2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->first_page: points to the first component (0-order) page
20 * page->index (union with page->freelist): offset of the first object
21 * starting in this page. For the first page, this is
22 * always 0, so we use this field (aka freelist) to point
23 * to the first free object in zspage.
24 * page->lru: links together all component pages (except the first page)
27 * For _first_ page only:
29 * page->private (union with page->first_page): refers to the
30 * component page after the first page
31 * If the page is first_page for huge object, it stores handle.
32 * Look at size_class->huge.
33 * page->freelist: points to the first free object in zspage.
34 * Free objects are linked together using in-place
36 * page->objects: maximum number of objects we can store in this
37 * zspage (class->zspage_order * PAGE_SIZE / class->size)
38 * page->lru: links together first pages of various zspages.
39 * Basically forming list of zspages in a fullness group.
40 * page->mapping: class index and fullness group of the zspage
42 * Usage of struct page flags:
43 * PG_private: identifies the first component page
44 * PG_private2: identifies the last component page
48 #ifdef CONFIG_ZSMALLOC_DEBUG
52 #include <linux/module.h>
53 #include <linux/kernel.h>
54 #include <linux/sched.h>
55 #include <linux/bitops.h>
56 #include <linux/errno.h>
57 #include <linux/highmem.h>
58 #include <linux/string.h>
59 #include <linux/slab.h>
60 #include <asm/tlbflush.h>
61 #include <asm/pgtable.h>
62 #include <linux/cpumask.h>
63 #include <linux/cpu.h>
64 #include <linux/vmalloc.h>
65 #include <linux/hardirq.h>
66 #include <linux/spinlock.h>
67 #include <linux/types.h>
68 #include <linux/debugfs.h>
69 #include <linux/zsmalloc.h>
70 #include <linux/zpool.h>
73 * This must be power of 2 and greater than of equal to sizeof(link_free).
74 * These two conditions ensure that any 'struct link_free' itself doesn't
75 * span more than 1 page which avoids complex case of mapping 2 pages simply
76 * to restore link_free pointer values.
81 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
82 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
84 #define ZS_MAX_ZSPAGE_ORDER 2
85 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
87 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
90 * Object location (<PFN>, <obj_idx>) is encoded as
91 * as single (unsigned long) handle value.
93 * Note that object index <obj_idx> is relative to system
94 * page <PFN> it is stored in, so for each sub-page belonging
95 * to a zspage, obj_idx starts with 0.
97 * This is made more complicated by various memory models and PAE.
100 #ifndef MAX_PHYSMEM_BITS
101 #ifdef CONFIG_HIGHMEM64G
102 #define MAX_PHYSMEM_BITS 36
103 #else /* !CONFIG_HIGHMEM64G */
105 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
108 #define MAX_PHYSMEM_BITS BITS_PER_LONG
111 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
114 * Memory for allocating for handle keeps object position by
115 * encoding <page, obj_idx> and the encoded value has a room
116 * in least bit(ie, look at obj_to_location).
117 * We use the bit to synchronize between object access by
118 * user and migration.
120 #define HANDLE_PIN_BIT 0
123 * Head in allocated object should have OBJ_ALLOCATED_TAG
124 * to identify the object was allocated or not.
125 * It's okay to add the status bit in the least bit because
126 * header keeps handle which is 4byte-aligned address so we
127 * have room for two bit at least.
129 #define OBJ_ALLOCATED_TAG 1
130 #define OBJ_TAG_BITS 1
131 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
132 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
134 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
135 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
136 #define ZS_MIN_ALLOC_SIZE \
137 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
138 /* each chunk includes extra space to keep handle */
139 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
142 * On systems with 4K page size, this gives 255 size classes! There is a
144 * - Large number of size classes is potentially wasteful as free page are
145 * spread across these classes
146 * - Small number of size classes causes large internal fragmentation
147 * - Probably its better to use specific size classes (empirically
148 * determined). NOTE: all those class sizes must be set as multiple of
149 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
151 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
154 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
157 * We do not maintain any list for completely empty or full pages
159 enum fullness_group
{
162 _ZS_NR_FULLNESS_GROUPS
,
176 #ifdef CONFIG_ZSMALLOC_STAT
178 static struct dentry
*zs_stat_root
;
180 struct zs_size_stat
{
181 unsigned long objs
[NR_ZS_STAT_TYPE
];
187 * number of size_classes
189 static int zs_size_classes
;
192 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
194 * n = number of allocated objects
195 * N = total number of objects zspage can store
196 * f = fullness_threshold_frac
198 * Similarly, we assign zspage to:
199 * ZS_ALMOST_FULL when n > N / f
200 * ZS_EMPTY when n == 0
201 * ZS_FULL when n == N
203 * (see: fix_fullness_group())
205 static const int fullness_threshold_frac
= 4;
209 * Size of objects stored in this class. Must be multiple
215 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
216 int pages_per_zspage
;
217 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
220 #ifdef CONFIG_ZSMALLOC_STAT
221 struct zs_size_stat stats
;
226 struct page
*fullness_list
[_ZS_NR_FULLNESS_GROUPS
];
230 * Placed within free objects to form a singly linked list.
231 * For every zspage, first_page->freelist gives head of this list.
233 * This must be power of 2 and less than or equal to ZS_ALIGN
238 * Position of next free chunk (encodes <PFN, obj_idx>)
239 * It's valid for non-allocated object
243 * Handle of allocated object.
