2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/init_task.h>
34 #include <linux/kernel.h>
35 #include <linux/list.h>
37 #include <linux/mutex.h>
38 #include <linux/mount.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/rcupdate.h>
42 #include <linux/sched.h>
43 #include <linux/backing-dev.h>
44 #include <linux/seq_file.h>
45 #include <linux/slab.h>
46 #include <linux/magic.h>
47 #include <linux/spinlock.h>
48 #include <linux/string.h>
49 #include <linux/sort.h>
50 #include <linux/kmod.h>
51 #include <linux/module.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/namei.h>
56 #include <linux/pid_namespace.h>
57 #include <linux/idr.h>
58 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
59 #include <linux/eventfd.h>
60 #include <linux/poll.h>
61 #include <linux/flex_array.h> /* used in cgroup_attach_task */
62 #include <linux/kthread.h>
64 #include <linux/atomic.h>
66 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
67 #define CSS_DEACT_BIAS INT_MIN
70 * cgroup_mutex is the master lock. Any modification to cgroup or its
71 * hierarchy must be performed while holding it.
73 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
74 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
75 * release_agent_path and so on. Modifying requires both cgroup_mutex and
76 * cgroup_root_mutex. Readers can acquire either of the two. This is to
77 * break the following locking order cycle.
79 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
80 * B. namespace_sem -> cgroup_mutex
82 * B happens only through cgroup_show_options() and using cgroup_root_mutex
85 #ifdef CONFIG_PROVE_RCU
86 DEFINE_MUTEX(cgroup_mutex
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
); /* only for task_subsys_state_check() */
89 static DEFINE_MUTEX(cgroup_mutex
);
92 static DEFINE_MUTEX(cgroup_root_mutex
);
95 * Generate an array of cgroup subsystem pointers. At boot time, this is
96 * populated with the built in subsystems, and modular subsystems are
97 * registered after that. The mutable section of this array is protected by
100 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
101 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
102 static struct cgroup_subsys
*subsys
[CGROUP_SUBSYS_COUNT
] = {
103 #include <linux/cgroup_subsys.h>
107 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
108 * subsystems that are otherwise unattached - it never has more than a
109 * single cgroup, and all tasks are part of that cgroup.
111 static struct cgroupfs_root rootnode
;
114 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
117 struct list_head node
;
118 struct dentry
*dentry
;
122 struct simple_xattrs xattrs
;
126 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
127 * cgroup_subsys->use_id != 0.
129 #define CSS_ID_MAX (65535)
132 * The css to which this ID points. This pointer is set to valid value
133 * after cgroup is populated. If cgroup is removed, this will be NULL.
134 * This pointer is expected to be RCU-safe because destroy()
135 * is called after synchronize_rcu(). But for safe use, css_tryget()
136 * should be used for avoiding race.
138 struct cgroup_subsys_state __rcu
*css
;
144 * Depth in hierarchy which this ID belongs to.
146 unsigned short depth
;
148 * ID is freed by RCU. (and lookup routine is RCU safe.)
150 struct rcu_head rcu_head
;
152 * Hierarchy of CSS ID belongs to.
154 unsigned short stack
[0]; /* Array of Length (depth+1) */
158 * cgroup_event represents events which userspace want to receive.
160 struct cgroup_event
{
162 * Cgroup which the event belongs to.
166 * Control file which the event associated.
170 * eventfd to signal userspace about the event.
172 struct eventfd_ctx
*eventfd
;
174 * Each of these stored in a list by the cgroup.
176 struct list_head list
;
178 * All fields below needed to unregister event when
179 * userspace closes eventfd.
182 wait_queue_head_t
*wqh
;
184 struct work_struct remove
;
187 /* The list of hierarchy roots */
189 static LIST_HEAD(roots
);
190 static int root_count
;
192 static DEFINE_IDA(hierarchy_ida
);
193 static int next_hierarchy_id
;
194 static DEFINE_SPINLOCK(hierarchy_id_lock
);
196 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
197 #define dummytop (&rootnode.top_cgroup)
199 static struct cgroup_name root_cgroup_name
= { .name
= "/" };
201 /* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
206 static int need_forkexit_callback __read_mostly
;
208 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
209 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
210 struct cftype cfts
[], bool is_add
);
212 static int css_unbias_refcnt(int refcnt
)
214 return refcnt
>= 0 ? refcnt
: refcnt
- CSS_DEACT_BIAS
;
217 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
218 static int css_refcnt(struct cgroup_subsys_state
*css
)
220 int v
= atomic_read(&css
->refcnt
);
222 return css_unbias_refcnt(v
);
225 /* convenient tests for these bits */
226 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
228 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
232 * cgroup_is_descendant - test ancestry
233 * @cgrp: the cgroup to be tested
234 * @ancestor: possible ancestor of @cgrp
236 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
237 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
238 * and @ancestor are accessible.
240 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
243 if (cgrp
== ancestor
)
249 EXPORT_SYMBOL_GPL(cgroup_is_descendant
);
251 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
254 (1 << CGRP_RELEASABLE
) |
255 (1 << CGRP_NOTIFY_ON_RELEASE
);
256 return (cgrp
->flags
& bits
) == bits
;
259 static int notify_on_release(const struct cgroup
*cgrp
)
261 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
265 * for_each_subsys() allows you to iterate on each subsystem attached to
266 * an active hierarchy
268 #define for_each_subsys(_root, _ss) \
269 list_for_each_entry(_ss, &_root->subsys_list, sibling)
271 /* for_each_active_root() allows you to iterate across the active hierarchies */
272 #define for_each_active_root(_root) \
273 list_for_each_entry(_root, &roots, root_list)
275 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
277 return dentry
->d_fsdata
;
280 static inline struct cfent
*__d_cfe(struct dentry
*dentry
)
282 return dentry
->d_fsdata
;
285 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
287 return __d_cfe(dentry
)->type
;
291 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
292 * @cgrp: the cgroup to be checked for liveness
294 * On success, returns true; the mutex should be later unlocked. On
295 * failure returns false with no lock held.
297 static bool cgroup_lock_live_group(struct cgroup
*cgrp
)
299 mutex_lock(&cgroup_mutex
);
300 if (cgroup_is_removed(cgrp
)) {
301 mutex_unlock(&cgroup_mutex
);
307 /* the list of cgroups eligible for automatic release. Protected by
308 * release_list_lock */
309 static LIST_HEAD(release_list
);
310 static DEFINE_RAW_SPINLOCK(release_list_lock
);
311 static void cgroup_release_agent(struct work_struct
*work
);
312 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
313 static void check_for_release(struct cgroup
*cgrp
);
315 /* Link structure for associating css_set objects with cgroups */
316 struct cg_cgroup_link
{
318 * List running through cg_cgroup_links associated with a
319 * cgroup, anchored on cgroup->css_sets
321 struct list_head cgrp_link_list
;
324 * List running through cg_cgroup_links pointing at a
325 * single css_set object, anchored on css_set->cg_links
327 struct list_head cg_link_list
;
331 /* The default css_set - used by init and its children prior to any
332 * hierarchies being mounted. It contains a pointer to the root state
333 * for each subsystem. Also used to anchor the list of css_sets. Not
334 * reference-counted, to improve performance when child cgroups
335 * haven't been created.
338 static struct css_set init_css_set
;
339 static struct cg_cgroup_link init_css_set_link
;
341 static int cgroup_init_idr(struct cgroup_subsys
*ss
,
342 struct cgroup_subsys_state
*css
);
344 /* css_set_lock protects the list of css_set objects, and the
345 * chain of tasks off each css_set. Nests outside task->alloc_lock
346 * due to cgroup_iter_start() */
347 static DEFINE_RWLOCK(css_set_lock
);
348 static int css_set_count
;
351 * hash table for cgroup groups. This improves the performance to find
352 * an existing css_set. This hash doesn't (currently) take into
353 * account cgroups in empty hierarchies.
355 #define CSS_SET_HASH_BITS 7
356 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
358 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
361 unsigned long key
= 0UL;
363 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
364 key
+= (unsigned long)css
[i
];
365 key
= (key
>> 16) ^ key
;
370 /* We don't maintain the lists running through each css_set to its
371 * task until after the first call to cgroup_iter_start(). This
372 * reduces the fork()/exit() overhead for people who have cgroups
373 * compiled into their kernel but not actually in use */
374 static int use_task_css_set_links __read_mostly
;
376 static void __put_css_set(struct css_set
*cg
, int taskexit
)
378 struct cg_cgroup_link
*link
;
379 struct cg_cgroup_link
*saved_link
;
381 * Ensure that the refcount doesn't hit zero while any readers
382 * can see it. Similar to atomic_dec_and_lock(), but for an
385 if (atomic_add_unless(&cg
->refcount
, -1, 1))
387 write_lock(&css_set_lock
);
388 if (!atomic_dec_and_test(&cg
->refcount
)) {
389 write_unlock(&css_set_lock
);
393 /* This css_set is dead. unlink it and release cgroup refcounts */
394 hash_del(&cg
->hlist
);
397 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
399 struct cgroup
*cgrp
= link
->cgrp
;
400 list_del(&link
->cg_link_list
);
401 list_del(&link
->cgrp_link_list
);
404 * We may not be holding cgroup_mutex, and if cgrp->count is
405 * dropped to 0 the cgroup can be destroyed at any time, hence
406 * rcu_read_lock is used to keep it alive.
409 if (atomic_dec_and_test(&cgrp
->count
) &&
410 notify_on_release(cgrp
)) {
412 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
413 check_for_release(cgrp
);
420 write_unlock(&css_set_lock
);
421 kfree_rcu(cg
, rcu_head
);
425 * refcounted get/put for css_set objects
427 static inline void get_css_set(struct css_set
*cg
)
429 atomic_inc(&cg
->refcount
);
432 static inline void put_css_set(struct css_set
*cg
)
434 __put_css_set(cg
, 0);
437 static inline void put_css_set_taskexit(struct css_set
*cg
)
439 __put_css_set(cg
, 1);
443 * compare_css_sets - helper function for find_existing_css_set().
444 * @cg: candidate css_set being tested
445 * @old_cg: existing css_set for a task
446 * @new_cgrp: cgroup that's being entered by the task
447 * @template: desired set of css pointers in css_set (pre-calculated)
449 * Returns true if "cg" matches "old_cg" except for the hierarchy
450 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
452 static bool compare_css_sets(struct css_set
*cg
,
453 struct css_set
*old_cg
,
454 struct cgroup
*new_cgrp
,
455 struct cgroup_subsys_state
*template[])
457 struct list_head
*l1
, *l2
;
459 if (memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
460 /* Not all subsystems matched */
465 * Compare cgroup pointers in order to distinguish between
466 * different cgroups in heirarchies with no subsystems. We
467 * could get by with just this check alone (and skip the
468 * memcmp above) but on most setups the memcmp check will
469 * avoid the need for this more expensive check on almost all
474 l2
= &old_cg
->cg_links
;
476 struct cg_cgroup_link
*cgl1
, *cgl2
;
477 struct cgroup
*cg1
, *cg2
;
481 /* See if we reached the end - both lists are equal length. */
482 if (l1
== &cg
->cg_links
) {
483 BUG_ON(l2
!= &old_cg
->cg_links
);
486 BUG_ON(l2
== &old_cg
->cg_links
);
488 /* Locate the cgroups associated with these links. */
489 cgl1
= list_entry(l1
, struct cg_cgroup_link
, cg_link_list
);
490 cgl2
= list_entry(l2
, struct cg_cgroup_link
, cg_link_list
);
493 /* Hierarchies should be linked in the same order. */
494 BUG_ON(cg1
->root
!= cg2
->root
);
497 * If this hierarchy is the hierarchy of the cgroup
498 * that's changing, then we need to check that this
499 * css_set points to the new cgroup; if it's any other
500 * hierarchy, then this css_set should point to the
501 * same cgroup as the old css_set.
503 if (cg1
->root
== new_cgrp
->root
) {
515 * find_existing_css_set() is a helper for
516 * find_css_set(), and checks to see whether an existing
517 * css_set is suitable.
519 * oldcg: the cgroup group that we're using before the cgroup
522 * cgrp: the cgroup that we're moving into
524 * template: location in which to build the desired set of subsystem
525 * state objects for the new cgroup group
527 static struct css_set
*find_existing_css_set(
528 struct css_set
*oldcg
,
530 struct cgroup_subsys_state
*template[])
533 struct cgroupfs_root
*root
= cgrp
->root
;
538 * Build the set of subsystem state objects that we want to see in the
539 * new css_set. while subsystems can change globally, the entries here
540 * won't change, so no need for locking.
542 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
543 if (root
->subsys_mask
& (1UL << i
)) {
544 /* Subsystem is in this hierarchy. So we want
545 * the subsystem state from the new
547 template[i
] = cgrp
->subsys
[i
];
549 /* Subsystem is not in this hierarchy, so we
550 * don't want to change the subsystem state */
551 template[i
] = oldcg
->subsys
[i
];
555 key
= css_set_hash(template);
556 hash_for_each_possible(css_set_table
, cg
, hlist
, key
) {
557 if (!compare_css_sets(cg
, oldcg
, cgrp
, template))
560 /* This css_set matches what we need */
564 /* No existing cgroup group matched */
568 static void free_cg_links(struct list_head
*tmp
)
570 struct cg_cgroup_link
*link
;
571 struct cg_cgroup_link
*saved_link
;
573 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
574 list_del(&link
->cgrp_link_list
);
580 * allocate_cg_links() allocates "count" cg_cgroup_link structures
581 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
582 * success or a negative error
584 static int allocate_cg_links(int count
, struct list_head
*tmp
)
586 struct cg_cgroup_link
*link
;
589 for (i
= 0; i
< count
; i
++) {
590 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
595 list_add(&link
->cgrp_link_list
, tmp
);
601 * link_css_set - a helper function to link a css_set to a cgroup
602 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
603 * @cg: the css_set to be linked
604 * @cgrp: the destination cgroup
606 static void link_css_set(struct list_head
*tmp_cg_links
,
607 struct css_set
*cg
, struct cgroup
*cgrp
)
609 struct cg_cgroup_link
*link
;
611 BUG_ON(list_empty(tmp_cg_links
));
612 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
616 atomic_inc(&cgrp
->count
);
617 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
619 * Always add links to the tail of the list so that the list
620 * is sorted by order of hierarchy creation
622 list_add_tail(&link
->cg_link_list
, &cg
->cg_links
);
626 * find_css_set() takes an existing cgroup group and a
627 * cgroup object, and returns a css_set object that's
628 * equivalent to the old group, but with the given cgroup
629 * substituted into the appropriate hierarchy. Must be called with
632 static struct css_set
*find_css_set(
633 struct css_set
*oldcg
, struct cgroup
*cgrp
)
636 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
638 struct list_head tmp_cg_links
;
640 struct cg_cgroup_link
*link
;
643 /* First see if we already have a cgroup group that matches
645 read_lock(&css_set_lock
);
646 res
= find_existing_css_set(oldcg
, cgrp
, template);
649 read_unlock(&css_set_lock
);
654 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
658 /* Allocate all the cg_cgroup_link objects that we'll need */
659 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
664 atomic_set(&res
->refcount
, 1);
665 INIT_LIST_HEAD(&res
->cg_links
);
666 INIT_LIST_HEAD(&res
->tasks
);
667 INIT_HLIST_NODE(&res
->hlist
);
669 /* Copy the set of subsystem state objects generated in
670 * find_existing_css_set() */
671 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
673 write_lock(&css_set_lock
);
674 /* Add reference counts and links from the new css_set. */
675 list_for_each_entry(link
, &oldcg
->cg_links
, cg_link_list
) {
676 struct cgroup
*c
= link
->cgrp
;
677 if (c
->root
== cgrp
->root
)
679 link_css_set(&tmp_cg_links
, res
, c
);
682 BUG_ON(!list_empty(&tmp_cg_links
));
686 /* Add this cgroup group to the hash table */
687 key
= css_set_hash(res
->subsys
);
688 hash_add(css_set_table
, &res
->hlist
, key
);
690 write_unlock(&css_set_lock
);
696 * Return the cgroup for "task" from the given hierarchy. Must be
697 * called with cgroup_mutex held.
699 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
700 struct cgroupfs_root
*root
)
703 struct cgroup
*res
= NULL
;
705 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
706 read_lock(&css_set_lock
);
708 * No need to lock the task - since we hold cgroup_mutex the
709 * task can't change groups, so the only thing that can happen
710 * is that it exits and its css is set back to init_css_set.
713 if (css
== &init_css_set
) {
714 res
= &root
->top_cgroup
;
716 struct cg_cgroup_link
*link
;
717 list_for_each_entry(link
, &css
->cg_links
, cg_link_list
) {
718 struct cgroup
*c
= link
->cgrp
;
719 if (c
->root
== root
) {
725 read_unlock(&css_set_lock
);
731 * There is one global cgroup mutex. We also require taking
732 * task_lock() when dereferencing a task's cgroup subsys pointers.
733 * See "The task_lock() exception", at the end of this comment.
735 * A task must hold cgroup_mutex to modify cgroups.
737 * Any task can increment and decrement the count field without lock.
738 * So in general, code holding cgroup_mutex can't rely on the count
739 * field not changing. However, if the count goes to zero, then only
740 * cgroup_attach_task() can increment it again. Because a count of zero
741 * means that no tasks are currently attached, therefore there is no
742 * way a task attached to that cgroup can fork (the other way to
743 * increment the count). So code holding cgroup_mutex can safely
744 * assume that if the count is zero, it will stay zero. Similarly, if
745 * a task holds cgroup_mutex on a cgroup with zero count, it
746 * knows that the cgroup won't be removed, as cgroup_rmdir()
749 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
750 * (usually) take cgroup_mutex. These are the two most performance
751 * critical pieces of code here. The exception occurs on cgroup_exit(),
752 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
753 * is taken, and if the cgroup count is zero, a usermode call made
754 * to the release agent with the name of the cgroup (path relative to
755 * the root of cgroup file system) as the argument.
