md-cluster: introduce dlm_lock_sync_interruptible to fix tasks hang
[linux/fpc-iii.git] / net / openvswitch / flow_netlink.c
blobc78a6a1476fb327fe0c51151c0c277dfbdbb904c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
52 #include "flow_netlink.h"
54 struct ovs_len_tbl {
55 int len;
56 const struct ovs_len_tbl *next;
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
62 static void update_range(struct sw_flow_match *match,
63 size_t offset, size_t size, bool is_mask)
65 struct sw_flow_key_range *range;
66 size_t start = rounddown(offset, sizeof(long));
67 size_t end = roundup(offset + size, sizeof(long));
69 if (!is_mask)
70 range = &match->range;
71 else
72 range = &match->mask->range;
74 if (range->start == range->end) {
75 range->start = start;
76 range->end = end;
77 return;
80 if (range->start > start)
81 range->start = start;
83 if (range->end < end)
84 range->end = end;
87 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
88 do { \
89 update_range(match, offsetof(struct sw_flow_key, field), \
90 sizeof((match)->key->field), is_mask); \
91 if (is_mask) \
92 (match)->mask->key.field = value; \
93 else \
94 (match)->key->field = value; \
95 } while (0)
97 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
98 do { \
99 update_range(match, offset, len, is_mask); \
100 if (is_mask) \
101 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
102 len); \
103 else \
104 memcpy((u8 *)(match)->key + offset, value_p, len); \
105 } while (0)
107 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
108 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
109 value_p, len, is_mask)
111 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
112 do { \
113 update_range(match, offsetof(struct sw_flow_key, field), \
114 sizeof((match)->key->field), is_mask); \
115 if (is_mask) \
116 memset((u8 *)&(match)->mask->key.field, value, \
117 sizeof((match)->mask->key.field)); \
118 else \
119 memset((u8 *)&(match)->key->field, value, \
120 sizeof((match)->key->field)); \
121 } while (0)
123 static bool match_validate(const struct sw_flow_match *match,
124 u64 key_attrs, u64 mask_attrs, bool log)
126 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
127 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
129 /* The following mask attributes allowed only if they
130 * pass the validation tests. */
131 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
132 | (1 << OVS_KEY_ATTR_IPV6)
133 | (1 << OVS_KEY_ATTR_TCP)
134 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
135 | (1 << OVS_KEY_ATTR_UDP)
136 | (1 << OVS_KEY_ATTR_SCTP)
137 | (1 << OVS_KEY_ATTR_ICMP)
138 | (1 << OVS_KEY_ATTR_ICMPV6)
139 | (1 << OVS_KEY_ATTR_ARP)
140 | (1 << OVS_KEY_ATTR_ND)
141 | (1 << OVS_KEY_ATTR_MPLS));
143 /* Always allowed mask fields. */
144 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
145 | (1 << OVS_KEY_ATTR_IN_PORT)
146 | (1 << OVS_KEY_ATTR_ETHERTYPE));
148 /* Check key attributes. */
149 if (match->key->eth.type == htons(ETH_P_ARP)
150 || match->key->eth.type == htons(ETH_P_RARP)) {
151 key_expected |= 1 << OVS_KEY_ATTR_ARP;
152 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
153 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
156 if (eth_p_mpls(match->key->eth.type)) {
157 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
158 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
159 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
162 if (match->key->eth.type == htons(ETH_P_IP)) {
163 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
164 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
165 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
167 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
168 if (match->key->ip.proto == IPPROTO_UDP) {
169 key_expected |= 1 << OVS_KEY_ATTR_UDP;
170 if (match->mask && (match->mask->key.ip.proto == 0xff))
171 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
174 if (match->key->ip.proto == IPPROTO_SCTP) {
175 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
176 if (match->mask && (match->mask->key.ip.proto == 0xff))
177 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
180 if (match->key->ip.proto == IPPROTO_TCP) {
181 key_expected |= 1 << OVS_KEY_ATTR_TCP;
182 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
183 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
185 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
189 if (match->key->ip.proto == IPPROTO_ICMP) {
190 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
191 if (match->mask && (match->mask->key.ip.proto == 0xff))
192 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
197 if (match->key->eth.type == htons(ETH_P_IPV6)) {
198 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
199 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
202 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
203 if (match->key->ip.proto == IPPROTO_UDP) {
204 key_expected |= 1 << OVS_KEY_ATTR_UDP;
205 if (match->mask && (match->mask->key.ip.proto == 0xff))
206 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
209 if (match->key->ip.proto == IPPROTO_SCTP) {
210 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
211 if (match->mask && (match->mask->key.ip.proto == 0xff))
212 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
215 if (match->key->ip.proto == IPPROTO_TCP) {
216 key_expected |= 1 << OVS_KEY_ATTR_TCP;
217 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
218 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
220 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
224 if (match->key->ip.proto == IPPROTO_ICMPV6) {
225 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
226 if (match->mask && (match->mask->key.ip.proto == 0xff))
227 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
229 if (match->key->tp.src ==
230 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
231 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
232 key_expected |= 1 << OVS_KEY_ATTR_ND;
233 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
234 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
240 if ((key_attrs & key_expected) != key_expected) {
241 /* Key attributes check failed. */
242 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
243 (unsigned long long)key_attrs,
244 (unsigned long long)key_expected);
245 return false;
248 if ((mask_attrs & mask_allowed) != mask_attrs) {
249 /* Mask attributes check failed. */
250 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
251 (unsigned long long)mask_attrs,
252 (unsigned long long)mask_allowed);
253 return false;
256 return true;
259 size_t ovs_tun_key_attr_size(void)
261 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
262 * updating this function.
264 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
265 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
266 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
268 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
271 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
272 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
273 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
274 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
276 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
277 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
280 size_t ovs_key_attr_size(void)
282 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
283 * updating this function.
285 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 26);
287 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
288 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
289 + ovs_tun_key_attr_size()
290 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
291 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
292 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
293 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
294 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
295 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
296 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
297 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
298 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
299 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
300 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
301 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
302 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
303 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
304 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
305 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
308 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
309 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
312 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
313 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
314 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
315 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
316 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
317 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
318 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
319 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
320 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
321 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
322 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
323 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
324 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
325 .next = ovs_vxlan_ext_key_lens },
326 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
327 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
330 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
331 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
332 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
333 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
334 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
335 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
336 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
337 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
338 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
339 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
340 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
341 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
342 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
343 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
344 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
345 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
346 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
347 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
348 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
349 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
350 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
351 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
352 .next = ovs_tunnel_key_lens, },
353 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
354 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
355 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
356 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
357 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
360 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
362 return expected_len == attr_len ||
363 expected_len == OVS_ATTR_NESTED ||
364 expected_len == OVS_ATTR_VARIABLE;
367 static bool is_all_zero(const u8 *fp, size_t size)
369 int i;
371 if (!fp)
372 return false;
374 for (i = 0; i < size; i++)
375 if (fp[i])
376 return false;
378 return true;
381 static int __parse_flow_nlattrs(const struct nlattr *attr,
382 const struct nlattr *a[],
383 u64 *attrsp, bool log, bool nz)
385 const struct nlattr *nla;
386 u64 attrs;
387 int rem;
389 attrs = *attrsp;
390 nla_for_each_nested(nla, attr, rem) {
391 u16 type = nla_type(nla);
392 int expected_len;
394 if (type > OVS_KEY_ATTR_MAX) {
395 OVS_NLERR(log, "Key type %d is out of range max %d",
396 type, OVS_KEY_ATTR_MAX);
397 return -EINVAL;
400 if (attrs & (1 << type)) {
401 OVS_NLERR(log, "Duplicate key (type %d).", type);
402 return -EINVAL;
405 expected_len = ovs_key_lens[type].len;
406 if (!check_attr_len(nla_len(nla), expected_len)) {
407 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
408 type, nla_len(nla), expected_len);
409 return -EINVAL;
412 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
413 attrs |= 1 << type;
414 a[type] = nla;
417 if (rem) {
418 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
419 return -EINVAL;
422 *attrsp = attrs;
423 return 0;
426 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
427 const struct nlattr *a[], u64 *attrsp,
428 bool log)
430 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
433 static int parse_flow_nlattrs(const struct nlattr *attr,
434 const struct nlattr *a[], u64 *attrsp,
435 bool log)
437 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
440 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
441 struct sw_flow_match *match, bool is_mask,
442 bool log)
444 unsigned long opt_key_offset;
446 if (nla_len(a) > sizeof(match->key->tun_opts)) {
447 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
448 nla_len(a), sizeof(match->key->tun_opts));
449 return -EINVAL;
452 if (nla_len(a) % 4 != 0) {
453 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
454 nla_len(a));
455 return -EINVAL;
458 /* We need to record the length of the options passed
459 * down, otherwise packets with the same format but
460 * additional options will be silently matched.