245 unsigned long handle
;
252 struct size_class
**size_class
;
253 struct kmem_cache
*handle_cachep
;
255 gfp_t flags
; /* allocation flags used when growing pool */
256 atomic_long_t pages_allocated
;
258 #ifdef CONFIG_ZSMALLOC_STAT
259 struct dentry
*stat_dentry
;
264 * A zspage's class index and fullness group
265 * are encoded in its (first)page->mapping
267 #define CLASS_IDX_BITS 28
268 #define FULLNESS_BITS 4
269 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
270 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
272 struct mapping_area
{
273 #ifdef CONFIG_PGTABLE_MAPPING
274 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
276 char *vm_buf
; /* copy buffer for objects that span pages */
278 char *vm_addr
; /* address of kmap_atomic()'ed pages */
279 enum zs_mapmode vm_mm
; /* mapping mode */
283 static int create_handle_cache(struct zs_pool
*pool
)
285 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
287 return pool
->handle_cachep
? 0 : 1;
290 static void destroy_handle_cache(struct zs_pool
*pool
)
292 kmem_cache_destroy(pool
->handle_cachep
);
295 static unsigned long alloc_handle(struct zs_pool
*pool
)
297 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
298 pool
->flags
& ~__GFP_HIGHMEM
);
301 static void free_handle(struct zs_pool
*pool
, unsigned long handle
)
303 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
306 static void record_obj(unsigned long handle
, unsigned long obj
)
308 *(unsigned long *)handle
= obj
;
315 static void *zs_zpool_create(char *name
, gfp_t gfp
, struct zpool_ops
*zpool_ops
)
317 return zs_create_pool(name
, gfp
);
320 static void zs_zpool_destroy(void *pool
)
322 zs_destroy_pool(pool
);
325 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
326 unsigned long *handle
)
328 *handle
= zs_malloc(pool
, size
);
329 return *handle
? 0 : -1;
331 static void zs_zpool_free(void *pool
, unsigned long handle
)
333 zs_free(pool
, handle
);
336 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
337 unsigned int *reclaimed
)
342 static void *zs_zpool_map(void *pool
, unsigned long handle
,
343 enum zpool_mapmode mm
)
345 enum zs_mapmode zs_mm
;
354 case ZPOOL_MM_RW
: /* fallthru */
360 return zs_map_object(pool
, handle
, zs_mm
);
362 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
364 zs_unmap_object(pool
, handle
);
367 static u64
zs_zpool_total_size(void *pool
)
369 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
372 static struct zpool_driver zs_zpool_driver
= {
374 .owner
= THIS_MODULE
,
375 .create
= zs_zpool_create
,
376 .destroy
= zs_zpool_destroy
,
377 .malloc
= zs_zpool_malloc
,
378 .free
= zs_zpool_free
,
379 .shrink
= zs_zpool_shrink
,
381 .unmap
= zs_zpool_unmap
,
382 .total_size
= zs_zpool_total_size
,
385 MODULE_ALIAS("zpool-zsmalloc");
386 #endif /* CONFIG_ZPOOL */
388 static unsigned int get_maxobj_per_zspage(int size
, int pages_per_zspage
)
390 return pages_per_zspage
* PAGE_SIZE
/ size
;
393 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
394 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
396 static int is_first_page(struct page
*page
)
398 return PagePrivate(page
);
401 static int is_last_page(struct page
*page
)
403 return PagePrivate2(page
);
406 static void get_zspage_mapping(struct page
*page
, unsigned int *class_idx
,
407 enum fullness_group
*fullness
)
410 BUG_ON(!is_first_page(page
));
412 m
= (unsigned long)page
->mapping
;
413 *fullness
= m
& FULLNESS_MASK
;
414 *class_idx
= (m
>> FULLNESS_BITS
) & CLASS_IDX_MASK
;
417 static void set_zspage_mapping(struct page
*page
, unsigned int class_idx
,
418 enum fullness_group fullness
)
421 BUG_ON(!is_first_page(page
));
423 m
= ((class_idx
& CLASS_IDX_MASK
) << FULLNESS_BITS
) |
424 (fullness
& FULLNESS_MASK
);
425 page
->mapping
= (struct address_space
*)m
;
429 * zsmalloc divides the pool into various size classes where each
430 * class maintains a list of zspages where each zspage is divided
431 * into equal sized chunks. Each allocation falls into one of these
432 * classes depending on its size. This function returns index of the
433 * size class which has chunk size big enough to hold the give size.
435 static int get_size_class_index(int size
)
439 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
440 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
441 ZS_SIZE_CLASS_DELTA
);
443 return min(zs_size_classes
- 1, idx
);
446 #ifdef CONFIG_ZSMALLOC_STAT
448 static inline void zs_stat_inc(struct size_class
*class,
449 enum zs_stat_type type
, unsigned long cnt
)
451 class->stats
.objs
[type
] += cnt
;
454 static inline void zs_stat_dec(struct size_class
*class,
455 enum zs_stat_type type
, unsigned long cnt
)
457 class->stats
.objs
[type
] -= cnt
;
460 static inline unsigned long zs_stat_get(struct size_class
*class,
461 enum zs_stat_type type
)
463 return class->stats
.objs
[type
];
466 static int __init
zs_stat_init(void)
468 if (!debugfs_initialized())
471 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
478 static void __exit
zs_stat_exit(void)
480 debugfs_remove_recursive(zs_stat_root
);
483 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
486 struct zs_pool
*pool
= s
->private;
487 struct size_class
*class;
489 unsigned long class_almost_full
, class_almost_empty
;
490 unsigned long obj_allocated
, obj_used
, pages_used
;
491 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
492 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
494 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s\n",
495 "class", "size", "almost_full", "almost_empty",
496 "obj_allocated", "obj_used", "pages_used",
499 for (i
= 0; i
< zs_size_classes
; i
++) {
500 class = pool
->size_class
[i
];
502 if (class->index
!= i
)
505 spin_lock(&class->lock
);
506 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
507 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
508 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
509 obj_used
= zs_stat_get(class, OBJ_USED
);
510 spin_unlock(&class->lock
);
512 objs_per_zspage
