) {
5457 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
5459 seq_printf(m
, " N%d=%lu", nid
, nr
);
5464 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
5465 struct mem_cgroup
*iter
;
5468 for_each_mem_cgroup_tree(iter
, memcg
)
5469 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
5470 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
5471 for_each_node_state(nid
, N_MEMORY
) {
5473 for_each_mem_cgroup_tree(iter
, memcg
)
5474 nr
+= mem_cgroup_node_nr_lru_pages(
5475 iter
, nid
, stat
->lru_mask
);
5476 seq_printf(m
, " N%d=%lu", nid
, nr
);
5483 #endif /* CONFIG_NUMA */
5485 static inline void mem_cgroup_lru_names_not_uptodate(void)
5487 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
5490 static int memcg_stat_show(struct seq_file
*m
, void *v
)
5492 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5493 struct mem_cgroup
*mi
;
5496 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5497 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5499 seq_printf(m
, "%s %ld\n", mem_cgroup_stat_names
[i
],
5500 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
5503 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
5504 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
5505 mem_cgroup_read_events(memcg
, i
));
5507 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
5508 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
5509 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
5511 /* Hierarchical information */
5513 unsigned long long limit
, memsw_limit
;
5514 memcg_get_hierarchical_limit(memcg
, &limit
, &memsw_limit
);
5515 seq_printf(m
, "hierarchical_memory_limit %llu\n", limit
);
5516 if (do_swap_account
)
5517 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
5521 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
5524 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
5526 for_each_mem_cgroup_tree(mi
, memcg
)
5527 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
5528 seq_printf(m
, "total_%s %lld\n", mem_cgroup_stat_names
[i
], val
);
5531 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
5532 unsigned long long val
= 0;
5534 for_each_mem_cgroup_tree(mi
, memcg
)
5535 val
+= mem_cgroup_read_events(mi
, i
);
5536 seq_printf(m
, "total_%s %llu\n",
5537 mem_cgroup_events_names
[i
], val
);
5540 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5541 unsigned long long val
= 0;
5543 for_each_mem_cgroup_tree(mi
, memcg
)
5544 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
5545 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
5548 #ifdef CONFIG_DEBUG_VM
5551 struct mem_cgroup_per_zone
*mz
;
5552 struct zone_reclaim_stat
*rstat
;
5553 unsigned long recent_rotated
[2] = {0, 0};
5554 unsigned long recent_scanned
[2] = {0, 0};
5556 for_each_online_node(nid
)
5557 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
5558 mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
5559 rstat
= &mz
->lruvec
.reclaim_stat
;
5561 recent_rotated
[0] += rstat
->recent_rotated
[0];
5562 recent_rotated
[1] += rstat
->recent_rotated
[1];
5563 recent_scanned
[0] += rstat
->recent_scanned
[0];
5564 recent_scanned
[1] += rstat
->recent_scanned
[1];
5566 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
5567 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
5568 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
5569 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
5576 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
5579 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5581 return mem_cgroup_swappiness(memcg
);
5584 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
5585 struct cftype
*cft
, u64 val
)
5587 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5588 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5590 if (val
> 100 || !parent
)
5593 mutex_lock(&memcg_create_mutex
);
5595 /* If under hierarchy, only empty-root can set this value */
5596 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5597 mutex_unlock(&memcg_create_mutex
);
5601 memcg
->swappiness
= val
;
5603 mutex_unlock(&memcg_create_mutex
);
5608 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
5610 struct mem_cgroup_threshold_ary
*t
;
5616 t
= rcu_dereference(memcg
->thresholds
.primary
);
5618 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
5623 usage
= mem_cgroup_usage(memcg
, swap
);
5626 * current_threshold points to threshold just below or equal to usage.
5627 * If it's not true, a threshold was crossed after last
5628 * call of __mem_cgroup_threshold().
5630 i
= t
->current_threshold
;
5633 * Iterate backward over array of thresholds starting from
5634 * current_threshold and check if a threshold is crossed.
5635 * If none of thresholds below usage is crossed, we read
5636 * only one element of the array here.
5638 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
5639 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5641 /* i = current_threshold + 1 */
5645 * Iterate forward over array of thresholds starting from
5646 * current_threshold+1 and check if a threshold is crossed.
5647 * If none of thresholds above usage is crossed, we read
5648 * only one element of the array here.