757 * A cgroup can only be deleted if both its 'count' of using tasks
758 * is zero, and its list of 'children' cgroups is empty. Since all
759 * tasks in the system use _some_ cgroup, and since there is always at
760 * least one task in the system (init, pid == 1), therefore, top_cgroup
761 * always has either children cgroups and/or using tasks. So we don't
762 * need a special hack to ensure that top_cgroup cannot be deleted.
764 * The task_lock() exception
766 * The need for this exception arises from the action of
767 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
768 * another. It does so using cgroup_mutex, however there are
769 * several performance critical places that need to reference
770 * task->cgroup without the expense of grabbing a system global
771 * mutex. Therefore except as noted below, when dereferencing or, as
772 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
773 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
774 * the task_struct routinely used for such matters.
776 * P.S. One more locking exception. RCU is used to guard the
777 * update of a tasks cgroup pointer by cgroup_attach_task()
781 * A couple of forward declarations required, due to cyclic reference loop:
782 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
783 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
787 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
);
788 static struct dentry
*cgroup_lookup(struct inode
*, struct dentry
*, unsigned int);
789 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
790 static int cgroup_populate_dir(struct cgroup
*cgrp
, bool base_files
,
791 unsigned long subsys_mask
);
792 static const struct inode_operations cgroup_dir_inode_operations
;
793 static const struct file_operations proc_cgroupstats_operations
;
795 static struct backing_dev_info cgroup_backing_dev_info
= {
797 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
800 static int alloc_css_id(struct cgroup_subsys
*ss
,
801 struct cgroup
*parent
, struct cgroup
*child
);
803 static struct inode
*cgroup_new_inode(umode_t mode
, struct super_block
*sb
)
805 struct inode
*inode
= new_inode(sb
);
808 inode
->i_ino
= get_next_ino();
809 inode
->i_mode
= mode
;
810 inode
->i_uid
= current_fsuid();
811 inode
->i_gid
= current_fsgid();
812 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
813 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
818 static struct cgroup_name
*cgroup_alloc_name(struct dentry
*dentry
)
820 struct cgroup_name
*name
;
822 name
= kmalloc(sizeof(*name
) + dentry
->d_name
.len
+ 1, GFP_KERNEL
);
825 strcpy(name
->name
, dentry
->d_name
.name
);
829 static void cgroup_free_fn(struct work_struct
*work
)
831 struct cgroup
*cgrp
= container_of(work
, struct cgroup
, free_work
);
832 struct cgroup_subsys
*ss
;
834 mutex_lock(&cgroup_mutex
);
836 * Release the subsystem state objects.
838 for_each_subsys(cgrp
->root
, ss
)
841 cgrp
->root
->number_of_cgroups
--;
842 mutex_unlock(&cgroup_mutex
);
845 * We get a ref to the parent's dentry, and put the ref when
846 * this cgroup is being freed, so it's guaranteed that the
847 * parent won't be destroyed before its children.
849 dput(cgrp
->parent
->dentry
);
851 ida_simple_remove(&cgrp
->root
->cgroup_ida
, cgrp
->id
);
854 * Drop the active superblock reference that we took when we
855 * created the cgroup. This will free cgrp->root, if we are
856 * holding the last reference to @sb.
858 deactivate_super(cgrp
->root
->sb
);
861 * if we're getting rid of the cgroup, refcount should ensure
862 * that there are no pidlists left.
864 BUG_ON(!list_empty(&cgrp
->pidlists
));
866 simple_xattrs_free(&cgrp
->xattrs
);
868 kfree(rcu_dereference_raw(cgrp
->name
));
872 static void cgroup_free_rcu(struct rcu_head
*head
)
874 struct cgroup
*cgrp
= container_of(head
, struct cgroup
, rcu_head
);
876 schedule_work(&cgrp
->free_work
);
879 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
881 /* is dentry a directory ? if so, kfree() associated cgroup */
882 if (S_ISDIR(inode
->i_mode
)) {
883 struct cgroup
*cgrp
= dentry
->d_fsdata
;
885 BUG_ON(!(cgroup_is_removed(cgrp
)));
886 call_rcu(&cgrp
->rcu_head
, cgroup_free_rcu
);
888 struct cfent
*cfe
= __d_cfe(dentry
);
889 struct cgroup
*cgrp
= dentry
->d_parent
->d_fsdata
;
891 WARN_ONCE(!list_empty(&cfe
->node
) &&
892 cgrp
!= &cgrp
->root
->top_cgroup
,
893 "cfe still linked for %s\n", cfe
->type
->name
);
894 simple_xattrs_free(&cfe
->xattrs
);
900 static int cgroup_delete(const struct dentry
*d
)
905 static void remove_dir(struct dentry
*d
)
907 struct dentry
*parent
= dget(d
->d_parent
);
910 simple_rmdir(parent
->d_inode
, d
);
914 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
918 lockdep_assert_held(&cgrp
->dentry
->d_inode
->i_mutex
);
919 lockdep_assert_held(&cgroup_mutex
);
922 * If we're doing cleanup due to failure of cgroup_create(),
923 * the corresponding @cfe may not exist.
925 list_for_each_entry(cfe
, &cgrp
->files
, node
) {
926 struct dentry
*d
= cfe
->dentry
;
928 if (cft
&& cfe
->type
!= cft
)
933 simple_unlink(cgrp
->dentry
->d_inode
, d
);
934 list_del_init(&cfe
->node
);
942 * cgroup_clear_directory - selective removal of base and subsystem files
943 * @dir: directory containing the files
944 * @base_files: true if the base files should be removed
945 * @subsys_mask: mask of the subsystem ids whose files should be removed
947 static void cgroup_clear_directory(struct dentry
*dir
, bool base_files
,
948 unsigned long subsys_mask
)
950 struct cgroup
*cgrp
= __d_cgrp(dir
);
951 struct cgroup_subsys
*ss
;
953 for_each_subsys(cgrp
->root
, ss
) {
954 struct cftype_set
*set
;
955 if (!test_bit(ss
->subsys_id
, &subsys_mask
))
957 list_for_each_entry(set
, &ss
->cftsets
, node
)
958 cgroup_addrm_files(cgrp
, NULL
, set
->cfts
, false);
961 while (!list_empty(&cgrp
->files
))
962 cgroup_rm_file(cgrp
, NULL
);
967 * NOTE : the dentry must have been dget()'ed
969 static void cgroup_d_remove_dir(struct dentry
*dentry
)
971 struct dentry
*parent
;
972 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
974 cgroup_clear_directory(dentry
, true, root
->subsys_mask
);
976 parent
= dentry
->d_parent
;
977 spin_lock(&parent
->d_lock
);
978 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
979 list_del_init(&dentry
->d_u
.d_child
);
980 spin_unlock(&dentry
->d_lock
);
981 spin_unlock(&parent
->d_lock
);
986 * Call with cgroup_mutex held. Drops reference counts on modules, including
987 * any duplicate ones that parse_cgroupfs_options took. If this function
988 * returns an error, no reference counts are touched.
990 static int rebind_subsystems(struct cgroupfs_root
*root
,
991 unsigned long final_subsys_mask
)
993 unsigned long added_mask
, removed_mask
;
994 struct cgroup
*cgrp
= &root
->top_cgroup
;
997 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
998 BUG_ON(!mutex_is_locked(&cgroup_root_mutex
));
1000 removed_mask
= root
->actual_subsys_mask
& ~final_subsys_mask
;
1001 added_mask
= final_subsys_mask
& ~root
->actual_subsys_mask
;
1002 /* Check that any added subsystems are currently free */
1003 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1004 unsigned long bit
= 1UL << i
;
1005 struct cgroup_subsys
*ss
= subsys
[i
];
1006 if (!(bit
& added_mask
))
1009 * Nobody should tell us to do a subsys that doesn't exist:
1010 * parse_cgroupfs_options should catch that case and refcounts
1011 * ensure that subsystems won't disappear once selected.
1014 if (ss
->root
!= &rootnode
) {
1015 /* Subsystem isn't free */
1020 /* Currently we don't handle adding/removing subsystems when
1021 * any child cgroups exist. This is theoretically supportable
1022 * but involves complex error handling, so it's being left until
1024 if (root
->number_of_cgroups
> 1)
1027 /* Process each subsystem */
1028 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1029 struct cgroup_subsys
*ss
= subsys
[i
];
1030 unsigned long bit
= 1UL << i
;
1031 if (bit
& added_mask
) {
1032 /* We're binding this subsystem to this hierarchy */
1034 BUG_ON(cgrp
->subsys
[i
]);
1035 BUG_ON(!dummytop
->subsys
[i
]);
1036 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
1037 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
1038 cgrp
->subsys
[i
]->cgroup
= cgrp
;
1039 list_move(&ss
->sibling
, &root
->subsys_list
);
1043 /* refcount was already taken, and we're keeping it */
1044 } else if (bit
& removed_mask
) {
1045 /* We're removing this subsystem */
1047 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
1048 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
1051 dummytop
->subsys
[i
]->cgroup
= dummytop
;
1052 cgrp
->subsys
[i
] = NULL
;
1053 subsys
[i
]->root
= &rootnode
;
1054 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
1055 /* subsystem is now free - drop reference on module */
1056 module_put(ss
->module
);
1057 } else if (bit
& final_subsys_mask
) {
1058 /* Subsystem state should already exist */
1060 BUG_ON(!cgrp
->subsys
[i
]);
1062 * a refcount was taken, but we already had one, so
1063 * drop the extra reference.
1065 module_put(ss
->module
);
1066 #ifdef CONFIG_MODULE_UNLOAD
1067 BUG_ON(ss
->module
&& !module_refcount(ss
->module
));
1070 /* Subsystem state shouldn't exist */
1071 BUG_ON(cgrp
->subsys
[i
]);
1074 root
->subsys_mask
= root
->actual_subsys_mask
= final_subsys_mask
;
1079 static int cgroup_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
1081 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
1082 struct cgroup_subsys
*ss
;
1084 mutex_lock(&cgroup_root_mutex
);
1085 for_each_subsys(root
, ss
)
1086 seq_printf(seq
, ",%s", ss
->name
);
1087 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
)
1088 seq_puts(seq
, ",sane_behavior");
1089 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1090 seq_puts(seq
, ",noprefix");
1091 if (root
->flags
& CGRP_ROOT_XATTR
)
1092 seq_puts(seq
, ",xattr");
1093 if (strlen(root
->release_agent_path
))
1094 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
1095 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->top_cgroup
.flags
))
1096 seq_puts(seq
, ",clone_children");
1097 if (strlen(root
->name
))
1098 seq_printf(seq
, ",name=%s", root
->name
);
1099 mutex_unlock(&cgroup_root_mutex
);
1103 struct cgroup_sb_opts
{
1104 unsigned long subsys_mask
;
1105 unsigned long flags
;
1106 char *release_agent
;
1107 bool cpuset_clone_children
;
1109 /* User explicitly requested empty subsystem */
1112 struct cgroupfs_root
*new_root
;
1117 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1118 * with cgroup_mutex held to protect the subsys[] array. This function takes
1119 * refcounts on subsystems to be used, unless it returns error, in which case
1120 * no refcounts are taken.
1122 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1124 char *token
, *o
= data
;
1125 bool all_ss
= false, one_ss
= false;
1126 unsigned long mask
= (unsigned long)-1;
1128 bool module_pin_failed
= false;
1130 BUG_ON(!mutex_is_locked(&cgroup_mutex
));
1132 #ifdef CONFIG_CPUSETS
1133 mask
= ~(1UL << cpuset_subsys_id
);
1136 memset(opts
, 0, sizeof(*opts
));
1138 while ((token
= strsep(&o
, ",")) != NULL
) {
1141 if (!strcmp(token
, "none")) {
1142 /* Explicitly have no subsystems */
1146 if (!strcmp(token
, "all")) {
1147 /* Mutually exclusive option 'all' + subsystem name */
1153 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1154 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1157 if (!strcmp(token
, "noprefix")) {
1158 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1161 if (!strcmp(token
, "clone_children")) {
1162 opts
->cpuset_clone_children
= true;
1165 if (!strcmp(token
, "xattr")) {
1166 opts
->flags
|= CGRP_ROOT_XATTR
;
1169 if (!strncmp(token
, "release_agent=", 14)) {
1170 /* Specifying two release agents is forbidden */
1171 if (opts
->release_agent
)
1173 opts
->release_agent
=
1174 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1175 if (!opts
->release_agent
)
1179 if (!strncmp(token
, "name=", 5)) {
1180 const char *name
= token
+ 5;
1181 /* Can't specify an empty name */
1184 /* Must match [\w.-]+ */
1185 for (i
= 0; i
< strlen(name
); i
++) {
1189 if ((c
== '.') || (c
== '-') || (c
== '_'))
1193 /* Specifying two names is forbidden */
1196 opts
->name
= kstrndup(name
,
1197 MAX_CGROUP_ROOT_NAMELEN
- 1,
1205 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1206 struct cgroup_subsys
*ss
= subsys
[i
];
1209 if (strcmp(token
, ss
->name
))
1214 /* Mutually exclusive option 'all' + subsystem name */
1217 set_bit(i
, &opts
->subsys_mask
);
1222 if (i
== CGROUP_SUBSYS_COUNT
)
1227 * If the 'all' option was specified select all the subsystems,
1228 * otherwise if 'none', 'name=' and a subsystem name options
1229 * were not specified, let's default to 'all'
1231 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
)) {
1232 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1233 struct cgroup_subsys
*ss
= subsys
[i
];
1238 set_bit(i
, &opts
->subsys_mask
);
1242 /* Consistency checks */
1244 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1245 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1247 if (opts
->flags
& CGRP_ROOT_NOPREFIX
) {
1248 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1252 if (opts
->cpuset_clone_children
) {
1253 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1259 * Option noprefix was introduced just for backward compatibility
1260 * with the old cpuset, so we allow noprefix only if mounting just
1261 * the cpuset subsystem.
1263 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1267 /* Can't specify "none" and some subsystems */
1268 if (opts
->subsys_mask
&& opts
->none
)
1272 * We either have to specify by name or by subsystems. (So all
1273 * empty hierarchies must have a name).
1275 if (!opts
->subsys_mask
&& !opts
->name
)
1279 * Grab references on all the modules we'll need, so the subsystems
1280 * don't dance around before rebind_subsystems attaches them. This may
1281 * take duplicate reference counts on a subsystem that's already used,
1282 * but rebind_subsystems handles this case.
1284 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1285 unsigned long bit
= 1UL << i
;
1287 if (!(bit
& opts
->subsys_mask
))
1289 if (!try_module_get(subsys
[i
]->module
)) {
1290 module_pin_failed
= true;
1294 if (module_pin_failed
) {
1296 * oops, one of the modules was going away. this means that we
1297 * raced with a module_delete call, and to the user this is
1298 * essentially a "subsystem doesn't exist" case.
1300 for (i
--; i
>= 0; i
--) {
1301 /* drop refcounts only on the ones we took */
1302 unsigned long bit
= 1UL << i
;
1304 if (!(bit
& opts
->subsys_mask
))
1306 module_put(subsys
[i
]->module
);
1314 static void drop_parsed_module_refcounts(unsigned long subsys_mask
)
1317 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
1318 unsigned long bit
= 1UL << i
;
1320 if (!(bit
& subsys_mask
))
1322 module_put(subsys
[i
]->module
);
1326 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
1329 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1330 struct cgroup
*cgrp
= &root
->top_cgroup
;
1331 struct cgroup_sb_opts opts
;
1332 unsigned long added_mask
, removed_mask
;
1334 if (root
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1335 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1339 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
1340 mutex_lock(&cgroup_mutex
);
1341 mutex_lock(&cgroup_root_mutex
);
1343 /* See what subsystems are wanted */
1344 ret
= parse_cgroupfs_options(data
, &opts
);
1348 if (opts
.subsys_mask
!= root
->actual_subsys_mask
|| opts
.release_agent
)
1349 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1350 task_tgid_nr(current
), current
->comm
);
1352 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1353 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1355 /* Don't allow flags or name to change at remount */
1356 if (opts
.flags
!= root
->flags
||
1357 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1359 drop_parsed_module_refcounts(opts
.subsys_mask
);
1364 * Clear out the files of subsystems that should be removed, do
1365 * this before rebind_subsystems, since rebind_subsystems may
1366 * change this hierarchy's subsys_list.
