IPoIB: Avoid reading an uninitialized member variable
[linux/fpc-iii.git] / fs / splice.c
blob0f77e9682857a5b513b67b790af078f0b6fc9b28
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 if (!spd_pages)
189 return 0;
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
195 pipe_lock(pipe);
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
221 if (pipe->files)
222 do_wakeup = 1;
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
229 break;
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
257 pipe_unlock(pipe);
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
265 return ret;
267 EXPORT_SYMBOL_GPL(splice_to_pipe);
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 page_cache_release(spd->pages[i]);
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289 if (spd->pages && spd->partial)
290 return 0;
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
302 kfree(spd->pages);
303 kfree(spd->partial);
306 static int
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
331 index = *ppos >> PAGE_CACHE_SHIFT;
332 loff = *ppos & ~PAGE_CACHE_MASK;
333 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
337 * Lookup the (hopefully) full range of pages we need.
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
356 page = find_get_page(mapping, index);
357 if (!page) {
359 * page didn't exist, allocate one.
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 page_cache_release(page);
369 if (error == -EEXIST)
370 continue;
371 break;
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
377 unlock_page(page);
380 spd.pages[spd.nr_pages++] = page;
381 index++;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index = *ppos >> PAGE_CACHE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
394 if (!len)
395 break;
398 * this_len is the max we'll use from this page
400 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 page = spd.pages[page_nr];
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page)) {
411 lock_page(page);
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page->mapping) {
420 unlock_page(page);
421 page = find_or_create_page(mapping, index,
422 mapping_gfp_mask(mapping));
424 if (!page) {
425 error = -ENOMEM;
426 break;
428 page_cache_release(spd.pages[page_nr]);
429 spd.pages[page_nr] = page;
432 * page was already under io and is now done, great
434 if (PageUptodate(page)) {
435 unlock_page(page);
436 goto fill_it;
440 * need to read in the page
442 error = mapping->a_ops->readpage(in, page);
443 if (unlikely(error)) {
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
450 if (error == AOP_TRUNCATED_PAGE)
451 error = 0;
453 break;
456 fill_it:
458 * i_size must be checked after PageUptodate.
460 isize = i_size_read(mapping->host);
461 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 if (unlikely(!isize || index > end_index))
463 break;
466 * if this is the last page, see if we need to shrink
467 * the length and stop
469 if (end_index == index) {
470 unsigned int plen;
473 * max good bytes in this page
475 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
476 if (plen <= loff)
477 break;
480 * force quit after adding this page
482 this_len = min(this_len, plen - loff);
483 len = this_len;
486 spd.partial[page_nr].offset = loff;
487 spd.partial[page_nr].len = this_len;
488 len -= this_len;
489 loff = 0;
490 spd.nr_pages++;
491 index++;
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
498 while (page_nr < nr_pages)
499 page_cache_release(spd.pages[page_nr++]);
500 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
502 if (spd.nr_pages)
503 error = splice_to_pipe(pipe, &spd);
505 splice_shrink_spd(&spd);
506 return error;
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
517 * Description:
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
520 * a readpage() hook.
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 struct pipe_inode_info *pipe, size_t len,
525 unsigned int flags)
527 loff_t isize, left;
528 int ret;
530 if (IS_DAX(in->f_mapping->host))
531 return default_file_splice_read(in, ppos, pipe, len, flags);
533 isize = i_size_read(in->f_mapping->host);
534 if (unlikely(*ppos >= isize))
535 return 0;
537 left = isize - *ppos;
538 if (unlikely(left < len))
539 len = left;
541 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
542 if (ret > 0) {
543 *ppos += ret;
544 file_accessed(in);
547 return ret;
549 EXPORT_SYMBOL(generic_file_splice_read);
551 static const struct pipe_buf_operations default_pipe_buf_ops = {
552 .can_merge = 0,
553 .confirm = generic_pipe_buf_confirm,
554 .release = generic_pipe_buf_release,
555 .steal = generic_pipe_buf_steal,
556 .get = generic_pipe_buf_get,
559 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
560 struct pipe_buffer *buf)
562 return 1;
565 /* Pipe buffer operations for a socket and similar. */
566 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
567 .can_merge = 0,
568 .confirm = generic_pipe_buf_confirm,
569 .release = generic_pipe_buf_release,
570 .steal = generic_pipe_buf_nosteal,
571 .get = generic_pipe_buf_get,
573 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
575 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
576 unsigned long vlen, loff_t offset)
578 mm_segment_t old_fs;
579 loff_t pos = offset;
580 ssize_t res;
582 old_fs = get_fs();
583 set_fs(get_ds());
584 /* The cast to a user pointer is valid due to the set_fs() */
585 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
586 set_fs(old_fs);
588 return res;