= get_maxobj_per_zspage(class->size
,
513 class->pages_per_zspage
);
514 pages_used
= obj_allocated
/ objs_per_zspage
*
515 class->pages_per_zspage
;
517 seq_printf(s
, " %5u %5u %11lu %12lu %13lu %10lu %10lu %16d\n",
518 i
, class->size
, class_almost_full
, class_almost_empty
,
519 obj_allocated
, obj_used
, pages_used
,
520 class->pages_per_zspage
);
522 total_class_almost_full
+= class_almost_full
;
523 total_class_almost_empty
+= class_almost_empty
;
524 total_objs
+= obj_allocated
;
525 total_used_objs
+= obj_used
;
526 total_pages
+= pages_used
;
530 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu\n",
531 "Total", "", total_class_almost_full
,
532 total_class_almost_empty
, total_objs
,
533 total_used_objs
, total_pages
);
538 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
540 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
543 static const struct file_operations zs_stat_size_ops
= {
544 .open
= zs_stats_size_open
,
547 .release
= single_release
,
550 static int zs_pool_stat_create(char *name
, struct zs_pool
*pool
)
552 struct dentry
*entry
;
557 entry
= debugfs_create_dir(name
, zs_stat_root
);
559 pr_warn("debugfs dir <%s> creation failed\n", name
);
562 pool
->stat_dentry
= entry
;
564 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
565 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
567 pr_warn("%s: debugfs file entry <%s> creation failed\n",
575 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
577 debugfs_remove_recursive(pool
->stat_dentry
);
580 #else /* CONFIG_ZSMALLOC_STAT */
582 static inline void zs_stat_inc(struct size_class
*class,
583 enum zs_stat_type type
, unsigned long cnt
)
587 static inline void zs_stat_dec(struct size_class
*class,
588 enum zs_stat_type type
, unsigned long cnt
)
592 static inline unsigned long zs_stat_get(struct size_class
*class,
593 enum zs_stat_type type
)
598 static int __init
zs_stat_init(void)
603 static void __exit
zs_stat_exit(void)
607 static inline int zs_pool_stat_create(char *name
, struct zs_pool
*pool
)
612 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
620 * For each size class, zspages are divided into different groups
621 * depending on how "full" they are. This was done so that we could
622 * easily find empty or nearly empty zspages when we try to shrink
623 * the pool (not yet implemented). This function returns fullness
624 * status of the given page.
626 static enum fullness_group
get_fullness_group(struct page
*page
)
628 int inuse
, max_objects
;
629 enum fullness_group fg
;
630 BUG_ON(!is_first_page(page
));
633 max_objects
= page
->objects
;
637 else if (inuse
== max_objects
)
639 else if (inuse
<= 3 * max_objects
/ fullness_threshold_frac
)
640 fg
= ZS_ALMOST_EMPTY
;
648 * Each size class maintains various freelists and zspages are assigned
649 * to one of these freelists based on the number of live objects they
650 * have. This functions inserts the given zspage into the freelist
651 * identified by <class, fullness_group>.
653 static void insert_zspage(struct page
*page
, struct size_class
*class,
654 enum fullness_group fullness
)
658 BUG_ON(!is_first_page(page
));
660 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
663 head
= &class->fullness_list
[fullness
];
665 list_add_tail(&page
->lru
, &(*head
)->lru
);
668 zs_stat_inc(class, fullness
== ZS_ALMOST_EMPTY
?
669 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
673 * This function removes the given zspage from the freelist identified
674 * by <class, fullness_group>.
676 static void remove_zspage(struct page
*page
, struct size_class
*class,
677 enum fullness_group fullness
)
681 BUG_ON(!is_first_page(page
));
683 if (fullness
>= _ZS_NR_FULLNESS_GROUPS
)
686 head
= &class->fullness_list
[fullness
];
688 if (list_empty(&(*head
)->lru
))
690 else if (*head
== page
)
691 *head
= (struct page
*)list_entry((*head
)->lru
.next
,
694 list_del_init(&page
->lru
);
695 zs_stat_dec(class, fullness
== ZS_ALMOST_EMPTY
?
696 CLASS_ALMOST_EMPTY
: CLASS_ALMOST_FULL
, 1);
700 * Each size class maintains zspages in different fullness groups depending
701 * on the number of live objects they contain. When allocating or freeing
702 * objects, the fullness status of the page can change, say, from ALMOST_FULL
703 * to ALMOST_EMPTY when freeing an object. This function checks if such
704 * a status change has occurred for the given page and accordingly moves the
705 * page from the freelist of the old fullness group to that of the new
708 static enum fullness_group
fix_fullness_group(struct size_class
*class,
712 enum fullness_group currfg
, newfg
;
714 BUG_ON(!is_first_page(page
));
716 get_zspage_mapping(page
, &class_idx
, &currfg
);
717 newfg
= get_fullness_group(page
);
721 remove_zspage(page
, class, currfg
);
722 insert_zspage(page
, class, newfg
);
723 set_zspage_mapping(page
, class_idx
, newfg
);
730 * We have to decide on how many pages to link together
731 * to form a zspage for each size class. This is important
732 * to reduce wastage due to unusable space left at end of
733 * each zspage which is given as:
734 * wastage = Zp % class_size
735 * usage = Zp - wastage
736 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
738 * For example, for size class of 3/8 * PAGE_SIZE, we should
739 * link together 3 PAGE_SIZE sized pages to form a zspage
740 * since then we can perfectly fit in 8 such objects.
742 static int get_pages_per_zspage(int class_size
)
744 int i
, max_usedpc
= 0;
745 /* zspage order which gives maximum used size per KB */
746 int max_usedpc_order
= 1;
748 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
752 zspage_size
= i
* PAGE_SIZE
;
753 waste
= zspage_size
% class_size
;
754 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
756 if (usedpc
> max_usedpc
) {
758 max_usedpc_order
= i
;
762 return max_usedpc_order
;
766 * A single 'zspage' is composed of many system pages which are
767 * linked together using fields in struct page. This function finds
768 * the first/head page, given any component page of a zspage.