5650 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
5651 eventfd_signal(t
->entries
[i
].eventfd
, 1);
5653 /* Update current_threshold */
5654 t
->current_threshold
= i
- 1;
5659 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
5662 __mem_cgroup_threshold(memcg
, false);
5663 if (do_swap_account
)
5664 __mem_cgroup_threshold(memcg
, true);
5666 memcg
= parent_mem_cgroup(memcg
);
5670 static int compare_thresholds(const void *a
, const void *b
)
5672 const struct mem_cgroup_threshold
*_a
= a
;
5673 const struct mem_cgroup_threshold
*_b
= b
;
5675 if (_a
->threshold
> _b
->threshold
)
5678 if (_a
->threshold
< _b
->threshold
)
5684 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
5686 struct mem_cgroup_eventfd_list
*ev
;
5688 spin_lock(&memcg_oom_lock
);
5690 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
5691 eventfd_signal(ev
->eventfd
, 1);
5693 spin_unlock(&memcg_oom_lock
);
5697 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
5699 struct mem_cgroup
*iter
;
5701 for_each_mem_cgroup_tree(iter
, memcg
)
5702 mem_cgroup_oom_notify_cb(iter
);
5705 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
5706 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
5708 struct mem_cgroup_thresholds
*thresholds
;
5709 struct mem_cgroup_threshold_ary
*new;
5710 u64 threshold
, usage
;
5713 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
5717 mutex_lock(&memcg
->thresholds_lock
);
5720 thresholds
= &memcg
->thresholds
;
5721 else if (type
== _MEMSWAP
)
5722 thresholds
= &memcg
->memsw_thresholds
;
5726 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5728 /* Check if a threshold crossed before adding a new one */
5729 if (thresholds
->primary
)
5730 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5732 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
5734 /* Allocate memory for new array of thresholds */
5735 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
5743 /* Copy thresholds (if any) to new array */
5744 if (thresholds
->primary
) {
5745 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
5746 sizeof(struct mem_cgroup_threshold
));
5749 /* Add new threshold */
5750 new->entries
[size
- 1].eventfd
= eventfd
;
5751 new->entries
[size
- 1].threshold
= threshold
;
5753 /* Sort thresholds. Registering of new threshold isn't time-critical */
5754 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
5755 compare_thresholds
, NULL
);
5757 /* Find current threshold */
5758 new->current_threshold
= -1;
5759 for (i
= 0; i
< size
; i
++) {
5760 if (new->entries
[i
].threshold
<= usage
) {
5762 * new->current_threshold will not be used until
5763 * rcu_assign_pointer(), so it's safe to increment
5766 ++new->current_threshold
;
5771 /* Free old spare buffer and save old primary buffer as spare */
5772 kfree(thresholds
->spare
);
5773 thresholds
->spare
= thresholds
->primary
;
5775 rcu_assign_pointer(thresholds
->primary
, new);
5777 /* To be sure that nobody uses thresholds */
5781 mutex_unlock(&memcg
->thresholds_lock
);
5786 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
5787 struct eventfd_ctx
*eventfd
, const char *args
)
5789 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
5792 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
5793 struct eventfd_ctx
*eventfd
, const char *args
)
5795 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
5798 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
5799 struct eventfd_ctx
*eventfd
, enum res_type type
)
5801 struct mem_cgroup_thresholds
*thresholds
;
5802 struct mem_cgroup_threshold_ary
*new;
5806 mutex_lock(&memcg
->thresholds_lock
);
5808 thresholds
= &memcg
->thresholds
;
5809 else if (type
== _MEMSWAP
)
5810 thresholds
= &memcg
->memsw_thresholds
;
5814 if (!thresholds
->primary
)
5817 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
5819 /* Check if a threshold crossed before removing */
5820 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
5822 /* Calculate new number of threshold */
5824 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
5825 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
5829 new = thresholds
->spare
;
5831 /* Set thresholds array to NULL if we don't have thresholds */
5840 /* Copy thresholds and find current threshold */
5841 new->current_threshold
= -1;
5842 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
5843 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
5846 new->entries
[j
] = thresholds
->primary
->entries
[i
];
5847 if (new->entries
[j
].threshold
<= usage
) {
5849 * new->current_threshold will not be used
5850 * until rcu_assign_pointer(), so it's safe to increment
5853 ++new->current_threshold
;
5859 /* Swap primary and spare array */
5860 thresholds
->spare
= thresholds
->primary
;
5861 /* If all events are unregistered, free the spare array */
5863 kfree(thresholds
->spare
);
5864 thresholds
->spare
= NULL
;
5867 rcu_assign_pointer(thresholds
->primary
, new);
5869 /* To be sure that nobody uses thresholds */
5872 mutex_unlock(&memcg
->thresholds_lock
);
5875 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
5876 struct eventfd_ctx
*eventfd
)
5878 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
5881 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
5882 struct eventfd_ctx
*eventfd
)
5884 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
5887 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
5888 struct eventfd_ctx
*eventfd
, const char *args
)
5890 struct mem_cgroup_eventfd_list
*event
;
5892 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
5896 spin_lock(&memcg_oom_lock
);
5898 event
->eventfd
= eventfd
;
5899 list_add(&event
->list
, &memcg
->oom_notify
);
5901 /* already in OOM ? */
5902 if (atomic_read(&memcg
->under_oom
))
5903 eventfd_signal(eventfd
, 1);
5904 spin_unlock(&memcg_oom_lock
);
5909 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
5910 struct eventfd_ctx
*eventfd
)
5912 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
5914 spin_lock(&memcg_oom_lock
);
5916 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
5917 if (ev
->eventfd
== eventfd
) {
5918 list_del(&ev
->list
);
5923 spin_unlock(&memcg_oom_lock
);
5926 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
5928 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
5930 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
5931 seq_printf(sf
, "under_oom %d\n", (bool)atomic_read(&memcg
->under_oom
));
5935 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
5936 struct cftype
*cft
, u64 val
)
5938 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5939 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(&memcg
->css
));
5941 /* cannot set to root cgroup and only 0 and 1 are allowed */
5942 if (!parent
|| !((val
== 0) || (val
== 1)))
5945 mutex_lock(&memcg_create_mutex
);
5946 /* oom-kill-disable is a flag for subhierarchy. */
5947 if ((parent
->use_hierarchy
) || memcg_has_children(memcg
)) {
5948 mutex_unlock(&memcg_create_mutex
);
5951 memcg
->oom_kill_disable
= val
;
5953 memcg_oom_recover(memcg
);
5954 mutex_unlock(&memcg_create_mutex
);
5958 #ifdef CONFIG_MEMCG_KMEM
5959 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
5963 memcg
->kmemcg_id
= -1;
5964 ret
= memcg_propagate_kmem(memcg
);
5968 return mem_cgroup_sockets_init(memcg
, ss
);
5971 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
5973 mem_cgroup_sockets_destroy(memcg
);
5976 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
5978 if (!memcg_kmem_is_active(memcg
))
5982 * kmem charges can outlive the cgroup. In the case of slab
5983 * pages, for instance, a page contain objects from various
5984 * processes. As we prevent from taking a reference for every
5985 * such allocation we have to be careful when doing uncharge
5986 * (see memcg_uncharge_kmem) and here during offlining.