591 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
592 loff_t pos)
594 mm_segment_t old_fs;
595 ssize_t res;
597 old_fs = get_fs();
598 set_fs(get_ds());
599 /* The cast to a user pointer is valid due to the set_fs() */
600 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
601 set_fs(old_fs);
603 return res;
605 EXPORT_SYMBOL(kernel_write);
607 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
608 struct pipe_inode_info *pipe, size_t len,
609 unsigned int flags)
611 unsigned int nr_pages;
612 unsigned int nr_freed;
613 size_t offset;
614 struct page *pages[PIPE_DEF_BUFFERS];
615 struct partial_page partial[PIPE_DEF_BUFFERS];
616 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
617 ssize_t res;
618 size_t this_len;
619 int error;
620 int i;
621 struct splice_pipe_desc spd = {
622 .pages = pages,
623 .partial = partial,
624 .nr_pages_max = PIPE_DEF_BUFFERS,
625 .flags = flags,
626 .ops = &default_pipe_buf_ops,
627 .spd_release = spd_release_page,
630 if (splice_grow_spd(pipe, &spd))
631 return -ENOMEM;
633 res = -ENOMEM;
634 vec = __vec;
635 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
636 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
637 if (!vec)
638 goto shrink_ret;
641 offset = *ppos & ~PAGE_CACHE_MASK;
642 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
644 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
645 struct page *page;
647 page = alloc_page(GFP_USER);
648 error = -ENOMEM;
649 if (!page)
650 goto err;
652 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
653 vec[i].iov_base = (void __user *) page_address(page);
654 vec[i].iov_len = this_len;
655 spd.pages[i] = page;
656 spd.nr_pages++;
657 len -= this_len;
658 offset = 0;
661 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
662 if (res < 0) {
663 error = res;
664 goto err;
667 error = 0;
668 if (!res)
669 goto err;
671 nr_freed = 0;
672 for (i = 0; i < spd.nr_pages; i++) {
673 this_len = min_t(size_t, vec[i].iov_len, res);
674 spd.partial[i].offset = 0;
675 spd.partial[i].len = this_len;
676 if (!this_len) {
677 __free_page(spd.pages[i]);
678 spd.pages[i] = NULL;
679 nr_freed++;
681 res -= this_len;
683 spd.nr_pages -= nr_freed;
685 res = splice_to_pipe(pipe, &spd);
686 if (res > 0)
687 *ppos += res;
689 shrink_ret:
690 if (vec != __vec)
691 kfree(vec);
692 splice_shrink_spd(&spd);
693 return res;
695 err:
696 for (i = 0; i < spd.nr_pages; i++)
697 __free_page(spd.pages[i]);
699 res = error;
700 goto shrink_ret;
702 EXPORT_SYMBOL(default_file_splice_read);
705 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
706 * using sendpage(). Return the number of bytes sent.
708 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
709 struct pipe_buffer *buf, struct splice_desc *sd)
711 struct file *file = sd->u.file;
712 loff_t pos = sd->pos;
713 int more;
715 if (!likely(file->f_op->sendpage))
716 return -EINVAL;
718 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
720 if (sd->len < sd->total_len && pipe->nrbufs > 1)
721 more |= MSG_SENDPAGE_NOTLAST;
723 return file->f_op->sendpage(file, buf->page, buf->offset,
724 sd->len, &pos, more);
727 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
729 smp_mb();
730 if (waitqueue_active(&pipe->wait))
731 wake_up_interruptible(&pipe->wait);
732 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
736 * splice_from_pipe_feed - feed available data from a pipe to a file
737 * @pipe: pipe to splice from
738 * @sd: information to @actor
739 * @actor: handler that splices the data
741 * Description:
742 * This function loops over the pipe and calls @actor to do the
743 * actual moving of a single struct pipe_buffer to the desired
744 * destination. It returns when there's no more buffers left in
745 * the pipe or if the requested number of bytes (@sd->total_len)
746 * have been copied. It returns a positive number (one) if the
747 * pipe needs to be filled with more data, zero if the required
748 * number of bytes have been copied and -errno on error.
750 * This, together with splice_from_pipe_{begin,end,next}, may be
751 * used to implement the functionality of __splice_from_pipe() when
752 * locking is required around copying the pipe buffers to the
753 * destination.
755 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
756 splice_actor *actor)
758 int ret;
760 while (pipe->nrbufs) {
761 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
762 const struct pipe_buf_operations *ops = buf->ops;
764 sd->len = buf->len;
765 if (sd->len > sd->total_len)
766 sd->len = sd->total_len;
768 ret = buf->ops->confirm(pipe, buf);
769 if (unlikely(ret)) {
770 if (ret == -ENODATA)
771 ret = 0;
772 return ret;
775 ret = actor(pipe, buf, sd);
776 if (ret <= 0)
777 return ret;
779 buf->offset += ret;
780 buf->len -= ret;
782 sd->num_spliced += ret;
783 sd->len -= ret;
784 sd->pos += ret;
785 sd->total_len -= ret;
787 if (!buf->len) {
788 buf->ops = NULL;
789 ops->release(pipe, buf);
790 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
791 pipe->nrbufs--;
792 if (pipe->files)
793 sd->need_wakeup = true;
796 if (!sd->total_len)
797 return 0;
800 return 1;
804 * splice_from_pipe_next - wait for some data to splice from
805 * @pipe: pipe to splice from
806 * @sd: information about the splice operation
808 * Description:
809 * This function will wait for some data and return a positive
810 * value (one) if pipe buffers are available. It will return zero
811 * or -errno if no more data needs to be spliced.