770 static struct page
*get_first_page(struct page
*page
)
772 if (is_first_page(page
))
775 return page
->first_page
;
778 static struct page
*get_next_page(struct page
*page
)
782 if (is_last_page(page
))
784 else if (is_first_page(page
))
785 next
= (struct page
*)page_private(page
);
787 next
= list_entry(page
->lru
.next
, struct page
, lru
);
793 * Encode <page, obj_idx> as a single handle value.
794 * We use the least bit of handle for tagging.
796 static void *location_to_obj(struct page
*page
, unsigned long obj_idx
)
805 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
806 obj
|= ((obj_idx
) & OBJ_INDEX_MASK
);
807 obj
<<= OBJ_TAG_BITS
;
813 * Decode <page, obj_idx> pair from the given object handle. We adjust the
814 * decoded obj_idx back to its original value since it was adjusted in
817 static void obj_to_location(unsigned long obj
, struct page
**page
,
818 unsigned long *obj_idx
)
820 obj
>>= OBJ_TAG_BITS
;
821 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
822 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
825 static unsigned long handle_to_obj(unsigned long handle
)
827 return *(unsigned long *)handle
;
830 static unsigned long obj_to_head(struct size_class
*class, struct page
*page
,
834 VM_BUG_ON(!is_first_page(page
));
835 return *(unsigned long *)page_private(page
);
837 return *(unsigned long *)obj
;
840 static unsigned long obj_idx_to_offset(struct page
*page
,
841 unsigned long obj_idx
, int class_size
)
843 unsigned long off
= 0;
845 if (!is_first_page(page
))
848 return off
+ obj_idx
* class_size
;
851 static inline int trypin_tag(unsigned long handle
)
853 unsigned long *ptr
= (unsigned long *)handle
;
855 return !test_and_set_bit_lock(HANDLE_PIN_BIT
, ptr
);
858 static void pin_tag(unsigned long handle
)
860 while (!trypin_tag(handle
));
863 static void unpin_tag(unsigned long handle
)
865 unsigned long *ptr
= (unsigned long *)handle
;
867 clear_bit_unlock(HANDLE_PIN_BIT
, ptr
);
870 static void reset_page(struct page
*page
)
872 clear_bit(PG_private
, &page
->flags
);
873 clear_bit(PG_private_2
, &page
->flags
);
874 set_page_private(page
, 0);
875 page
->mapping
= NULL
;
876 page
->freelist
= NULL
;
877 page_mapcount_reset(page
);
880 static void free_zspage(struct page
*first_page
)
882 struct page
*nextp
, *tmp
, *head_extra
;
884 BUG_ON(!is_first_page(first_page
));
885 BUG_ON(first_page
->inuse
);
887 head_extra
= (struct page
*)page_private(first_page
);
889 reset_page(first_page
);
890 __free_page(first_page
);
892 /* zspage with only 1 system page */
896 list_for_each_entry_safe(nextp
, tmp
, &head_extra
->lru
, lru
) {
897 list_del(&nextp
->lru
);
901 reset_page(head_extra
);
902 __free_page(head_extra
);
905 /* Initialize a newly allocated zspage */
906 static void init_zspage(struct page
*first_page
, struct size_class
*class)
908 unsigned long off
= 0;
909 struct page
*page
= first_page
;
911 BUG_ON(!is_first_page(first_page
));
913 struct page
*next_page
;
914 struct link_free
*link
;
919 * page->index stores offset of first object starting
920 * in the page. For the first page, this is always 0,
921 * so we use first_page->index (aka ->freelist) to store
922 * head of corresponding zspage's freelist.
924 if (page
!= first_page
)
927 vaddr
= kmap_atomic(page
);
928 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
930 while ((off
+= class->size
) < PAGE_SIZE
) {
931 link
->next
= location_to_obj(page
, i
++);
932 link
+= class->size
/ sizeof(*link
);
936 * We now come to the last (full or partial) object on this
937 * page, which must point to the first object on the next
940 next_page
= get_next_page(page
);
941 link
->next
= location_to_obj(next_page
, 0);
942 kunmap_atomic(vaddr
);
949 * Allocate a zspage for the given size class
951 static struct page
*alloc_zspage(struct size_class
*class, gfp_t flags
)
954 struct page
*first_page
= NULL
, *uninitialized_var(prev_page
);
957 * Allocate individual pages and link them together as:
958 * 1. first page->private = first sub-page
959 * 2. all sub-pages are linked together using page->lru
960 * 3. each sub-page is linked to the first page using page->first_page
962 * For each size class, First/Head pages are linked together using
963 * page->lru. Also, we set PG_private to identify the first page
964 * (i.e. no other sub-page has this flag set) and PG_private_2 to
965 * identify the last page.
