libceph: announce support for straw2 buckets
[linux/fpc-iii.git] / drivers / ptp / ptp_clock.c
blob296b0ec8744da915763f8444c2ae8e902376c33e
1 /*
2 * PTP 1588 clock support
4 * Copyright (C) 2010 OMICRON electronics GmbH
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 #include <linux/idr.h>
21 #include <linux/device.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/posix-clock.h>
27 #include <linux/pps_kernel.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/uaccess.h>
32 #include "ptp_private.h"
34 #define PTP_MAX_ALARMS 4
35 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
36 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
37 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
39 /* private globals */
41 static dev_t ptp_devt;
42 static struct class *ptp_class;
44 static DEFINE_IDA(ptp_clocks_map);
46 /* time stamp event queue operations */
48 static inline int queue_free(struct timestamp_event_queue *q)
50 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
53 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
54 struct ptp_clock_event *src)
56 struct ptp_extts_event *dst;
57 unsigned long flags;
58 s64 seconds;
59 u32 remainder;
61 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
63 spin_lock_irqsave(&queue->lock, flags);
65 dst = &queue->buf[queue->tail];
66 dst->index = src->index;
67 dst->t.sec = seconds;
68 dst->t.nsec = remainder;
70 if (!queue_free(queue))
71 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
73 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
75 spin_unlock_irqrestore(&queue->lock, flags);
78 static s32 scaled_ppm_to_ppb(long ppm)
81 * The 'freq' field in the 'struct timex' is in parts per
82 * million, but with a 16 bit binary fractional field.
84 * We want to calculate
86 * ppb = scaled_ppm * 1000 / 2^16
88 * which simplifies to
90 * ppb = scaled_ppm * 125 / 2^13
92 s64 ppb = 1 + ppm;
93 ppb *= 125;
94 ppb >>= 13;
95 return (s32) ppb;
98 /* posix clock implementation */
100 static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
102 tp->tv_sec = 0;
103 tp->tv_nsec = 1;
104 return 0;
107 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
109 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
110 return ptp->info->settime(ptp->info, tp);
113 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
115 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
116 return ptp->info->gettime(ptp->info, tp);
119 static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
121 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
122 struct ptp_clock_info *ops;
123 int err = -EOPNOTSUPP;
125 ops = ptp->info;
127 if (tx->modes & ADJ_SETOFFSET) {
128 struct timespec ts;
129 ktime_t kt;
130 s64 delta;
132 ts.tv_sec = tx->time.tv_sec;
133 ts.tv_nsec = tx->time.tv_usec;
135 if (!(tx->modes & ADJ_NANO))
136 ts.tv_nsec *= 1000;
138 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
139 return -EINVAL;
141 kt = timespec_to_ktime(ts);
142 delta = ktime_to_ns(kt);
143 err = ops->adjtime(ops, delta);
144 } else if (tx->modes & ADJ_FREQUENCY) {
145 s32 ppb = scaled_ppm_to_ppb(tx->freq);
146 if (ppb > ops->max_adj || ppb < -ops->max_adj)
147 return -ERANGE;
148 err = ops->adjfreq(ops, ppb);
149 ptp->dialed_frequency = tx->freq;
150 } else if (tx->modes == 0) {
151 tx->freq = ptp->dialed_frequency;
152 err = 0;
155 return err;
158 static struct posix_clock_operations ptp_clock_ops = {
159 .owner = THIS_MODULE,
160 .clock_adjtime = ptp_clock_adjtime,
161 .clock_gettime = ptp_clock_gettime,
162 .clock_getres = ptp_clock_getres,
163 .clock_settime = ptp_clock_settime,
164 .ioctl = ptp_ioctl,
165 .open = ptp_open,
166 .poll = ptp_poll,
167 .read = ptp_read,
170 static void delete_ptp_clock(struct posix_clock *pc)
172 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
174 mutex_destroy(&ptp->tsevq_mux);
175 mutex_destroy(&ptp->pincfg_mux);
176 ida_simple_remove(&ptp_clocks_map, ptp->index);
177 kfree(ptp);
180 /* public interface */
182 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
183 struct device *parent)
185 struct ptp_clock *ptp;
186 int err = 0, index, major = MAJOR(ptp_devt);
188 if (info->n_alarm > PTP_MAX_ALARMS)
189 return ERR_PTR(-EINVAL);