5988 * The idea is that that only the _last_ uncharge which sees
5989 * the dead memcg will drop the last reference. An additional
5990 * reference is taken here before the group is marked dead
5991 * which is then paired with css_put during uncharge resp. here.
5993 * Although this might sound strange as this path is called from
5994 * css_offline() when the referencemight have dropped down to 0
5995 * and shouldn't be incremented anymore (css_tryget would fail)
5996 * we do not have other options because of the kmem allocations
5999 css_get(&memcg
->css
);
6001 memcg_kmem_mark_dead(memcg
);
6003 if (res_counter_read_u64(&memcg
->kmem
, RES_USAGE
) != 0)
6006 if (memcg_kmem_test_and_clear_dead(memcg
))
6007 css_put(&memcg
->css
);
6010 static int memcg_init_kmem(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
6015 static void memcg_destroy_kmem(struct mem_cgroup
*memcg
)
6019 static void kmem_cgroup_css_offline(struct mem_cgroup
*memcg
)
6025 * DO NOT USE IN NEW FILES.
6027 * "cgroup.event_control" implementation.
6029 * This is way over-engineered. It tries to support fully configurable
6030 * events for each user. Such level of flexibility is completely
6031 * unnecessary especially in the light of the planned unified hierarchy.
6033 * Please deprecate this and replace with something simpler if at all
6038 * Unregister event and free resources.
6040 * Gets called from workqueue.
6042 static void memcg_event_remove(struct work_struct
*work
)
6044 struct mem_cgroup_event
*event
=
6045 container_of(work
, struct mem_cgroup_event
, remove
);
6046 struct mem_cgroup
*memcg
= event
->memcg
;
6048 remove_wait_queue(event
->wqh
, &event
->wait
);
6050 event
->unregister_event(memcg
, event
->eventfd
);
6052 /* Notify userspace the event is going away. */
6053 eventfd_signal(event
->eventfd
, 1);
6055 eventfd_ctx_put(event
->eventfd
);
6057 css_put(&memcg
->css
);
6061 * Gets called on POLLHUP on eventfd when user closes it.
6063 * Called with wqh->lock held and interrupts disabled.
6065 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
6066 int sync
, void *key
)
6068 struct mem_cgroup_event
*event
=
6069 container_of(wait
, struct mem_cgroup_event
, wait
);
6070 struct mem_cgroup
*memcg
= event
->memcg
;
6071 unsigned long flags
= (unsigned long)key
;
6073 if (flags
& POLLHUP
) {
6075 * If the event has been detached at cgroup removal, we
6076 * can simply return knowing the other side will cleanup
6079 * We can't race against event freeing since the other
6080 * side will require wqh->lock via remove_wait_queue(),
6083 spin_lock(&memcg
->event_list_lock
);
6084 if (!list_empty(&event
->list
)) {
6085 list_del_init(&event
->list
);
6087 * We are in atomic context, but cgroup_event_remove()
6088 * may sleep, so we have to call it in workqueue.
6090 schedule_work(&event
->remove
);
6092 spin_unlock(&memcg
->event_list_lock
);
6098 static void memcg_event_ptable_queue_proc(struct file
*file
,
6099 wait_queue_head_t
*wqh
, poll_table
*pt
)
6101 struct mem_cgroup_event
*event
=
6102 container_of(pt
, struct mem_cgroup_event
, pt
);
6105 add_wait_queue(wqh
, &event
->wait
);
6109 * DO NOT USE IN NEW FILES.
6111 * Parse input and register new cgroup event handler.
6113 * Input must be in format '<event_fd> <control_fd> <args>'.
6114 * Interpretation of args is defined by control file implementation.
6116 static int memcg_write_event_control(struct cgroup_subsys_state
*css
,
6117 struct cftype
*cft
, const char *buffer
)
6119 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6120 struct mem_cgroup_event
*event
;
6121 struct cgroup_subsys_state
*cfile_css
;
6122 unsigned int efd
, cfd
;
6129 efd
= simple_strtoul(buffer
, &endp
, 10);
6134 cfd
= simple_strtoul(buffer
, &endp
, 10);
6135 if ((*endp
!= ' ') && (*endp
!= '\0'))
6139 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
6143 event
->memcg
= memcg
;
6144 INIT_LIST_HEAD(&event
->list
);
6145 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
6146 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
6147 INIT_WORK(&event
->remove
, memcg_event_remove
);
6155 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
6156 if (IS_ERR(event
->eventfd
)) {
6157 ret
= PTR_ERR(event
->eventfd
);
6164 goto out_put_eventfd
;
6167 /* the process need read permission on control file */
6168 /* AV: shouldn't we check that it's been opened for read instead? */
6169 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
6174 * Determine the event callbacks and set them in @event. This used
6175 * to be done via struct cftype but cgroup core no longer knows
6176 * about these events. The following is crude but the whole thing
6177 * is for compatibility anyway.
6179 * DO NOT ADD NEW FILES.
6181 name
= cfile
.file
->f_dentry
->d_name
.name
;
6183 if (!strcmp(name
, "memory.usage_in_bytes")) {
6184 event
->register_event
= mem_cgroup_usage_register_event
;
6185 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
6186 } else if (!strcmp(name
, "memory.oom_control")) {
6187 event
->register_event
= mem_cgroup_oom_register_event
;
6188 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
6189 } else if (!strcmp(name
, "memory.pressure_level")) {
6190 event
->register_event
= vmpressure_register_event
;
6191 event
->unregister_event
= vmpressure_unregister_event
;
6192 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
6193 event
->register_event
= memsw_cgroup_usage_register_event
;
6194 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
6201 * Verify @cfile should belong to @css. Also, remaining events are
6202 * automatically removed on cgroup destruction but the removal is
6203 * asynchronous, so take an extra ref on @css.
