2 * sched_clock for unstable cpu clocks
4 * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 * Updates and enhancements:
7 * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
10 * Ingo Molnar <mingo@redhat.com>
11 * Guillaume Chazarain <guichaz@gmail.com>
16 * cpu_clock(i) provides a fast (execution time) high resolution
17 * clock with bounded drift between CPUs. The value of cpu_clock(i)
18 * is monotonic for constant i. The timestamp returned is in nanoseconds.
20 * ######################### BIG FAT WARNING ##########################
21 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
23 * ####################################################################
25 * There is no strict promise about the base, although it tends to start
26 * at 0 on boot (but people really shouldn't rely on that).
28 * cpu_clock(i) -- can be used from any context, including NMI.
29 * local_clock() -- is cpu_clock() on the current cpu.
35 * The implementation either uses sched_clock() when
36 * !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK, which means in that case the
37 * sched_clock() is assumed to provide these properties (mostly it means
38 * the architecture provides a globally synchronized highres time source).
40 * Otherwise it tries to create a semi stable clock from a mixture of other
43 * - GTOD (clock monotomic)
45 * - explicit idle events
47 * We use GTOD as base and use sched_clock() deltas to improve resolution. The
48 * deltas are filtered to provide monotonicity and keeping it within an
51 * Furthermore, explicit sleep and wakeup hooks allow us to account for time
52 * that is otherwise invisible (TSC gets stopped).
55 #include <linux/spinlock.h>
56 #include <linux/hardirq.h>
57 #include <linux/export.h>
58 #include <linux/percpu.h>
59 #include <linux/ktime.h>
60 #include <linux/sched.h>
61 #include <linux/static_key.h>
62 #include <linux/workqueue.h>
63 #include <linux/compiler.h>
66 * Scheduler clock - returns current time in nanosec units.
67 * This is default implementation.
68 * Architectures and sub-architectures can override this.
70 unsigned long long __weak
sched_clock(void)
72 return (unsigned long long)(jiffies
- INITIAL_JIFFIES
)
73 * (NSEC_PER_SEC
/ HZ
);
75 EXPORT_SYMBOL_GPL(sched_clock
);
77 __read_mostly
int sched_clock_running
;
79 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
80 static struct static_key __sched_clock_stable
= STATIC_KEY_INIT
;
81 static int __sched_clock_stable_early
;
83 int sched_clock_stable(void)
85 return static_key_false(&__sched_clock_stable
);
88 static void __set_sched_clock_stable(void)
90 if (!sched_clock_stable())
91 static_key_slow_inc(&__sched_clock_stable
);
94 void set_sched_clock_stable(void)
96 __sched_clock_stable_early
= 1;
98 smp_mb(); /* matches sched_clock_init() */
100 if (!sched_clock_running
)
103 __set_sched_clock_stable();
106 static void __clear_sched_clock_stable(struct work_struct
*work
)
108 /* XXX worry about clock continuity */
109 if (sched_clock_stable())
110 static_key_slow_dec(&__sched_clock_stable
);
113 static DECLARE_WORK(sched_clock_work
, __clear_sched_clock_stable
);
115 void clear_sched_clock_stable(void)
117 __sched_clock_stable_early
= 0;
119 smp_mb(); /* matches sched_clock_init() */
121 if (!sched_clock_running
)
124 schedule_work(&sched_clock_work
);
127 struct sched_clock_data
{
133 static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data
, sched_clock_data
);
135 static inline struct sched_clock_data
*this_scd(void)
137 return this_cpu_ptr(&sched_clock_data
);
140 static inline struct sched_clock_data
*cpu_sdc(int cpu
)
142 return &per_cpu(sched_clock_data
, cpu
);
145 void sched_clock_init(void)
147 u64 ktime_now
= ktime_to_ns(ktime_get());
150 for_each_possible_cpu(cpu
) {
151 struct sched_clock_data
*scd
= cpu_sdc(cpu
);
154 scd
->tick_gtod
= ktime_now
;
155 scd
->clock
= ktime_now
;
158 sched_clock_running
= 1;
161 * Ensure that it is impossible to not do a static_key update.
163 * Either {set,clear}_sched_clock_stable() must see sched_clock_running
164 * and do the update, or we must see their __sched_clock_stable_early
165 * and do the update, or both.