813 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
816 * Check for signal early to make process killable when there are
817 * always buffers available
819 if (signal_pending(current))
820 return -ERESTARTSYS;
822 while (!pipe->nrbufs) {
823 if (!pipe->writers)
824 return 0;
826 if (!pipe->waiting_writers && sd->num_spliced)
827 return 0;
829 if (sd->flags & SPLICE_F_NONBLOCK)
830 return -EAGAIN;
832 if (signal_pending(current))
833 return -ERESTARTSYS;
835 if (sd->need_wakeup) {
836 wakeup_pipe_writers(pipe);
837 sd->need_wakeup = false;
840 pipe_wait(pipe);
843 return 1;
847 * splice_from_pipe_begin - start splicing from pipe
848 * @sd: information about the splice operation
850 * Description:
851 * This function should be called before a loop containing
852 * splice_from_pipe_next() and splice_from_pipe_feed() to
853 * initialize the necessary fields of @sd.
855 static void splice_from_pipe_begin(struct splice_desc *sd)
857 sd->num_spliced = 0;
858 sd->need_wakeup = false;
862 * splice_from_pipe_end - finish splicing from pipe
863 * @pipe: pipe to splice from
864 * @sd: information about the splice operation
866 * Description:
867 * This function will wake up pipe writers if necessary. It should
868 * be called after a loop containing splice_from_pipe_next() and
869 * splice_from_pipe_feed().
871 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
873 if (sd->need_wakeup)
874 wakeup_pipe_writers(pipe);
878 * __splice_from_pipe - splice data from a pipe to given actor
879 * @pipe: pipe to splice from
880 * @sd: information to @actor
881 * @actor: handler that splices the data
883 * Description:
884 * This function does little more than loop over the pipe and call
885 * @actor to do the actual moving of a single struct pipe_buffer to
886 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
887 * pipe_to_user.
890 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
891 splice_actor *actor)
893 int ret;
895 splice_from_pipe_begin(sd);
896 do {
897 cond_resched();
898 ret = splice_from_pipe_next(pipe, sd);
899 if (ret > 0)
900 ret = splice_from_pipe_feed(pipe, sd, actor);
901 } while (ret > 0);
902 splice_from_pipe_end(pipe, sd);
904 return sd->num_spliced ? sd->num_spliced : ret;
906 EXPORT_SYMBOL(__splice_from_pipe);
909 * splice_from_pipe - splice data from a pipe to a file
910 * @pipe: pipe to splice from
911 * @out: file to splice to
912 * @ppos: position in @out
913 * @len: how many bytes to splice
914 * @flags: splice modifier flags
915 * @actor: handler that splices the data
917 * Description:
918 * See __splice_from_pipe. This function locks the pipe inode,
919 * otherwise it's identical to __splice_from_pipe().
922 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
923 loff_t *ppos, size_t len, unsigned int flags,
924 splice_actor *actor)
926 ssize_t ret;
927 struct splice_desc sd = {
928 .total_len = len,
929 .flags = flags,
930 .pos = *ppos,
931 .u.file = out,
934 pipe_lock(pipe);
935 ret = __splice_from_pipe(pipe, &sd, actor);
936 pipe_unlock(pipe);
938 return ret;
942 * iter_file_splice_write - splice data from a pipe to a file
943 * @pipe: pipe info
944 * @out: file to write to
945 * @ppos: position in @out
946 * @len: number of bytes to splice
947 * @flags: splice modifier flags
949 * Description:
950 * Will either move or copy pages (determined by @flags options) from
951 * the given pipe inode to the given file.
952 * This one is ->write_iter-based.
955 ssize_t
956 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
957 loff_t *ppos, size_t len, unsigned int flags)
959 struct splice_desc sd = {
960 .total_len = len,
961 .flags = flags,
962 .pos = *ppos,
963 .u.file = out,
965 int nbufs = pipe->buffers;
966 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
967 GFP_KERNEL);
968 ssize_t ret;
970 if (unlikely(!array))
971 return -ENOMEM;
973 pipe_lock(pipe);
975 splice_from_pipe_begin(&sd);
976 while (sd.total_len) {
977 struct iov_iter from;
978 size_t left;
979 int n, idx;
981 ret = splice_from_pipe_next(pipe, &sd);
982 if (ret <= 0)
983 break;
985 if (unlikely(nbufs < pipe->buffers)) {
986 kfree(array);
987 nbufs = pipe->buffers;
988 array = kcalloc(nbufs, sizeof(struct bio_vec),
989 GFP_KERNEL);
990 if (!array) {
991 ret = -ENOMEM;
992 break;
996 /* build the vector */
997 left = sd.total_len;
998 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
999 struct pipe_buffer *buf = pipe->bufs + idx;
1000 size_t this_len = buf->len;
1002 if (this_len > left)
1003 this_len = left;
1005 if (idx == pipe->buffers - 1)
1006 idx = -1;
1008 ret = buf->ops->confirm(pipe, buf);
1009 if (unlikely(ret)) {
1010 if (ret == -ENODATA)
1011 ret = 0;
1012 goto done;
1015 array[n].bv_page = buf->page;
1016 array[n].bv_len = this_len;
1017 array[n].bv_offset = buf->offset;
1018 left -= this_len;
1021 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1022 sd.total_len - left);
1023 ret = vfs_iter_write(out, &from, &sd.pos);
1024 if (ret <= 0)
1025 break;
1027 sd.num_spliced += ret;
1028 sd.total_len -= ret;