6208 cfile_css
= css_from_dir(cfile
.file
->f_dentry
->d_parent
,
6209 &mem_cgroup_subsys
);
6210 if (cfile_css
== css
&& css_tryget(css
))
6217 ret
= event
->register_event(memcg
, event
->eventfd
, buffer
);
6221 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
6223 spin_lock(&memcg
->event_list_lock
);
6224 list_add(&event
->list
, &memcg
->event_list
);
6225 spin_unlock(&memcg
->event_list_lock
);
6237 eventfd_ctx_put(event
->eventfd
);
6246 static struct cftype mem_cgroup_files
[] = {
6248 .name
= "usage_in_bytes",
6249 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
6250 .read_u64
= mem_cgroup_read_u64
,
6253 .name
= "max_usage_in_bytes",
6254 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
6255 .trigger
= mem_cgroup_reset
,
6256 .read_u64
= mem_cgroup_read_u64
,
6259 .name
= "limit_in_bytes",
6260 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
6261 .write_string
= mem_cgroup_write
,
6262 .read_u64
= mem_cgroup_read_u64
,
6265 .name
= "soft_limit_in_bytes",
6266 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
6267 .write_string
= mem_cgroup_write
,
6268 .read_u64
= mem_cgroup_read_u64
,
6272 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
6273 .trigger
= mem_cgroup_reset
,
6274 .read_u64
= mem_cgroup_read_u64
,
6278 .seq_show
= memcg_stat_show
,
6281 .name
= "force_empty",
6282 .trigger
= mem_cgroup_force_empty_write
,
6285 .name
= "use_hierarchy",
6286 .flags
= CFTYPE_INSANE
,
6287 .write_u64
= mem_cgroup_hierarchy_write
,
6288 .read_u64
= mem_cgroup_hierarchy_read
,
6291 .name
= "cgroup.event_control", /* XXX: for compat */
6292 .write_string
= memcg_write_event_control
,
6293 .flags
= CFTYPE_NO_PREFIX
,
6297 .name
= "swappiness",
6298 .read_u64
= mem_cgroup_swappiness_read
,
6299 .write_u64
= mem_cgroup_swappiness_write
,
6302 .name
= "move_charge_at_immigrate",
6303 .read_u64
= mem_cgroup_move_charge_read
,
6304 .write_u64
= mem_cgroup_move_charge_write
,
6307 .name
= "oom_control",
6308 .seq_show
= mem_cgroup_oom_control_read
,
6309 .write_u64
= mem_cgroup_oom_control_write
,
6310 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
6313 .name
= "pressure_level",
6317 .name
= "numa_stat",
6318 .seq_show
= memcg_numa_stat_show
,
6321 #ifdef CONFIG_MEMCG_KMEM
6323 .name
= "kmem.limit_in_bytes",
6324 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
6325 .write_string
= mem_cgroup_write
,
6326 .read_u64
= mem_cgroup_read_u64
,
6329 .name
= "kmem.usage_in_bytes",
6330 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
6331 .read_u64
= mem_cgroup_read_u64
,
6334 .name
= "kmem.failcnt",
6335 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
6336 .trigger
= mem_cgroup_reset
,
6337 .read_u64
= mem_cgroup_read_u64
,
6340 .name
= "kmem.max_usage_in_bytes",
6341 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
6342 .trigger
= mem_cgroup_reset
,
6343 .read_u64
= mem_cgroup_read_u64
,
6345 #ifdef CONFIG_SLABINFO
6347 .name
= "kmem.slabinfo",
6348 .seq_show
= mem_cgroup_slabinfo_read
,
6352 { }, /* terminate */
6355 #ifdef CONFIG_MEMCG_SWAP
6356 static struct cftype memsw_cgroup_files
[] = {
6358 .name
= "memsw.usage_in_bytes",
6359 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
6360 .read_u64
= mem_cgroup_read_u64
,
6363 .name
= "memsw.max_usage_in_bytes",
6364 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
6365 .trigger
= mem_cgroup_reset
,
6366 .read_u64
= mem_cgroup_read_u64
,
6369 .name
= "memsw.limit_in_bytes",
6370 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
6371 .write_string
= mem_cgroup_write
,
6372 .read_u64
= mem_cgroup_read_u64
,
6375 .name
= "memsw.failcnt",
6376 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
6377 .trigger
= mem_cgroup_reset
,
6378 .read_u64
= mem_cgroup_read_u64
,
6380 { }, /* terminate */
6383 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6385 struct mem_cgroup_per_node
*pn
;
6386 struct mem_cgroup_per_zone
*mz
;
6387 int zone
, tmp
= node
;
6389 * This routine is called against possible nodes.
6390 * But it's BUG to call kmalloc() against offline node.
6392 * TODO: this routine can waste much memory for nodes which will
6393 * never be onlined. It's better to use memory hotplug callback
6396 if (!node_state(node
, N_NORMAL_MEMORY
))
6398 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
6402 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6403 mz
= &pn
->zoneinfo
[zone
];
6404 lruvec_init(&mz
->lruvec
);
6405 mz
->usage_in_excess
= 0;
6406 mz
->on_tree
= false;
6409 memcg
->nodeinfo
[node
] = pn
;
6413 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
6415 kfree(memcg
->nodeinfo
[node
]);
6418 static struct mem_cgroup
*mem_cgroup_alloc(void)
6420 struct mem_cgroup
*memcg
;
6423 size
= sizeof(struct mem_cgroup
);
6424 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
6426 memcg
= kzalloc(size
, GFP_KERNEL
);
6430 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
6433 spin_lock_init(&memcg
->pcp_counter_lock
);
6442 * At destroying mem_cgroup, references from swap_cgroup can remain.
