1 The Kernel Address Sanitizer (KASAN)
2 ====================================
7 KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides
8 a fast and comprehensive solution for finding use-after-free and out-of-bounds
11 KASAN uses compile-time instrumentation for checking every memory access,
12 therefore you will need a GCC version 4.9.2 or later. GCC 5.0 or later is
13 required for detection of out-of-bounds accesses to stack or global variables.
15 Currently KASAN is supported only for the x86_64 and arm64 architectures.
20 To enable KASAN configure kernel with::
24 and choose between CONFIG_KASAN_OUTLINE and CONFIG_KASAN_INLINE. Outline and
25 inline are compiler instrumentation types. The former produces smaller binary
26 the latter is 1.1 - 2 times faster. Inline instrumentation requires a GCC
29 KASAN works with both SLUB and SLAB memory allocators.
30 For better bug detection and nicer reporting, enable CONFIG_STACKTRACE.
32 To disable instrumentation for specific files or directories, add a line
33 similar to the following to the respective kernel Makefile:
35 - For a single file (e.g. main.o)::
37 KASAN_SANITIZE_main.o := n
39 - For all files in one directory::
46 A typical out of bounds access report looks like this::
48 ==================================================================
49 BUG: AddressSanitizer: out of bounds access in kmalloc_oob_right+0x65/0x75 [test_kasan] at addr ffff8800693bc5d3
50 Write of size 1 by task modprobe/1689
51 =============================================================================
52 BUG kmalloc-128 (Not tainted): kasan error
53 -----------------------------------------------------------------------------
55 Disabling lock debugging due to kernel taint
56 INFO: Allocated in kmalloc_oob_right+0x3d/0x75 [test_kasan] age=0 cpu=0 pid=1689
57 __slab_alloc+0x4b4/0x4f0
58 kmem_cache_alloc_trace+0x10b/0x190
59 kmalloc_oob_right+0x3d/0x75 [test_kasan]
60 init_module+0x9/0x47 [test_kasan]