1368 cgroup_clear_directory(cgrp
->dentry
, false, removed_mask
);
1370 ret
= rebind_subsystems(root
, opts
.subsys_mask
);
1372 /* rebind_subsystems failed, re-populate the removed files */
1373 cgroup_populate_dir(cgrp
, false, removed_mask
);
1374 drop_parsed_module_refcounts(opts
.subsys_mask
);
1378 /* re-populate subsystem files */
1379 cgroup_populate_dir(cgrp
, false, added_mask
);
1381 if (opts
.release_agent
)
1382 strcpy(root
->release_agent_path
, opts
.release_agent
);
1384 kfree(opts
.release_agent
);
1386 mutex_unlock(&cgroup_root_mutex
);
1387 mutex_unlock(&cgroup_mutex
);
1388 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
1392 static const struct super_operations cgroup_ops
= {
1393 .statfs
= simple_statfs
,
1394 .drop_inode
= generic_delete_inode
,
1395 .show_options
= cgroup_show_options
,
1396 .remount_fs
= cgroup_remount
,
1399 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1401 INIT_LIST_HEAD(&cgrp
->sibling
);
1402 INIT_LIST_HEAD(&cgrp
->children
);
1403 INIT_LIST_HEAD(&cgrp
->files
);
1404 INIT_LIST_HEAD(&cgrp
->css_sets
);
1405 INIT_LIST_HEAD(&cgrp
->allcg_node
);
1406 INIT_LIST_HEAD(&cgrp
->release_list
);
1407 INIT_LIST_HEAD(&cgrp
->pidlists
);
1408 INIT_WORK(&cgrp
->free_work
, cgroup_free_fn
);
1409 mutex_init(&cgrp
->pidlist_mutex
);
1410 INIT_LIST_HEAD(&cgrp
->event_list
);
1411 spin_lock_init(&cgrp
->event_list_lock
);
1412 simple_xattrs_init(&cgrp
->xattrs
);
1415 static void init_cgroup_root(struct cgroupfs_root
*root
)
1417 struct cgroup
*cgrp
= &root
->top_cgroup
;
1419 INIT_LIST_HEAD(&root
->subsys_list
);
1420 INIT_LIST_HEAD(&root
->root_list
);
1421 INIT_LIST_HEAD(&root
->allcg_list
);
1422 root
->number_of_cgroups
= 1;
1424 cgrp
->name
= &root_cgroup_name
;
1425 init_cgroup_housekeeping(cgrp
);
1426 list_add_tail(&cgrp
->allcg_node
, &root
->allcg_list
);
1429 static bool init_root_id(struct cgroupfs_root
*root
)
1434 if (!ida_pre_get(&hierarchy_ida
, GFP_KERNEL
))
1436 spin_lock(&hierarchy_id_lock
);
1437 /* Try to allocate the next unused ID */
1438 ret
= ida_get_new_above(&hierarchy_ida
, next_hierarchy_id
,
1439 &root
->hierarchy_id
);
1441 /* Try again starting from 0 */
1442 ret
= ida_get_new(&hierarchy_ida
, &root
->hierarchy_id
);
1444 next_hierarchy_id
= root
->hierarchy_id
+ 1;
1445 } else if (ret
!= -EAGAIN
) {
1446 /* Can only get here if the 31-bit IDR is full ... */
1449 spin_unlock(&hierarchy_id_lock
);
1454 static int cgroup_test_super(struct super_block
*sb
, void *data
)
1456 struct cgroup_sb_opts
*opts
= data
;
1457 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1459 /* If we asked for a name then it must match */
1460 if (opts
->name
&& strcmp(opts
->name
, root
->name
))
1464 * If we asked for subsystems (or explicitly for no
1465 * subsystems) then they must match
1467 if ((opts
->subsys_mask
|| opts
->none
)
1468 && (opts
->subsys_mask
!= root
->subsys_mask
))
1474 static struct cgroupfs_root
*cgroup_root_from_opts(struct cgroup_sb_opts
*opts
)
1476 struct cgroupfs_root
*root
;
1478 if (!opts
->subsys_mask
&& !opts
->none
)
1481 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1483 return ERR_PTR(-ENOMEM
);
1485 if (!init_root_id(root
)) {
1487 return ERR_PTR(-ENOMEM
);
1489 init_cgroup_root(root
);
1491 root
->subsys_mask
= opts
->subsys_mask
;
1492 root
->flags
= opts
->flags
;
1493 ida_init(&root
->cgroup_ida
);
1494 if (opts
->release_agent
)
1495 strcpy(root
->release_agent_path
, opts
->release_agent
);
1497 strcpy(root
->name
, opts
->name
);
1498 if (opts
->cpuset_clone_children
)
1499 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->top_cgroup
.flags
);
1503 static void cgroup_drop_root(struct cgroupfs_root
*root
)
1508 BUG_ON(!root
->hierarchy_id
);
1509 spin_lock(&hierarchy_id_lock
);
1510 ida_remove(&hierarchy_ida
, root
->hierarchy_id
);
1511 spin_unlock(&hierarchy_id_lock
);
1512 ida_destroy(&root
->cgroup_ida
);
1516 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1519 struct cgroup_sb_opts
*opts
= data
;
1521 /* If we don't have a new root, we can't set up a new sb */
1522 if (!opts
->new_root
)
1525 BUG_ON(!opts
->subsys_mask
&& !opts
->none
);
1527 ret
= set_anon_super(sb
, NULL
);
1531 sb
->s_fs_info
= opts
->new_root
;
1532 opts
->new_root
->sb
= sb
;
1534 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1535 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1536 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1537 sb
->s_op
= &cgroup_ops
;
1542 static int cgroup_get_rootdir(struct super_block
*sb
)
1544 static const struct dentry_operations cgroup_dops
= {
1545 .d_iput
= cgroup_diput
,
1546 .d_delete
= cgroup_delete
,
1549 struct inode
*inode
=
1550 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1555 inode
->i_fop
= &simple_dir_operations
;
1556 inode
->i_op
= &cgroup_dir_inode_operations
;
1557 /* directories start off with i_nlink == 2 (for "." entry) */
1559 sb
->s_root
= d_make_root(inode
);
1562 /* for everything else we want ->d_op set */
1563 sb
->s_d_op
= &cgroup_dops
;
1567 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1568 int flags
, const char *unused_dev_name
,
1571 struct cgroup_sb_opts opts
;
1572 struct cgroupfs_root
*root
;
1574 struct super_block
*sb
;
1575 struct cgroupfs_root
*new_root
;
1576 struct inode
*inode
;
1578 /* First find the desired set of subsystems */
1579 mutex_lock(&cgroup_mutex
);
1580 ret
= parse_cgroupfs_options(data
, &opts
);
1581 mutex_unlock(&cgroup_mutex
);
1586 * Allocate a new cgroup root. We may not need it if we're
1587 * reusing an existing hierarchy.
1589 new_root
= cgroup_root_from_opts(&opts
);
1590 if (IS_ERR(new_root
)) {
1591 ret
= PTR_ERR(new_root
);
1594 opts
.new_root
= new_root
;
1596 /* Locate an existing or new sb for this hierarchy */
1597 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, 0, &opts
);
1600 cgroup_drop_root(opts
.new_root
);
1604 root
= sb
->s_fs_info
;
1606 if (root
== opts
.new_root
) {
1607 /* We used the new root structure, so this is a new hierarchy */
1608 struct list_head tmp_cg_links
;
1609 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1610 struct cgroupfs_root
*existing_root
;
1611 const struct cred
*cred
;
1615 BUG_ON(sb
->s_root
!= NULL
);
1617 ret
= cgroup_get_rootdir(sb
);
1619 goto drop_new_super
;
1620 inode
= sb
->s_root
->d_inode
;
1622 mutex_lock(&inode
->i_mutex
);
1623 mutex_lock(&cgroup_mutex
);
1624 mutex_lock(&cgroup_root_mutex
);
1626 /* Check for name clashes with existing mounts */
1628 if (strlen(root
->name
))
1629 for_each_active_root(existing_root
)
1630 if (!strcmp(existing_root
->name
, root
->name
))
1634 * We're accessing css_set_count without locking
1635 * css_set_lock here, but that's OK - it can only be
1636 * increased by someone holding cgroup_lock, and
1637 * that's us. The worst that can happen is that we
1638 * have some link structures left over
1640 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1644 ret
= rebind_subsystems(root
, root
->subsys_mask
);
1645 if (ret
== -EBUSY
) {
1646 free_cg_links(&tmp_cg_links
);
1650 * There must be no failure case after here, since rebinding
1651 * takes care of subsystems' refcounts, which are explicitly
1652 * dropped in the failure exit path.
1655 /* EBUSY should be the only error here */
1658 list_add(&root
->root_list
, &roots
);
1661 sb
->s_root
->d_fsdata
= root_cgrp
;
1662 root
->top_cgroup
.dentry
= sb
->s_root
;
1664 /* Link the top cgroup in this hierarchy into all
1665 * the css_set objects */
1666 write_lock(&css_set_lock
);
1667 hash_for_each(css_set_table
, i
, cg
, hlist
)
1668 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1669 write_unlock(&css_set_lock
);
1671 free_cg_links(&tmp_cg_links
);
1673 BUG_ON(!list_empty(&root_cgrp
->children
));
1674 BUG_ON(root
->number_of_cgroups
!= 1);
1676 cred
= override_creds(&init_cred
);
1677 cgroup_populate_dir(root_cgrp
, true, root
->subsys_mask
);
1679 mutex_unlock(&cgroup_root_mutex
);
1680 mutex_unlock(&cgroup_mutex
);
1681 mutex_unlock(&inode
->i_mutex
);
1684 * We re-used an existing hierarchy - the new root (if
1685 * any) is not needed
1687 cgroup_drop_root(opts
.new_root
);
1689 if (root
->flags
!= opts
.flags
) {
1690 if ((root
->flags
| opts
.flags
) & CGRP_ROOT_SANE_BEHAVIOR
) {
1691 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1693 goto drop_new_super
;
1695 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1699 /* no subsys rebinding, so refcounts don't change */
1700 drop_parsed_module_refcounts(opts
.subsys_mask
);
1703 kfree(opts
.release_agent
);
1705 return dget(sb
->s_root
);
1708 mutex_unlock(&cgroup_root_mutex
);
1709 mutex_unlock(&cgroup_mutex
);
1710 mutex_unlock(&inode
->i_mutex
);
1712 deactivate_locked_super(sb
);
1714 drop_parsed_module_refcounts(opts
.subsys_mask
);
1716 kfree(opts
.release_agent
);
1718 return ERR_PTR(ret
);
1721 static void cgroup_kill_sb(struct super_block
*sb
) {
1722 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1723 struct cgroup
*cgrp
= &root
->top_cgroup
;
1725 struct cg_cgroup_link
*link
;
1726 struct cg_cgroup_link
*saved_link
;
1730 BUG_ON(root
->number_of_cgroups
!= 1);
1731 BUG_ON(!list_empty(&cgrp
->children
));
1733 mutex_lock(&cgroup_mutex
);
1734 mutex_lock(&cgroup_root_mutex
);
1736 /* Rebind all subsystems back to the default hierarchy */
1737 ret
= rebind_subsystems(root
, 0);
1738 /* Shouldn't be able to fail ... */
1742 * Release all the links from css_sets to this hierarchy's
1745 write_lock(&css_set_lock
);
1747 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1749 list_del(&link
->cg_link_list
);
1750 list_del(&link
->cgrp_link_list
);
1753 write_unlock(&css_set_lock
);
1755 if (!list_empty(&root
->root_list
)) {
1756 list_del(&root
->root_list
);
1760 mutex_unlock(&cgroup_root_mutex
);
1761 mutex_unlock(&cgroup_mutex
);
1763 simple_xattrs_free(&cgrp
->xattrs
);
1765 kill_litter_super(sb
);
1766 cgroup_drop_root(root
);
1769 static struct file_system_type cgroup_fs_type
= {
1771 .mount
= cgroup_mount
,
1772 .kill_sb
= cgroup_kill_sb
,
1775 static struct kobject
*cgroup_kobj
;
1778 * cgroup_path - generate the path of a cgroup
1779 * @cgrp: the cgroup in question
1780 * @buf: the buffer to write the path into
1781 * @buflen: the length of the buffer
1783 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1785 * We can't generate cgroup path using dentry->d_name, as accessing
1786 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1787 * inode's i_mutex, while on the other hand cgroup_path() can be called
1788 * with some irq-safe spinlocks held.
1790 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1792 int ret
= -ENAMETOOLONG
;
1795 if (!cgrp
->parent
) {
1796 if (strlcpy(buf
, "/", buflen
) >= buflen
)
1797 return -ENAMETOOLONG
;
1801 start
= buf
+ buflen
- 1;
1806 const char *name
= cgroup_name(cgrp
);
1810 if ((start
-= len
) < buf
)
1812 memcpy(start
, name
, len
);
1818 cgrp
= cgrp
->parent
;
1819 } while (cgrp
->parent
);
1821 memmove(buf
, start
, buf
+ buflen
- start
);
1826 EXPORT_SYMBOL_GPL(cgroup_path
);
1829 * Control Group taskset
1831 struct task_and_cgroup
{
1832 struct task_struct
*task
;
1833 struct cgroup
*cgrp
;
1837 struct cgroup_taskset
{
1838 struct task_and_cgroup single
;
1839 struct flex_array
*tc_array
;
1842 struct cgroup
*cur_cgrp
;
1846 * cgroup_taskset_first - reset taskset and return the first task
1847 * @tset: taskset of interest
1849 * @tset iteration is initialized and the first task is returned.
1851 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
1853 if (tset
->tc_array
) {
1855 return cgroup_taskset_next(tset
);
1857 tset
->cur_cgrp
= tset
->single
.cgrp
;
1858 return tset
->single
.task
;
1861 EXPORT_SYMBOL_GPL(cgroup_taskset_first
);
1864 * cgroup_taskset_next - iterate to the next task in taskset
1865 * @tset: taskset of interest
1867 * Return the next task in @tset. Iteration must have been initialized
1868 * with cgroup_taskset_first().
1870 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
1872 struct task_and_cgroup
*tc
;
1874 if (!tset
->tc_array
|| tset
->idx
>= tset
->tc_array_len
)
1877 tc
= flex_array_get(tset
->tc_array
, tset
->idx
++);
1878 tset
->cur_cgrp
= tc
->cgrp
;
1881 EXPORT_SYMBOL_GPL(cgroup_taskset_next
);
1884 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1885 * @tset: taskset of interest
1887 * Return the cgroup for the current (last returned) task of @tset. This
1888 * function must be preceded by either cgroup_taskset_first() or
1889 * cgroup_taskset_next().
1891 struct cgroup
*cgroup_taskset_cur_cgroup(struct cgroup_taskset
*tset
)
1893 return tset
->cur_cgrp
;
1895 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup
);
1898 * cgroup_taskset_size - return the number of tasks in taskset
1899 * @tset: taskset of interest
1901 int cgroup_taskset_size(struct cgroup_taskset
*tset
)
1903 return tset
->tc_array
? tset
->tc_array_len
: 1;
1905 EXPORT_SYMBOL_GPL(cgroup_taskset_size
);
1909 * cgroup_task_migrate - move a task from one cgroup to another.
1911 * Must be called with cgroup_mutex and threadgroup locked.
1913 static void cgroup_task_migrate(struct cgroup
*oldcgrp
,
1914 struct task_struct
*tsk
, struct css_set
*newcg
)
1916 struct css_set
*oldcg
;
1919 * We are synchronized through threadgroup_lock() against PF_EXITING
1920 * setting such that we can't race against cgroup_exit() changing the
1921 * css_set to init_css_set and dropping the old one.
1923 WARN_ON_ONCE(tsk
->flags
& PF_EXITING
);
1924 oldcg
= tsk
->cgroups
;
1927 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1930 /* Update the css_set linked lists if we're using them */
1931 write_lock(&css_set_lock
);
1932 if (!list_empty(&tsk
->cg_list
))
1933 list_move(&tsk
->cg_list
, &newcg
->tasks
);
1934 write_unlock(&css_set_lock
);
1937 * We just gained a reference on oldcg by taking it from the task. As
1938 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1939 * it here; it will be freed under RCU.
1941 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1946 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
1947 * @cgrp: the cgroup to attach to
1948 * @tsk: the task or the leader of the threadgroup to be attached
1949 * @threadgroup: attach the whole threadgroup?
1951 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
1952 * task_lock of @tsk or each thread in the threadgroup individually in turn.
1954 static int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
,
1957 int retval
, i
, group_size
;
1958 struct cgroup_subsys
*ss
, *failed_ss
= NULL
;
1959 struct cgroupfs_root
*root
= cgrp
->root
;
1960 /* threadgroup list cursor and array */
1961 struct task_struct
*leader
= tsk
;
1962 struct task_and_cgroup
*tc
;
1963 struct flex_array
*group
;
1964 struct cgroup_taskset tset
= { };
1967 * step 0: in order to do expensive, possibly blocking operations for
1968 * every thread, we cannot iterate the thread group list, since it needs
1969 * rcu or tasklist locked. instead, build an array of all threads in the
1970 * group - group_rwsem prevents new threads from appearing, and if
1971 * threads exit, this will just be an over-estimate.
1974 group_size
= get_nr_threads(tsk
);
1977 /* flex_array supports very large thread-groups better than kmalloc. */
1978 group
= flex_array_alloc(sizeof(*tc
), group_size
, GFP_KERNEL
);
1981 /* pre-allocate to guarantee space while iterating in rcu read-side. */
1982 retval
= flex_array_prealloc(group
, 0, group_size
, GFP_KERNEL
);
1984 goto out_free_group_list
;
1988 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1989 * already PF_EXITING could be freed from underneath us unless we
1990 * take an rcu_read_lock.
1994 struct task_and_cgroup ent
;
1996 /* @tsk either already exited or can't exit until the end */
1997 if (tsk
->flags
& PF_EXITING
)
2000 /* as per above, nr_threads may decrease, but not increase. */
2001 BUG_ON(i
>= group_size
);
2003 ent
.cgrp
= task_cgroup_from_root(tsk
, root
);
2004 /* nothing to do if this task is already in the cgroup */
2005 if (ent
.cgrp
== cgrp
)
2008 * saying GFP_ATOMIC has no effect here because we did prealloc
2009 * earlier, but it's good form to communicate our expectations.
2011 retval
= flex_array_put(group
, i
, &ent
, GFP_ATOMIC
);
2012 BUG_ON(retval
!= 0);
2017 } while_each_thread(leader
, tsk
);
2019 /* remember the number of threads in the array for later. */
2021 tset
.tc_array
= group
;
2022 tset
.tc_array_len
= group_size
;
2024 /* methods shouldn't be called if no task is actually migrating */
2027 goto out_free_group_list
;
2030 * step 1: check that we can legitimately attach to the cgroup.