6443 * (scanning all at force_empty is too costly...)
6445 * Instead of clearing all references at force_empty, we remember
6446 * the number of reference from swap_cgroup and free mem_cgroup when
6447 * it goes down to 0.
6449 * Removal of cgroup itself succeeds regardless of refs from swap.
6452 static void __mem_cgroup_free(struct mem_cgroup
*memcg
)
6456 mem_cgroup_remove_from_trees(memcg
);
6459 free_mem_cgroup_per_zone_info(memcg
, node
);
6461 free_percpu(memcg
->stat
);
6464 * We need to make sure that (at least for now), the jump label
6465 * destruction code runs outside of the cgroup lock. This is because
6466 * get_online_cpus(), which is called from the static_branch update,
6467 * can't be called inside the cgroup_lock. cpusets are the ones
6468 * enforcing this dependency, so if they ever change, we might as well.
6470 * schedule_work() will guarantee this happens. Be careful if you need
6471 * to move this code around, and make sure it is outside
6474 disarm_static_keys(memcg
);
6479 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6481 struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*memcg
)
6483 if (!memcg
->res
.parent
)
6485 return mem_cgroup_from_res_counter(memcg
->res
.parent
, res
);
6487 EXPORT_SYMBOL(parent_mem_cgroup
);
6489 static void __init
mem_cgroup_soft_limit_tree_init(void)
6491 struct mem_cgroup_tree_per_node
*rtpn
;
6492 struct mem_cgroup_tree_per_zone
*rtpz
;
6493 int tmp
, node
, zone
;
6495 for_each_node(node
) {
6497 if (!node_state(node
, N_NORMAL_MEMORY
))
6499 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
6502 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
6504 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
6505 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
6506 rtpz
->rb_root
= RB_ROOT
;
6507 spin_lock_init(&rtpz
->lock
);
6512 static struct cgroup_subsys_state
* __ref
6513 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6515 struct mem_cgroup
*memcg
;
6516 long error
= -ENOMEM
;
6519 memcg
= mem_cgroup_alloc();
6521 return ERR_PTR(error
);
6524 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
6528 if (parent_css
== NULL
) {
6529 root_mem_cgroup
= memcg
;
6530 res_counter_init(&memcg
->res
, NULL
);
6531 res_counter_init(&memcg
->memsw
, NULL
);
6532 res_counter_init(&memcg
->kmem
, NULL
);
6535 memcg
->last_scanned_node
= MAX_NUMNODES
;
6536 INIT_LIST_HEAD(&memcg
->oom_notify
);
6537 memcg
->move_charge_at_immigrate
= 0;
6538 mutex_init(&memcg
->thresholds_lock
);
6539 spin_lock_init(&memcg
->move_lock
);
6540 vmpressure_init(&memcg
->vmpressure
);
6541 INIT_LIST_HEAD(&memcg
->event_list
);
6542 spin_lock_init(&memcg
->event_list_lock
);
6547 __mem_cgroup_free(memcg
);
6548 return ERR_PTR(error
);
6552 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
6554 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6555 struct mem_cgroup
*parent
= mem_cgroup_from_css(css_parent(css
));
6558 if (css
->cgroup
->id
> MEM_CGROUP_ID_MAX
)
6564 mutex_lock(&memcg_create_mutex
);
6566 memcg
->use_hierarchy
= parent
->use_hierarchy
;
6567 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
6568 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
6570 if (parent
->use_hierarchy
) {
6571 res_counter_init(&memcg
->res
, &parent
->res
);
6572 res_counter_init(&memcg
->memsw
, &parent
->memsw
);
6573 res_counter_init(&memcg
->kmem
, &parent
->kmem
);
6576 * No need to take a reference to the parent because cgroup
6577 * core guarantees its existence.
6580 res_counter_init(&memcg
->res
, NULL
);
6581 res_counter_init(&memcg
->memsw
, NULL
);
6582 res_counter_init(&memcg
->kmem
, NULL
);
6584 * Deeper hierachy with use_hierarchy == false doesn't make
6585 * much sense so let cgroup subsystem know about this
6586 * unfortunate state in our controller.
6588 if (parent
!= root_mem_cgroup
)
6589 mem_cgroup_subsys
.broken_hierarchy
= true;
6591 mutex_unlock(&memcg_create_mutex
);
6593 ret
= memcg_init_kmem(memcg
, &mem_cgroup_subsys
);
6598 * Make sure the memcg is initialized: mem_cgroup_iter()
6599 * orders reading memcg->initialized against its callers
6600 * reading the memcg members.
6602 smp_store_release(&memcg
->initialized
, 1);
6608 * Announce all parents that a group from their hierarchy is gone.
6610 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup
*memcg
)
6612 struct mem_cgroup
*parent
= memcg
;
6614 while ((parent
= parent_mem_cgroup(parent
)))
6615 mem_cgroup_iter_invalidate(parent
);
6618 * if the root memcg is not hierarchical we have to check it
6621 if (!root_mem_cgroup
->use_hierarchy
)
6622 mem_cgroup_iter_invalidate(root_mem_cgroup
);
6625 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
6627 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6628 struct mem_cgroup_event
*event
, *tmp
;
6629 struct cgroup_subsys_state
*iter
;
6632 * Unregister events and notify userspace.
6633 * Notify userspace about cgroup removing only after rmdir of cgroup
6634 * directory to avoid race between userspace and kernelspace.