968 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
971 page
= alloc_page(flags
);
975 INIT_LIST_HEAD(&page
->lru
);
976 if (i
== 0) { /* first page */
977 SetPagePrivate(page
);
978 set_page_private(page
, 0);
980 first_page
->inuse
= 0;
983 set_page_private(first_page
, (unsigned long)page
);
985 page
->first_page
= first_page
;
987 list_add(&page
->lru
, &prev_page
->lru
);
988 if (i
== class->pages_per_zspage
- 1) /* last page */
989 SetPagePrivate2(page
);
993 init_zspage(first_page
, class);
995 first_page
->freelist
= location_to_obj(first_page
, 0);
996 /* Maximum number of objects we can store in this zspage */
997 first_page
->objects
= class->pages_per_zspage
* PAGE_SIZE
/ class->size
;
999 error
= 0; /* Success */
1002 if (unlikely(error
) && first_page
) {
1003 free_zspage(first_page
);
1010 static struct page
*find_get_zspage(struct size_class
*class)
1015 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1016 page
= class->fullness_list
[i
];
1024 #ifdef CONFIG_PGTABLE_MAPPING
1025 static inline int __zs_cpu_up(struct mapping_area
*area
)
1028 * Make sure we don't leak memory if a cpu UP notification
1029 * and zs_init() race and both call zs_cpu_up() on the same cpu
1033 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1039 static inline void __zs_cpu_down(struct mapping_area
*area
)
1042 free_vm_area(area
->vm
);
1046 static inline void *__zs_map_object(struct mapping_area
*area
,
1047 struct page
*pages
[2], int off
, int size
)
1049 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1050 area
->vm_addr
= area
->vm
->addr
;
1051 return area
->vm_addr
+ off
;
1054 static inline void __zs_unmap_object(struct mapping_area
*area
,
1055 struct page
*pages
[2], int off
, int size
)
1057 unsigned long addr
= (unsigned long)area
->vm_addr
;
1059 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1062 #else /* CONFIG_PGTABLE_MAPPING */
1064 static inline int __zs_cpu_up(struct mapping_area
*area
)
1067 * Make sure we don't leak memory if a cpu UP notification
1068 * and zs_init() race and both call zs_cpu_up() on the same cpu
1072 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1078 static inline void __zs_cpu_down(struct mapping_area
*area
)
1080 kfree(area
->vm_buf
);
1081 area
->vm_buf
= NULL
;
1084 static void *__zs_map_object(struct mapping_area
*area
,
1085 struct page
*pages
[2], int off
, int size
)
1089 char *buf
= area
->vm_buf
;
1091 /* disable page faults to match kmap_atomic() return conditions */
1092 pagefault_disable();
1094 /* no read fastpath */
1095 if (area
->vm_mm
== ZS_MM_WO
)
1098 sizes
[0] = PAGE_SIZE
- off
;
1099 sizes
[1] = size
- sizes
[0];
1101 /* copy object to per-cpu buffer */
1102 addr
= kmap_atomic(pages
[0]);
1103 memcpy(buf
, addr
+ off
, sizes
[0]);
1104 kunmap_atomic(addr
);
1105 addr
= kmap_atomic(pages
[1]);
1106 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1107 kunmap_atomic(addr
);
1109 return area
->vm_buf
;
1112 static void __zs_unmap_object(struct mapping_area
*area
,
1113 struct page
*pages
[2], int off
, int size
)
1119 /* no write fastpath */
1120 if (area
->vm_mm
== ZS_MM_RO
)
1125 buf
= buf
+ ZS_HANDLE_SIZE
;
1126 size
-= ZS_HANDLE_SIZE
;
1127 off
+= ZS_HANDLE_SIZE
;
1130 sizes
[0] = PAGE_SIZE
- off
;
1131 sizes
[1] = size
- sizes
[0];
1133 /* copy per-cpu buffer to object */
1134 addr
= kmap_atomic(pages
[0]);
1135 memcpy(addr
+ off
, buf
, sizes
[0]);
1136 kunmap_atomic(addr
);
1137 addr
= kmap_atomic(pages
[1]);
1138 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1139 kunmap_atomic(addr
);
1142 /* enable page faults to match kunmap_atomic() return conditions */
1146 #endif /* CONFIG_PGTABLE_MAPPING */
1148 static int zs_cpu_notifier(struct notifier_block
*nb
, unsigned long action
,
1151 int ret
, cpu
= (long)pcpu
;
1152 struct mapping_area
*area
;
1155 case CPU_UP_PREPARE
:
1156 area
= &per_cpu(zs_map_area
, cpu
);
1157 ret
= __zs_cpu_up(area
);
1159 return notifier_from_errno(ret
);
1162 case CPU_UP_CANCELED
:
1163 area
= &per_cpu(zs_map_area
, cpu
);
1164 __zs_cpu_down(area
);
1171 static struct notifier_block zs_cpu_nb
= {
1172 .notifier_call
= zs_cpu_notifier
1175 static int zs_register_cpu_notifier(void)
1177 int cpu
, uninitialized_var(ret
);
1179 cpu_notifier_register_begin();
1181 __register_cpu_notifier(&zs_cpu_nb
);
1182 for_each_online_cpu(cpu
) {
1183 ret
= zs_cpu_notifier(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
1184 if (notifier_to_errno(ret
))
1188 cpu_notifier_register_done();
1189 return notifier_to_errno(ret
);
1192 static void zs_unregister_cpu_notifier(void)
1196 cpu_notifier_register_begin();
1198 for_each_online_cpu(cpu
)
1199 zs_cpu_notifier(NULL
, CPU_DEAD
, (void *)(long)cpu
);
1200 __unregister_cpu_notifier(&zs_cpu_nb
);
1202 cpu_notifier_register_done();
1205 static void init_zs_size_classes(void)
1209 nr
= (ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) / ZS_SIZE_CLASS_DELTA
+ 1;
1210 if ((ZS_MAX_ALLOC_SIZE
- ZS_MIN_ALLOC_SIZE
) % ZS_SIZE_CLASS_DELTA
)
1213 zs_size_classes
= nr
;
1216 static bool can_merge(struct size_class
*prev
, int size
, int pages_per_zspage
)
1218 if (prev
->pages_per_zspage
!= pages_per_zspage
)
1221 if (get_maxobj_per_zspage(prev
->size
, prev
->pages_per_zspage
)
1222 != get_maxobj_per_zspage(size
, pages_per_zspage
))
1228 static bool zspage_full(struct page
*page
)
1230 BUG_ON(!is_first_page(page
));
1232 return page
->inuse
== page
->objects
;
1235 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1237 return atomic_long_read(&pool
->pages_allocated
);
1239 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1242 * zs_map_object - get address of allocated object from handle.
1243 * @pool: pool from which the object was allocated
1244 * @handle: handle returned from zs_malloc
1246 * Before using an object allocated from zs_malloc, it must be mapped using
1247 * this function. When done with the object, it must be unmapped using
1250 * Only one object can be mapped per cpu at a time. There is no protection
1251 * against nested mappings.