462 if (!is_mask) {
463 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
464 false);
465 } else {
466 /* This is somewhat unusual because it looks at
467 * both the key and mask while parsing the
468 * attributes (and by extension assumes the key
469 * is parsed first). Normally, we would verify
470 * that each is the correct length and that the
471 * attributes line up in the validate function.
472 * However, that is difficult because this is
473 * variable length and we won't have the
474 * information later.
476 if (match->key->tun_opts_len != nla_len(a)) {
477 OVS_NLERR(log, "Geneve option len %d != mask len %d",
478 match->key->tun_opts_len, nla_len(a));
479 return -EINVAL;
482 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
485 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
486 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
487 nla_len(a), is_mask);
488 return 0;
491 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
492 struct sw_flow_match *match, bool is_mask,
493 bool log)
495 struct nlattr *a;
496 int rem;
497 unsigned long opt_key_offset;
498 struct vxlan_metadata opts;
500 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
502 memset(&opts, 0, sizeof(opts));
503 nla_for_each_nested(a, attr, rem) {
504 int type = nla_type(a);
506 if (type > OVS_VXLAN_EXT_MAX) {
507 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
508 type, OVS_VXLAN_EXT_MAX);
509 return -EINVAL;
512 if (!check_attr_len(nla_len(a),
513 ovs_vxlan_ext_key_lens[type].len)) {
514 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
515 type, nla_len(a),
516 ovs_vxlan_ext_key_lens[type].len);
517 return -EINVAL;
520 switch (type) {
521 case OVS_VXLAN_EXT_GBP:
522 opts.gbp = nla_get_u32(a);
523 break;
524 default:
525 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
526 type);
527 return -EINVAL;
530 if (rem) {
531 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
532 rem);
533 return -EINVAL;
536 if (!is_mask)
537 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
538 else
539 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
541 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
542 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
543 is_mask);
544 return 0;
547 static int ip_tun_from_nlattr(const struct nlattr *attr,
548 struct sw_flow_match *match, bool is_mask,
549 bool log)
551 bool ttl = false, ipv4 = false, ipv6 = false;
552 __be16 tun_flags = 0;
553 int opts_type = 0;
554 struct nlattr *a;
555 int rem;
557 nla_for_each_nested(a, attr, rem) {
558 int type = nla_type(a);
559 int err;
561 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
562 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
563 type, OVS_TUNNEL_KEY_ATTR_MAX);
564 return -EINVAL;
567 if (!check_attr_len(nla_len(a),
568 ovs_tunnel_key_lens[type].len)) {
569 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
570 type, nla_len(a), ovs_tunnel_key_lens[type].len);
571 return -EINVAL;
574 switch (type) {
575 case OVS_TUNNEL_KEY_ATTR_ID:
576 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
577 nla_get_be64(a), is_mask);
578 tun_flags |= TUNNEL_KEY;
579 break;
580 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
581 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
582 nla_get_in_addr(a), is_mask);
583 ipv4 = true;
584 break;
585 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
586 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
587 nla_get_in_addr(a), is_mask);
588 ipv4 = true;
589 break;
590 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
591 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
592 nla_get_in6_addr(a), is_mask);
593 ipv6 = true;
594 break;
595 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
596 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
597 nla_get_in6_addr(a), is_mask);
598 ipv6 = true;
599 break;
600 case OVS_TUNNEL_KEY_ATTR_TOS:
601 SW_FLOW_KEY_PUT(match, tun_key.tos,
602 nla_get_u8(a), is_mask);
603 break;
604 case OVS_TUNNEL_KEY_ATTR_TTL:
605 SW_FLOW_KEY_PUT(match, tun_key.ttl,
606 nla_get_u8(a), is_mask);
607 ttl = true;
608 break;
609 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
610 tun_flags |= TUNNEL_DONT_FRAGMENT;
611 break;
612 case OVS_TUNNEL_KEY_ATTR_CSUM:
613 tun_flags |= TUNNEL_CSUM;
614 break;
615 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
616 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
617 nla_get_be16(a), is_mask);
618 break;
619 case OVS_TUNNEL_KEY_ATTR_TP_DST:
620 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
621 nla_get_be16(a), is_mask);
622 break;
623 case OVS_TUNNEL_KEY_ATTR_OAM:
624 tun_flags |= TUNNEL_OAM;
625 break;
626 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
627 if (opts_type) {
628 OVS_NLERR(log, "Multiple metadata blocks provided");
629 return -EINVAL;
632 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
633 if (err)
634 return err;
636 tun_flags |= TUNNEL_GENEVE_OPT;
637 opts_type = type;
638 break;
639 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
640 if (opts_type) {
641 OVS_NLERR(log, "Multiple metadata blocks provided");
642 return -EINVAL;
645 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
646 if (err)
647 return err;
649 tun_flags |= TUNNEL_VXLAN_OPT;
650 opts_type = type;
651 break;
652 default:
653 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
654 type);
655 return -EINVAL;
659 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
660 if (is_mask)
661 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
662 else
663 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
664 false);
666 if (rem > 0) {
667 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
668 rem);
669 return -EINVAL;
672 if (ipv4 && ipv6) {
673 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
674 return -EINVAL;
677 if (!is_mask) {
678 if (!ipv4 && !ipv6) {
679 OVS_NLERR(log, "IP tunnel dst address not specified");
680 return -EINVAL;
682 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
683 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
684 return -EINVAL;
686 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
687 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
688 return -EINVAL;
691 if (!ttl) {
692 OVS_NLERR(log, "IP tunnel TTL not specified.");
693 return -EINVAL;
697 return opts_type;
700 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
701 const void *tun_opts, int swkey_tun_opts_len)
703 const struct vxlan_metadata *opts = tun_opts;
704 struct nlattr *nla;
706 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
707 if (!nla)
708 return -EMSGSIZE;
710 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
711 return -EMSGSIZE;
713 nla_nest_end(skb, nla);
714 return 0;
717 static int __ip_tun_to_nlattr(struct sk_buff *skb,
718 const struct ip_tunnel_key *output,
719 const void *tun_opts, int swkey_tun_opts_len,
720 unsigned short tun_proto)
722 if (output->tun_flags & TUNNEL_KEY &&
723 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
724 OVS_TUNNEL_KEY_ATTR_PAD))
725 return -EMSGSIZE;
726 switch (tun_proto) {
727 case AF_INET:
728 if (output->u.ipv4.src &&
729 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
730 output->u.ipv4.src))
731 return -EMSGSIZE;
732 if (output->u.ipv4.dst &&
733 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
734 output->u.ipv4.dst))
735 return -EMSGSIZE;
736 break;
737 case AF_INET6:
738 if (!ipv6_addr_any(&output->u.ipv6.src) &&
739 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
740 &output->u.ipv6.src))
741 return -EMSGSIZE;
742 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
743 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
744 &output->u.ipv6.dst))
745 return -EMSGSIZE;
746 break;
748 if (output->tos &&
749 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
750 return -EMSGSIZE;
751 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
752 return -EMSGSIZE;
753 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
754 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
755 return -EMSGSIZE;
756 if ((output->tun_flags & TUNNEL_CSUM) &&
757 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
758 return -EMSGSIZE;
759 if (output->tp_src &&
760 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
761 return -EMSGSIZE;
762 if (output->tp_dst &&
763 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
764 return -EMSGSIZE;
765 if ((output->tun_flags & TUNNEL_OAM) &&
766 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
767 return -EMSGSIZE;
768 if (swkey_tun_opts_len) {
769 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
770 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
771 swkey_tun_opts_len, tun_opts))
772 return -EMSGSIZE;
773 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
774 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
775 return -EMSGSIZE;
778 return 0;
781 static int ip_tun_to_nlattr(struct sk_buff *skb,
782 const struct ip_tunnel_key *output,
783 const void *tun_opts, int swkey_tun_opts_len,
784 unsigned short tun_proto)
786 struct nlattr *nla;
787 int err;
789 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