2032 for_each_subsys(root
, ss
) {
2033 if (ss
->can_attach
) {
2034 retval
= ss
->can_attach(cgrp
, &tset
);
2037 goto out_cancel_attach
;
2043 * step 2: make sure css_sets exist for all threads to be migrated.
2044 * we use find_css_set, which allocates a new one if necessary.
2046 for (i
= 0; i
< group_size
; i
++) {
2047 tc
= flex_array_get(group
, i
);
2048 tc
->cg
= find_css_set(tc
->task
->cgroups
, cgrp
);
2051 goto out_put_css_set_refs
;
2056 * step 3: now that we're guaranteed success wrt the css_sets,
2057 * proceed to move all tasks to the new cgroup. There are no
2058 * failure cases after here, so this is the commit point.
2060 for (i
= 0; i
< group_size
; i
++) {
2061 tc
= flex_array_get(group
, i
);
2062 cgroup_task_migrate(tc
->cgrp
, tc
->task
, tc
->cg
);
2064 /* nothing is sensitive to fork() after this point. */
2067 * step 4: do subsystem attach callbacks.
2069 for_each_subsys(root
, ss
) {
2071 ss
->attach(cgrp
, &tset
);
2075 * step 5: success! and cleanup
2078 out_put_css_set_refs
:
2080 for (i
= 0; i
< group_size
; i
++) {
2081 tc
= flex_array_get(group
, i
);
2084 put_css_set(tc
->cg
);
2089 for_each_subsys(root
, ss
) {
2090 if (ss
== failed_ss
)
2092 if (ss
->cancel_attach
)
2093 ss
->cancel_attach(cgrp
, &tset
);
2096 out_free_group_list
:
2097 flex_array_free(group
);
2102 * Find the task_struct of the task to attach by vpid and pass it along to the
2103 * function to attach either it or all tasks in its threadgroup. Will lock
2104 * cgroup_mutex and threadgroup; may take task_lock of task.
2106 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
, bool threadgroup
)
2108 struct task_struct
*tsk
;
2109 const struct cred
*cred
= current_cred(), *tcred
;
2112 if (!cgroup_lock_live_group(cgrp
))
2118 tsk
= find_task_by_vpid(pid
);
2122 goto out_unlock_cgroup
;
2125 * even if we're attaching all tasks in the thread group, we
2126 * only need to check permissions on one of them.
2128 tcred
= __task_cred(tsk
);
2129 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2130 !uid_eq(cred
->euid
, tcred
->uid
) &&
2131 !uid_eq(cred
->euid
, tcred
->suid
)) {
2134 goto out_unlock_cgroup
;
2140 tsk
= tsk
->group_leader
;
2143 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2144 * trapped in a cpuset, or RT worker may be born in a cgroup
2145 * with no rt_runtime allocated. Just say no.
2147 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2150 goto out_unlock_cgroup
;
2153 get_task_struct(tsk
);
2156 threadgroup_lock(tsk
);
2158 if (!thread_group_leader(tsk
)) {
2160 * a race with de_thread from another thread's exec()
2161 * may strip us of our leadership, if this happens,
2162 * there is no choice but to throw this task away and
2163 * try again; this is
2164 * "double-double-toil-and-trouble-check locking".
2166 threadgroup_unlock(tsk
);
2167 put_task_struct(tsk
);
2168 goto retry_find_task
;
2172 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2174 threadgroup_unlock(tsk
);
2176 put_task_struct(tsk
);
2178 mutex_unlock(&cgroup_mutex
);
2183 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2184 * @from: attach to all cgroups of a given task
2185 * @tsk: the task to be attached
2187 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2189 struct cgroupfs_root
*root
;
2192 mutex_lock(&cgroup_mutex
);
2193 for_each_active_root(root
) {
2194 struct cgroup
*from_cg
= task_cgroup_from_root(from
, root
);
2196 retval
= cgroup_attach_task(from_cg
, tsk
, false);
2200 mutex_unlock(&cgroup_mutex
);
2204 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2206 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
2208 return attach_task_by_pid(cgrp
, pid
, false);
2211 static int cgroup_procs_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 tgid
)
2213 return attach_task_by_pid(cgrp
, tgid
, true);
2216 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
2219 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2220 if (strlen(buffer
) >= PATH_MAX
)
2222 if (!cgroup_lock_live_group(cgrp
))
2224 mutex_lock(&cgroup_root_mutex
);
2225 strcpy(cgrp
->root
->release_agent_path
, buffer
);
2226 mutex_unlock(&cgroup_root_mutex
);
2227 mutex_unlock(&cgroup_mutex
);
2231 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
2232 struct seq_file
*seq
)
2234 if (!cgroup_lock_live_group(cgrp
))
2236 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2237 seq_putc(seq
, '\n');
2238 mutex_unlock(&cgroup_mutex
);
2242 static int cgroup_sane_behavior_show(struct cgroup
*cgrp
, struct cftype
*cft
,
2243 struct seq_file
*seq
)
2245 seq_printf(seq
, "%d\n", cgroup_sane_behavior(cgrp
));
2249 /* A buffer size big enough for numbers or short strings */
2250 #define CGROUP_LOCAL_BUFFER_SIZE 64
2252 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
2254 const char __user
*userbuf
,
2255 size_t nbytes
, loff_t
*unused_ppos
)
2257 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2263 if (nbytes
>= sizeof(buffer
))
2265 if (copy_from_user(buffer
, userbuf
, nbytes
))
2268 buffer
[nbytes
] = 0; /* nul-terminate */
2269 if (cft
->write_u64
) {
2270 u64 val
= simple_strtoull(strstrip(buffer
), &end
, 0);
2273 retval
= cft
->write_u64(cgrp
, cft
, val
);
2275 s64 val
= simple_strtoll(strstrip(buffer
), &end
, 0);
2278 retval
= cft
->write_s64(cgrp
, cft
, val
);
2285 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
2287 const char __user
*userbuf
,
2288 size_t nbytes
, loff_t
*unused_ppos
)
2290 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
2292 size_t max_bytes
= cft
->max_write_len
;
2293 char *buffer
= local_buffer
;
2296 max_bytes
= sizeof(local_buffer
) - 1;
2297 if (nbytes
>= max_bytes
)
2299 /* Allocate a dynamic buffer if we need one */
2300 if (nbytes
>= sizeof(local_buffer
)) {
2301 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
2305 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
2310 buffer
[nbytes
] = 0; /* nul-terminate */
2311 retval
= cft
->write_string(cgrp
, cft
, strstrip(buffer
));
2315 if (buffer
!= local_buffer
)
2320 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
2321 size_t nbytes
, loff_t
*ppos
)
2323 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2324 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2326 if (cgroup_is_removed(cgrp
))
2329 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2330 if (cft
->write_u64
|| cft
->write_s64
)
2331 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2332 if (cft
->write_string
)
2333 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2335 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
2336 return ret
? ret
: nbytes
;
2341 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
2343 char __user
*buf
, size_t nbytes
,
2346 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2347 u64 val
= cft
->read_u64(cgrp
, cft
);
2348 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
2350 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2353 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
2355 char __user
*buf
, size_t nbytes
,
2358 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
2359 s64 val
= cft
->read_s64(cgrp
, cft
);
2360 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
2362 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
2365 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
2366 size_t nbytes
, loff_t
*ppos
)
2368 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2369 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2371 if (cgroup_is_removed(cgrp
))
2375 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2377 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2379 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
2384 * seqfile ops/methods for returning structured data. Currently just
2385 * supports string->u64 maps, but can be extended in future.
2388 struct cgroup_seqfile_state
{
2390 struct cgroup
*cgroup
;
2393 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
2395 struct seq_file
*sf
= cb
->state
;
2396 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
2399 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
2401 struct cgroup_seqfile_state
*state
= m
->private;
2402 struct cftype
*cft
= state
->cft
;
2403 if (cft
->read_map
) {
2404 struct cgroup_map_cb cb
= {
2405 .fill
= cgroup_map_add
,
2408 return cft
->read_map(state
->cgroup
, cft
, &cb
);
2410 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
2413 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
2415 struct seq_file
*seq
= file
->private_data
;
2416 kfree(seq
->private);
2417 return single_release(inode
, file
);
2420 static const struct file_operations cgroup_seqfile_operations
= {
2422 .write
= cgroup_file_write
,
2423 .llseek
= seq_lseek
,
2424 .release
= cgroup_seqfile_release
,
2427 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
2432 err
= generic_file_open(inode
, file
);
2435 cft
= __d_cft(file
->f_dentry
);
2437 if (cft
->read_map
|| cft
->read_seq_string
) {
2438 struct cgroup_seqfile_state
*state
=
2439 kzalloc(sizeof(*state
), GFP_USER
);
2443 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
2444 file
->f_op
= &cgroup_seqfile_operations
;
2445 err
= single_open(file
, cgroup_seqfile_show
, state
);
2448 } else if (cft
->open
)
2449 err
= cft
->open(inode
, file
);
2456 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
2458 struct cftype
*cft
= __d_cft(file
->f_dentry
);
2460 return cft
->release(inode
, file
);
2465 * cgroup_rename - Only allow simple rename of directories in place.
2467 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
2468 struct inode
*new_dir
, struct dentry
*new_dentry
)
2471 struct cgroup_name
*name
, *old_name
;
2472 struct cgroup
*cgrp
;
2475 * It's convinient to use parent dir's i_mutex to protected
2478 lockdep_assert_held(&old_dir
->i_mutex
);
2480 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
2482 if (new_dentry
->d_inode
)
2484 if (old_dir
!= new_dir
)
2487 cgrp
= __d_cgrp(old_dentry
);
2489 name
= cgroup_alloc_name(new_dentry
);
2493 ret
= simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
2499 old_name
= cgrp
->name
;
2500 rcu_assign_pointer(cgrp
->name
, name
);
2502 kfree_rcu(old_name
, rcu_head
);
2506 static struct simple_xattrs
*__d_xattrs(struct dentry
*dentry
)
2508 if (S_ISDIR(dentry
->d_inode
->i_mode
))
2509 return &__d_cgrp(dentry
)->xattrs
;
2511 return &__d_cfe(dentry
)->xattrs
;
2514 static inline int xattr_enabled(struct dentry
*dentry
)
2516 struct cgroupfs_root
*root
= dentry
->d_sb
->s_fs_info
;
2517 return root
->flags
& CGRP_ROOT_XATTR
;
2520 static bool is_valid_xattr(const char *name
)
2522 if (!strncmp(name
, XATTR_TRUSTED_PREFIX
, XATTR_TRUSTED_PREFIX_LEN
) ||
2523 !strncmp(name
, XATTR_SECURITY_PREFIX
, XATTR_SECURITY_PREFIX_LEN
))
2528 static int cgroup_setxattr(struct dentry
*dentry
, const char *name
,
2529 const void *val
, size_t size
, int flags
)
2531 if (!xattr_enabled(dentry
))
2533 if (!is_valid_xattr(name
))
2535 return simple_xattr_set(__d_xattrs(dentry
), name
, val
, size
, flags
);
2538 static int cgroup_removexattr(struct dentry
*dentry
, const char *name
)
2540 if (!xattr_enabled(dentry
))
2542 if (!is_valid_xattr(name
))
2544 return simple_xattr_remove(__d_xattrs(dentry
), name
);
2547 static ssize_t
cgroup_getxattr(struct dentry
*dentry
, const char *name
,
2548 void *buf
, size_t size
)
2550 if (!xattr_enabled(dentry
))
2552 if (!is_valid_xattr(name
))
2554 return simple_xattr_get(__d_xattrs(dentry
), name
, buf
, size
);
2557 static ssize_t
cgroup_listxattr(struct dentry
*dentry
, char *buf
, size_t size
)
2559 if (!xattr_enabled(dentry
))
2561 return simple_xattr_list(__d_xattrs(dentry
), buf
, size
);
2564 static const struct file_operations cgroup_file_operations
= {
2565 .read
= cgroup_file_read
,
2566 .write
= cgroup_file_write
,
2567 .llseek
= generic_file_llseek
,
2568 .open
= cgroup_file_open
,
2569 .release
= cgroup_file_release
,
2572 static const struct inode_operations cgroup_file_inode_operations
= {
2573 .setxattr
= cgroup_setxattr
,
2574 .getxattr
= cgroup_getxattr
,
2575 .listxattr
= cgroup_listxattr
,
2576 .removexattr
= cgroup_removexattr
,
2579 static const struct inode_operations cgroup_dir_inode_operations
= {
2580 .lookup
= cgroup_lookup
,
2581 .mkdir
= cgroup_mkdir
,
2582 .rmdir
= cgroup_rmdir
,
2583 .rename
= cgroup_rename
,
2584 .setxattr
= cgroup_setxattr
,
2585 .getxattr
= cgroup_getxattr
,
2586 .listxattr
= cgroup_listxattr
,
2587 .removexattr
= cgroup_removexattr
,
2590 static struct dentry
*cgroup_lookup(struct inode
*dir
, struct dentry
*dentry
, unsigned int flags
)
2592 if (dentry
->d_name
.len
> NAME_MAX
)
2593 return ERR_PTR(-ENAMETOOLONG
);
2594 d_add(dentry
, NULL
);
2599 * Check if a file is a control file
2601 static inline struct cftype
*__file_cft(struct file
*file
)
2603 if (file_inode(file
)->i_fop
!= &cgroup_file_operations
)
2604 return ERR_PTR(-EINVAL
);
2605 return __d_cft(file
->f_dentry
);
2608 static int cgroup_create_file(struct dentry
*dentry
, umode_t mode
,
2609 struct super_block
*sb
)
2611 struct inode
*inode
;
2615 if (dentry
->d_inode
)
2618 inode
= cgroup_new_inode(mode
, sb
);
2622 if (S_ISDIR(mode
)) {
2623 inode
->i_op
= &cgroup_dir_inode_operations
;
2624 inode
->i_fop
= &simple_dir_operations
;
2626 /* start off with i_nlink == 2 (for "." entry) */
2628 inc_nlink(dentry
->d_parent
->d_inode
);
2631 * Control reaches here with cgroup_mutex held.
2632 * @inode->i_mutex should nest outside cgroup_mutex but we
2633 * want to populate it immediately without releasing
2634 * cgroup_mutex. As @inode isn't visible to anyone else
2635 * yet, trylock will always succeed without affecting
2638 WARN_ON_ONCE(!mutex_trylock(&inode
->i_mutex
));
2639 } else if (S_ISREG(mode
)) {
2641 inode
->i_fop
= &cgroup_file_operations
;
2642 inode
->i_op
= &cgroup_file_inode_operations
;
2644 d_instantiate(dentry
, inode
);
2645 dget(dentry
); /* Extra count - pin the dentry in core */
2650 * cgroup_file_mode - deduce file mode of a control file
2651 * @cft: the control file in question
2653 * returns cft->mode if ->mode is not 0
2654 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2655 * returns S_IRUGO if it has only a read handler
2656 * returns S_IWUSR if it has only a write hander
2658 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
2665 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
2666 cft
->read_map
|| cft
->read_seq_string
)
2669 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
2670 cft
->write_string
|| cft
->trigger
)
2676 static int cgroup_add_file(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
2679 struct dentry
*dir
= cgrp
->dentry
;
2680 struct cgroup
*parent
= __d_cgrp(dir
);
2681 struct dentry
*dentry
;
2685 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
2687 if (subsys
&& !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
2688 strcpy(name
, subsys
->name
);
2691 strcat(name
, cft
->name
);
2693 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
2695 cfe
= kzalloc(sizeof(*cfe
), GFP_KERNEL
);
2699 dentry
= lookup_one_len(name
, dir
, strlen(name
));
2700 if (IS_ERR(dentry
)) {
2701 error
= PTR_ERR(dentry
);
2705 cfe
->type
= (void *)cft
;
2706 cfe
->dentry
= dentry
;
2707 dentry
->d_fsdata
= cfe
;
2708 simple_xattrs_init(&cfe
->xattrs
);
2710 mode
= cgroup_file_mode(cft
);
2711 error
= cgroup_create_file(dentry
, mode
| S_IFREG
, cgrp
->root
->sb
);
2713 list_add_tail(&cfe
->node
, &parent
->files
);
2722 static int cgroup_addrm_files(struct cgroup
*cgrp
, struct cgroup_subsys
*subsys
,
2723 struct cftype cfts
[], bool is_add
)
2728 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
2729 /* does cft->flags tell us to skip this file on @cgrp? */
2730 if ((cft
->flags
& CFTYPE_INSANE
) && cgroup_sane_behavior(cgrp
))
2732 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgrp
->parent
)
2734 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgrp
->parent
)
2738 err
= cgroup_add_file(cgrp
, subsys
, cft
);
2740 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2744 cgroup_rm_file(cgrp
, cft
);
2750 static DEFINE_MUTEX(cgroup_cft_mutex
);
2752 static void cgroup_cfts_prepare(void)
2753 __acquires(&cgroup_cft_mutex
) __acquires(&cgroup_mutex
)
2756 * Thanks to the entanglement with vfs inode locking, we can't walk
2757 * the existing cgroups under cgroup_mutex and create files.
2758 * Instead, we increment reference on all cgroups and build list of
2759 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2760 * exclusive access to the field.
2762 mutex_lock(&cgroup_cft_mutex
);
2763 mutex_lock(&cgroup_mutex
);
2766 static void cgroup_cfts_commit(struct cgroup_subsys
*ss
,
2767 struct cftype
*cfts
, bool is_add
)
2768 __releases(&cgroup_mutex
) __releases(&cgroup_cft_mutex
)
2771 struct cgroup
*cgrp
, *n
;
2773 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2774 if (cfts
&& ss
->root
!= &rootnode
) {
2775 list_for_each_entry(cgrp
, &ss
->root
->allcg_list
, allcg_node
) {
2777 list_add_tail(&cgrp
->cft_q_node
, &pending
);
2781 mutex_unlock(&cgroup_mutex
);
2784 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2785 * files for all cgroups which were created before.