167 smp_mb(); /* matches {set,clear}_sched_clock_stable() */
169 if (__sched_clock_stable_early
)
170 __set_sched_clock_stable();
172 __clear_sched_clock_stable(NULL
);
176 * min, max except they take wrapping into account
179 static inline u64
wrap_min(u64 x
, u64 y
)
181 return (s64
)(x
- y
) < 0 ? x
: y
;
184 static inline u64
wrap_max(u64 x
, u64 y
)
186 return (s64
)(x
- y
) > 0 ? x
: y
;
190 * update the percpu scd from the raw @now value
192 * - filter out backward motion
193 * - use the GTOD tick value to create a window to filter crazy TSC values
195 static u64
sched_clock_local(struct sched_clock_data
*scd
)
197 u64 now
, clock
, old_clock
, min_clock
, max_clock
;
202 delta
= now
- scd
->tick_raw
;
203 if (unlikely(delta
< 0))
206 old_clock
= scd
->clock
;
209 * scd->clock = clamp(scd->tick_gtod + delta,
210 * max(scd->tick_gtod, scd->clock),
211 * scd->tick_gtod + TICK_NSEC);
214 clock
= scd
->tick_gtod
+ delta
;
215 min_clock
= wrap_max(scd
->tick_gtod
, old_clock
);
216 max_clock
= wrap_max(old_clock
, scd
->tick_gtod
+ TICK_NSEC
);
218 clock
= wrap_max(clock
, min_clock
);
219 clock
= wrap_min(clock
, max_clock
);
221 if (cmpxchg64(&scd
->clock
, old_clock
, clock
) != old_clock
)
227 static u64
sched_clock_remote(struct sched_clock_data
*scd
)
229 struct sched_clock_data
*my_scd
= this_scd();
230 u64 this_clock
, remote_clock
;
231 u64
*ptr
, old_val
, val
;
233 #if BITS_PER_LONG != 64
236 * Careful here: The local and the remote clock values need to
237 * be read out atomic as we need to compare the values and
238 * then update either the local or the remote side. So the
239 * cmpxchg64 below only protects one readout.
241 * We must reread via sched_clock_local() in the retry case on
242 * 32bit as an NMI could use sched_clock_local() via the
243 * tracer and hit between the readout of
244 * the low32bit and the high 32bit portion.
246 this_clock
= sched_clock_local(my_scd
);
248 * We must enforce atomic readout on 32bit, otherwise the
249 * update on the remote cpu can hit inbetween the readout of
250 * the low32bit and the high 32bit portion.
252 remote_clock
= cmpxchg64(&scd
->clock
, 0, 0);
255 * On 64bit the read of [my]scd->clock is atomic versus the
256 * update, so we can avoid the above 32bit dance.
258 sched_clock_local(my_scd
);
260 this_clock
= my_scd
->clock
;
261 remote_clock
= scd
->clock
;
265 * Use the opportunity that we have both locks
266 * taken to couple the two clocks: we take the
267 * larger time as the latest time for both
268 * runqueues. (this creates monotonic movement)
270 if (likely((s64
)(remote_clock
- this_clock
) < 0)) {
272 old_val
= remote_clock
;
276 * Should be rare, but possible:
278 ptr
= &my_scd
->clock
;
279 old_val
= this_clock
;
283 if (cmpxchg64(ptr
, old_val
, val
) != old_val
)
290 * Similar to cpu_clock(), but requires local IRQs to be disabled.
294 u64
sched_clock_cpu(int cpu
)
296 struct sched_clock_data
*scd
;
299 if (sched_clock_stable())
300 return sched_clock();
302 if (unlikely(!sched_clock_running
))
305 preempt_disable_notrace();
308 if (cpu
!= smp_processor_id())
309 clock
= sched_clock_remote(scd
);
311 clock
= sched_clock_local(scd
);
312 preempt_enable_notrace();
317 void sched_clock_tick(void)
319 struct sched_clock_data
*scd
;
322 if (sched_clock_stable())
325 if (unlikely(!sched_clock_running
))
328 WARN_ON_ONCE(!irqs_disabled());
331 now_gtod
= ktime_to_ns(ktime_get());
335 scd
->tick_gtod
= now_gtod
;
336 sched_clock_local(scd
);
340 * We are going deep-idle (irqs are disabled):
342 void sched_clock_idle_sleep_event(void)
344 sched_clock_cpu(smp_processor_id());
346 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event
);
349 * We just idled delta nanoseconds (called with irqs disabled):
351 void sched_clock_idle_wakeup_event(u64 delta_ns
)
353 if (timekeeping_suspended
)
357 touch_softlockup_watchdog();
359 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event
);
362 * As outlined at the top, provides a fast, high resolution, nanosecond
363 * time source that is monotonic per cpu argument and has bounded drift
366 * ######################### BIG FAT WARNING ##########################
367 * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can #
368 * # go backwards !! #
369 * ####################################################################
371 u64
cpu_clock(int cpu
)
373 if (!sched_clock_stable())
374 return sched_clock_cpu(cpu
);
376 return sched_clock();
380 * Similar to cpu_clock() for the current cpu. Time will only be observed
381 * to be monotonic if care is taken to only compare timestampt taken on the
386 u64
local_clock(void)
388 if (!sched_clock_stable())
389 return sched_clock_cpu(raw_smp_processor_id());
391 return sched_clock();
394 #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
396 void sched_clock_init(void)
398 sched_clock_running
= 1;
401 u64
sched_clock_cpu(int cpu
)
403 if (unlikely(!sched_clock_running
))
406 return sched_clock();
409 u64
cpu_clock(int cpu
)
411 return sched_clock();
414 u64
local_clock(void)
416 return sched_clock();
419 #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
421 EXPORT_SYMBOL_GPL(cpu_clock
);
422 EXPORT_SYMBOL_GPL(local_clock
);
425 * Running clock - returns the time that has elapsed while a guest has been
427 * On a guest this value should be local_clock minus the time the guest was
428 * suspended by the hypervisor (for any reason).
429 * On bare metal this function should return the same as local_clock.
430 * Architectures and sub-architectures can override this.
432 u64 __weak
running_clock(void)
434 return local_clock();