1253 * This function returns with preemption and page faults disabled.
1255 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1259 unsigned long obj
, obj_idx
, off
;
1261 unsigned int class_idx
;
1262 enum fullness_group fg
;
1263 struct size_class
*class;
1264 struct mapping_area
*area
;
1265 struct page
*pages
[2];
1271 * Because we use per-cpu mapping areas shared among the
1272 * pools/users, we can't allow mapping in interrupt context
1273 * because it can corrupt another users mappings.
1275 BUG_ON(in_interrupt());
1277 /* From now on, migration cannot move the object */
1280 obj
= handle_to_obj(handle
);
1281 obj_to_location(obj
, &page
, &obj_idx
);
1282 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1283 class = pool
->size_class
[class_idx
];
1284 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1286 area
= &get_cpu_var(zs_map_area
);
1288 if (off
+ class->size
<= PAGE_SIZE
) {
1289 /* this object is contained entirely within a page */
1290 area
->vm_addr
= kmap_atomic(page
);
1291 ret
= area
->vm_addr
+ off
;
1295 /* this object spans two pages */
1297 pages
[1] = get_next_page(page
);
1300 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1303 ret
+= ZS_HANDLE_SIZE
;
1307 EXPORT_SYMBOL_GPL(zs_map_object
);
1309 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1312 unsigned long obj
, obj_idx
, off
;
1314 unsigned int class_idx
;
1315 enum fullness_group fg
;
1316 struct size_class
*class;
1317 struct mapping_area
*area
;
1321 obj
= handle_to_obj(handle
);
1322 obj_to_location(obj
, &page
, &obj_idx
);
1323 get_zspage_mapping(get_first_page(page
), &class_idx
, &fg
);
1324 class = pool
->size_class
[class_idx
];
1325 off
= obj_idx_to_offset(page
, obj_idx
, class->size
);
1327 area
= this_cpu_ptr(&zs_map_area
);
1328 if (off
+ class->size
<= PAGE_SIZE
)
1329 kunmap_atomic(area
->vm_addr
);
1331 struct page
*pages
[2];
1334 pages
[1] = get_next_page(page
);
1337 __zs_unmap_object(area
, pages
, off
, class->size
);
1339 put_cpu_var(zs_map_area
);
1342 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1344 static unsigned long obj_malloc(struct page
*first_page
,
1345 struct size_class
*class, unsigned long handle
)
1348 struct link_free
*link
;
1350 struct page
*m_page
;
1351 unsigned long m_objidx
, m_offset
;
1354 handle
|= OBJ_ALLOCATED_TAG
;
1355 obj
= (unsigned long)first_page
->freelist
;
1356 obj_to_location(obj
, &m_page
, &m_objidx
);
1357 m_offset
= obj_idx_to_offset(m_page
, m_objidx
, class->size
);
1359 vaddr
= kmap_atomic(m_page
);
1360 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1361 first_page
->freelist
= link
->next
;
1363 /* record handle in the header of allocated chunk */
1364 link
->handle
= handle
;
1366 /* record handle in first_page->private */
1367 set_page_private(first_page
, handle
);
1368 kunmap_atomic(vaddr
);
1369 first_page
->inuse
++;
1370 zs_stat_inc(class, OBJ_USED
, 1);
1377 * zs_malloc - Allocate block of given size from pool.
1378 * @pool: pool to allocate from
1379 * @size: size of block to allocate
1381 * On success, handle to the allocated object is returned,
1383 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1385 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
)
1387 unsigned long handle
, obj
;
1388 struct size_class
*class;
1389 struct page
*first_page
;
1391 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1394 handle
= alloc_handle(pool
);
1398 /* extra space in chunk to keep the handle */
1399 size
+= ZS_HANDLE_SIZE
;
1400 class = pool
->size_class
[get_size_class_index(size
)];
1402 spin_lock(&class->lock
);
1403 first_page
= find_get_zspage(class);
1406 spin_unlock(&class->lock
);
1407 first_page
= alloc_zspage(class, pool
->flags
);
1408 if (unlikely(!first_page
)) {
1409 free_handle(pool
, handle
);
1413 set_zspage_mapping(first_page
, class->index
, ZS_EMPTY
);
1414 atomic_long_add(class->pages_per_zspage
,
1415 &pool
->pages_allocated
);
1417 spin_lock(&class->lock
);
1418 zs_stat_inc(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1419 class->size
, class->pages_per_zspage
));
1422 obj
= obj_malloc(first_page
, class, handle
);
1423 /* Now move the zspage to another fullness group, if required */
1424 fix_fullness_group(class, first_page
);
1425 record_obj(handle
, obj
);
1426 spin_unlock(&class->lock
);
1430 EXPORT_SYMBOL_GPL(zs_malloc
);
1432 static void obj_free(struct zs_pool
*pool
, struct size_class
*class,
1435 struct link_free
*link
;
1436 struct page
*first_page
, *f_page
;
1437 unsigned long f_objidx
, f_offset
;
1440 enum fullness_group fullness
;
1444 obj
&= ~OBJ_ALLOCATED_TAG
;
1445 obj_to_location(obj
, &f_page
, &f_objidx
);
1446 first_page
= get_first_page(f_page
);
1448 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1449 f_offset
= obj_idx_to_offset(f_page
, f_objidx
, class->size
);
1451 vaddr
= kmap_atomic(f_page
);
1453 /* Insert this object in containing zspage's freelist */
1454 link
= (struct link_free
*)(vaddr
+ f_offset
);
1455 link
->next
= first_page
->freelist
;
1457 set_page_private(first_page
, 0);
1458 kunmap_atomic(vaddr
);
1459 first_page
->freelist
= (void *)obj
;
1460 first_page
->inuse
--;
1461 zs_stat_dec(class, OBJ_USED
, 1);
1464 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1466 struct page
*first_page
, *f_page
;
1467 unsigned long obj
, f_objidx
;
1469 struct size_class
*class;
1470 enum fullness_group fullness
;
1472 if (unlikely(!handle
))
1476 obj
= handle_to_obj(handle
);
1477 obj_to_location(obj