1029 *ppos = sd.pos;
1031 /* dismiss the fully eaten buffers, adjust the partial one */
1032 while (ret) {
1033 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1034 if (ret >= buf->len) {
1035 const struct pipe_buf_operations *ops = buf->ops;
1036 ret -= buf->len;
1037 buf->len = 0;
1038 buf->ops = NULL;
1039 ops->release(pipe, buf);
1040 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1041 pipe->nrbufs--;
1042 if (pipe->files)
1043 sd.need_wakeup = true;
1044 } else {
1045 buf->offset += ret;
1046 buf->len -= ret;
1047 ret = 0;
1051 done:
1052 kfree(array);
1053 splice_from_pipe_end(pipe, &sd);
1055 pipe_unlock(pipe);
1057 if (sd.num_spliced)
1058 ret = sd.num_spliced;
1060 return ret;
1063 EXPORT_SYMBOL(iter_file_splice_write);
1065 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1066 struct splice_desc *sd)
1068 int ret;
1069 void *data;
1070 loff_t tmp = sd->pos;
1072 data = kmap(buf->page);
1073 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1074 kunmap(buf->page);
1076 return ret;
1079 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1080 struct file *out, loff_t *ppos,
1081 size_t len, unsigned int flags)
1083 ssize_t ret;
1085 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1086 if (ret > 0)
1087 *ppos += ret;
1089 return ret;
1093 * generic_splice_sendpage - splice data from a pipe to a socket
1094 * @pipe: pipe to splice from
1095 * @out: socket to write to
1096 * @ppos: position in @out
1097 * @len: number of bytes to splice
1098 * @flags: splice modifier flags
1100 * Description:
1101 * Will send @len bytes from the pipe to a network socket. No data copying
1102 * is involved.
1105 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1106 loff_t *ppos, size_t len, unsigned int flags)
1108 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1111 EXPORT_SYMBOL(generic_splice_sendpage);
1114 * Attempt to initiate a splice from pipe to file.
1116 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1117 loff_t *ppos, size_t len, unsigned int flags)
1119 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1120 loff_t *, size_t, unsigned int);
1122 if (out->f_op->splice_write)
1123 splice_write = out->f_op->splice_write;
1124 else
1125 splice_write = default_file_splice_write;
1127 return splice_write(pipe, out, ppos, len, flags);
1131 * Attempt to initiate a splice from a file to a pipe.
1133 static long do_splice_to(struct file *in, loff_t *ppos,
1134 struct pipe_inode_info *pipe, size_t len,
1135 unsigned int flags)
1137 ssize_t (*splice_read)(struct file *, loff_t *,
1138 struct pipe_inode_info *, size_t, unsigned int);
1139 int ret;
1141 if (unlikely(!(in->f_mode & FMODE_READ)))
1142 return -EBADF;
1144 ret = rw_verify_area(READ, in, ppos, len);
1145 if (unlikely(ret < 0))
1146 return ret;
1148 if (in->f_op->splice_read)
1149 splice_read = in->f_op->splice_read;
1150 else
1151 splice_read = default_file_splice_read;
1153 return splice_read(in, ppos, pipe, len, flags);
1157 * splice_direct_to_actor - splices data directly between two non-pipes
1158 * @in: file to splice from
1159 * @sd: actor information on where to splice to
1160 * @actor: handles the data splicing
1162 * Description:
1163 * This is a special case helper to splice directly between two
1164 * points, without requiring an explicit pipe. Internally an allocated
1165 * pipe is cached in the process, and reused during the lifetime of
1166 * that process.
1169 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1170 splice_direct_actor *actor)
1172 struct pipe_inode_info *pipe;
1173 long ret, bytes;
1174 umode_t i_mode;
1175 size_t len;
1176 int i, flags, more;
1179 * We require the input being a regular file, as we don't want to
1180 * randomly drop data for eg socket -> socket splicing. Use the
1181 * piped splicing for that!
1183 i_mode = file_inode(in)->i_mode;
1184 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1185 return -EINVAL;
1188 * neither in nor out is a pipe, setup an internal pipe attached to
1189 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 pipe = current->splice_pipe;
1192 if (unlikely(!pipe)) {
1193 pipe = alloc_pipe_info();
1194 if (!pipe)
1195 return -ENOMEM;
1198 * We don't have an immediate reader, but we'll read the stuff
1199 * out of the pipe right after the splice_to_pipe(). So set
1200 * PIPE_READERS appropriately.
1202 pipe->readers = 1;
1204 current->splice_pipe = pipe;
1208 * Do the splice.
1210 ret = 0;
1211 bytes = 0;
1212 len = sd->total_len;
1213 flags = sd->flags;
1216 * Don't block on output, we have to drain the direct pipe.
1218 sd->flags &= ~SPLICE_F_NONBLOCK;
1219 more = sd->flags & SPLICE_F_MORE;
1221 while (len) {
1222 size_t read_len;
1223 loff_t pos = sd->pos, prev_pos = pos;
1225 ret = do_splice_to(in, &pos, pipe, len, flags);
1226 if (unlikely(ret <= 0))
1227 goto out_release;
1229 read_len = ret;
1230 sd->total_len = read_len;
1233 * If more data is pending, set SPLICE_F_MORE
1234 * If this is the last data and SPLICE_F_MORE was not set
1235 * initially, clears it.