790 if (!nla)
791 return -EMSGSIZE;
793 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
794 tun_proto);
795 if (err)
796 return err;
798 nla_nest_end(skb, nla);
799 return 0;
802 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
803 struct ip_tunnel_info *tun_info)
805 return __ip_tun_to_nlattr(skb, &tun_info->key,
806 ip_tunnel_info_opts(tun_info),
807 tun_info->options_len,
808 ip_tunnel_info_af(tun_info));
811 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
812 u64 *attrs, const struct nlattr **a,
813 bool is_mask, bool log)
815 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
816 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
818 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
819 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
822 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
823 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
825 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
826 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
829 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
830 SW_FLOW_KEY_PUT(match, phy.priority,
831 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
832 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
835 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
836 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
838 if (is_mask) {
839 in_port = 0xffffffff; /* Always exact match in_port. */
840 } else if (in_port >= DP_MAX_PORTS) {
841 OVS_NLERR(log, "Port %d exceeds max allowable %d",
842 in_port, DP_MAX_PORTS);
843 return -EINVAL;
846 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
847 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
848 } else if (!is_mask) {
849 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
852 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
853 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
855 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
856 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
858 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
859 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
860 is_mask, log) < 0)
861 return -EINVAL;
862 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
865 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
866 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
867 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
869 if (ct_state & ~CT_SUPPORTED_MASK) {
870 OVS_NLERR(log, "ct_state flags %08x unsupported",
871 ct_state);
872 return -EINVAL;
875 SW_FLOW_KEY_PUT(match, ct.state, ct_state, is_mask);
876 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
878 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
879 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
880 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
882 SW_FLOW_KEY_PUT(match, ct.zone, ct_zone, is_mask);
883 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
885 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
886 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
887 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
889 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
890 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
892 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
893 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
894 const struct ovs_key_ct_labels *cl;
896 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
897 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
898 sizeof(*cl), is_mask);
899 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
901 return 0;
904 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
905 u64 attrs, const struct nlattr **a,
906 bool is_mask, bool log)
908 int err;
910 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
911 if (err)
912 return err;
914 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
915 const struct ovs_key_ethernet *eth_key;
917 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
918 SW_FLOW_KEY_MEMCPY(match, eth.src,
919 eth_key->eth_src, ETH_ALEN, is_mask);
920 SW_FLOW_KEY_MEMCPY(match, eth.dst,
921 eth_key->eth_dst, ETH_ALEN, is_mask);
922 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
925 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
926 __be16 tci;
928 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
929 if (!(tci & htons(VLAN_TAG_PRESENT))) {
930 if (is_mask)
931 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
932 else
933 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
935 return -EINVAL;
938 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
939 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
942 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
943 __be16 eth_type;
945 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
946 if (is_mask) {
947 /* Always exact match EtherType. */
948 eth_type = htons(0xffff);
949 } else if (!eth_proto_is_802_3(eth_type)) {
950 OVS_NLERR(log, "EtherType %x is less than min %x",
951 ntohs(eth_type), ETH_P_802_3_MIN);
952 return -EINVAL;
955 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
956 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
957 } else if (!is_mask) {
958 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
961 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
962 const struct ovs_key_ipv4 *ipv4_key;
964 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
965 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
966 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
967 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
968 return -EINVAL;
970 SW_FLOW_KEY_PUT(match, ip.proto,
971 ipv4_key->ipv4_proto, is_mask);
972 SW_FLOW_KEY_PUT(match, ip.tos,
973 ipv4_key->ipv4_tos, is_mask);
974 SW_FLOW_KEY_PUT(match, ip.ttl,
975 ipv4_key->ipv4_ttl, is_mask);
976 SW_FLOW_KEY_PUT(match, ip.frag,
977 ipv4_key->ipv4_frag, is_mask);
978 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
979 ipv4_key->ipv4_src, is_mask);
980 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
981 ipv4_key->ipv4_dst, is_mask);
982 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
985 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
986 const struct ovs_key_ipv6 *ipv6_key;
988 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
989 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
990 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
991 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
992 return -EINVAL;
995 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
996 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
997 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
998 return -EINVAL;
1001 SW_FLOW_KEY_PUT(match, ipv6.label,
1002 ipv6_key->ipv6_label, is_mask);
1003 SW_FLOW_KEY_PUT(match, ip.proto,
1004 ipv6_key->ipv6_proto, is_mask);
1005 SW_FLOW_KEY_PUT(match, ip.tos,
1006 ipv6_key->ipv6_tclass, is_mask);
1007 SW_FLOW_KEY_PUT(match, ip.ttl,
1008 ipv6_key->ipv6_hlimit, is_mask);
1009 SW_FLOW_KEY_PUT(match, ip.frag,
1010 ipv6_key->ipv6_frag, is_mask);
1011 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1012 ipv6_key->ipv6_src,
1013 sizeof(match->key->ipv6.addr.src),
1014 is_mask);
1015 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1016 ipv6_key->ipv6_dst,
1017 sizeof(match->key->ipv6.addr.dst),
1018 is_mask);
1020 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1023 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1024 const struct ovs_key_arp *arp_key;
1026 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1027 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1028 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1029 arp_key->arp_op);
1030 return -EINVAL;
1033 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1034 arp_key->arp_sip, is_mask);
1035 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1036 arp_key->arp_tip, is_mask);
1037 SW_FLOW_KEY_PUT(match, ip.proto,
1038 ntohs(arp_key->arp_op), is_mask);
1039 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1040 arp_key->arp_sha, ETH_ALEN, is_mask);
1041 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1042 arp_key->arp_tha, ETH_ALEN, is_mask);
1044 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1047 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1048 const struct ovs_key_mpls *mpls_key;
1050 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1051 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1052 mpls_key->mpls_lse, is_mask);
1054 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1057 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1058 const struct ovs_key_tcp *tcp_key;
1060 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1061 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1062 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1063 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1066 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1067 SW_FLOW_KEY_PUT(match, tp.flags,
1068 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1069 is_mask);