6636 spin_lock(&memcg
->event_list_lock
);
6637 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
6638 list_del_init(&event
->list
);
6639 schedule_work(&event
->remove
);
6641 spin_unlock(&memcg
->event_list_lock
);
6643 kmem_cgroup_css_offline(memcg
);
6645 mem_cgroup_invalidate_reclaim_iterators(memcg
);
6648 * This requires that offlining is serialized. Right now that is
6649 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6651 css_for_each_descendant_post(iter
, css
)
6652 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter
));
6654 mem_cgroup_destroy_all_caches(memcg
);
6655 vmpressure_cleanup(&memcg
->vmpressure
);
6658 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
6660 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
6662 * XXX: css_offline() would be where we should reparent all
6663 * memory to prepare the cgroup for destruction. However,
6664 * memcg does not do css_tryget() and res_counter charging
6665 * under the same RCU lock region, which means that charging
6666 * could race with offlining. Offlining only happens to
6667 * cgroups with no tasks in them but charges can show up
6668 * without any tasks from the swapin path when the target
6669 * memcg is looked up from the swapout record and not from the
6670 * current task as it usually is. A race like this can leak
6671 * charges and put pages with stale cgroup pointers into
6675 * lookup_swap_cgroup_id()
6677 * mem_cgroup_lookup()
6680 * disable css_tryget()
6683 * reparent_charges()
6684 * res_counter_charge()
6687 * pc->mem_cgroup = dead memcg
6690 * The bulk of the charges are still moved in offline_css() to
6691 * avoid pinning a lot of pages in case a long-term reference
6692 * like a swapout record is deferring the css_free() to long
6693 * after offlining. But this makes sure we catch any charges
6694 * made after offlining:
6696 mem_cgroup_reparent_charges(memcg
);
6698 memcg_destroy_kmem(memcg
);
6699 __mem_cgroup_free(memcg
);
6703 /* Handlers for move charge at task migration. */
6704 #define PRECHARGE_COUNT_AT_ONCE 256
6705 static int mem_cgroup_do_precharge(unsigned long count
)
6708 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6709 struct mem_cgroup
*memcg
= mc
.to
;
6711 if (mem_cgroup_is_root(memcg
)) {
6712 mc
.precharge
+= count
;
6713 /* we don't need css_get for root */
6716 /* try to charge at once */
6718 struct res_counter
*dummy
;
6720 * "memcg" cannot be under rmdir() because we've already checked
6721 * by cgroup_lock_live_cgroup() that it is not removed and we
6722 * are still under the same cgroup_mutex. So we can postpone
6725 if (res_counter_charge(&memcg
->res
, PAGE_SIZE
* count
, &dummy
))
6727 if (do_swap_account
&& res_counter_charge(&memcg
->memsw
,
6728 PAGE_SIZE
* count
, &dummy
)) {
6729 res_counter_uncharge(&memcg
->res
, PAGE_SIZE
* count
);
6732 mc
.precharge
+= count
;
6736 /* fall back to one by one charge */
6738 if (signal_pending(current
)) {
6742 if (!batch_count
--) {
6743 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
6746 ret
= __mem_cgroup_try_charge(NULL
,
6747 GFP_KERNEL
, 1, &memcg
, false);
6749 /* mem_cgroup_clear_mc() will do uncharge later */
6757 * get_mctgt_type - get target type of moving charge
6758 * @vma: the vma the pte to be checked belongs
6759 * @addr: the address corresponding to the pte to be checked
6760 * @ptent: the pte to be checked
6761 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6764 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6765 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6766 * move charge. if @target is not NULL, the page is stored in target->page
6767 * with extra refcnt got(Callers should handle it).
6768 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6769 * target for charge migration. if @target is not NULL, the entry is stored
6772 * Called with pte lock held.
6779 enum mc_target_type
{
6785 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
6786 unsigned long addr
, pte_t ptent
)
6788 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
6790 if (!page
|| !page_mapped(page
))
6792 if (PageAnon(page
)) {
6793 /* we don't move shared anon */
6796 } else if (!move_file())
6797 /* we ignore mapcount for file pages */
6799 if (!get_page_unless_zero(page
))
6806 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6807 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6809 struct page
*page
= NULL
;
6810 swp_entry_t ent
= pte_to_swp_entry(ptent
);
6812 if (!move_anon() || non_swap_entry(ent
))
6815 * Because lookup_swap_cache() updates some statistics counter,
6816 * we call find_get_page() with swapper_space directly.
6818 page
= find_get_page(swap_address_space(ent
), ent
.val
);
6819 if (do_swap_account
)
6820 entry
->val
= ent
.val
;
6825 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
6826 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6832 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
6833 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
6835 struct page
*page
= NULL
;
6836 struct address_space
*mapping
;
6839 if (!vma
->vm_file
) /* anonymous vma */
6844 mapping
= vma
->vm_file
->f_mapping
;
6845 if (pte_none(ptent
))
6846 pgoff
= linear_page_index(vma
, addr
);
6847 else /* pte_file(ptent) is true */
6848 pgoff
= pte_to_pgoff(ptent
);
6850 /* page is moved even if it's not RSS of this task(page-faulted). */
6851 page
= find_get_page(mapping
, pgoff
);
6854 /* shmem/tmpfs may report page out on swap: account for that too. */
6855 if (radix_tree_exceptional_entry(page
)) {
6856 swp_entry_t swap
= radix_to_swp_entry(page
);
6857 if (do_swap_account
)
6859 page
= find_get_page(swap_address_space(swap
), swap
.val
);
6865 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
6866 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
6868 struct page
*page
= NULL
;
6869 struct page_cgroup
*pc
;
6870 enum mc_target_type ret
= MC_TARGET_NONE
;
6871 swp_entry_t ent
= { .val
= 0 };
6873 if (pte_present(ptent
))
6874 page
= mc_handle_present_pte(vma
, addr
, ptent
);
6875 else if (is_swap_pte(ptent
))
6876 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
6877 else if (pte_none(ptent
) || pte_file(ptent
))
6878 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
6880 if (!page
&& !ent
.val
)
6883 pc
= lookup_page_cgroup(page
);
6885 * Do only loose check w/o page_cgroup lock.