, &f_page
, &f_objidx
);
1478 first_page
= get_first_page(f_page
);
1480 get_zspage_mapping(first_page
, &class_idx
, &fullness
);
1481 class = pool
->size_class
[class_idx
];
1483 spin_lock(&class->lock
);
1484 obj_free(pool
, class, obj
);
1485 fullness
= fix_fullness_group(class, first_page
);
1486 if (fullness
== ZS_EMPTY
) {
1487 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1488 class->size
, class->pages_per_zspage
));
1489 atomic_long_sub(class->pages_per_zspage
,
1490 &pool
->pages_allocated
);
1491 free_zspage(first_page
);
1493 spin_unlock(&class->lock
);
1496 free_handle(pool
, handle
);
1498 EXPORT_SYMBOL_GPL(zs_free
);
1500 static void zs_object_copy(unsigned long src
, unsigned long dst
,
1501 struct size_class
*class)
1503 struct page
*s_page
, *d_page
;
1504 unsigned long s_objidx
, d_objidx
;
1505 unsigned long s_off
, d_off
;
1506 void *s_addr
, *d_addr
;
1507 int s_size
, d_size
, size
;
1510 s_size
= d_size
= class->size
;
1512 obj_to_location(src
, &s_page
, &s_objidx
);
1513 obj_to_location(dst
, &d_page
, &d_objidx
);
1515 s_off
= obj_idx_to_offset(s_page
, s_objidx
, class->size
);
1516 d_off
= obj_idx_to_offset(d_page
, d_objidx
, class->size
);
1518 if (s_off
+ class->size
> PAGE_SIZE
)
1519 s_size
= PAGE_SIZE
- s_off
;
1521 if (d_off
+ class->size
> PAGE_SIZE
)
1522 d_size
= PAGE_SIZE
- d_off
;
1524 s_addr
= kmap_atomic(s_page
);
1525 d_addr
= kmap_atomic(d_page
);
1528 size
= min(s_size
, d_size
);
1529 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1532 if (written
== class->size
)
1540 if (s_off
>= PAGE_SIZE
) {
1541 kunmap_atomic(d_addr
);
1542 kunmap_atomic(s_addr
);
1543 s_page
= get_next_page(s_page
);
1545 s_addr
= kmap_atomic(s_page
);
1546 d_addr
= kmap_atomic(d_page
);
1547 s_size
= class->size
- written
;
1551 if (d_off
>= PAGE_SIZE
) {
1552 kunmap_atomic(d_addr
);
1553 d_page
= get_next_page(d_page
);
1555 d_addr
= kmap_atomic(d_page
);
1556 d_size
= class->size
- written
;
1561 kunmap_atomic(d_addr
);
1562 kunmap_atomic(s_addr
);
1566 * Find alloced object in zspage from index object and
1569 static unsigned long find_alloced_obj(struct page
*page
, int index
,
1570 struct size_class
*class)
1574 unsigned long handle
= 0;
1575 void *addr
= kmap_atomic(page
);
1577 if (!is_first_page(page
))
1578 offset
= page
->index
;
1579 offset
+= class->size
* index
;
1581 while (offset
< PAGE_SIZE
) {
1582 head
= obj_to_head(class, page
, addr
+ offset
);
1583 if (head
& OBJ_ALLOCATED_TAG
) {
1584 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1585 if (trypin_tag(handle
))
1590 offset
+= class->size
;
1594 kunmap_atomic(addr
);
1598 struct zs_compact_control
{
1599 /* Source page for migration which could be a subpage of zspage. */
1600 struct page
*s_page
;
1601 /* Destination page for migration which should be a first page
1603 struct page
*d_page
;
1604 /* Starting object index within @s_page which used for live object
1605 * in the subpage. */
1607 /* how many of objects are migrated */
1611 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1612 struct zs_compact_control
*cc
)
1614 unsigned long used_obj
, free_obj
;
1615 unsigned long handle
;
1616 struct page
*s_page
= cc
->s_page
;
1617 struct page
*d_page
= cc
->d_page
;
1618 unsigned long index
= cc
->index
;
1619 int nr_migrated
= 0;
1623 handle
= find_alloced_obj(s_page
, index
, class);
1625 s_page
= get_next_page(s_page
);
1632 /* Stop if there is no more space */
1633 if (zspage_full(d_page
)) {
1639 used_obj
= handle_to_obj(handle
);
1640 free_obj
= obj_malloc(d_page
, class, handle
);
1641 zs_object_copy(used_obj
, free_obj
, class);
1643 record_obj(handle
, free_obj
);
1645 obj_free(pool
, class, used_obj
);
1649 /* Remember last position in this iteration */
1650 cc
->s_page
= s_page
;
1652 cc
->nr_migrated
= nr_migrated
;
1657 static struct page
*alloc_target_page(struct size_class
*class)
1662 for (i
= 0; i
< _ZS_NR_FULLNESS_GROUPS
; i
++) {
1663 page
= class->fullness_list
[i
];
1665 remove_zspage(page
, class, i
);
1673 static void putback_zspage(struct zs_pool
*pool
, struct size_class
*class,
1674 struct page
*first_page
)
1676 enum fullness_group fullness
;
1678 BUG_ON(!is_first_page(first_page
));
1680 fullness
= get_fullness_group(first_page
);
1681 insert_zspage(first_page
, class, fullness
);
1682 set_zspage_mapping(first_page
, class->index
, fullness
);
1684 if (fullness
== ZS_EMPTY
) {
1685 zs_stat_dec(class, OBJ_ALLOCATED
, get_maxobj_per_zspage(
1686 class->size
, class->pages_per_zspage
));
1687 atomic_long_sub(class->pages_per_zspage
,
1688 &pool
->pages_allocated
);
1690 free_zspage(first_page
);
1694 static struct page
*isolate_source_page(struct size_class
*class)
1698 page
= class->fullness_list
[ZS_ALMOST_EMPTY
];
1700 remove_zspage(page
, class, ZS_ALMOST_EMPTY
);
1705 static unsigned long __zs_compact(struct zs_pool
*pool
,
1706 struct size_class
*class)
1709 struct zs_compact_control cc
;
1710 struct page
*src_page
;
1711 struct page
*dst_page
= NULL
;
1712 unsigned long nr_total_migrated
= 0;
1714 spin_lock(&class->lock
);
1715 while ((src_page
= isolate_source_page(class))) {
1717 BUG_ON(!is_first_page(src_page
));
1719 /* The goal is to migrate all live objects in source page */
1720 nr_to_migrate
= src_page
->inuse
;
1722 cc
.s_page
= src_page
;
1724 while ((dst_page
= alloc_target_page(class))) {
1725 cc
.d_page
= dst_page
;
1727 * If there is no more space in dst_page, try to
1728 * allocate another zspage.