1070 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1073 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1074 const struct ovs_key_udp *udp_key;
1076 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1077 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1078 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1079 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1082 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1083 const struct ovs_key_sctp *sctp_key;
1085 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1086 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1087 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1088 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1091 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1092 const struct ovs_key_icmp *icmp_key;
1094 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1095 SW_FLOW_KEY_PUT(match, tp.src,
1096 htons(icmp_key->icmp_type), is_mask);
1097 SW_FLOW_KEY_PUT(match, tp.dst,
1098 htons(icmp_key->icmp_code), is_mask);
1099 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1102 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1103 const struct ovs_key_icmpv6 *icmpv6_key;
1105 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1106 SW_FLOW_KEY_PUT(match, tp.src,
1107 htons(icmpv6_key->icmpv6_type), is_mask);
1108 SW_FLOW_KEY_PUT(match, tp.dst,
1109 htons(icmpv6_key->icmpv6_code), is_mask);
1110 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1113 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1114 const struct ovs_key_nd *nd_key;
1116 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1117 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1118 nd_key->nd_target,
1119 sizeof(match->key->ipv6.nd.target),
1120 is_mask);
1121 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1122 nd_key->nd_sll, ETH_ALEN, is_mask);
1123 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1124 nd_key->nd_tll, ETH_ALEN, is_mask);
1125 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1128 if (attrs != 0) {
1129 OVS_NLERR(log, "Unknown key attributes %llx",
1130 (unsigned long long)attrs);
1131 return -EINVAL;
1134 return 0;
1137 static void nlattr_set(struct nlattr *attr, u8 val,
1138 const struct ovs_len_tbl *tbl)
1140 struct nlattr *nla;
1141 int rem;
1143 /* The nlattr stream should already have been validated */
1144 nla_for_each_nested(nla, attr, rem) {
1145 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1146 if (tbl[nla_type(nla)].next)
1147 tbl = tbl[nla_type(nla)].next;
1148 nlattr_set(nla, val, tbl);
1149 } else {
1150 memset(nla_data(nla), val, nla_len(nla));
1153 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1154 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1158 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1160 nlattr_set(attr, val, ovs_key_lens);
1164 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1165 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1166 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1167 * does not include any don't care bit.
1168 * @net: Used to determine per-namespace field support.
1169 * @match: receives the extracted flow match information.
1170 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1171 * sequence. The fields should of the packet that triggered the creation
1172 * of this flow.
1173 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1174 * attribute specifies the mask field of the wildcarded flow.
1175 * @log: Boolean to allow kernel error logging. Normally true, but when
1176 * probing for feature compatibility this should be passed in as false to
1177 * suppress unnecessary error logging.
1179 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1180 const struct nlattr *nla_key,
1181 const struct nlattr *nla_mask,
1182 bool log)
1184 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1185 const struct nlattr *encap;
1186 struct nlattr *newmask = NULL;
1187 u64 key_attrs = 0;
1188 u64 mask_attrs = 0;
1189 bool encap_valid = false;
1190 int err;
1192 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1193 if (err)
1194 return err;
1196 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1197 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1198 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1199 __be16 tci;
1201 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1202 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1203 OVS_NLERR(log, "Invalid Vlan frame.");
1204 return -EINVAL;
1207 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1208 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1209 encap = a[OVS_KEY_ATTR_ENCAP];
1210 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1211 encap_valid = true;
1213 if (tci & htons(VLAN_TAG_PRESENT)) {
1214 err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1215 if (err)
1216 return err;
1217 } else if (!tci) {
1218 /* Corner case for truncated 802.1Q header. */
1219 if (nla_len(encap)) {
1220 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1221 return -EINVAL;
1223 } else {
1224 OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1225 return -EINVAL;
1229 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1230 if (err)
1231 return err;
1233 if (match->mask) {
1234 if (!nla_mask) {
1235 /* Create an exact match mask. We need to set to 0xff
1236 * all the 'match->mask' fields that have been touched
1237 * in 'match->key'. We cannot simply memset
1238 * 'match->mask', because padding bytes and fields not
1239 * specified in 'match->key' should be left to 0.
1240 * Instead, we use a stream of netlink attributes,
1241 * copied from 'key' and set to 0xff.
1242 * ovs_key_from_nlattrs() will take care of filling
1243 * 'match->mask' appropriately.
1245 newmask = kmemdup(nla_key,
1246 nla_total_size(nla_len(nla_key)),
1247 GFP_KERNEL);
1248 if (!newmask)
1249 return -ENOMEM;
1251 mask_set_nlattr(newmask, 0xff);
1253 /* The userspace does not send tunnel attributes that
1254 * are 0, but we should not wildcard them nonetheless.
1256 if (match->key->tun_proto)
1257 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1258 0xff, true);
1260 nla_mask = newmask;
1263 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1264 if (err)
1265 goto free_newmask;
1267 /* Always match on tci. */
1268 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1270 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1271 __be16 eth_type = 0;
1272 __be16 tci = 0;
1274 if (!encap_valid) {
1275 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1276 err = -EINVAL;
1277 goto free_newmask;
1280 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1281 if (a[OVS_KEY_ATTR_ETHERTYPE])
1282 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1284 if (eth_type == htons(0xffff)) {
1285 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1286 encap = a[OVS_KEY_ATTR_ENCAP];
1287 err = parse_flow_mask_nlattrs(encap, a,
1288 &mask_attrs, log);
1289 if (err)
1290 goto free_newmask;
1291 } else {
1292 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1293 ntohs(eth_type));
1294 err = -EINVAL;
1295 goto free_newmask;
1298 if (a[OVS_KEY_ATTR_VLAN])
1299 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1301 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1302 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1303 ntohs(tci));
1304 err = -EINVAL;
1305 goto free_newmask;
1309 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1310 log);
1311 if (err)
1312 goto free_newmask;
1315 if (!match_validate(match, key_attrs, mask_attrs, log))
1316 err = -EINVAL;
1318 free_newmask:
1319 kfree(newmask);
1320 return err;
1323 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1325 size_t len;
1327 if (!attr)
1328 return 0;
1330 len = nla_len(attr);
1331 if (len < 1 || len > MAX_UFID_LENGTH) {
1332 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1333 nla_len(attr), MAX_UFID_LENGTH);
1334 return 0;
1337 return len;
1340 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1341 * or false otherwise.
1343 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1344 bool log)
1346 sfid->ufid_len = get_ufid_len(attr, log);
1347 if (sfid->ufid_len)
1348 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1350 return sfid->ufid_len;
1353 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1354 const struct sw_flow_key *key, bool log)
1356 struct sw_flow_key *new_key;
1358 if (ovs_nla_get_ufid(sfid, ufid, log))
1359 return 0;
1361 /* If UFID was not provided, use unmasked key. */
1362 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1363 if (!new_key)
1364 return -ENOMEM;
1365 memcpy(new_key, key, sizeof(*key));
1366 sfid->unmasked_key = new_key;
1368 return 0;
1371 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1373 return attr ? nla_get_u32(attr) : 0;
1377 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1378 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1379 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1380 * sequence.
1381 * @log: Boolean to allow kernel error logging. Normally true, but when
1382 * probing for feature compatibility this should be passed in as false to
1383 * suppress unnecessary error logging.