6886 * mem_cgroup_move_account() checks the pc is valid or not under
6889 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6890 ret
= MC_TARGET_PAGE
;
6892 target
->page
= page
;
6894 if (!ret
|| !target
)
6897 /* There is a swap entry and a page doesn't exist or isn't charged */
6898 if (ent
.val
&& !ret
&&
6899 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
6900 ret
= MC_TARGET_SWAP
;
6907 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6909 * We don't consider swapping or file mapped pages because THP does not
6910 * support them for now.
6911 * Caller should make sure that pmd_trans_huge(pmd) is true.
6913 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6914 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6916 struct page
*page
= NULL
;
6917 struct page_cgroup
*pc
;
6918 enum mc_target_type ret
= MC_TARGET_NONE
;
6920 page
= pmd_page(pmd
);
6921 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
6924 pc
= lookup_page_cgroup(page
);
6925 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
6926 ret
= MC_TARGET_PAGE
;
6929 target
->page
= page
;
6935 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
6936 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
6938 return MC_TARGET_NONE
;
6942 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
6943 unsigned long addr
, unsigned long end
,
6944 struct mm_walk
*walk
)
6946 struct vm_area_struct
*vma
= walk
->private;
6950 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
6951 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
6952 mc
.precharge
+= HPAGE_PMD_NR
;
6957 if (pmd_trans_unstable(pmd
))
6959 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
6960 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
6961 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
6962 mc
.precharge
++; /* increment precharge temporarily */
6963 pte_unmap_unlock(pte
- 1, ptl
);
6969 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
6971 unsigned long precharge
;
6972 struct vm_area_struct
*vma
;
6974 down_read(&mm
->mmap_sem
);
6975 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
6976 struct mm_walk mem_cgroup_count_precharge_walk
= {
6977 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
6981 if (is_vm_hugetlb_page(vma
))
6983 walk_page_range(vma
->vm_start
, vma
->vm_end
,
6984 &mem_cgroup_count_precharge_walk
);
6986 up_read(&mm
->mmap_sem
);
6988 precharge
= mc
.precharge
;
6994 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
6996 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
6998 VM_BUG_ON(mc
.moving_task
);
6999 mc
.moving_task
= current
;
7000 return mem_cgroup_do_precharge(precharge
);
7003 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
7004 static void __mem_cgroup_clear_mc(void)
7006 struct mem_cgroup
*from
= mc
.from
;
7007 struct mem_cgroup
*to
= mc
.to
;
7010 /* we must uncharge all the leftover precharges from mc.to */
7012 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
7016 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
7017 * we must uncharge here.
7019 if (mc
.moved_charge
) {
7020 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
7021 mc
.moved_charge
= 0;
7023 /* we must fixup refcnts and charges */
7024 if (mc
.moved_swap
) {
7025 /* uncharge swap account from the old cgroup */
7026 if (!mem_cgroup_is_root(mc
.from
))
7027 res_counter_uncharge(&mc
.from
->memsw
,
7028 PAGE_SIZE
* mc
.moved_swap
);
7030 for (i
= 0; i
< mc
.moved_swap
; i
++)
7031 css_put(&mc
.from
->css
);
7033 if (!mem_cgroup_is_root(mc
.to
)) {
7035 * we charged both to->res and to->memsw, so we should
7038 res_counter_uncharge(&mc
.to
->res
,
7039 PAGE_SIZE
* mc
.moved_swap
);
7041 /* we've already done css_get(mc.to) */
7044 memcg_oom_recover(from
);
7045 memcg_oom_recover(to
);
7046 wake_up_all(&mc
.waitq
);
7049 static void mem_cgroup_clear_mc(void)
7051 struct mem_cgroup
*from
= mc
.from
;
7054 * we must clear moving_task before waking up waiters at the end of
7057 mc
.moving_task
= NULL
;
7058 __mem_cgroup_clear_mc();
7059 spin_lock(&mc
.lock
);
7062 spin_unlock(&mc
.lock
);
7063 mem_cgroup_end_move(from
);
7066 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7067 struct cgroup_taskset
*tset
)
7069 struct task_struct
*p
= cgroup_taskset_first(tset
);
7071 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
7072 unsigned long move_charge_at_immigrate
;
7075 * We are now commited to this value whatever it is. Changes in this
7076 * tunable will only affect upcoming migrations, not the current one.
7077 * So we need to save it, and keep it going.
7079 move_charge_at_immigrate
= memcg
->move_charge_at_immigrate
;
7080 if (move_charge_at_immigrate
) {
7081 struct mm_struct
*mm
;
7082 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
7084 VM_BUG_ON(from
== memcg
);
7086 mm
= get_task_mm(p
);
7089 /* We move charges only when we move a owner of the mm */
7090 if (mm
->owner
== p
) {
7093 VM_BUG_ON(mc
.precharge
);
7094 VM_BUG_ON(mc
.moved_charge
);
7095 VM_BUG_ON(mc
.moved_swap
);
7096 mem_cgroup_start_move(from
);
7097 spin_lock(&mc
.lock
);
7100 mc
.immigrate_flags
= move_charge_at_immigrate
;
7101 spin_unlock(&mc
.lock
);
7102 /* We set mc.moving_task later */
7104 ret
= mem_cgroup_precharge_mc(mm
);
7106 mem_cgroup_clear_mc();
7113 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
7114 struct cgroup_taskset
*tset
)
7116 mem_cgroup_clear_mc();
7119 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
7120 unsigned long addr
, unsigned long end
,
7121 struct mm_walk
*walk
)
7124 struct vm_area_struct
*vma
= walk
->private;
7127 enum mc_target_type target_type
;
7128 union mc_target target
;
7130 struct page_cgroup
*pc
;
7133 * We don't take compound_lock() here but no race with splitting thp
7135 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7136 * under splitting, which means there's no concurrent thp split,
7137 * - if another thread runs into split_huge_page() just after we
7138 * entered this if-block, the thread must wait for page table lock
7139 * to be unlocked in __split_huge_page_splitting(), where the main
7140 * part of thp split is not executed yet.