2787 list_for_each_entry_safe(cgrp
, n
, &pending
, cft_q_node
) {
2788 struct inode
*inode
= cgrp
->dentry
->d_inode
;
2790 mutex_lock(&inode
->i_mutex
);
2791 mutex_lock(&cgroup_mutex
);
2792 if (!cgroup_is_removed(cgrp
))
2793 cgroup_addrm_files(cgrp
, ss
, cfts
, is_add
);
2794 mutex_unlock(&cgroup_mutex
);
2795 mutex_unlock(&inode
->i_mutex
);
2797 list_del_init(&cgrp
->cft_q_node
);
2801 mutex_unlock(&cgroup_cft_mutex
);
2805 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2806 * @ss: target cgroup subsystem
2807 * @cfts: zero-length name terminated array of cftypes
2809 * Register @cfts to @ss. Files described by @cfts are created for all
2810 * existing cgroups to which @ss is attached and all future cgroups will
2811 * have them too. This function can be called anytime whether @ss is
2814 * Returns 0 on successful registration, -errno on failure. Note that this
2815 * function currently returns 0 as long as @cfts registration is successful
2816 * even if some file creation attempts on existing cgroups fail.
2818 int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2820 struct cftype_set
*set
;
2822 set
= kzalloc(sizeof(*set
), GFP_KERNEL
);
2826 cgroup_cfts_prepare();
2828 list_add_tail(&set
->node
, &ss
->cftsets
);
2829 cgroup_cfts_commit(ss
, cfts
, true);
2833 EXPORT_SYMBOL_GPL(cgroup_add_cftypes
);
2836 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2837 * @ss: target cgroup subsystem
2838 * @cfts: zero-length name terminated array of cftypes
2840 * Unregister @cfts from @ss. Files described by @cfts are removed from
2841 * all existing cgroups to which @ss is attached and all future cgroups
2842 * won't have them either. This function can be called anytime whether @ss
2843 * is attached or not.
2845 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2846 * registered with @ss.
2848 int cgroup_rm_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
2850 struct cftype_set
*set
;
2852 cgroup_cfts_prepare();
2854 list_for_each_entry(set
, &ss
->cftsets
, node
) {
2855 if (set
->cfts
== cfts
) {
2856 list_del_init(&set
->node
);
2857 cgroup_cfts_commit(ss
, cfts
, false);
2862 cgroup_cfts_commit(ss
, NULL
, false);
2867 * cgroup_task_count - count the number of tasks in a cgroup.
2868 * @cgrp: the cgroup in question
2870 * Return the number of tasks in the cgroup.
2872 int cgroup_task_count(const struct cgroup
*cgrp
)
2875 struct cg_cgroup_link
*link
;
2877 read_lock(&css_set_lock
);
2878 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
2879 count
+= atomic_read(&link
->cg
->refcount
);
2881 read_unlock(&css_set_lock
);
2886 * Advance a list_head iterator. The iterator should be positioned at
2887 * the start of a css_set
2889 static void cgroup_advance_iter(struct cgroup
*cgrp
,
2890 struct cgroup_iter
*it
)
2892 struct list_head
*l
= it
->cg_link
;
2893 struct cg_cgroup_link
*link
;
2896 /* Advance to the next non-empty css_set */
2899 if (l
== &cgrp
->css_sets
) {
2903 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
2905 } while (list_empty(&cg
->tasks
));
2907 it
->task
= cg
->tasks
.next
;
2911 * To reduce the fork() overhead for systems that are not actually
2912 * using their cgroups capability, we don't maintain the lists running
2913 * through each css_set to its tasks until we see the list actually
2914 * used - in other words after the first call to cgroup_iter_start().
2916 static void cgroup_enable_task_cg_lists(void)
2918 struct task_struct
*p
, *g
;
2919 write_lock(&css_set_lock
);
2920 use_task_css_set_links
= 1;
2922 * We need tasklist_lock because RCU is not safe against
2923 * while_each_thread(). Besides, a forking task that has passed
2924 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2925 * is not guaranteed to have its child immediately visible in the
2926 * tasklist if we walk through it with RCU.
2928 read_lock(&tasklist_lock
);
2929 do_each_thread(g
, p
) {
2932 * We should check if the process is exiting, otherwise
2933 * it will race with cgroup_exit() in that the list
2934 * entry won't be deleted though the process has exited.
2936 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
2937 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
2939 } while_each_thread(g
, p
);
2940 read_unlock(&tasklist_lock
);
2941 write_unlock(&css_set_lock
);
2945 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2946 * @pos: the current position (%NULL to initiate traversal)
2947 * @cgroup: cgroup whose descendants to walk
2949 * To be used by cgroup_for_each_descendant_pre(). Find the next
2950 * descendant to visit for pre-order traversal of @cgroup's descendants.
2952 struct cgroup
*cgroup_next_descendant_pre(struct cgroup
*pos
,
2953 struct cgroup
*cgroup
)
2955 struct cgroup
*next
;
2957 WARN_ON_ONCE(!rcu_read_lock_held());
2959 /* if first iteration, pretend we just visited @cgroup */
2963 /* visit the first child if exists */
2964 next
= list_first_or_null_rcu(&pos
->children
, struct cgroup
, sibling
);
2968 /* no child, visit my or the closest ancestor's next sibling */
2969 while (pos
!= cgroup
) {
2970 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup
,
2972 if (&next
->sibling
!= &pos
->parent
->children
)
2980 EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre
);
2983 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
2984 * @pos: cgroup of interest
2986 * Return the rightmost descendant of @pos. If there's no descendant,
2987 * @pos is returned. This can be used during pre-order traversal to skip
2990 struct cgroup
*cgroup_rightmost_descendant(struct cgroup
*pos
)
2992 struct cgroup
*last
, *tmp
;
2994 WARN_ON_ONCE(!rcu_read_lock_held());
2998 /* ->prev isn't RCU safe, walk ->next till the end */
3000 list_for_each_entry_rcu(tmp
, &last
->children
, sibling
)
3006 EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant
);
3008 static struct cgroup
*cgroup_leftmost_descendant(struct cgroup
*pos
)
3010 struct cgroup
*last
;
3014 pos
= list_first_or_null_rcu(&pos
->children
, struct cgroup
,
3022 * cgroup_next_descendant_post - find the next descendant for post-order walk
3023 * @pos: the current position (%NULL to initiate traversal)
3024 * @cgroup: cgroup whose descendants to walk
3026 * To be used by cgroup_for_each_descendant_post(). Find the next
3027 * descendant to visit for post-order traversal of @cgroup's descendants.
3029 struct cgroup
*cgroup_next_descendant_post(struct cgroup
*pos
,
3030 struct cgroup
*cgroup
)
3032 struct cgroup
*next
;
3034 WARN_ON_ONCE(!rcu_read_lock_held());
3036 /* if first iteration, visit the leftmost descendant */
3038 next
= cgroup_leftmost_descendant(cgroup
);
3039 return next
!= cgroup
? next
: NULL
;
3042 /* if there's an unvisited sibling, visit its leftmost descendant */
3043 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup
, sibling
);
3044 if (&next
->sibling
!= &pos
->parent
->children
)
3045 return cgroup_leftmost_descendant(next
);
3047 /* no sibling left, visit parent */
3049 return next
!= cgroup
? next
: NULL
;
3051 EXPORT_SYMBOL_GPL(cgroup_next_descendant_post
);
3053 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
3054 __acquires(css_set_lock
)
3057 * The first time anyone tries to iterate across a cgroup,
3058 * we need to enable the list linking each css_set to its
3059 * tasks, and fix up all existing tasks.
3061 if (!use_task_css_set_links
)
3062 cgroup_enable_task_cg_lists();
3064 read_lock(&css_set_lock
);
3065 it
->cg_link
= &cgrp
->css_sets
;
3066 cgroup_advance_iter(cgrp
, it
);
3069 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
3070 struct cgroup_iter
*it
)
3072 struct task_struct
*res
;
3073 struct list_head
*l
= it
->task
;
3074 struct cg_cgroup_link
*link
;
3076 /* If the iterator cg is NULL, we have no tasks */
3079 res
= list_entry(l
, struct task_struct
, cg_list
);
3080 /* Advance iterator to find next entry */
3082 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
3083 if (l
== &link
->cg
->tasks
) {
3084 /* We reached the end of this task list - move on to
3085 * the next cg_cgroup_link */
3086 cgroup_advance_iter(cgrp
, it
);
3093 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
3094 __releases(css_set_lock
)
3096 read_unlock(&css_set_lock
);
3099 static inline int started_after_time(struct task_struct
*t1
,
3100 struct timespec
*time
,
3101 struct task_struct
*t2
)
3103 int start_diff
= timespec_compare(&t1
->start_time
, time
);
3104 if (start_diff
> 0) {
3106 } else if (start_diff
< 0) {
3110 * Arbitrarily, if two processes started at the same
3111 * time, we'll say that the lower pointer value
3112 * started first. Note that t2 may have exited by now
3113 * so this may not be a valid pointer any longer, but
3114 * that's fine - it still serves to distinguish
3115 * between two tasks started (effectively) simultaneously.
3122 * This function is a callback from heap_insert() and is used to order
3124 * In this case we order the heap in descending task start time.
3126 static inline int started_after(void *p1
, void *p2
)
3128 struct task_struct
*t1
= p1
;
3129 struct task_struct
*t2
= p2
;
3130 return started_after_time(t1
, &t2
->start_time
, t2
);
3134 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3135 * @scan: struct cgroup_scanner containing arguments for the scan
3137 * Arguments include pointers to callback functions test_task() and
3139 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3140 * and if it returns true, call process_task() for it also.
3141 * The test_task pointer may be NULL, meaning always true (select all tasks).
3142 * Effectively duplicates cgroup_iter_{start,next,end}()
3143 * but does not lock css_set_lock for the call to process_task().
3144 * The struct cgroup_scanner may be embedded in any structure of the caller's
3146 * It is guaranteed that process_task() will act on every task that
3147 * is a member of the cgroup for the duration of this call. This
3148 * function may or may not call process_task() for tasks that exit
3149 * or move to a different cgroup during the call, or are forked or
3150 * move into the cgroup during the call.
3152 * Note that test_task() may be called with locks held, and may in some
3153 * situations be called multiple times for the same task, so it should
3155 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3156 * pre-allocated and will be used for heap operations (and its "gt" member will
3157 * be overwritten), else a temporary heap will be used (allocation of which
3158 * may cause this function to fail).
3160 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
3163 struct cgroup_iter it
;
3164 struct task_struct
*p
, *dropped
;
3165 /* Never dereference latest_task, since it's not refcounted */
3166 struct task_struct
*latest_task
= NULL
;
3167 struct ptr_heap tmp_heap
;
3168 struct ptr_heap
*heap
;
3169 struct timespec latest_time
= { 0, 0 };
3172 /* The caller supplied our heap and pre-allocated its memory */
3174 heap
->gt
= &started_after
;
3176 /* We need to allocate our own heap memory */
3178 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
3180 /* cannot allocate the heap */
3186 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3187 * to determine which are of interest, and using the scanner's
3188 * "process_task" callback to process any of them that need an update.
3189 * Since we don't want to hold any locks during the task updates,
3190 * gather tasks to be processed in a heap structure.
3191 * The heap is sorted by descending task start time.
3192 * If the statically-sized heap fills up, we overflow tasks that
3193 * started later, and in future iterations only consider tasks that
3194 * started after the latest task in the previous pass. This
3195 * guarantees forward progress and that we don't miss any tasks.
3198 cgroup_iter_start(scan
->cg
, &it
);
3199 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
3201 * Only affect tasks that qualify per the caller's callback,
3202 * if he provided one
3204 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
3207 * Only process tasks that started after the last task
3210 if (!started_after_time(p
, &latest_time
, latest_task
))
3212 dropped
= heap_insert(heap
, p
);
3213 if (dropped
== NULL
) {
3215 * The new task was inserted; the heap wasn't
3219 } else if (dropped
!= p
) {
3221 * The new task was inserted, and pushed out a
3225 put_task_struct(dropped
);
3228 * Else the new task was newer than anything already in
3229 * the heap and wasn't inserted
3232 cgroup_iter_end(scan
->cg
, &it
);
3235 for (i
= 0; i
< heap
->size
; i
++) {
3236 struct task_struct
*q
= heap
->ptrs
[i
];
3238 latest_time
= q
->start_time
;
3241 /* Process the task per the caller's callback */
3242 scan
->process_task(q
, scan
);
3246 * If we had to process any tasks at all, scan again
3247 * in case some of them were in the middle of forking
3248 * children that didn't get processed.
3249 * Not the most efficient way to do it, but it avoids
3250 * having to take callback_mutex in the fork path
3254 if (heap
== &tmp_heap
)
3255 heap_free(&tmp_heap
);
3259 static void cgroup_transfer_one_task(struct task_struct
*task
,
3260 struct cgroup_scanner
*scan
)
3262 struct cgroup
*new_cgroup
= scan
->data
;
3264 mutex_lock(&cgroup_mutex
);
3265 cgroup_attach_task(new_cgroup
, task
, false);
3266 mutex_unlock(&cgroup_mutex
);
3270 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3271 * @to: cgroup to which the tasks will be moved
3272 * @from: cgroup in which the tasks currently reside
3274 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3276 struct cgroup_scanner scan
;
3279 scan
.test_task
= NULL
; /* select all tasks in cgroup */
3280 scan
.process_task
= cgroup_transfer_one_task
;
3284 return cgroup_scan_tasks(&scan
);
3288 * Stuff for reading the 'tasks'/'procs' files.
3290 * Reading this file can return large amounts of data if a cgroup has
3291 * *lots* of attached tasks. So it may need several calls to read(),
3292 * but we cannot guarantee that the information we produce is correct
3293 * unless we produce it entirely atomically.
3297 /* which pidlist file are we talking about? */
3298 enum cgroup_filetype
{
3304 * A pidlist is a list of pids that virtually represents the contents of one
3305 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3306 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3309 struct cgroup_pidlist
{
3311 * used to find which pidlist is wanted. doesn't change as long as
3312 * this particular list stays in the list.
3314 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
3317 /* how many elements the above list has */
3319 /* how many files are using the current array */
3321 /* each of these stored in a list by its cgroup */
3322 struct list_head links
;
3323 /* pointer to the cgroup we belong to, for list removal purposes */
3324 struct cgroup
*owner
;
3325 /* protects the other fields */
3326 struct rw_semaphore mutex
;
3330 * The following two functions "fix" the issue where there are more pids
3331 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3332 * TODO: replace with a kernel-wide solution to this problem
3334 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3335 static void *pidlist_allocate(int count
)
3337 if (PIDLIST_TOO_LARGE(count
))
3338 return vmalloc(count
* sizeof(pid_t
));
3340 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
3342 static void pidlist_free(void *p
)
3344 if (is_vmalloc_addr(p
))
3351 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3352 * Returns the number of unique elements.
3354 static int pidlist_uniq(pid_t
*list
, int length
)
3359 * we presume the 0th element is unique, so i starts at 1. trivial
3360 * edge cases first; no work needs to be done for either
3362 if (length
== 0 || length
== 1)
3364 /* src and dest walk down the list; dest counts unique elements */
3365 for (src
= 1; src
< length
; src
++) {
3366 /* find next unique element */
3367 while (list
[src
] == list
[src
-1]) {
3372 /* dest always points to where the next unique element goes */
3373 list
[dest
] = list
[src
];
3380 static int cmppid(const void *a
, const void *b
)
3382 return *(pid_t
*)a
- *(pid_t
*)b
;
3386 * find the appropriate pidlist for our purpose (given procs vs tasks)
3387 * returns with the lock on that pidlist already held, and takes care
3388 * of the use count, or returns NULL with no locks held if we're out of
3391 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
3392 enum cgroup_filetype type
)
3394 struct cgroup_pidlist
*l
;
3395 /* don't need task_nsproxy() if we're looking at ourself */
3396 struct pid_namespace
*ns
= task_active_pid_ns(current
);
3399 * We can't drop the pidlist_mutex before taking the l->mutex in case
3400 * the last ref-holder is trying to remove l from the list at the same
3401 * time. Holding the pidlist_mutex precludes somebody taking whichever
3402 * list we find out from under us - compare release_pid_array().
3404 mutex_lock(&cgrp
->pidlist_mutex
);
3405 list_for_each_entry(l
, &cgrp
->pidlists
, links
) {
3406 if (l
->key
.type
== type
&& l
->key
.ns
== ns
) {
3407 /* make sure l doesn't vanish out from under us */
3408 down_write(&l
->mutex
);
3409 mutex_unlock(&cgrp
->pidlist_mutex
);
3413 /* entry not found; create a new one */
3414 l
= kmalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
3416 mutex_unlock(&cgrp
->pidlist_mutex
);
3419 init_rwsem(&l
->mutex
);
3420 down_write(&l
->mutex
);
3422 l
->key
.ns
= get_pid_ns(ns
);
3423 l
->use_count
= 0; /* don't increment here */
3426 list_add(&l
->links
, &cgrp
->pidlists
);
3427 mutex_unlock(&cgrp
->pidlist_mutex
);
3432 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3434 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
3435 struct cgroup_pidlist
**lp
)
3439 int pid
, n
= 0; /* used for populating the array */
3440 struct cgroup_iter it
;
3441 struct task_struct
*tsk
;
3442 struct cgroup_pidlist
*l
;
3445 * If cgroup gets more users after we read count, we won't have
3446 * enough space - tough. This race is indistinguishable to the
3447 * caller from the case that the additional cgroup users didn't
3448 * show up until sometime later on.