1385 * This parses a series of Netlink attributes that form a flow key, which must
1386 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1387 * get the metadata, that is, the parts of the flow key that cannot be
1388 * extracted from the packet itself.
1391 int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
1392 struct sw_flow_key *key,
1393 bool log)
1395 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1396 struct sw_flow_match match;
1397 u64 attrs = 0;
1398 int err;
1400 err = parse_flow_nlattrs(attr, a, &attrs, log);
1401 if (err)
1402 return -EINVAL;
1404 memset(&match, 0, sizeof(match));
1405 match.key = key;
1407 memset(&key->ct, 0, sizeof(key->ct));
1408 key->phy.in_port = DP_MAX_PORTS;
1410 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1413 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1414 const struct sw_flow_key *output, bool is_mask,
1415 struct sk_buff *skb)
1417 struct ovs_key_ethernet *eth_key;
1418 struct nlattr *nla, *encap;
1420 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1421 goto nla_put_failure;
1423 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1424 goto nla_put_failure;
1426 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1427 goto nla_put_failure;
1429 if ((swkey->tun_proto || is_mask)) {
1430 const void *opts = NULL;
1432 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1433 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1435 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1436 swkey->tun_opts_len, swkey->tun_proto))
1437 goto nla_put_failure;
1440 if (swkey->phy.in_port == DP_MAX_PORTS) {
1441 if (is_mask && (output->phy.in_port == 0xffff))
1442 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1443 goto nla_put_failure;
1444 } else {
1445 u16 upper_u16;
1446 upper_u16 = !is_mask ? 0 : 0xffff;
1448 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1449 (upper_u16 << 16) | output->phy.in_port))
1450 goto nla_put_failure;
1453 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1454 goto nla_put_failure;
1456 if (ovs_ct_put_key(output, skb))
1457 goto nla_put_failure;
1459 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1460 if (!nla)
1461 goto nla_put_failure;
1463 eth_key = nla_data(nla);
1464 ether_addr_copy(eth_key->eth_src, output->eth.src);
1465 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1467 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1468 __be16 eth_type;
1469 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1470 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1471 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1472 goto nla_put_failure;
1473 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1474 if (!swkey->eth.tci)
1475 goto unencap;
1476 } else
1477 encap = NULL;
1479 if (swkey->eth.type == htons(ETH_P_802_2)) {
1481 * Ethertype 802.2 is represented in the netlink with omitted
1482 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1483 * 0xffff in the mask attribute. Ethertype can also
1484 * be wildcarded.
1486 if (is_mask && output->eth.type)
1487 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1488 output->eth.type))
1489 goto nla_put_failure;
1490 goto unencap;
1493 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1494 goto nla_put_failure;
1496 if (swkey->eth.type == htons(ETH_P_IP)) {
1497 struct ovs_key_ipv4 *ipv4_key;
1499 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1500 if (!nla)
1501 goto nla_put_failure;
1502 ipv4_key = nla_data(nla);
1503 ipv4_key->ipv4_src = output->ipv4.addr.src;
1504 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1505 ipv4_key->ipv4_proto = output->ip.proto;
1506 ipv4_key->ipv4_tos = output->ip.tos;
1507 ipv4_key->ipv4_ttl = output->ip.ttl;
1508 ipv4_key->ipv4_frag = output->ip.frag;
1509 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1510 struct ovs_key_ipv6 *ipv6_key;
1512 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1513 if (!nla)
1514 goto nla_put_failure;
1515 ipv6_key = nla_data(nla);
1516 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1517 sizeof(ipv6_key->ipv6_src));
1518 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1519 sizeof(ipv6_key->ipv6_dst));
1520 ipv6_key->ipv6_label = output->ipv6.label;
1521 ipv6_key->ipv6_proto = output->ip.proto;
1522 ipv6_key->ipv6_tclass = output->ip.tos;
1523 ipv6_key->ipv6_hlimit = output->ip.ttl;
1524 ipv6_key->ipv6_frag = output->ip.frag;
1525 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1526 swkey->eth.type == htons(ETH_P_RARP)) {
1527 struct ovs_key_arp *arp_key;
1529 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1530 if (!nla)
1531 goto nla_put_failure;
1532 arp_key = nla_data(nla);
1533 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1534 arp_key->arp_sip = output->ipv4.addr.src;
1535 arp_key->arp_tip = output->ipv4.addr.dst;
1536 arp_key->arp_op = htons(output->ip.proto);
1537 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1538 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1539 } else if (eth_p_mpls(swkey->eth.type)) {
1540 struct ovs_key_mpls *mpls_key;
1542 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1543 if (!nla)
1544 goto nla_put_failure;
1545 mpls_key = nla_data(nla);
1546 mpls_key->mpls_lse = output->mpls.top_lse;
1549 if ((swkey->eth.type == htons(ETH_P_IP) ||
1550 swkey->eth.type == htons(ETH_P_IPV6)) &&
1551 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1553 if (swkey->ip.proto == IPPROTO_TCP) {
1554 struct ovs_key_tcp *tcp_key;
1556 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1557 if (!nla)
1558 goto nla_put_failure;
1559 tcp_key = nla_data(nla);
1560 tcp_key->tcp_src = output->tp.src;
1561 tcp_key->tcp_dst = output->tp.dst;
1562 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1563 output->tp.flags))
1564 goto nla_put_failure;
1565 } else if (swkey->ip.proto == IPPROTO_UDP) {
1566 struct ovs_key_udp *udp_key;
1568 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1569 if (!nla)
1570 goto nla_put_failure;
1571 udp_key = nla_data(nla);
1572 udp_key->udp_src = output->tp.src;
1573 udp_key->udp_dst = output->tp.dst;
1574 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1575 struct ovs_key_sctp *sctp_key;
1577 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1578 if (!nla)
1579 goto nla_put_failure;
1580 sctp_key = nla_data(nla);
1581 sctp_key->sctp_src = output->tp.src;
1582 sctp_key->sctp_dst = output->tp.dst;
1583 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1584 swkey->ip.proto == IPPROTO_ICMP) {
1585 struct ovs_key_icmp *icmp_key;
1587 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1588 if (!nla)
1589 goto nla_put_failure;
1590 icmp_key = nla_data(nla);
1591 icmp_key->icmp_type = ntohs(output->tp.src);
1592 icmp_key->icmp_code = ntohs(output->tp.dst);
1593 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1594 swkey->ip.proto == IPPROTO_ICMPV6) {
1595 struct ovs_key_icmpv6 *icmpv6_key;
1597 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1598 sizeof(*icmpv6_key));
1599 if (!nla)
1600 goto nla_put_failure;
1601 icmpv6_key = nla_data(nla);
1602 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1603 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1605 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1606 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1607 struct ovs_key_nd *nd_key;
1609 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1610 if (!nla)
1611 goto nla_put_failure;
1612 nd_key = nla_data(nla);
1613 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1614 sizeof(nd_key->nd_target));
1615 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1616 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1621 unencap:
1622 if (encap)
1623 nla_nest_end(skb, encap);
1625 return 0;
1627 nla_put_failure:
1628 return -EMSGSIZE;
1631 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1632 const struct sw_flow_key *output, int attr, bool is_mask,
1633 struct sk_buff *skb)
1635 int err;
1636 struct nlattr *nla;
1638 nla = nla_nest_start(skb, attr);
1639 if (!nla)
1640 return -EMSGSIZE;
1641 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1642 if (err)
1643 return err;
1644 nla_nest_end(skb, nla);
1646 return 0;
1649 /* Called with ovs_mutex or RCU read lock. */
1650 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1652 if (ovs_identifier_is_ufid(&flow->id))
1653 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1654 flow->id.ufid);