1237 if (read_len < len)
1238 sd->flags |= SPLICE_F_MORE;
1239 else if (!more)
1240 sd->flags &= ~SPLICE_F_MORE;
1242 * NOTE: nonblocking mode only applies to the input. We
1243 * must not do the output in nonblocking mode as then we
1244 * could get stuck data in the internal pipe:
1246 ret = actor(pipe, sd);
1247 if (unlikely(ret <= 0)) {
1248 sd->pos = prev_pos;
1249 goto out_release;
1252 bytes += ret;
1253 len -= ret;
1254 sd->pos = pos;
1256 if (ret < read_len) {
1257 sd->pos = prev_pos + ret;
1258 goto out_release;
1262 done:
1263 pipe->nrbufs = pipe->curbuf = 0;
1264 file_accessed(in);
1265 return bytes;
1267 out_release:
1269 * If we did an incomplete transfer we must release
1270 * the pipe buffers in question:
1272 for (i = 0; i < pipe->buffers; i++) {
1273 struct pipe_buffer *buf = pipe->bufs + i;
1275 if (buf->ops) {
1276 buf->ops->release(pipe, buf);
1277 buf->ops = NULL;
1281 if (!bytes)
1282 bytes = ret;
1284 goto done;
1286 EXPORT_SYMBOL(splice_direct_to_actor);
1288 static int direct_splice_actor(struct pipe_inode_info *pipe,
1289 struct splice_desc *sd)
1291 struct file *file = sd->u.file;
1293 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1294 sd->flags);
1298 * do_splice_direct - splices data directly between two files
1299 * @in: file to splice from
1300 * @ppos: input file offset
1301 * @out: file to splice to
1302 * @opos: output file offset
1303 * @len: number of bytes to splice
1304 * @flags: splice modifier flags
1306 * Description:
1307 * For use by do_sendfile(). splice can easily emulate sendfile, but
1308 * doing it in the application would incur an extra system call
1309 * (splice in + splice out, as compared to just sendfile()). So this helper
1310 * can splice directly through a process-private pipe.
1313 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1314 loff_t *opos, size_t len, unsigned int flags)
1316 struct splice_desc sd = {
1317 .len = len,
1318 .total_len = len,
1319 .flags = flags,
1320 .pos = *ppos,
1321 .u.file = out,
1322 .opos = opos,
1324 long ret;
1326 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1327 return -EBADF;
1329 if (unlikely(out->f_flags & O_APPEND))
1330 return -EINVAL;
1332 ret = rw_verify_area(WRITE, out, opos, len);
1333 if (unlikely(ret < 0))
1334 return ret;
1336 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1337 if (ret > 0)
1338 *ppos = sd.pos;
1340 return ret;
1342 EXPORT_SYMBOL(do_splice_direct);
1344 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1345 struct pipe_inode_info *opipe,
1346 size_t len, unsigned int flags);
1349 * Determine where to splice to/from.
1351 static long do_splice(struct file *in, loff_t __user *off_in,
1352 struct file *out, loff_t __user *off_out,
1353 size_t len, unsigned int flags)
1355 struct pipe_inode_info *ipipe;
1356 struct pipe_inode_info *opipe;
1357 loff_t offset;
1358 long ret;
1360 ipipe = get_pipe_info(in);
1361 opipe = get_pipe_info(out);
1363 if (ipipe && opipe) {
1364 if (off_in || off_out)
1365 return -ESPIPE;
1367 if (!(in->f_mode & FMODE_READ))
1368 return -EBADF;
1370 if (!(out->f_mode & FMODE_WRITE))
1371 return -EBADF;
1373 /* Splicing to self would be fun, but... */
1374 if (ipipe == opipe)
1375 return -EINVAL;
1377 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1380 if (ipipe) {
1381 if (off_in)
1382 return -ESPIPE;
1383 if (off_out) {
1384 if (!(out->f_mode & FMODE_PWRITE))
1385 return -EINVAL;
1386 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1387 return -EFAULT;
1388 } else {
1389 offset = out->f_pos;
1392 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1393 return -EBADF;
1395 if (unlikely(out->f_flags & O_APPEND))
1396 return -EINVAL;
1398 ret = rw_verify_area(WRITE, out, &offset, len);
1399 if (unlikely(ret < 0))
1400 return ret;
1402 file_start_write(out);
1403 ret = do_splice_from(ipipe, out, &offset, len, flags);
1404 file_end_write(out);
1406 if (!off_out)
1407 out->f_pos = offset;
1408 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1409 ret = -EFAULT;
1411 return ret;
1414 if (opipe) {
1415 if (off_out)
1416 return -ESPIPE;
1417 if (off_in) {
1418 if (!(in->f_mode & FMODE_PREAD))
1419 return -EINVAL;
1420 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1421 return -EFAULT;
1422 } else {
1423 offset = in->f_pos;
1426 ret = do_splice_to(in, &offset, opipe, len, flags);
1428 if (!off_in)
1429 in->f_pos = offset;
1430 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1431 ret = -EFAULT;
1433 return ret;
1436 return -EINVAL;
1440 * Map an iov into an array of pages and offset/length tupples. With the
1441 * partial_page structure, we can map several non-contiguous ranges into
1442 * our ones pages[] map instead of splitting that operation into pieces.