3450 length
= cgroup_task_count(cgrp
);
3451 array
= pidlist_allocate(length
);
3454 /* now, populate the array */
3455 cgroup_iter_start(cgrp
, &it
);
3456 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3457 if (unlikely(n
== length
))
3459 /* get tgid or pid for procs or tasks file respectively */
3460 if (type
== CGROUP_FILE_PROCS
)
3461 pid
= task_tgid_vnr(tsk
);
3463 pid
= task_pid_vnr(tsk
);
3464 if (pid
> 0) /* make sure to only use valid results */
3467 cgroup_iter_end(cgrp
, &it
);
3469 /* now sort & (if procs) strip out duplicates */
3470 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
3471 if (type
== CGROUP_FILE_PROCS
)
3472 length
= pidlist_uniq(array
, length
);
3473 l
= cgroup_pidlist_find(cgrp
, type
);
3475 pidlist_free(array
);
3478 /* store array, freeing old if necessary - lock already held */
3479 pidlist_free(l
->list
);
3483 up_write(&l
->mutex
);
3489 * cgroupstats_build - build and fill cgroupstats
3490 * @stats: cgroupstats to fill information into
3491 * @dentry: A dentry entry belonging to the cgroup for which stats have
3494 * Build and fill cgroupstats so that taskstats can export it to user
3497 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
3500 struct cgroup
*cgrp
;
3501 struct cgroup_iter it
;
3502 struct task_struct
*tsk
;
3505 * Validate dentry by checking the superblock operations,
3506 * and make sure it's a directory.
3508 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
3509 !S_ISDIR(dentry
->d_inode
->i_mode
))
3513 cgrp
= dentry
->d_fsdata
;
3515 cgroup_iter_start(cgrp
, &it
);
3516 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
3517 switch (tsk
->state
) {
3519 stats
->nr_running
++;
3521 case TASK_INTERRUPTIBLE
:
3522 stats
->nr_sleeping
++;
3524 case TASK_UNINTERRUPTIBLE
:
3525 stats
->nr_uninterruptible
++;
3528 stats
->nr_stopped
++;
3531 if (delayacct_is_task_waiting_on_io(tsk
))
3532 stats
->nr_io_wait
++;
3536 cgroup_iter_end(cgrp
, &it
);
3544 * seq_file methods for the tasks/procs files. The seq_file position is the
3545 * next pid to display; the seq_file iterator is a pointer to the pid
3546 * in the cgroup->l->list array.
3549 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
3552 * Initially we receive a position value that corresponds to
3553 * one more than the last pid shown (or 0 on the first call or
3554 * after a seek to the start). Use a binary-search to find the
3555 * next pid to display, if any
3557 struct cgroup_pidlist
*l
= s
->private;
3558 int index
= 0, pid
= *pos
;
3561 down_read(&l
->mutex
);
3563 int end
= l
->length
;
3565 while (index
< end
) {
3566 int mid
= (index
+ end
) / 2;
3567 if (l
->list
[mid
] == pid
) {
3570 } else if (l
->list
[mid
] <= pid
)
3576 /* If we're off the end of the array, we're done */
3577 if (index
>= l
->length
)
3579 /* Update the abstract position to be the actual pid that we found */
3580 iter
= l
->list
+ index
;
3585 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
3587 struct cgroup_pidlist
*l
= s
->private;
3591 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
3593 struct cgroup_pidlist
*l
= s
->private;
3595 pid_t
*end
= l
->list
+ l
->length
;
3597 * Advance to the next pid in the array. If this goes off the
3609 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
3611 return seq_printf(s
, "%d\n", *(int *)v
);
3615 * seq_operations functions for iterating on pidlists through seq_file -
3616 * independent of whether it's tasks or procs
3618 static const struct seq_operations cgroup_pidlist_seq_operations
= {
3619 .start
= cgroup_pidlist_start
,
3620 .stop
= cgroup_pidlist_stop
,
3621 .next
= cgroup_pidlist_next
,
3622 .show
= cgroup_pidlist_show
,
3625 static void cgroup_release_pid_array(struct cgroup_pidlist
*l
)
3628 * the case where we're the last user of this particular pidlist will
3629 * have us remove it from the cgroup's list, which entails taking the
3630 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3631 * pidlist_mutex, we have to take pidlist_mutex first.
3633 mutex_lock(&l
->owner
->pidlist_mutex
);
3634 down_write(&l
->mutex
);
3635 BUG_ON(!l
->use_count
);
3636 if (!--l
->use_count
) {
3637 /* we're the last user if refcount is 0; remove and free */
3638 list_del(&l
->links
);
3639 mutex_unlock(&l
->owner
->pidlist_mutex
);
3640 pidlist_free(l
->list
);
3641 put_pid_ns(l
->key
.ns
);
3642 up_write(&l
->mutex
);
3646 mutex_unlock(&l
->owner
->pidlist_mutex
);
3647 up_write(&l
->mutex
);
3650 static int cgroup_pidlist_release(struct inode
*inode
, struct file
*file
)
3652 struct cgroup_pidlist
*l
;
3653 if (!(file
->f_mode
& FMODE_READ
))
3656 * the seq_file will only be initialized if the file was opened for
3657 * reading; hence we check if it's not null only in that case.
3659 l
= ((struct seq_file
*)file
->private_data
)->private;
3660 cgroup_release_pid_array(l
);
3661 return seq_release(inode
, file
);
3664 static const struct file_operations cgroup_pidlist_operations
= {
3666 .llseek
= seq_lseek
,
3667 .write
= cgroup_file_write
,
3668 .release
= cgroup_pidlist_release
,
3672 * The following functions handle opens on a file that displays a pidlist
3673 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3676 /* helper function for the two below it */
3677 static int cgroup_pidlist_open(struct file
*file
, enum cgroup_filetype type
)
3679 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
3680 struct cgroup_pidlist
*l
;
3683 /* Nothing to do for write-only files */
3684 if (!(file
->f_mode
& FMODE_READ
))
3687 /* have the array populated */
3688 retval
= pidlist_array_load(cgrp
, type
, &l
);
3691 /* configure file information */
3692 file
->f_op
= &cgroup_pidlist_operations
;
3694 retval
= seq_open(file
, &cgroup_pidlist_seq_operations
);
3696 cgroup_release_pid_array(l
);
3699 ((struct seq_file
*)file
->private_data
)->private = l
;
3702 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
3704 return cgroup_pidlist_open(file
, CGROUP_FILE_TASKS
);
3706 static int cgroup_procs_open(struct inode
*unused
, struct file
*file
)
3708 return cgroup_pidlist_open(file
, CGROUP_FILE_PROCS
);
3711 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
3714 return notify_on_release(cgrp
);
3717 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
3721 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3723 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3725 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
3730 * Unregister event and free resources.
3732 * Gets called from workqueue.
3734 static void cgroup_event_remove(struct work_struct
*work
)
3736 struct cgroup_event
*event
= container_of(work
, struct cgroup_event
,
3738 struct cgroup
*cgrp
= event
->cgrp
;
3740 remove_wait_queue(event
->wqh
, &event
->wait
);
3742 event
->cft
->unregister_event(cgrp
, event
->cft
, event
->eventfd
);
3744 /* Notify userspace the event is going away. */
3745 eventfd_signal(event
->eventfd
, 1);
3747 eventfd_ctx_put(event
->eventfd
);
3753 * Gets called on POLLHUP on eventfd when user closes it.
3755 * Called with wqh->lock held and interrupts disabled.
3757 static int cgroup_event_wake(wait_queue_t
*wait
, unsigned mode
,
3758 int sync
, void *key
)
3760 struct cgroup_event
*event
= container_of(wait
,
3761 struct cgroup_event
, wait
);
3762 struct cgroup
*cgrp
= event
->cgrp
;
3763 unsigned long flags
= (unsigned long)key
;
3765 if (flags
& POLLHUP
) {
3767 * If the event has been detached at cgroup removal, we
3768 * can simply return knowing the other side will cleanup
3771 * We can't race against event freeing since the other
3772 * side will require wqh->lock via remove_wait_queue(),
3775 spin_lock(&cgrp
->event_list_lock
);
3776 if (!list_empty(&event
->list
)) {
3777 list_del_init(&event
->list
);
3779 * We are in atomic context, but cgroup_event_remove()
3780 * may sleep, so we have to call it in workqueue.
3782 schedule_work(&event
->remove
);
3784 spin_unlock(&cgrp
->event_list_lock
);
3790 static void cgroup_event_ptable_queue_proc(struct file
*file
,
3791 wait_queue_head_t
*wqh
, poll_table
*pt
)
3793 struct cgroup_event
*event
= container_of(pt
,
3794 struct cgroup_event
, pt
);
3797 add_wait_queue(wqh
, &event
->wait
);
3801 * Parse input and register new cgroup event handler.
3803 * Input must be in format '<event_fd> <control_fd> <args>'.
3804 * Interpretation of args is defined by control file implementation.
3806 static int cgroup_write_event_control(struct cgroup
*cgrp
, struct cftype
*cft
,
3809 struct cgroup_event
*event
= NULL
;
3810 struct cgroup
*cgrp_cfile
;
3811 unsigned int efd
, cfd
;
3812 struct file
*efile
= NULL
;
3813 struct file
*cfile
= NULL
;
3817 efd
= simple_strtoul(buffer
, &endp
, 10);
3822 cfd
= simple_strtoul(buffer
, &endp
, 10);
3823 if ((*endp
!= ' ') && (*endp
!= '\0'))
3827 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3831 INIT_LIST_HEAD(&event
->list
);
3832 init_poll_funcptr(&event
->pt
, cgroup_event_ptable_queue_proc
);
3833 init_waitqueue_func_entry(&event
->wait
, cgroup_event_wake
);
3834 INIT_WORK(&event
->remove
, cgroup_event_remove
);
3836 efile
= eventfd_fget(efd
);
3837 if (IS_ERR(efile
)) {
3838 ret
= PTR_ERR(efile
);
3842 event
->eventfd
= eventfd_ctx_fileget(efile
);
3843 if (IS_ERR(event
->eventfd
)) {
3844 ret
= PTR_ERR(event
->eventfd
);
3854 /* the process need read permission on control file */
3855 /* AV: shouldn't we check that it's been opened for read instead? */
3856 ret
= inode_permission(file_inode(cfile
), MAY_READ
);
3860 event
->cft
= __file_cft(cfile
);
3861 if (IS_ERR(event
->cft
)) {
3862 ret
= PTR_ERR(event
->cft
);
3867 * The file to be monitored must be in the same cgroup as
3868 * cgroup.event_control is.
3870 cgrp_cfile
= __d_cgrp(cfile
->f_dentry
->d_parent
);
3871 if (cgrp_cfile
!= cgrp
) {
3876 if (!event
->cft
->register_event
|| !event
->cft
->unregister_event
) {
3881 ret
= event
->cft
->register_event(cgrp
, event
->cft
,
3882 event
->eventfd
, buffer
);
3886 efile
->f_op
->poll(efile
, &event
->pt
);
3889 * Events should be removed after rmdir of cgroup directory, but before
3890 * destroying subsystem state objects. Let's take reference to cgroup
3891 * directory dentry to do that.
3895 spin_lock(&cgrp
->event_list_lock
);
3896 list_add(&event
->list
, &cgrp
->event_list
);
3897 spin_unlock(&cgrp
->event_list_lock
);
3908 if (event
&& event
->eventfd
&& !IS_ERR(event
->eventfd
))
3909 eventfd_ctx_put(event
->eventfd
);
3911 if (!IS_ERR_OR_NULL(efile
))
3919 static u64
cgroup_clone_children_read(struct cgroup
*cgrp
,
3922 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
3925 static int cgroup_clone_children_write(struct cgroup
*cgrp
,
3930 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
3932 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
3937 * for the common functions, 'private' gives the type of file
3939 /* for hysterical raisins, we can't put this on the older files */
3940 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3941 static struct cftype files
[] = {
3944 .open
= cgroup_tasks_open
,
3945 .write_u64
= cgroup_tasks_write
,
3946 .release
= cgroup_pidlist_release
,
3947 .mode
= S_IRUGO
| S_IWUSR
,
3950 .name
= CGROUP_FILE_GENERIC_PREFIX
"procs",
3951 .open
= cgroup_procs_open
,
3952 .write_u64
= cgroup_procs_write
,
3953 .release
= cgroup_pidlist_release
,
3954 .mode
= S_IRUGO
| S_IWUSR
,
3957 .name
= "notify_on_release",
3958 .read_u64
= cgroup_read_notify_on_release
,
3959 .write_u64
= cgroup_write_notify_on_release
,
3962 .name
= CGROUP_FILE_GENERIC_PREFIX
"event_control",
3963 .write_string
= cgroup_write_event_control
,
3967 .name
= "cgroup.clone_children",
3968 .flags
= CFTYPE_INSANE
,
3969 .read_u64
= cgroup_clone_children_read
,
3970 .write_u64
= cgroup_clone_children_write
,
3973 .name
= "cgroup.sane_behavior",
3974 .flags
= CFTYPE_ONLY_ON_ROOT
,
3975 .read_seq_string
= cgroup_sane_behavior_show
,
3978 .name
= "release_agent",
3979 .flags
= CFTYPE_ONLY_ON_ROOT
,
3980 .read_seq_string
= cgroup_release_agent_show
,
3981 .write_string
= cgroup_release_agent_write
,
3982 .max_write_len
= PATH_MAX
,
3988 * cgroup_populate_dir - selectively creation of files in a directory
3989 * @cgrp: target cgroup
3990 * @base_files: true if the base files should be added
3991 * @subsys_mask: mask of the subsystem ids whose files should be added
3993 static int cgroup_populate_dir(struct cgroup
*cgrp
, bool base_files
,
3994 unsigned long subsys_mask
)
3997 struct cgroup_subsys
*ss
;
4000 err
= cgroup_addrm_files(cgrp
, NULL
, files
, true);
4005 /* process cftsets of each subsystem */
4006 for_each_subsys(cgrp
->root
, ss
) {
4007 struct cftype_set
*set
;
4008 if (!test_bit(ss
->subsys_id
, &subsys_mask
))
4011 list_for_each_entry(set
, &ss
->cftsets
, node
)
4012 cgroup_addrm_files(cgrp
, ss
, set
->cfts
, true);
4015 /* This cgroup is ready now */
4016 for_each_subsys(cgrp
->root
, ss
) {
4017 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4019 * Update id->css pointer and make this css visible from
4020 * CSS ID functions. This pointer will be dereferened
4021 * from RCU-read-side without locks.
4024 rcu_assign_pointer(css
->id
->css
, css
);
4030 static void css_dput_fn(struct work_struct
*work
)
4032 struct cgroup_subsys_state
*css
=
4033 container_of(work
, struct cgroup_subsys_state
, dput_work
);
4034 struct dentry
*dentry
= css
->cgroup
->dentry
;
4035 struct super_block
*sb
= dentry
->d_sb
;
4037 atomic_inc(&sb
->s_active
);
4039 deactivate_super(sb
);
4042 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
4043 struct cgroup_subsys
*ss
,
4044 struct cgroup
*cgrp
)
4047 atomic_set(&css
->refcnt
, 1);
4050 if (cgrp
== dummytop
)
4051 css
->flags
|= CSS_ROOT
;
4052 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
4053 cgrp
->subsys
[ss
->subsys_id
] = css
;
4056 * css holds an extra ref to @cgrp->dentry which is put on the last
4057 * css_put(). dput() requires process context, which css_put() may
4058 * be called without. @css->dput_work will be used to invoke
4059 * dput() asynchronously from css_put().
4061 INIT_WORK(&css
->dput_work
, css_dput_fn
);
4064 /* invoke ->post_create() on a new CSS and mark it online if successful */
4065 static int online_css(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4069 lockdep_assert_held(&cgroup_mutex
);
4072 ret
= ss
->css_online(cgrp
);
4074 cgrp
->subsys
[ss
->subsys_id
]->flags
|= CSS_ONLINE
;
4078 /* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4079 static void offline_css(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4080 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4082 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4084 lockdep_assert_held(&cgroup_mutex
);
4086 if (!(css
->flags
& CSS_ONLINE
))
4089 if (ss
->css_offline
)
4090 ss
->css_offline(cgrp
);
4092 cgrp
->subsys
[ss
->subsys_id
]->flags
&= ~CSS_ONLINE
;
4096 * cgroup_create - create a cgroup
4097 * @parent: cgroup that will be parent of the new cgroup
4098 * @dentry: dentry of the new cgroup
4099 * @mode: mode to set on new inode
4101 * Must be called with the mutex on the parent inode held
4103 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
4106 struct cgroup
*cgrp
;
4107 struct cgroup_name
*name
;
4108 struct cgroupfs_root
*root
= parent
->root
;
4110 struct cgroup_subsys
*ss
;
4111 struct super_block
*sb
= root
->sb
;
4113 /* allocate the cgroup and its ID, 0 is reserved for the root */
4114 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4118 name
= cgroup_alloc_name(dentry
);
4121 rcu_assign_pointer(cgrp
->name
, name
);
4123 cgrp
->id
= ida_simple_get(&root
->cgroup_ida
, 1, 0, GFP_KERNEL
);
4128 * Only live parents can have children. Note that the liveliness
4129 * check isn't strictly necessary because cgroup_mkdir() and
4130 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4131 * anyway so that locking is contained inside cgroup proper and we
4132 * don't get nasty surprises if we ever grow another caller.