191 /* Initialize a clock structure. */
192 err = -ENOMEM;
193 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
194 if (ptp == NULL)
195 goto no_memory;
197 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
198 if (index < 0) {
199 err = index;
200 goto no_slot;
203 ptp->clock.ops = ptp_clock_ops;
204 ptp->clock.release = delete_ptp_clock;
205 ptp->info = info;
206 ptp->devid = MKDEV(major, index);
207 ptp->index = index;
208 spin_lock_init(&ptp->tsevq.lock);
209 mutex_init(&ptp->tsevq_mux);
210 mutex_init(&ptp->pincfg_mux);
211 init_waitqueue_head(&ptp->tsev_wq);
213 /* Create a new device in our class. */
214 ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
215 "ptp%d", ptp->index);
216 if (IS_ERR(ptp->dev))
217 goto no_device;
219 dev_set_drvdata(ptp->dev, ptp);
221 err = ptp_populate_sysfs(ptp);
222 if (err)
223 goto no_sysfs;
225 /* Register a new PPS source. */
226 if (info->pps) {
227 struct pps_source_info pps;
228 memset(&pps, 0, sizeof(pps));
229 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
230 pps.mode = PTP_PPS_MODE;
231 pps.owner = info->owner;
232 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
233 if (!ptp->pps_source) {
234 pr_err("failed to register pps source\n");
235 goto no_pps;
239 /* Create a posix clock. */
240 err = posix_clock_register(&ptp->clock, ptp->devid);
241 if (err) {
242 pr_err("failed to create posix clock\n");
243 goto no_clock;
246 return ptp;
248 no_clock:
249 if (ptp->pps_source)
250 pps_unregister_source(ptp->pps_source);
251 no_pps:
252 ptp_cleanup_sysfs(ptp);
253 no_sysfs:
254 device_destroy(ptp_class, ptp->devid);
255 no_device:
256 mutex_destroy(&ptp->tsevq_mux);
257 mutex_destroy(&ptp->pincfg_mux);
258 no_slot:
259 kfree(ptp);
260 no_memory:
261 return ERR_PTR(err);
263 EXPORT_SYMBOL(ptp_clock_register);
265 int ptp_clock_unregister(struct ptp_clock *ptp)
267 ptp->defunct = 1;
268 wake_up_interruptible(&ptp->tsev_wq);
270 /* Release the clock's resources. */
271 if (ptp->pps_source)
272 pps_unregister_source(ptp->pps_source);
273 ptp_cleanup_sysfs(ptp);
274 device_destroy(ptp_class, ptp->devid);
276 posix_clock_unregister(&ptp->clock);
277 return 0;
279 EXPORT_SYMBOL(ptp_clock_unregister);
281 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
283 struct pps_event_time evt;
285 switch (event->type) {
287 case PTP_CLOCK_ALARM:
288 break;
290 case PTP_CLOCK_EXTTS:
291 enqueue_external_timestamp(&ptp->tsevq, event);
292 wake_up_interruptible(&ptp->tsev_wq);
293 break;
295 case PTP_CLOCK_PPS:
296 pps_get_ts(&evt);
297 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
298 break;
300 case PTP_CLOCK_PPSUSR:
301 pps_event(ptp->pps_source, &event->pps_times,
302 PTP_PPS_EVENT, NULL);
303 break;
306 EXPORT_SYMBOL(ptp_clock_event);
308 int ptp_clock_index(struct ptp_clock *ptp)
310 return ptp->index;
312 EXPORT_SYMBOL(ptp_clock_index);
314 int ptp_find_pin(struct ptp_clock *ptp,
315 enum ptp_pin_function func, unsigned int chan)
317 struct ptp_pin_desc *pin = NULL;
318 int i;
320 mutex_lock(&ptp->pincfg_mux);
321 for (i = 0; i < ptp->info->n_pins; i++) {
322 if (ptp->info->pin_config[i].func == func &&
323 ptp->info->pin_config[i].chan == chan) {
324 pin = &ptp->info->pin_config[i];
325 break;
328 mutex_unlock(&ptp->pincfg_mux);
330 return pin ? i : -1;
332 EXPORT_SYMBOL(ptp_find_pin);
334 /* module operations */
336 static void __exit ptp_exit(void)
338 class_destroy(ptp_class);
339 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
340 ida_destroy(&ptp_clocks_map);
343 static int __init ptp_init(void)
345 int err;
347 ptp_class = class_create(THIS_MODULE, "ptp");
348 if (IS_ERR(ptp_class)) {
349 pr_err("ptp: failed to allocate class\n");
350 return PTR_ERR(ptp_class);
353 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
354 if (err < 0) {
355 pr_err("ptp: failed to allocate device region\n");
356 goto no_region;
359 ptp_class->dev_groups = ptp_groups;
360 pr_info("PTP clock support registered\n");
361 return 0;
363 no_region:
364 class_destroy(ptp_class);
365 return err;
368 subsys_initcall(ptp_init);
369 module_exit(ptp_exit);
371 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
372 MODULE_DESCRIPTION("PTP clocks support");
373 MODULE_LICENSE("GPL");