7142 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
7143 if (mc
.precharge
< HPAGE_PMD_NR
) {
7147 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
7148 if (target_type
== MC_TARGET_PAGE
) {
7150 if (!isolate_lru_page(page
)) {
7151 pc
= lookup_page_cgroup(page
);
7152 if (!mem_cgroup_move_account(page
, HPAGE_PMD_NR
,
7153 pc
, mc
.from
, mc
.to
)) {
7154 mc
.precharge
-= HPAGE_PMD_NR
;
7155 mc
.moved_charge
+= HPAGE_PMD_NR
;
7157 putback_lru_page(page
);
7165 if (pmd_trans_unstable(pmd
))
7168 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
7169 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
7170 pte_t ptent
= *(pte
++);
7176 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
7177 case MC_TARGET_PAGE
:
7179 if (isolate_lru_page(page
))
7181 pc
= lookup_page_cgroup(page
);
7182 if (!mem_cgroup_move_account(page
, 1, pc
,
7185 /* we uncharge from mc.from later. */
7188 putback_lru_page(page
);
7189 put
: /* get_mctgt_type() gets the page */
7192 case MC_TARGET_SWAP
:
7194 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
7196 /* we fixup refcnts and charges later. */
7204 pte_unmap_unlock(pte
- 1, ptl
);
7209 * We have consumed all precharges we got in can_attach().
7210 * We try charge one by one, but don't do any additional
7211 * charges to mc.to if we have failed in charge once in attach()
7214 ret
= mem_cgroup_do_precharge(1);
7222 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
7224 struct vm_area_struct
*vma
;
7226 lru_add_drain_all();
7228 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
7230 * Someone who are holding the mmap_sem might be waiting in
7231 * waitq. So we cancel all extra charges, wake up all waiters,
7232 * and retry. Because we cancel precharges, we might not be able
7233 * to move enough charges, but moving charge is a best-effort
7234 * feature anyway, so it wouldn't be a big problem.
7236 __mem_cgroup_clear_mc();
7240 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
7242 struct mm_walk mem_cgroup_move_charge_walk
= {
7243 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
7247 if (is_vm_hugetlb_page(vma
))
7249 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
7250 &mem_cgroup_move_charge_walk
);
7253 * means we have consumed all precharges and failed in
7254 * doing additional charge. Just abandon here.
7258 up_read(&mm
->mmap_sem
);
7261 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
7262 struct cgroup_taskset
*tset
)
7264 struct task_struct
*p
= cgroup_taskset_first(tset
);
7265 struct mm_struct
*mm
= get_task_mm(p
);
7269 mem_cgroup_move_charge(mm
);
7273 mem_cgroup_clear_mc();
7275 #else /* !CONFIG_MMU */
7276 static int mem_cgroup_can_attach(struct cgroup_subsys_state
*css
,
7277 struct cgroup_taskset
*tset
)
7281 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state
*css
,
7282 struct cgroup_taskset
*tset
)
7285 static void mem_cgroup_move_task(struct cgroup_subsys_state
*css
,
7286 struct cgroup_taskset
*tset
)
7292 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7293 * to verify sane_behavior flag on each mount attempt.
7295 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
7298 * use_hierarchy is forced with sane_behavior. cgroup core
7299 * guarantees that @root doesn't have any children, so turning it
7300 * on for the root memcg is enough.
7302 if (cgroup_sane_behavior(root_css
->cgroup
))
7303 mem_cgroup_from_css(root_css
)->use_hierarchy
= true;
7306 struct cgroup_subsys mem_cgroup_subsys
= {
7308 .subsys_id
= mem_cgroup_subsys_id
,
7309 .css_alloc
= mem_cgroup_css_alloc
,
7310 .css_online
= mem_cgroup_css_online
,
7311 .css_offline
= mem_cgroup_css_offline
,
7312 .css_free
= mem_cgroup_css_free
,
7313 .can_attach
= mem_cgroup_can_attach
,
7314 .cancel_attach
= mem_cgroup_cancel_attach
,
7315 .attach
= mem_cgroup_move_task
,
7316 .bind
= mem_cgroup_bind
,
7317 .base_cftypes
= mem_cgroup_files
,
7321 #ifdef CONFIG_MEMCG_SWAP
7322 static int __init
enable_swap_account(char *s
)
7324 if (!strcmp(s
, "1"))
7325 really_do_swap_account
= 1;
7326 else if (!strcmp(s
, "0"))
7327 really_do_swap_account
= 0;
7330 __setup("swapaccount=", enable_swap_account
);
7332 static void __init
memsw_file_init(void)
7334 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys
, memsw_cgroup_files
));
7337 static void __init
enable_swap_cgroup(void)
7339 if (!mem_cgroup_disabled() && really_do_swap_account
) {
7340 do_swap_account
= 1;
7346 static void __init
enable_swap_cgroup(void)
7352 * subsys_initcall() for memory controller.
7354 * Some parts like hotcpu_notifier() have to be initialized from this context
7355 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7356 * everything that doesn't depend on a specific mem_cgroup structure should
7357 * be initialized from here.
7359 static int __init
mem_cgroup_init(void)
7361 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
7362 enable_swap_cgroup();
7363 mem_cgroup_soft_limit_tree_init();
7367 subsys_initcall(mem_cgroup_init
);