4134 if (!cgroup_lock_live_group(parent
)) {
4139 /* Grab a reference on the superblock so the hierarchy doesn't
4140 * get deleted on unmount if there are child cgroups. This
4141 * can be done outside cgroup_mutex, since the sb can't
4142 * disappear while someone has an open control file on the
4144 atomic_inc(&sb
->s_active
);
4146 init_cgroup_housekeeping(cgrp
);
4148 dentry
->d_fsdata
= cgrp
;
4149 cgrp
->dentry
= dentry
;
4151 cgrp
->parent
= parent
;
4152 cgrp
->root
= parent
->root
;
4154 if (notify_on_release(parent
))
4155 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4157 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4158 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4160 for_each_subsys(root
, ss
) {
4161 struct cgroup_subsys_state
*css
;
4163 css
= ss
->css_alloc(cgrp
);
4168 init_cgroup_css(css
, ss
, cgrp
);
4170 err
= alloc_css_id(ss
, parent
, cgrp
);
4177 * Create directory. cgroup_create_file() returns with the new
4178 * directory locked on success so that it can be populated without
4179 * dropping cgroup_mutex.
4181 err
= cgroup_create_file(dentry
, S_IFDIR
| mode
, sb
);
4184 lockdep_assert_held(&dentry
->d_inode
->i_mutex
);
4186 /* allocation complete, commit to creation */
4187 list_add_tail(&cgrp
->allcg_node
, &root
->allcg_list
);
4188 list_add_tail_rcu(&cgrp
->sibling
, &cgrp
->parent
->children
);
4189 root
->number_of_cgroups
++;
4191 /* each css holds a ref to the cgroup's dentry */
4192 for_each_subsys(root
, ss
)
4195 /* hold a ref to the parent's dentry */
4196 dget(parent
->dentry
);
4198 /* creation succeeded, notify subsystems */
4199 for_each_subsys(root
, ss
) {
4200 err
= online_css(ss
, cgrp
);
4204 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4206 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4207 current
->comm
, current
->pid
, ss
->name
);
4208 if (!strcmp(ss
->name
, "memory"))
4209 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4210 ss
->warned_broken_hierarchy
= true;
4214 err
= cgroup_populate_dir(cgrp
, true, root
->subsys_mask
);
4218 mutex_unlock(&cgroup_mutex
);
4219 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
4224 for_each_subsys(root
, ss
) {
4225 if (cgrp
->subsys
[ss
->subsys_id
])
4228 mutex_unlock(&cgroup_mutex
);
4229 /* Release the reference count that we took on the superblock */
4230 deactivate_super(sb
);
4232 ida_simple_remove(&root
->cgroup_ida
, cgrp
->id
);
4234 kfree(rcu_dereference_raw(cgrp
->name
));
4240 cgroup_destroy_locked(cgrp
);
4241 mutex_unlock(&cgroup_mutex
);
4242 mutex_unlock(&dentry
->d_inode
->i_mutex
);
4246 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
4248 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
4250 /* the vfs holds inode->i_mutex already */
4251 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
4254 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
4255 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
4257 struct dentry
*d
= cgrp
->dentry
;
4258 struct cgroup
*parent
= cgrp
->parent
;
4259 struct cgroup_event
*event
, *tmp
;
4260 struct cgroup_subsys
*ss
;
4262 lockdep_assert_held(&d
->d_inode
->i_mutex
);
4263 lockdep_assert_held(&cgroup_mutex
);
4265 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
))
4269 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4270 * removed. This makes future css_tryget() and child creation
4271 * attempts fail thus maintaining the removal conditions verified
4274 for_each_subsys(cgrp
->root
, ss
) {
4275 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
4277 WARN_ON(atomic_read(&css
->refcnt
) < 0);
4278 atomic_add(CSS_DEACT_BIAS
, &css
->refcnt
);
4280 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
4282 /* tell subsystems to initate destruction */
4283 for_each_subsys(cgrp
->root
, ss
)
4284 offline_css(ss
, cgrp
);
4287 * Put all the base refs. Each css holds an extra reference to the
4288 * cgroup's dentry and cgroup removal proceeds regardless of css
4289 * refs. On the last put of each css, whenever that may be, the
4290 * extra dentry ref is put so that dentry destruction happens only
4291 * after all css's are released.
4293 for_each_subsys(cgrp
->root
, ss
)
4294 css_put(cgrp
->subsys
[ss
->subsys_id
]);
4296 raw_spin_lock(&release_list_lock
);
4297 if (!list_empty(&cgrp
->release_list
))
4298 list_del_init(&cgrp
->release_list
);
4299 raw_spin_unlock(&release_list_lock
);
4301 /* delete this cgroup from parent->children */
4302 list_del_rcu(&cgrp
->sibling
);
4303 list_del_init(&cgrp
->allcg_node
);
4306 cgroup_d_remove_dir(d
);
4309 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
4310 check_for_release(parent
);
4313 * Unregister events and notify userspace.
4314 * Notify userspace about cgroup removing only after rmdir of cgroup
4315 * directory to avoid race between userspace and kernelspace.
4317 spin_lock(&cgrp
->event_list_lock
);
4318 list_for_each_entry_safe(event
, tmp
, &cgrp
->event_list
, list
) {
4319 list_del_init(&event
->list
);
4320 schedule_work(&event
->remove
);
4322 spin_unlock(&cgrp
->event_list_lock
);
4327 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
4331 mutex_lock(&cgroup_mutex
);
4332 ret
= cgroup_destroy_locked(dentry
->d_fsdata
);
4333 mutex_unlock(&cgroup_mutex
);
4338 static void __init_or_module
cgroup_init_cftsets(struct cgroup_subsys
*ss
)
4340 INIT_LIST_HEAD(&ss
->cftsets
);
4343 * base_cftset is embedded in subsys itself, no need to worry about
4346 if (ss
->base_cftypes
) {
4347 ss
->base_cftset
.cfts
= ss
->base_cftypes
;
4348 list_add_tail(&ss
->base_cftset
.node
, &ss
->cftsets
);
4352 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
4354 struct cgroup_subsys_state
*css
;
4356 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
4358 mutex_lock(&cgroup_mutex
);
4360 /* init base cftset */
4361 cgroup_init_cftsets(ss
);
4363 /* Create the top cgroup state for this subsystem */
4364 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4365 ss
->root
= &rootnode
;
4366 css
= ss
->css_alloc(dummytop
);
4367 /* We don't handle early failures gracefully */
4368 BUG_ON(IS_ERR(css
));
4369 init_cgroup_css(css
, ss
, dummytop
);
4371 /* Update the init_css_set to contain a subsys
4372 * pointer to this state - since the subsystem is
4373 * newly registered, all tasks and hence the
4374 * init_css_set is in the subsystem's top cgroup. */
4375 init_css_set
.subsys
[ss
->subsys_id
] = css
;
4377 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
4379 /* At system boot, before all subsystems have been
4380 * registered, no tasks have been forked, so we don't
4381 * need to invoke fork callbacks here. */
4382 BUG_ON(!list_empty(&init_task
.tasks
));
4384 BUG_ON(online_css(ss
, dummytop
));
4386 mutex_unlock(&cgroup_mutex
);
4388 /* this function shouldn't be used with modular subsystems, since they
4389 * need to register a subsys_id, among other things */
4394 * cgroup_load_subsys: load and register a modular subsystem at runtime
4395 * @ss: the subsystem to load
4397 * This function should be called in a modular subsystem's initcall. If the
4398 * subsystem is built as a module, it will be assigned a new subsys_id and set
4399 * up for use. If the subsystem is built-in anyway, work is delegated to the
4400 * simpler cgroup_init_subsys.
4402 int __init_or_module
cgroup_load_subsys(struct cgroup_subsys
*ss
)
4404 struct cgroup_subsys_state
*css
;
4406 struct hlist_node
*tmp
;
4410 /* check name and function validity */
4411 if (ss
->name
== NULL
|| strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
||
4412 ss
->css_alloc
== NULL
|| ss
->css_free
== NULL
)
4416 * we don't support callbacks in modular subsystems. this check is
4417 * before the ss->module check for consistency; a subsystem that could
4418 * be a module should still have no callbacks even if the user isn't
4419 * compiling it as one.
4421 if (ss
->fork
|| ss
->exit
)
4425 * an optionally modular subsystem is built-in: we want to do nothing,
4426 * since cgroup_init_subsys will have already taken care of it.
4428 if (ss
->module
== NULL
) {
4429 /* a sanity check */
4430 BUG_ON(subsys
[ss
->subsys_id
] != ss
);
4434 /* init base cftset */
4435 cgroup_init_cftsets(ss
);
4437 mutex_lock(&cgroup_mutex
);
4438 subsys
[ss
->subsys_id
] = ss
;
4441 * no ss->css_alloc seems to need anything important in the ss
4442 * struct, so this can happen first (i.e. before the rootnode
4445 css
= ss
->css_alloc(dummytop
);
4447 /* failure case - need to deassign the subsys[] slot. */
4448 subsys
[ss
->subsys_id
] = NULL
;
4449 mutex_unlock(&cgroup_mutex
);
4450 return PTR_ERR(css
);
4453 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
4454 ss
->root
= &rootnode
;
4456 /* our new subsystem will be attached to the dummy hierarchy. */
4457 init_cgroup_css(css
, ss
, dummytop
);
4458 /* init_idr must be after init_cgroup_css because it sets css->id. */
4460 ret
= cgroup_init_idr(ss
, css
);
4466 * Now we need to entangle the css into the existing css_sets. unlike
4467 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4468 * will need a new pointer to it; done by iterating the css_set_table.
4469 * furthermore, modifying the existing css_sets will corrupt the hash
4470 * table state, so each changed css_set will need its hash recomputed.
4471 * this is all done under the css_set_lock.
4473 write_lock(&css_set_lock
);
4474 hash_for_each_safe(css_set_table
, i
, tmp
, cg
, hlist
) {
4475 /* skip entries that we already rehashed */
4476 if (cg
->subsys
[ss
->subsys_id
])
4478 /* remove existing entry */
4479 hash_del(&cg
->hlist
);
4481 cg
->subsys
[ss
->subsys_id
] = css
;
4482 /* recompute hash and restore entry */
4483 key
= css_set_hash(cg
->subsys
);
4484 hash_add(css_set_table
, &cg
->hlist
, key
);
4486 write_unlock(&css_set_lock
);
4488 ret
= online_css(ss
, dummytop
);
4493 mutex_unlock(&cgroup_mutex
);
4497 mutex_unlock(&cgroup_mutex
);
4498 /* @ss can't be mounted here as try_module_get() would fail */
4499 cgroup_unload_subsys(ss
);
4502 EXPORT_SYMBOL_GPL(cgroup_load_subsys
);
4505 * cgroup_unload_subsys: unload a modular subsystem
4506 * @ss: the subsystem to unload
4508 * This function should be called in a modular subsystem's exitcall. When this
4509 * function is invoked, the refcount on the subsystem's module will be 0, so
4510 * the subsystem will not be attached to any hierarchy.
4512 void cgroup_unload_subsys(struct cgroup_subsys
*ss
)
4514 struct cg_cgroup_link
*link
;
4516 BUG_ON(ss
->module
== NULL
);
4519 * we shouldn't be called if the subsystem is in use, and the use of
4520 * try_module_get in parse_cgroupfs_options should ensure that it
4521 * doesn't start being used while we're killing it off.
4523 BUG_ON(ss
->root
!= &rootnode
);
4525 mutex_lock(&cgroup_mutex
);
4527 offline_css(ss
, dummytop
);
4530 idr_destroy(&ss
->idr
);
4532 /* deassign the subsys_id */
4533 subsys
[ss
->subsys_id
] = NULL
;
4535 /* remove subsystem from rootnode's list of subsystems */
4536 list_del_init(&ss
->sibling
);
4539 * disentangle the css from all css_sets attached to the dummytop. as
4540 * in loading, we need to pay our respects to the hashtable gods.
4542 write_lock(&css_set_lock
);
4543 list_for_each_entry(link
, &dummytop
->css_sets
, cgrp_link_list
) {
4544 struct css_set
*cg
= link
->cg
;
4547 hash_del(&cg
->hlist
);
4548 cg
->subsys
[ss
->subsys_id
] = NULL
;
4549 key
= css_set_hash(cg
->subsys
);
4550 hash_add(css_set_table
, &cg
->hlist
, key
);
4552 write_unlock(&css_set_lock
);
4555 * remove subsystem's css from the dummytop and free it - need to
4556 * free before marking as null because ss->css_free needs the
4557 * cgrp->subsys pointer to find their state. note that this also
4558 * takes care of freeing the css_id.
4560 ss
->css_free(dummytop
);
4561 dummytop
->subsys
[ss
->subsys_id
] = NULL
;
4563 mutex_unlock(&cgroup_mutex
);
4565 EXPORT_SYMBOL_GPL(cgroup_unload_subsys
);
4568 * cgroup_init_early - cgroup initialization at system boot
4570 * Initialize cgroups at system boot, and initialize any
4571 * subsystems that request early init.
4573 int __init
cgroup_init_early(void)
4576 atomic_set(&init_css_set
.refcount
, 1);
4577 INIT_LIST_HEAD(&init_css_set
.cg_links
);
4578 INIT_LIST_HEAD(&init_css_set
.tasks
);
4579 INIT_HLIST_NODE(&init_css_set
.hlist
);
4581 init_cgroup_root(&rootnode
);
4583 init_task
.cgroups
= &init_css_set
;
4585 init_css_set_link
.cg
= &init_css_set
;
4586 init_css_set_link
.cgrp
= dummytop
;
4587 list_add(&init_css_set_link
.cgrp_link_list
,
4588 &rootnode
.top_cgroup
.css_sets
);
4589 list_add(&init_css_set_link
.cg_link_list
,
4590 &init_css_set
.cg_links
);
4592 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4593 struct cgroup_subsys
*ss
= subsys
[i
];
4595 /* at bootup time, we don't worry about modular subsystems */
4596 if (!ss
|| ss
->module
)
4600 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
4601 BUG_ON(!ss
->css_alloc
);
4602 BUG_ON(!ss
->css_free
);
4603 if (ss
->subsys_id
!= i
) {
4604 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
4605 ss
->name
, ss
->subsys_id
);
4610 cgroup_init_subsys(ss
);
4616 * cgroup_init - cgroup initialization
4618 * Register cgroup filesystem and /proc file, and initialize
4619 * any subsystems that didn't request early init.
4621 int __init
cgroup_init(void)
4627 err
= bdi_init(&cgroup_backing_dev_info
);
4631 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4632 struct cgroup_subsys
*ss
= subsys
[i
];
4634 /* at bootup time, we don't worry about modular subsystems */
4635 if (!ss
|| ss
->module
)
4637 if (!ss
->early_init
)
4638 cgroup_init_subsys(ss
);
4640 cgroup_init_idr(ss
, init_css_set
.subsys
[ss
->subsys_id
]);
4643 /* Add init_css_set to the hash table */
4644 key
= css_set_hash(init_css_set
.subsys
);
4645 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
4646 BUG_ON(!init_root_id(&rootnode
));
4648 cgroup_kobj
= kobject_create_and_add("cgroup", fs_kobj
);
4654 err
= register_filesystem(&cgroup_fs_type
);
4656 kobject_put(cgroup_kobj
);
4660 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
4664 bdi_destroy(&cgroup_backing_dev_info
);
4670 * proc_cgroup_show()
4671 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4672 * - Used for /proc/<pid>/cgroup.
4673 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4674 * doesn't really matter if tsk->cgroup changes after we read it,
4675 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4676 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4677 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4678 * cgroup to top_cgroup.
4681 /* TODO: Use a proper seq_file iterator */
4682 int proc_cgroup_show(struct seq_file
*m
, void *v
)
4685 struct task_struct
*tsk
;
4688 struct cgroupfs_root
*root
;
4691 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
4697 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
4703 mutex_lock(&cgroup_mutex
);
4705 for_each_active_root(root
) {
4706 struct cgroup_subsys
*ss
;
4707 struct cgroup
*cgrp
;
4710 seq_printf(m
, "%d:", root
->hierarchy_id
);
4711 for_each_subsys(root
, ss
)
4712 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
4713 if (strlen(root
->name
))
4714 seq_printf(m
, "%sname=%s", count
? "," : "",
4717 cgrp
= task_cgroup_from_root(tsk
, root
);
4718 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
4726 mutex_unlock(&cgroup_mutex
);
4727 put_task_struct(tsk
);
4734 /* Display information about each subsystem and each hierarchy */
4735 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
4739 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4741 * ideally we don't want subsystems moving around while we do this.
4742 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4743 * subsys/hierarchy state.
4745 mutex_lock(&cgroup_mutex
);
4746 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
4747 struct cgroup_subsys
*ss
= subsys
[i
];
4750 seq_printf(m
, "%s\t%d\t%d\t%d\n",
4751 ss
->name
, ss
->root
->hierarchy_id
,
4752 ss
->root
->number_of_cgroups
, !ss
->disabled
);
4754 mutex_unlock(&cgroup_mutex
);
4758 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
4760 return single_open(file
, proc_cgroupstats_show
, NULL
);
4763 static const struct file_operations proc_cgroupstats_operations
= {
4764 .open
= cgroupstats_open
,
4766 .llseek
= seq_lseek
,
4767 .release
= single_release
,
4771 * cgroup_fork - attach newly forked task to its parents cgroup.
4772 * @child: pointer to task_struct of forking parent process.
4774 * Description: A task inherits its parent's cgroup at fork().
4776 * A pointer to the shared css_set was automatically copied in
4777 * fork.c by dup_task_struct(). However, we ignore that copy, since
4778 * it was not made under the protection of RCU or cgroup_mutex, so
4779 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4780 * have already changed current->cgroups, allowing the previously
4781 * referenced cgroup group to be removed and freed.
4783 * At the point that cgroup_fork() is called, 'current' is the parent
4784 * task, and the passed argument 'child' points to the child task.