1656 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1657 OVS_FLOW_ATTR_KEY, false, skb);
1660 /* Called with ovs_mutex or RCU read lock. */
1661 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1663 return ovs_nla_put_key(&flow->key, &flow->key,
1664 OVS_FLOW_ATTR_KEY, false, skb);
1667 /* Called with ovs_mutex or RCU read lock. */
1668 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1670 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1671 OVS_FLOW_ATTR_MASK, true, skb);
1674 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1676 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1678 struct sw_flow_actions *sfa;
1680 if (size > MAX_ACTIONS_BUFSIZE) {
1681 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1682 return ERR_PTR(-EINVAL);
1685 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1686 if (!sfa)
1687 return ERR_PTR(-ENOMEM);
1689 sfa->actions_len = 0;
1690 return sfa;
1693 static void ovs_nla_free_set_action(const struct nlattr *a)
1695 const struct nlattr *ovs_key = nla_data(a);
1696 struct ovs_tunnel_info *ovs_tun;
1698 switch (nla_type(ovs_key)) {
1699 case OVS_KEY_ATTR_TUNNEL_INFO:
1700 ovs_tun = nla_data(ovs_key);
1701 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1702 break;
1706 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1708 const struct nlattr *a;
1709 int rem;
1711 if (!sf_acts)
1712 return;
1714 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1715 switch (nla_type(a)) {
1716 case OVS_ACTION_ATTR_SET:
1717 ovs_nla_free_set_action(a);
1718 break;
1719 case OVS_ACTION_ATTR_CT:
1720 ovs_ct_free_action(a);
1721 break;
1725 kfree(sf_acts);
1728 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1730 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1733 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1734 * The caller must hold rcu_read_lock for this to be sensible. */
1735 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1737 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1740 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1741 int attr_len, bool log)
1744 struct sw_flow_actions *acts;
1745 int new_acts_size;
1746 int req_size = NLA_ALIGN(attr_len);
1747 int next_offset = offsetof(struct sw_flow_actions, actions) +
1748 (*sfa)->actions_len;
1750 if (req_size <= (ksize(*sfa) - next_offset))
1751 goto out;
1753 new_acts_size = ksize(*sfa) * 2;
1755 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1756 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1757 return ERR_PTR(-EMSGSIZE);
1758 new_acts_size = MAX_ACTIONS_BUFSIZE;
1761 acts = nla_alloc_flow_actions(new_acts_size, log);
1762 if (IS_ERR(acts))
1763 return (void *)acts;
1765 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1766 acts->actions_len = (*sfa)->actions_len;
1767 acts->orig_len = (*sfa)->orig_len;
1768 kfree(*sfa);
1769 *sfa = acts;
1771 out:
1772 (*sfa)->actions_len += req_size;
1773 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1776 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1777 int attrtype, void *data, int len, bool log)
1779 struct nlattr *a;
1781 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1782 if (IS_ERR(a))
1783 return a;
1785 a->nla_type = attrtype;
1786 a->nla_len = nla_attr_size(len);
1788 if (data)
1789 memcpy(nla_data(a), data, len);
1790 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1792 return a;
1795 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
1796 int len, bool log)
1798 struct nlattr *a;
1800 a = __add_action(sfa, attrtype, data, len, log);
1802 return PTR_ERR_OR_ZERO(a);
1805 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1806 int attrtype, bool log)
1808 int used = (*sfa)->actions_len;
1809 int err;
1811 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
1812 if (err)
1813 return err;
1815 return used;
1818 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1819 int st_offset)
1821 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1822 st_offset);
1824 a->nla_len = sfa->actions_len - st_offset;
1827 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
1828 const struct sw_flow_key *key,
1829 int depth, struct sw_flow_actions **sfa,
1830 __be16 eth_type, __be16 vlan_tci, bool log);
1832 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
1833 const struct sw_flow_key *key, int depth,
1834 struct sw_flow_actions **sfa,
1835 __be16 eth_type, __be16 vlan_tci, bool log)
1837 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1838 const struct nlattr *probability, *actions;
1839 const struct nlattr *a;
1840 int rem, start, err, st_acts;
1842 memset(attrs, 0, sizeof(attrs));
1843 nla_for_each_nested(a, attr, rem) {
1844 int type = nla_type(a);
1845 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1846 return -EINVAL;
1847 attrs[type] = a;
1849 if (rem)
1850 return -EINVAL;
1852 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1853 if (!probability || nla_len(probability) != sizeof(u32))
1854 return -EINVAL;
1856 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1857 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1858 return -EINVAL;
1860 /* validation done, copy sample action. */
1861 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1862 if (start < 0)
1863 return start;
1864 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1865 nla_data(probability), sizeof(u32), log);
1866 if (err)
1867 return err;
1868 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1869 if (st_acts < 0)
1870 return st_acts;
1872 err = __ovs_nla_copy_actions(net, actions, key, depth + 1, sfa,
1873 eth_type, vlan_tci, log);
1874 if (err)
1875 return err;
1877 add_nested_action_end(*sfa, st_acts);
1878 add_nested_action_end(*sfa, start);
1880 return 0;
1883 void ovs_match_init(struct sw_flow_match *match,
1884 struct sw_flow_key *key,
1885 struct sw_flow_mask *mask)
1887 memset(match, 0, sizeof(*match));
1888 match->key = key;
1889 match->mask = mask;
1891 memset(key, 0, sizeof(*key));
1893 if (mask) {
1894 memset(&mask->key, 0, sizeof(mask->key));
1895 mask->range.start = mask->range.end = 0;
1899 static int validate_geneve_opts(struct sw_flow_key *key)
1901 struct geneve_opt *option;
1902 int opts_len = key->tun_opts_len;
1903 bool crit_opt = false;
1905 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1906 while (opts_len > 0) {
1907 int len;
1909 if (opts_len < sizeof(*option))
1910 return -EINVAL;
1912 len = sizeof(*option) + option->length * 4;
1913 if (len > opts_len)
1914 return -EINVAL;
1916 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1918 option = (struct geneve_opt *)((u8 *)option + len);
1919 opts_len -= len;
1922 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1924 return 0;
1927 static int validate_and_copy_set_tun(const struct nlattr *attr,
1928 struct sw_flow_actions **sfa, bool log)
1930 struct sw_flow_match match;
1931 struct sw_flow_key key;
1932 struct metadata_dst *tun_dst;
1933 struct ip_tunnel_info *tun_info;
1934 struct ovs_tunnel_info *ovs_tun;
1935 struct nlattr *a;
1936 int err = 0, start, opts_type;
1938 ovs_match_init(&match, &key, NULL);
1939 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
1940 if (opts_type < 0)
1941 return opts_type;
1943 if (key.tun_opts_len) {
1944 switch (opts_type) {
1945 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1946 err = validate_geneve_opts(&key);
1947 if (err < 0)
1948 return err;
1949 break;
1950 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1951 break;
1955 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1956 if (start < 0)
1957 return start;
1959 tun_dst = metadata_dst_alloc(key.tun_opts_len, GFP_KERNEL);
1960 if (!tun_dst)
1961 return -ENOMEM;
1963 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
1964 if (err) {
1965 dst_release((struct dst_entry *)tun_dst);
1966 return err;
1969 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1970 sizeof(*ovs_tun), log);
1971 if (IS_ERR(a)) {
1972 dst_release((struct dst_entry *)tun_dst);
1973 return PTR_ERR(a);
1976 ovs_tun = nla_data(a);
1977 ovs_tun->tun_dst = tun_dst;
1979 tun_info = &tun_dst->u.tun_info;
1980 tun_info->mode = IP_TUNNEL_INFO_TX;
1981 if (key.tun_proto == AF_INET6)
1982 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
1983 tun_info->key = key.tun_key;
1985 /* We need to store the options in the action itself since
1986 * everything else will go away after flow setup. We can append
1987 * it to tun_info and then point there.