61 do_one_initcall+0x99/0x200
62 load_module+0x2cb3/0x3b20
63 SyS_finit_module+0x76/0x80
64 system_call_fastpath+0x12/0x17
65 INFO: Slab 0xffffea0001a4ef00 objects=17 used=7 fp=0xffff8800693bd728 flags=0x100000000004080
66 INFO: Object 0xffff8800693bc558 @offset=1368 fp=0xffff8800693bc720
68 Bytes b4 ffff8800693bc548: 00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
69 Object ffff8800693bc558: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
70 Object ffff8800693bc568: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
71 Object ffff8800693bc578: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
72 Object ffff8800693bc588: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
73 Object ffff8800693bc598: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
74 Object ffff8800693bc5a8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
75 Object ffff8800693bc5b8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b kkkkkkkkkkkkkkkk
76 Object ffff8800693bc5c8: 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b a5 kkkkkkkkkkkkkkk.
77 Redzone ffff8800693bc5d8: cc cc cc cc cc cc cc cc ........
78 Padding ffff8800693bc718: 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZ
79 CPU: 0 PID: 1689 Comm: modprobe Tainted: G B 3.18.0-rc1-mm1+ #98
80 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.7.5-0-ge51488c-20140602_164612-nilsson.home.kraxel.org 04/01/2014
81 ffff8800693bc000 0000000000000000 ffff8800693bc558 ffff88006923bb78
82 ffffffff81cc68ae 00000000000000f3 ffff88006d407600 ffff88006923bba8
83 ffffffff811fd848 ffff88006d407600 ffffea0001a4ef00 ffff8800693bc558
85 [<ffffffff81cc68ae>] dump_stack+0x46/0x58
86 [<ffffffff811fd848>] print_trailer+0xf8/0x160
87 [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan]
88 [<ffffffff811ff0f5>] object_err+0x35/0x40
89 [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan]
90 [<ffffffff8120b9fa>] kasan_report_error+0x38a/0x3f0
91 [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40
92 [<ffffffff8120b344>] ? kasan_unpoison_shadow+0x14/0x40
93 [<ffffffff8120a79f>] ? kasan_poison_shadow+0x2f/0x40
94 [<ffffffffa00026a7>] ? kmem_cache_oob+0xc3/0xc3 [test_kasan]
95 [<ffffffff8120a995>] __asan_store1+0x75/0xb0
96 [<ffffffffa0002601>] ? kmem_cache_oob+0x1d/0xc3 [test_kasan]
97 [<ffffffffa0002065>] ? kmalloc_oob_right+0x65/0x75 [test_kasan]
98 [<ffffffffa0002065>] kmalloc_oob_right+0x65/0x75 [test_kasan]
99 [<ffffffffa00026b0>] init_module+0x9/0x47 [test_kasan]
100 [<ffffffff810002d9>] do_one_initcall+0x99/0x200
101 [<ffffffff811e4e5c>] ? __vunmap+0xec/0x160
102 [<ffffffff81114f63>] load_module+0x2cb3/0x3b20
103 [<ffffffff8110fd70>] ? m_show+0x240/0x240
104 [<ffffffff81115f06>] SyS_finit_module+0x76/0x80
105 [<ffffffff81cd3129>] system_call_fastpath+0x12/0x17
106 Memory state around the buggy address:
107 ffff8800693bc300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
108 ffff8800693bc380: fc fc 00 00 00 00 00 00 00 00 00 00 00 00 00 fc
109 ffff8800693bc400: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
110 ffff8800693bc480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
111 ffff8800693bc500: fc fc fc fc fc fc fc fc fc fc fc 00 00 00 00 00
112 >ffff8800693bc580: 00 00 00 00 00 00 00 00 00 00 03 fc fc fc fc fc
114 ffff8800693bc600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
115 ffff8800693bc680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
116 ffff8800693bc700: fc fc fc fc fb fb fb fb fb fb fb fb fb fb fb fb
117 ffff8800693bc780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
118 ffff8800693bc800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
119 ==================================================================
121 The header of the report discribe what kind of bug happened and what kind of
122 access caused it. It's followed by the description of the accessed slub object
123 (see 'SLUB Debug output' section in Documentation/vm/slub.rst for details) and
124 the description of the accessed memory page.
126 In the last section the report shows memory state around the accessed address.
127 Reading this part requires some understanding of how KASAN works.
129 The state of each 8 aligned bytes of memory is encoded in one shadow byte.
130 Those 8 bytes can be accessible, partially accessible, freed or be a redzone.
131 We use the following encoding for each shadow byte: 0 means that all 8 bytes
132 of the corresponding memory region are accessible; number N (1 <= N <= 7) means
133 that the first N bytes are accessible, and other (8 - N) bytes are not;
134 any negative value indicates that the entire 8-byte word is inaccessible.
135 We use different negative values to distinguish between different kinds of
136 inaccessible memory like redzones or freed memory (see mm/kasan/kasan.h).
138 In the report above the arrows point to the shadow byte 03, which means that
139 the accessed address is partially accessible.
142 Implementation details
143 ----------------------
145 From a high level, our approach to memory error detection is similar to that
146 of kmemcheck: use shadow memory to record whether each byte of memory is safe
147 to access, and use compile-time instrumentation to check shadow memory on each
150 AddressSanitizer dedicates 1/8 of kernel memory to its shadow memory
151 (e.g. 16TB to cover 128TB on x86_64) and uses direct mapping with a scale and
152 offset to translate a memory address to its corresponding shadow address.
154 Here is the function which translates an address to its corresponding shadow
157 static inline void *kasan_mem_to_shadow(const void *addr)
159 return ((unsigned long)addr >> KASAN_SHADOW_SCALE_SHIFT)
160 + KASAN_SHADOW_OFFSET;
163 where ``KASAN_SHADOW_SCALE_SHIFT = 3``.
165 Compile-time instrumentation used for checking memory accesses. Compiler inserts
166 function calls (__asan_load*(addr), __asan_store*(addr)) before each memory
167 access of size 1, 2, 4, 8 or 16. These functions check whether memory access is
168 valid or not by checking corresponding shadow memory.
170 GCC 5.0 has possibility to perform inline instrumentation. Instead of making
171 function calls GCC directly inserts the code to check the shadow memory.
172 This option significantly enlarges kernel but it gives x1.1-x2 performance
173 boost over outline instrumented kernel.