4786 void cgroup_fork(struct task_struct
*child
)
4789 child
->cgroups
= current
->cgroups
;
4790 get_css_set(child
->cgroups
);
4791 task_unlock(current
);
4792 INIT_LIST_HEAD(&child
->cg_list
);
4796 * cgroup_post_fork - called on a new task after adding it to the task list
4797 * @child: the task in question
4799 * Adds the task to the list running through its css_set if necessary and
4800 * call the subsystem fork() callbacks. Has to be after the task is
4801 * visible on the task list in case we race with the first call to
4802 * cgroup_iter_start() - to guarantee that the new task ends up on its
4805 void cgroup_post_fork(struct task_struct
*child
)
4810 * use_task_css_set_links is set to 1 before we walk the tasklist
4811 * under the tasklist_lock and we read it here after we added the child
4812 * to the tasklist under the tasklist_lock as well. If the child wasn't
4813 * yet in the tasklist when we walked through it from
4814 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4815 * should be visible now due to the paired locking and barriers implied
4816 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4817 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4820 if (use_task_css_set_links
) {
4821 write_lock(&css_set_lock
);
4823 if (list_empty(&child
->cg_list
))
4824 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
4826 write_unlock(&css_set_lock
);
4830 * Call ss->fork(). This must happen after @child is linked on
4831 * css_set; otherwise, @child might change state between ->fork()
4832 * and addition to css_set.
4834 if (need_forkexit_callback
) {
4836 * fork/exit callbacks are supported only for builtin
4837 * subsystems, and the builtin section of the subsys
4838 * array is immutable, so we don't need to lock the
4839 * subsys array here. On the other hand, modular section
4840 * of the array can be freed at module unload, so we
4843 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4844 struct cgroup_subsys
*ss
= subsys
[i
];
4853 * cgroup_exit - detach cgroup from exiting task
4854 * @tsk: pointer to task_struct of exiting process
4855 * @run_callback: run exit callbacks?
4857 * Description: Detach cgroup from @tsk and release it.
4859 * Note that cgroups marked notify_on_release force every task in
4860 * them to take the global cgroup_mutex mutex when exiting.
4861 * This could impact scaling on very large systems. Be reluctant to
4862 * use notify_on_release cgroups where very high task exit scaling
4863 * is required on large systems.
4865 * the_top_cgroup_hack:
4867 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4869 * We call cgroup_exit() while the task is still competent to
4870 * handle notify_on_release(), then leave the task attached to the
4871 * root cgroup in each hierarchy for the remainder of its exit.
4873 * To do this properly, we would increment the reference count on
4874 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4875 * code we would add a second cgroup function call, to drop that
4876 * reference. This would just create an unnecessary hot spot on
4877 * the top_cgroup reference count, to no avail.
4879 * Normally, holding a reference to a cgroup without bumping its
4880 * count is unsafe. The cgroup could go away, or someone could
4881 * attach us to a different cgroup, decrementing the count on
4882 * the first cgroup that we never incremented. But in this case,
4883 * top_cgroup isn't going away, and either task has PF_EXITING set,
4884 * which wards off any cgroup_attach_task() attempts, or task is a failed
4885 * fork, never visible to cgroup_attach_task.
4887 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
4893 * Unlink from the css_set task list if necessary.
4894 * Optimistically check cg_list before taking
4897 if (!list_empty(&tsk
->cg_list
)) {
4898 write_lock(&css_set_lock
);
4899 if (!list_empty(&tsk
->cg_list
))
4900 list_del_init(&tsk
->cg_list
);
4901 write_unlock(&css_set_lock
);
4904 /* Reassign the task to the init_css_set. */
4907 tsk
->cgroups
= &init_css_set
;
4909 if (run_callbacks
&& need_forkexit_callback
) {
4911 * fork/exit callbacks are supported only for builtin
4912 * subsystems, see cgroup_post_fork() for details.
4914 for (i
= 0; i
< CGROUP_BUILTIN_SUBSYS_COUNT
; i
++) {
4915 struct cgroup_subsys
*ss
= subsys
[i
];
4918 struct cgroup
*old_cgrp
=
4919 rcu_dereference_raw(cg
->subsys
[i
])->cgroup
;
4920 struct cgroup
*cgrp
= task_cgroup(tsk
, i
);
4921 ss
->exit(cgrp
, old_cgrp
, tsk
);
4927 put_css_set_taskexit(cg
);
4930 static void check_for_release(struct cgroup
*cgrp
)
4932 /* All of these checks rely on RCU to keep the cgroup
4933 * structure alive */
4934 if (cgroup_is_releasable(cgrp
) &&
4935 !atomic_read(&cgrp
->count
) && list_empty(&cgrp
->children
)) {
4937 * Control Group is currently removeable. If it's not
4938 * already queued for a userspace notification, queue
4941 int need_schedule_work
= 0;
4943 raw_spin_lock(&release_list_lock
);
4944 if (!cgroup_is_removed(cgrp
) &&
4945 list_empty(&cgrp
->release_list
)) {
4946 list_add(&cgrp
->release_list
, &release_list
);
4947 need_schedule_work
= 1;
4949 raw_spin_unlock(&release_list_lock
);
4950 if (need_schedule_work
)
4951 schedule_work(&release_agent_work
);
4955 /* Caller must verify that the css is not for root cgroup */
4956 bool __css_tryget(struct cgroup_subsys_state
*css
)
4961 v
= css_refcnt(css
);
4962 t
= atomic_cmpxchg(&css
->refcnt
, v
, v
+ 1);
4970 EXPORT_SYMBOL_GPL(__css_tryget
);
4972 /* Caller must verify that the css is not for root cgroup */
4973 void __css_put(struct cgroup_subsys_state
*css
)
4977 v
= css_unbias_refcnt(atomic_dec_return(&css
->refcnt
));
4979 schedule_work(&css
->dput_work
);
4981 EXPORT_SYMBOL_GPL(__css_put
);
4984 * Notify userspace when a cgroup is released, by running the
4985 * configured release agent with the name of the cgroup (path
4986 * relative to the root of cgroup file system) as the argument.
4988 * Most likely, this user command will try to rmdir this cgroup.
4990 * This races with the possibility that some other task will be
4991 * attached to this cgroup before it is removed, or that some other
4992 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4993 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4994 * unused, and this cgroup will be reprieved from its death sentence,
4995 * to continue to serve a useful existence. Next time it's released,
4996 * we will get notified again, if it still has 'notify_on_release' set.
4998 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4999 * means only wait until the task is successfully execve()'d. The
5000 * separate release agent task is forked by call_usermodehelper(),
5001 * then control in this thread returns here, without waiting for the
5002 * release agent task. We don't bother to wait because the caller of
5003 * this routine has no use for the exit status of the release agent
5004 * task, so no sense holding our caller up for that.
5006 static void cgroup_release_agent(struct work_struct
*work
)
5008 BUG_ON(work
!= &release_agent_work
);
5009 mutex_lock(&cgroup_mutex
);
5010 raw_spin_lock(&release_list_lock
);
5011 while (!list_empty(&release_list
)) {
5012 char *argv
[3], *envp
[3];
5014 char *pathbuf
= NULL
, *agentbuf
= NULL
;
5015 struct cgroup
*cgrp
= list_entry(release_list
.next
,
5018 list_del_init(&cgrp
->release_list
);
5019 raw_spin_unlock(&release_list_lock
);
5020 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
5023 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
5025 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5030 argv
[i
++] = agentbuf
;
5031 argv
[i
++] = pathbuf
;
5035 /* minimal command environment */
5036 envp
[i
++] = "HOME=/";
5037 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5040 /* Drop the lock while we invoke the usermode helper,
5041 * since the exec could involve hitting disk and hence
5042 * be a slow process */
5043 mutex_unlock(&cgroup_mutex
);
5044 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5045 mutex_lock(&cgroup_mutex
);
5049 raw_spin_lock(&release_list_lock
);
5051 raw_spin_unlock(&release_list_lock
);
5052 mutex_unlock(&cgroup_mutex
);
5055 static int __init
cgroup_disable(char *str
)
5060 while ((token
= strsep(&str
, ",")) != NULL
) {
5063 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
5064 struct cgroup_subsys
*ss
= subsys
[i
];
5067 * cgroup_disable, being at boot time, can't
5068 * know about module subsystems, so we don't
5071 if (!ss
|| ss
->module
)
5074 if (!strcmp(token
, ss
->name
)) {
5076 printk(KERN_INFO
"Disabling %s control group"
5077 " subsystem\n", ss
->name
);
5084 __setup("cgroup_disable=", cgroup_disable
);
5087 * Functons for CSS ID.
5091 *To get ID other than 0, this should be called when !cgroup_is_removed().
5093 unsigned short css_id(struct cgroup_subsys_state
*css
)
5095 struct css_id
*cssid
;
5098 * This css_id() can return correct value when somone has refcnt
5099 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5100 * it's unchanged until freed.
5102 cssid
= rcu_dereference_check(css
->id
, css_refcnt(css
));
5108 EXPORT_SYMBOL_GPL(css_id
);
5110 unsigned short css_depth(struct cgroup_subsys_state
*css
)
5112 struct css_id
*cssid
;
5114 cssid
= rcu_dereference_check(css
->id
, css_refcnt(css
));
5117 return cssid
->depth
;
5120 EXPORT_SYMBOL_GPL(css_depth
);
5123 * css_is_ancestor - test "root" css is an ancestor of "child"
5124 * @child: the css to be tested.
5125 * @root: the css supporsed to be an ancestor of the child.
5127 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5128 * this function reads css->id, the caller must hold rcu_read_lock().
5129 * But, considering usual usage, the csses should be valid objects after test.
5130 * Assuming that the caller will do some action to the child if this returns
5131 * returns true, the caller must take "child";s reference count.
5132 * If "child" is valid object and this returns true, "root" is valid, too.
5135 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
5136 const struct cgroup_subsys_state
*root
)
5138 struct css_id
*child_id
;
5139 struct css_id
*root_id
;
5141 child_id
= rcu_dereference(child
->id
);
5144 root_id
= rcu_dereference(root
->id
);
5147 if (child_id
->depth
< root_id
->depth
)
5149 if (child_id
->stack
[root_id
->depth
] != root_id
->id
)
5154 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
5156 struct css_id
*id
= css
->id
;
5157 /* When this is called before css_id initialization, id can be NULL */
5161 BUG_ON(!ss
->use_id
);
5163 rcu_assign_pointer(id
->css
, NULL
);
5164 rcu_assign_pointer(css
->id
, NULL
);
5165 spin_lock(&ss
->id_lock
);
5166 idr_remove(&ss
->idr
, id
->id
);
5167 spin_unlock(&ss
->id_lock
);
5168 kfree_rcu(id
, rcu_head
);
5170 EXPORT_SYMBOL_GPL(free_css_id
);
5173 * This is called by init or create(). Then, calls to this function are
5174 * always serialized (By cgroup_mutex() at create()).
5177 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
5179 struct css_id
*newid
;
5182 BUG_ON(!ss
->use_id
);
5184 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
5185 newid
= kzalloc(size
, GFP_KERNEL
);
5187 return ERR_PTR(-ENOMEM
);
5189 idr_preload(GFP_KERNEL
);
5190 spin_lock(&ss
->id_lock
);
5191 /* Don't use 0. allocates an ID of 1-65535 */
5192 ret
= idr_alloc(&ss
->idr
, newid
, 1, CSS_ID_MAX
+ 1, GFP_NOWAIT
);
5193 spin_unlock(&ss
->id_lock
);
5196 /* Returns error when there are no free spaces for new ID.*/
5201 newid
->depth
= depth
;
5205 return ERR_PTR(ret
);
5209 static int __init_or_module
cgroup_init_idr(struct cgroup_subsys
*ss
,
5210 struct cgroup_subsys_state
*rootcss
)
5212 struct css_id
*newid
;
5214 spin_lock_init(&ss
->id_lock
);
5217 newid
= get_new_cssid(ss
, 0);
5219 return PTR_ERR(newid
);
5221 newid
->stack
[0] = newid
->id
;
5222 newid
->css
= rootcss
;
5223 rootcss
->id
= newid
;
5227 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
5228 struct cgroup
*child
)
5230 int subsys_id
, i
, depth
= 0;
5231 struct cgroup_subsys_state
*parent_css
, *child_css
;
5232 struct css_id
*child_id
, *parent_id
;
5234 subsys_id
= ss
->subsys_id
;
5235 parent_css
= parent
->subsys
[subsys_id
];
5236 child_css
= child
->subsys
[subsys_id
];
5237 parent_id
= parent_css
->id
;
5238 depth
= parent_id
->depth
+ 1;
5240 child_id
= get_new_cssid(ss
, depth
);
5241 if (IS_ERR(child_id
))
5242 return PTR_ERR(child_id
);
5244 for (i
= 0; i
< depth
; i
++)
5245 child_id
->stack
[i
] = parent_id
->stack
[i
];
5246 child_id
->stack
[depth
] = child_id
->id
;
5248 * child_id->css pointer will be set after this cgroup is available
5249 * see cgroup_populate_dir()
5251 rcu_assign_pointer(child_css
->id
, child_id
);
5257 * css_lookup - lookup css by id
5258 * @ss: cgroup subsys to be looked into.
5261 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5262 * NULL if not. Should be called under rcu_read_lock()
5264 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
5266 struct css_id
*cssid
= NULL
;
5268 BUG_ON(!ss
->use_id
);
5269 cssid
= idr_find(&ss
->idr
, id
);
5271 if (unlikely(!cssid
))
5274 return rcu_dereference(cssid
->css
);
5276 EXPORT_SYMBOL_GPL(css_lookup
);
5279 * get corresponding css from file open on cgroupfs directory
5281 struct cgroup_subsys_state
*cgroup_css_from_dir(struct file
*f
, int id
)
5283 struct cgroup
*cgrp
;
5284 struct inode
*inode
;
5285 struct cgroup_subsys_state
*css
;
5287 inode
= file_inode(f
);
5288 /* check in cgroup filesystem dir */
5289 if (inode
->i_op
!= &cgroup_dir_inode_operations
)
5290 return ERR_PTR(-EBADF
);
5292 if (id
< 0 || id
>= CGROUP_SUBSYS_COUNT
)
5293 return ERR_PTR(-EINVAL
);
5296 cgrp
= __d_cgrp(f
->f_dentry
);
5297 css
= cgrp
->subsys
[id
];
5298 return css
? css
: ERR_PTR(-ENOENT
);
5301 #ifdef CONFIG_CGROUP_DEBUG
5302 static struct cgroup_subsys_state
*debug_css_alloc(struct cgroup
*cont
)
5304 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5307 return ERR_PTR(-ENOMEM
);
5312 static void debug_css_free(struct cgroup
*cont
)
5314 kfree(cont
->subsys
[debug_subsys_id
]);
5317 static u64
cgroup_refcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5319 return atomic_read(&cont
->count
);
5322 static u64
debug_taskcount_read(struct cgroup
*cont
, struct cftype
*cft
)
5324 return cgroup_task_count(cont
);
5327 static u64
current_css_set_read(struct cgroup
*cont
, struct cftype
*cft
)
5329 return (u64
)(unsigned long)current
->cgroups
;
5332 static u64
current_css_set_refcount_read(struct cgroup
*cont
,
5338 count
= atomic_read(¤t
->cgroups
->refcount
);
5343 static int current_css_set_cg_links_read(struct cgroup
*cont
,
5345 struct seq_file
*seq
)
5347 struct cg_cgroup_link
*link
;
5350 read_lock(&css_set_lock
);
5352 cg
= rcu_dereference(current
->cgroups
);
5353 list_for_each_entry(link
, &cg
->cg_links
, cg_link_list
) {
5354 struct cgroup
*c
= link
->cgrp
;
5358 name
= c
->dentry
->d_name
.name
;
5361 seq_printf(seq
, "Root %d group %s\n",
5362 c
->root
->hierarchy_id
, name
);
5365 read_unlock(&css_set_lock
);
5369 #define MAX_TASKS_SHOWN_PER_CSS 25
5370 static int cgroup_css_links_read(struct cgroup
*cont
,
5372 struct seq_file
*seq
)
5374 struct cg_cgroup_link
*link
;
5376 read_lock(&css_set_lock
);
5377 list_for_each_entry(link
, &cont
->css_sets
, cgrp_link_list
) {
5378 struct css_set
*cg
= link
->cg
;
5379 struct task_struct
*task
;
5381 seq_printf(seq
, "css_set %p\n", cg
);
5382 list_for_each_entry(task
, &cg
->tasks
, cg_list
) {
5383 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
) {
5384 seq_puts(seq
, " ...\n");
5387 seq_printf(seq
, " task %d\n",
5388 task_pid_vnr(task
));
5392 read_unlock(&css_set_lock
);
5396 static u64
releasable_read(struct cgroup
*cgrp
, struct cftype
*cft
)
5398 return test_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
5401 static struct cftype debug_files
[] = {
5403 .name
= "cgroup_refcount",
5404 .read_u64
= cgroup_refcount_read
,
5407 .name
= "taskcount",
5408 .read_u64
= debug_taskcount_read
,
5412 .name
= "current_css_set",
5413 .read_u64
= current_css_set_read
,
5417 .name
= "current_css_set_refcount",
5418 .read_u64
= current_css_set_refcount_read
,
5422 .name
= "current_css_set_cg_links",
5423 .read_seq_string
= current_css_set_cg_links_read
,
5427 .name
= "cgroup_css_links",
5428 .read_seq_string
= cgroup_css_links_read
,
5432 .name
= "releasable",
5433 .read_u64
= releasable_read
,
5439 struct cgroup_subsys debug_subsys
= {
5441 .css_alloc
= debug_css_alloc
,
5442 .css_free
= debug_css_free
,
5443 .subsys_id
= debug_subsys_id
,
5444 .base_cftypes
= debug_files
,
5446 #endif /* CONFIG_CGROUP_DEBUG */