1989 ip_tunnel_info_opts_set(tun_info,
1990 TUN_METADATA_OPTS(&key, key.tun_opts_len),
1991 key.tun_opts_len);
1992 add_nested_action_end(*sfa, start);
1994 return err;
1997 /* Return false if there are any non-masked bits set.
1998 * Mask follows data immediately, before any netlink padding.
2000 static bool validate_masked(u8 *data, int len)
2002 u8 *mask = data + len;
2004 while (len--)
2005 if (*data++ & ~*mask++)
2006 return false;
2008 return true;
2011 static int validate_set(const struct nlattr *a,
2012 const struct sw_flow_key *flow_key,
2013 struct sw_flow_actions **sfa,
2014 bool *skip_copy, __be16 eth_type, bool masked, bool log)
2016 const struct nlattr *ovs_key = nla_data(a);
2017 int key_type = nla_type(ovs_key);
2018 size_t key_len;
2020 /* There can be only one key in a action */
2021 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2022 return -EINVAL;
2024 key_len = nla_len(ovs_key);
2025 if (masked)
2026 key_len /= 2;
2028 if (key_type > OVS_KEY_ATTR_MAX ||
2029 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2030 return -EINVAL;
2032 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2033 return -EINVAL;
2035 switch (key_type) {
2036 const struct ovs_key_ipv4 *ipv4_key;
2037 const struct ovs_key_ipv6 *ipv6_key;
2038 int err;
2040 case OVS_KEY_ATTR_PRIORITY:
2041 case OVS_KEY_ATTR_SKB_MARK:
2042 case OVS_KEY_ATTR_CT_MARK:
2043 case OVS_KEY_ATTR_CT_LABELS:
2044 case OVS_KEY_ATTR_ETHERNET:
2045 break;
2047 case OVS_KEY_ATTR_TUNNEL:
2048 if (masked)
2049 return -EINVAL; /* Masked tunnel set not supported. */
2051 *skip_copy = true;
2052 err = validate_and_copy_set_tun(a, sfa, log);
2053 if (err)
2054 return err;
2055 break;
2057 case OVS_KEY_ATTR_IPV4:
2058 if (eth_type != htons(ETH_P_IP))
2059 return -EINVAL;
2061 ipv4_key = nla_data(ovs_key);
2063 if (masked) {
2064 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2066 /* Non-writeable fields. */
2067 if (mask->ipv4_proto || mask->ipv4_frag)
2068 return -EINVAL;
2069 } else {
2070 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2071 return -EINVAL;
2073 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2074 return -EINVAL;
2076 break;
2078 case OVS_KEY_ATTR_IPV6:
2079 if (eth_type != htons(ETH_P_IPV6))
2080 return -EINVAL;
2082 ipv6_key = nla_data(ovs_key);
2084 if (masked) {
2085 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2087 /* Non-writeable fields. */
2088 if (mask->ipv6_proto || mask->ipv6_frag)
2089 return -EINVAL;
2091 /* Invalid bits in the flow label mask? */
2092 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2093 return -EINVAL;
2094 } else {
2095 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2096 return -EINVAL;
2098 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2099 return -EINVAL;
2101 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2102 return -EINVAL;
2104 break;
2106 case OVS_KEY_ATTR_TCP:
2107 if ((eth_type != htons(ETH_P_IP) &&
2108 eth_type != htons(ETH_P_IPV6)) ||
2109 flow_key->ip.proto != IPPROTO_TCP)
2110 return -EINVAL;
2112 break;
2114 case OVS_KEY_ATTR_UDP:
2115 if ((eth_type != htons(ETH_P_IP) &&
2116 eth_type != htons(ETH_P_IPV6)) ||
2117 flow_key->ip.proto != IPPROTO_UDP)
2118 return -EINVAL;
2120 break;
2122 case OVS_KEY_ATTR_MPLS:
2123 if (!eth_p_mpls(eth_type))
2124 return -EINVAL;
2125 break;
2127 case OVS_KEY_ATTR_SCTP:
2128 if ((eth_type != htons(ETH_P_IP) &&
2129 eth_type != htons(ETH_P_IPV6)) ||
2130 flow_key->ip.proto != IPPROTO_SCTP)
2131 return -EINVAL;
2133 break;
2135 default:
2136 return -EINVAL;
2139 /* Convert non-masked non-tunnel set actions to masked set actions. */
2140 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2141 int start, len = key_len * 2;
2142 struct nlattr *at;
2144 *skip_copy = true;
2146 start = add_nested_action_start(sfa,
2147 OVS_ACTION_ATTR_SET_TO_MASKED,
2148 log);
2149 if (start < 0)
2150 return start;
2152 at = __add_action(sfa, key_type, NULL, len, log);
2153 if (IS_ERR(at))
2154 return PTR_ERR(at);
2156 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2157 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2158 /* Clear non-writeable bits from otherwise writeable fields. */
2159 if (key_type == OVS_KEY_ATTR_IPV6) {
2160 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2162 mask->ipv6_label &= htonl(0x000FFFFF);
2164 add_nested_action_end(*sfa, start);
2167 return 0;
2170 static int validate_userspace(const struct nlattr *attr)
2172 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2173 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2174 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2175 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2177 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2178 int error;
2180 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
2181 attr, userspace_policy);
2182 if (error)
2183 return error;
2185 if (!a[OVS_USERSPACE_ATTR_PID] ||
2186 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2187 return -EINVAL;
2189 return 0;
2192 static int copy_action(const struct nlattr *from,
2193 struct sw_flow_actions **sfa, bool log)
2195 int totlen = NLA_ALIGN(from->nla_len);
2196 struct nlattr *to;
2198 to = reserve_sfa_size(sfa, from->nla_len, log);
2199 if (IS_ERR(to))
2200 return PTR_ERR(to);
2202 memcpy(to, from, totlen);
2203 return 0;
2206 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2207 const struct sw_flow_key *key,
2208 int depth, struct sw_flow_actions **sfa,
2209 __be16 eth_type, __be16 vlan_tci, bool log)
2211 const struct nlattr *a;
2212 int rem, err;
2214 if (depth >= SAMPLE_ACTION_DEPTH)
2215 return -EOVERFLOW;
2217 nla_for_each_nested(a, attr, rem) {
2218 /* Expected argument lengths, (u32)-1 for variable length. */
2219 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2220 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2221 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2222 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2223 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2224 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2225 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2226 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2227 [OVS_ACTION_ATTR_SET] = (u32)-1,
2228 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2229 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2230 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2231 [OVS_ACTION_ATTR_CT] = (u32)-1,
2232 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2234 const struct ovs_action_push_vlan *vlan;
2235 int type = nla_type(a);
2236 bool skip_copy;
2238 if (type > OVS_ACTION_ATTR_MAX ||
2239 (action_lens[type] != nla_len(a) &&
2240 action_lens[type] != (u32)-1))
2241 return -EINVAL;
2243 skip_copy = false;
2244 switch (type) {
2245 case OVS_ACTION_ATTR_UNSPEC:
2246 return -EINVAL;
2248 case OVS_ACTION_ATTR_USERSPACE:
2249 err = validate_userspace(a);
2250 if (err)
2251 return err;
2252 break;
2254 case OVS_ACTION_ATTR_OUTPUT:
2255 if (nla_get_u32(a) >= DP_MAX_PORTS)
2256 return -EINVAL;
2257 break;
2259 case OVS_ACTION_ATTR_TRUNC: {
2260 const struct ovs_action_trunc *trunc = nla_data(a);
2262 if (trunc->max_len < ETH_HLEN)
2263 return -EINVAL;
2264 break;
2267 case OVS_ACTION_ATTR_HASH: {
2268 const struct ovs_action_hash *act_hash = nla_data(a);
2270 switch (act_hash->hash_alg) {
2271 case OVS_HASH_ALG_L4:
2272 break;
2273 default:
2274 return -EINVAL;
2277 break;
2280 case OVS_ACTION_ATTR_POP_VLAN:
2281 vlan_tci = htons(0);
2282 break;
2284 case OVS_ACTION_ATTR_PUSH_VLAN:
2285 vlan = nla_data(a);
2286 if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2287 return -EINVAL;
2288 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2289 return -EINVAL;
2290 vlan_tci = vlan->vlan_tci;
2291 break;
2293 case OVS_ACTION_ATTR_RECIRC:
2294 break;
2296 case OVS_ACTION_ATTR_PUSH_MPLS: {
2297 const struct ovs_action_push_mpls *mpls = nla_data(a);
2299 if (!eth_p_mpls(mpls->mpls_ethertype))
2300 return -EINVAL;
2301 /* Prohibit push MPLS other than to a white list
2302 * for packets that have a known tag order.