1443 * Could easily be exported as a generic helper for other users, in which
1444 * case one would probably want to add a 'max_nr_pages' parameter as well.
1446 static int get_iovec_page_array(const struct iovec __user *iov,
1447 unsigned int nr_vecs, struct page **pages,
1448 struct partial_page *partial, bool aligned,
1449 unsigned int pipe_buffers)
1451 int buffers = 0, error = 0;
1453 while (nr_vecs) {
1454 unsigned long off, npages;
1455 struct iovec entry;
1456 void __user *base;
1457 size_t len;
1458 int i;
1460 error = -EFAULT;
1461 if (copy_from_user(&entry, iov, sizeof(entry)))
1462 break;
1464 base = entry.iov_base;
1465 len = entry.iov_len;
1468 * Sanity check this iovec. 0 read succeeds.
1470 error = 0;
1471 if (unlikely(!len))
1472 break;
1473 error = -EFAULT;
1474 if (!access_ok(VERIFY_READ, base, len))
1475 break;
1478 * Get this base offset and number of pages, then map
1479 * in the user pages.
1481 off = (unsigned long) base & ~PAGE_MASK;
1484 * If asked for alignment, the offset must be zero and the
1485 * length a multiple of the PAGE_SIZE.
1487 error = -EINVAL;
1488 if (aligned && (off || len & ~PAGE_MASK))
1489 break;
1491 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1492 if (npages > pipe_buffers - buffers)
1493 npages = pipe_buffers - buffers;
1495 error = get_user_pages_fast((unsigned long)base, npages,
1496 0, &pages[buffers]);
1498 if (unlikely(error <= 0))
1499 break;
1502 * Fill this contiguous range into the partial page map.
1504 for (i = 0; i < error; i++) {
1505 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507 partial[buffers].offset = off;
1508 partial[buffers].len = plen;
1510 off = 0;
1511 len -= plen;
1512 buffers++;
1516 * We didn't complete this iov, stop here since it probably
1517 * means we have to move some of this into a pipe to
1518 * be able to continue.
1520 if (len)
1521 break;
1524 * Don't continue if we mapped fewer pages than we asked for,
1525 * or if we mapped the max number of pages that we have
1526 * room for.
1528 if (error < npages || buffers == pipe_buffers)
1529 break;
1531 nr_vecs--;
1532 iov++;
1535 if (buffers)
1536 return buffers;
1538 return error;
1541 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1542 struct splice_desc *sd)
1544 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1545 return n == sd->len ? n : -EFAULT;
1549 * For lack of a better implementation, implement vmsplice() to userspace
1550 * as a simple copy of the pipes pages to the user iov.
1552 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1553 unsigned long nr_segs, unsigned int flags)
1555 struct pipe_inode_info *pipe;
1556 struct splice_desc sd;
1557 long ret;
1558 struct iovec iovstack[UIO_FASTIOV];
1559 struct iovec *iov = iovstack;
1560 struct iov_iter iter;
1562 pipe = get_pipe_info(file);
1563 if (!pipe)
1564 return -EBADF;
1566 ret = import_iovec(READ, uiov, nr_segs,
1567 ARRAY_SIZE(iovstack), &iov, &iter);
1568 if (ret < 0)
1569 return ret;
1571 sd.total_len = iov_iter_count(&iter);
1572 sd.len = 0;
1573 sd.flags = flags;
1574 sd.u.data = &iter;
1575 sd.pos = 0;
1577 if (sd.total_len) {
1578 pipe_lock(pipe);
1579 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1580 pipe_unlock(pipe);
1583 kfree(iov);
1584 return ret;
1588 * vmsplice splices a user address range into a pipe. It can be thought of
1589 * as splice-from-memory, where the regular splice is splice-from-file (or
1590 * to file). In both cases the output is a pipe, naturally.
1592 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1593 unsigned long nr_segs, unsigned int flags)
1595 struct pipe_inode_info *pipe;
1596 struct page *pages[PIPE_DEF_BUFFERS];
1597 struct partial_page partial[PIPE_DEF_BUFFERS];
1598 struct splice_pipe_desc spd = {
1599 .pages = pages,
1600 .partial = partial,
1601 .nr_pages_max = PIPE_DEF_BUFFERS,
1602 .flags = flags,
1603 .ops = &user_page_pipe_buf_ops,
1604 .spd_release = spd_release_page,
1606 long ret;
1608 pipe = get_pipe_info(file);
1609 if (!pipe)
1610 return -EBADF;
1612 if (splice_grow_spd(pipe, &spd))
1613 return -ENOMEM;
1615 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1616 spd.partial, false,
1617 spd.nr_pages_max);
1618 if (spd.nr_pages <= 0)
1619 ret = spd.nr_pages;
1620 else
1621 ret = splice_to_pipe(pipe, &spd);
1623 splice_shrink_spd(&spd);
1624 return ret;
1628 * Note that vmsplice only really supports true splicing _from_ user memory
1629 * to a pipe, not the other way around. Splicing from user memory is a simple
1630 * operation that can be supported without any funky alignment restrictions
1631 * or nasty vm tricks. We simply map in the user memory and fill them into
1632 * a pipe. The reverse isn't quite as easy, though. There are two possible
1633 * solutions for that:
1635 * - memcpy() the data internally, at which point we might as well just
1636 * do a regular read() on the buffer anyway.