1730 if (!migrate_zspage(pool
, class, &cc
))
1733 putback_zspage(pool
, class, dst_page
);
1734 nr_total_migrated
+= cc
.nr_migrated
;
1735 nr_to_migrate
-= cc
.nr_migrated
;
1738 /* Stop if we couldn't find slot */
1739 if (dst_page
== NULL
)
1742 putback_zspage(pool
, class, dst_page
);
1743 putback_zspage(pool
, class, src_page
);
1744 spin_unlock(&class->lock
);
1745 nr_total_migrated
+= cc
.nr_migrated
;
1747 spin_lock(&class->lock
);
1751 putback_zspage(pool
, class, src_page
);
1753 spin_unlock(&class->lock
);
1755 return nr_total_migrated
;
1758 unsigned long zs_compact(struct zs_pool
*pool
)
1761 unsigned long nr_migrated
= 0;
1762 struct size_class
*class;
1764 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1765 class = pool
->size_class
[i
];
1768 if (class->index
!= i
)
1770 nr_migrated
+= __zs_compact(pool
, class);
1775 EXPORT_SYMBOL_GPL(zs_compact
);
1778 * zs_create_pool - Creates an allocation pool to work from.
1779 * @flags: allocation flags used to allocate pool metadata
1781 * This function must be called before anything when using
1782 * the zsmalloc allocator.
1784 * On success, a pointer to the newly created pool is returned,
1787 struct zs_pool
*zs_create_pool(char *name
, gfp_t flags
)
1790 struct zs_pool
*pool
;
1791 struct size_class
*prev_class
= NULL
;
1793 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
1797 pool
->size_class
= kcalloc(zs_size_classes
, sizeof(struct size_class
*),
1799 if (!pool
->size_class
) {
1804 pool
->name
= kstrdup(name
, GFP_KERNEL
);
1808 if (create_handle_cache(pool
))
1812 * Iterate reversly, because, size of size_class that we want to use
1813 * for merging should be larger or equal to current size.
1815 for (i
= zs_size_classes
- 1; i
>= 0; i
--) {
1817 int pages_per_zspage
;
1818 struct size_class
*class;
1820 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
1821 if (size
> ZS_MAX_ALLOC_SIZE
)
1822 size
= ZS_MAX_ALLOC_SIZE
;
1823 pages_per_zspage
= get_pages_per_zspage(size
);
1826 * size_class is used for normal zsmalloc operation such
1827 * as alloc/free for that size. Although it is natural that we
1828 * have one size_class for each size, there is a chance that we
1829 * can get more memory utilization if we use one size_class for
1830 * many different sizes whose size_class have same
1831 * characteristics. So, we makes size_class point to
1832 * previous size_class if possible.
1835 if (can_merge(prev_class
, size
, pages_per_zspage
)) {
1836 pool
->size_class
[i
] = prev_class
;
1841 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
1847 class->pages_per_zspage
= pages_per_zspage
;
1848 if (pages_per_zspage
== 1 &&
1849 get_maxobj_per_zspage(size
, pages_per_zspage
) == 1)
1851 spin_lock_init(&class->lock
);
1852 pool
->size_class
[i
] = class;
1857 pool
->flags
= flags
;
1859 if (zs_pool_stat_create(name
, pool
))
1865 zs_destroy_pool(pool
);
1868 EXPORT_SYMBOL_GPL(zs_create_pool
);
1870 void zs_destroy_pool(struct zs_pool
*pool
)
1874 zs_pool_stat_destroy(pool
);
1876 for (i
= 0; i
< zs_size_classes
; i
++) {
1878 struct size_class
*class = pool
->size_class
[i
];
1883 if (class->index
!= i
)
1886 for (fg
= 0; fg
< _ZS_NR_FULLNESS_GROUPS
; fg
++) {
1887 if (class->fullness_list
[fg
]) {
1888 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
1895 destroy_handle_cache(pool
);
1896 kfree(pool
->size_class
);
1900 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
1902 static int __init
zs_init(void)
1904 int ret
= zs_register_cpu_notifier();
1909 init_zs_size_classes();
1912 zpool_register_driver(&zs_zpool_driver
);
1915 ret
= zs_stat_init();
1917 pr_err("zs stat initialization failed\n");
1924 zpool_unregister_driver(&zs_zpool_driver
);
1927 zs_unregister_cpu_notifier();
1932 static void __exit
zs_exit(void)
1935 zpool_unregister_driver(&zs_zpool_driver
);
1937 zs_unregister_cpu_notifier();
1942 module_init(zs_init
);
1943 module_exit(zs_exit
);
1945 MODULE_LICENSE("Dual BSD/GPL");
1946 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");