2304 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2305 (eth_type != htons(ETH_P_IP) &&
2306 eth_type != htons(ETH_P_IPV6) &&
2307 eth_type != htons(ETH_P_ARP) &&
2308 eth_type != htons(ETH_P_RARP) &&
2309 !eth_p_mpls(eth_type)))
2310 return -EINVAL;
2311 eth_type = mpls->mpls_ethertype;
2312 break;
2315 case OVS_ACTION_ATTR_POP_MPLS:
2316 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2317 !eth_p_mpls(eth_type))
2318 return -EINVAL;
2320 /* Disallow subsequent L2.5+ set and mpls_pop actions
2321 * as there is no check here to ensure that the new
2322 * eth_type is valid and thus set actions could
2323 * write off the end of the packet or otherwise
2324 * corrupt it.
2326 * Support for these actions is planned using packet
2327 * recirculation.
2329 eth_type = htons(0);
2330 break;
2332 case OVS_ACTION_ATTR_SET:
2333 err = validate_set(a, key, sfa,
2334 &skip_copy, eth_type, false, log);
2335 if (err)
2336 return err;
2337 break;
2339 case OVS_ACTION_ATTR_SET_MASKED:
2340 err = validate_set(a, key, sfa,
2341 &skip_copy, eth_type, true, log);
2342 if (err)
2343 return err;
2344 break;
2346 case OVS_ACTION_ATTR_SAMPLE:
2347 err = validate_and_copy_sample(net, a, key, depth, sfa,
2348 eth_type, vlan_tci, log);
2349 if (err)
2350 return err;
2351 skip_copy = true;
2352 break;
2354 case OVS_ACTION_ATTR_CT:
2355 err = ovs_ct_copy_action(net, a, key, sfa, log);
2356 if (err)
2357 return err;
2358 skip_copy = true;
2359 break;
2361 default:
2362 OVS_NLERR(log, "Unknown Action type %d", type);
2363 return -EINVAL;
2365 if (!skip_copy) {
2366 err = copy_action(a, sfa, log);
2367 if (err)
2368 return err;
2372 if (rem > 0)
2373 return -EINVAL;
2375 return 0;
2378 /* 'key' must be the masked key. */
2379 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2380 const struct sw_flow_key *key,
2381 struct sw_flow_actions **sfa, bool log)
2383 int err;
2385 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2386 if (IS_ERR(*sfa))
2387 return PTR_ERR(*sfa);
2389 (*sfa)->orig_len = nla_len(attr);
2390 err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
2391 key->eth.tci, log);
2392 if (err)
2393 ovs_nla_free_flow_actions(*sfa);
2395 return err;
2398 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2400 const struct nlattr *a;
2401 struct nlattr *start;
2402 int err = 0, rem;
2404 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2405 if (!start)
2406 return -EMSGSIZE;
2408 nla_for_each_nested(a, attr, rem) {
2409 int type = nla_type(a);
2410 struct nlattr *st_sample;
2412 switch (type) {
2413 case OVS_SAMPLE_ATTR_PROBABILITY:
2414 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2415 sizeof(u32), nla_data(a)))
2416 return -EMSGSIZE;
2417 break;
2418 case OVS_SAMPLE_ATTR_ACTIONS:
2419 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2420 if (!st_sample)
2421 return -EMSGSIZE;
2422 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2423 if (err)
2424 return err;
2425 nla_nest_end(skb, st_sample);
2426 break;
2430 nla_nest_end(skb, start);
2431 return err;
2434 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2436 const struct nlattr *ovs_key = nla_data(a);
2437 int key_type = nla_type(ovs_key);
2438 struct nlattr *start;
2439 int err;
2441 switch (key_type) {
2442 case OVS_KEY_ATTR_TUNNEL_INFO: {
2443 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2444 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2446 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2447 if (!start)
2448 return -EMSGSIZE;
2450 err = ip_tun_to_nlattr(skb, &tun_info->key,
2451 ip_tunnel_info_opts(tun_info),
2452 tun_info->options_len,
2453 ip_tunnel_info_af(tun_info));
2454 if (err)
2455 return err;
2456 nla_nest_end(skb, start);
2457 break;
2459 default:
2460 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2461 return -EMSGSIZE;
2462 break;
2465 return 0;
2468 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2469 struct sk_buff *skb)
2471 const struct nlattr *ovs_key = nla_data(a);
2472 struct nlattr *nla;
2473 size_t key_len = nla_len(ovs_key) / 2;
2475 /* Revert the conversion we did from a non-masked set action to
2476 * masked set action.
2478 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2479 if (!nla)
2480 return -EMSGSIZE;
2482 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2483 return -EMSGSIZE;
2485 nla_nest_end(skb, nla);
2486 return 0;
2489 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2491 const struct nlattr *a;
2492 int rem, err;
2494 nla_for_each_attr(a, attr, len, rem) {
2495 int type = nla_type(a);
2497 switch (type) {
2498 case OVS_ACTION_ATTR_SET:
2499 err = set_action_to_attr(a, skb);
2500 if (err)
2501 return err;
2502 break;
2504 case OVS_ACTION_ATTR_SET_TO_MASKED:
2505 err = masked_set_action_to_set_action_attr(a, skb);
2506 if (err)
2507 return err;
2508 break;
2510 case OVS_ACTION_ATTR_SAMPLE:
2511 err = sample_action_to_attr(a, skb);
2512 if (err)
2513 return err;
2514 break;
2516 case OVS_ACTION_ATTR_CT:
2517 err = ovs_ct_action_to_attr(nla_data(a), skb);
2518 if (err)
2519 return err;
2520 break;
2522 default:
2523 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2524 return -EMSGSIZE;
2525 break;
2529 return 0;