1637 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1638 * has restriction limitations on both ends of the pipe).
1640 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1643 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1644 unsigned long, nr_segs, unsigned int, flags)
1646 struct fd f;
1647 long error;
1649 if (unlikely(nr_segs > UIO_MAXIOV))
1650 return -EINVAL;
1651 else if (unlikely(!nr_segs))
1652 return 0;
1654 error = -EBADF;
1655 f = fdget(fd);
1656 if (f.file) {
1657 if (f.file->f_mode & FMODE_WRITE)
1658 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1659 else if (f.file->f_mode & FMODE_READ)
1660 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662 fdput(f);
1665 return error;
1668 #ifdef CONFIG_COMPAT
1669 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1670 unsigned int, nr_segs, unsigned int, flags)
1672 unsigned i;
1673 struct iovec __user *iov;
1674 if (nr_segs > UIO_MAXIOV)
1675 return -EINVAL;
1676 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1677 for (i = 0; i < nr_segs; i++) {
1678 struct compat_iovec v;
1679 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1680 get_user(v.iov_len, &iov32[i].iov_len) ||
1681 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1682 put_user(v.iov_len, &iov[i].iov_len))
1683 return -EFAULT;
1685 return sys_vmsplice(fd, iov, nr_segs, flags);
1687 #endif
1689 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1690 int, fd_out, loff_t __user *, off_out,
1691 size_t, len, unsigned int, flags)
1693 struct fd in, out;
1694 long error;
1696 if (unlikely(!len))
1697 return 0;
1699 error = -EBADF;
1700 in = fdget(fd_in);
1701 if (in.file) {
1702 if (in.file->f_mode & FMODE_READ) {
1703 out = fdget(fd_out);
1704 if (out.file) {
1705 if (out.file->f_mode & FMODE_WRITE)
1706 error = do_splice(in.file, off_in,
1707 out.file, off_out,
1708 len, flags);
1709 fdput(out);
1712 fdput(in);
1714 return error;
1718 * Make sure there's data to read. Wait for input if we can, otherwise
1719 * return an appropriate error.
1721 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723 int ret;
1726 * Check ->nrbufs without the inode lock first. This function
1727 * is speculative anyways, so missing one is ok.
1729 if (pipe->nrbufs)
1730 return 0;
1732 ret = 0;
1733 pipe_lock(pipe);
1735 while (!pipe->nrbufs) {
1736 if (signal_pending(current)) {
1737 ret = -ERESTARTSYS;
1738 break;
1740 if (!pipe->writers)
1741 break;
1742 if (!pipe->waiting_writers) {
1743 if (flags & SPLICE_F_NONBLOCK) {
1744 ret = -EAGAIN;
1745 break;
1748 pipe_wait(pipe);
1751 pipe_unlock(pipe);
1752 return ret;
1756 * Make sure there's writeable room. Wait for room if we can, otherwise
1757 * return an appropriate error.
1759 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761 int ret;
1764 * Check ->nrbufs without the inode lock first. This function
1765 * is speculative anyways, so missing one is ok.
1767 if (pipe->nrbufs < pipe->buffers)
1768 return 0;
1770 ret = 0;
1771 pipe_lock(pipe);
1773 while (pipe->nrbufs >= pipe->buffers) {
1774 if (!pipe->readers) {
1775 send_sig(SIGPIPE, current, 0);
1776 ret = -EPIPE;
1777 break;
1779 if (flags & SPLICE_F_NONBLOCK) {
1780 ret = -EAGAIN;
1781 break;
1783 if (signal_pending(current)) {
1784 ret = -ERESTARTSYS;
1785 break;
1787 pipe->waiting_writers++;
1788 pipe_wait(pipe);
1789 pipe->waiting_writers--;
1792 pipe_unlock(pipe);
1793 return ret;
1797 * Splice contents of ipipe to opipe.
1799 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1800 struct pipe_inode_info *opipe,
1801 size_t len, unsigned int flags)
1803 struct pipe_buffer *ibuf, *obuf;
1804 int ret = 0, nbuf;
1805 bool input_wakeup = false;
1808 retry:
1809 ret = ipipe_prep(ipipe, flags);
1810 if (ret)
1811 return ret;
1813 ret = opipe_prep(opipe, flags);
1814 if (ret)
1815 return ret;
1818 * Potential ABBA deadlock, work around it by ordering lock
1819 * grabbing by pipe info address. Otherwise two different processes
1820 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 pipe_double_lock(ipipe, opipe);
1824 do {
1825 if (!opipe->readers) {
1826 send_sig(SIGPIPE, current, 0);
1827 if (!ret)
1828 ret = -EPIPE;
1829 break;
1832 if (!ipipe->nrbufs && !ipipe->writers)
1833 break;
1836 * Cannot make any progress, because either the input
1837 * pipe is empty or the output pipe is full.
1839 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1840 /* Already processed some buffers, break */
1841 if (ret)
1842 break;
1844 if (flags & SPLICE_F_NONBLOCK) {
1845 ret = -EAGAIN;
1846 break;
1850 * We raced with another reader/writer and haven't
1851 * managed to process any buffers. A zero return
1852 * value means EOF, so retry instead.
1854 pipe_unlock(ipipe);
1855 pipe_unlock(opipe);
1856 goto retry;
1859 ibuf = ipipe->bufs + ipipe->curbuf;
1860 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1861 obuf = opipe->bufs + nbuf;
1863 if (len >= ibuf->len) {
1865 * Simply move the whole buffer from ipipe to opipe
1867 *obuf = *ibuf;
1868 ibuf->ops = NULL;
1869 opipe->nrbufs++;
1870 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1871 ipipe->nrbufs--;
1872 input_wakeup = true;
1873 } else {
1875 * Get a reference to this pipe buffer,
1876 * so we can copy the contents over.
1878 ibuf->ops->get(ipipe, ibuf);
1879 *obuf = *ibuf;
1882 * Don't inherit the gift flag, we need to
1883 * prevent multiple steals of this page.
1885 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887 obuf->len = len;
1888 opipe->nrbufs++;
1889 ibuf->offset += obuf->len;
1890 ibuf->len -= obuf->len;
1892 ret += obuf->len;
1893 len -= obuf->len;
1894 } while (len);
1896 pipe_unlock(ipipe);
1897 pipe_unlock(opipe);
1900 * If we put data in the output pipe, wakeup any potential readers.
1902 if (ret > 0)
1903 wakeup_pipe_readers(opipe);
1905 if (input_wakeup)
1906 wakeup_pipe_writers(ipipe);
1908 return ret;
1912 * Link contents of ipipe to opipe.
1914 static int link_pipe(struct pipe_inode_info *ipipe,
1915 struct pipe_inode_info *opipe,
1916 size_t len, unsigned int flags)
1918 struct pipe_buffer *ibuf, *obuf;
1919 int ret = 0, i = 0, nbuf;
1922 * Potential ABBA deadlock, work around it by ordering lock
1923 * grabbing by pipe info address. Otherwise two different processes
1924 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 pipe_double_lock(ipipe, opipe);
1928 do {
1929 if (!opipe->readers) {
1930 send_sig(SIGPIPE, current, 0);
1931 if (!ret)
1932 ret = -EPIPE;
1933 break;
1937 * If we have iterated all input buffers or ran out of
1938 * output room, break.
1940 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1941 break;
1943 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1944 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1947 * Get a reference to this pipe buffer,
1948 * so we can copy the contents over.
1950 ibuf->ops->get(ipipe, ibuf);
1952 obuf = opipe->bufs + nbuf;
1953 *obuf = *ibuf;
1956 * Don't inherit the gift flag, we need to
1957 * prevent multiple steals of this page.
1959 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961 if (obuf->len > len)
1962 obuf->len = len;
1964 opipe->nrbufs++;
1965 ret += obuf->len;
1966 len -= obuf->len;
1967 i++;
1968 } while (len);
1971 * return EAGAIN if we have the potential of some data in the
1972 * future, otherwise just return 0
1974 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1975 ret = -EAGAIN;
1977 pipe_unlock(ipipe);
1978 pipe_unlock(opipe);
1981 * If we put data in the output pipe, wakeup any potential readers.
1983 if (ret > 0)
1984 wakeup_pipe_readers(opipe);
1986 return ret;
1990 * This is a tee(1) implementation that works on pipes. It doesn't copy
1991 * any data, it simply references the 'in' pages on the 'out' pipe.
1992 * The 'flags' used are the SPLICE_F_* variants, currently the only
1993 * applicable one is SPLICE_F_NONBLOCK.
1995 static long do_tee(struct file *in, struct file *out, size_t len,
1996 unsigned int flags)
1998 struct pipe_inode_info *ipipe = get_pipe_info(in);
1999 struct pipe_inode_info *opipe = get_pipe_info(out);
2000 int ret = -EINVAL;
2003 * Duplicate the contents of ipipe to opipe without actually
2004 * copying the data.
2006 if (ipipe && opipe && ipipe != opipe) {
2008 * Keep going, unless we encounter an error. The ipipe/opipe
2009 * ordering doesn't really matter.
2011 ret = ipipe_prep(ipipe, flags);
2012 if (!ret) {
2013 ret = opipe_prep(opipe, flags);
2014 if (!ret)
2015 ret = link_pipe(ipipe, opipe, len, flags);
2019 return ret;
2022 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024 struct fd in;
2025 int error;
2027 if (unlikely(!len))
2028 return 0;
2030 error = -EBADF;
2031 in = fdget(fdin);
2032 if (in.file) {
2033 if (in.file->f_mode & FMODE_READ) {
2034 struct fd out = fdget(fdout);
2035 if (out.file) {
2036 if (out.file->f_mode & FMODE_WRITE)
2037 error = do_tee(in.file, out.file,
2038 len, flags);
2039 fdput(out);
2042 fdput(in);
2045 return error;