2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
34 #define CREATE_TRACE_POINTS
37 #include <asm/uaccess.h>
38 #include <asm/ptrace.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
51 __asm__(".arch_extension virt");
54 DEFINE_PER_CPU(kvm_cpu_context_t
, kvm_host_cpu_state
);
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page
);
56 static unsigned long hyp_default_vectors
;
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu
*, kvm_arm_running_vcpu
);
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen
= ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid
;
64 static unsigned int kvm_vmid_bits __read_mostly
;
65 static DEFINE_SPINLOCK(kvm_vmid_lock
);
67 static bool vgic_present
;
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled
);
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu
*vcpu
)
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu
, vcpu
);
78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79 * Must be called from non-preemptible context
81 struct kvm_vcpu
*kvm_arm_get_running_vcpu(void)
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu
);
88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 struct kvm_vcpu
* __percpu
*kvm_get_running_vcpus(void)
92 return &kvm_arm_running_vcpu
;
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
97 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
100 int kvm_arch_hardware_setup(void)
105 void kvm_arch_check_processor_compat(void *rtn
)
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
115 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
122 kvm
->arch
.last_vcpu_ran
= alloc_percpu(typeof(*kvm
->arch
.last_vcpu_ran
));
123 if (!kvm
->arch
.last_vcpu_ran
)
126 for_each_possible_cpu(cpu
)
127 *per_cpu_ptr(kvm
->arch
.last_vcpu_ran
, cpu
) = -1;
129 ret
= kvm_alloc_stage2_pgd(kvm
);
133 ret
= create_hyp_mappings(kvm
, kvm
+ 1, PAGE_HYP
);
135 goto out_free_stage2_pgd
;
137 kvm_vgic_early_init(kvm
);
140 /* Mark the initial VMID generation invalid */
141 kvm
->arch
.vmid_gen
= 0;
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm
->arch
.max_vcpus
= vgic_present
?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS
;
149 kvm_free_stage2_pgd(kvm
);
151 free_percpu(kvm
->arch
.last_vcpu_ran
);
152 kvm
->arch
.last_vcpu_ran
= NULL
;
156 bool kvm_arch_has_vcpu_debugfs(void)
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu
*vcpu
)
166 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
168 return VM_FAULT_SIGBUS
;
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
176 void kvm_arch_destroy_vm(struct kvm
*kvm
)
180 free_percpu(kvm
->arch
.last_vcpu_ran
);
181 kvm
->arch
.last_vcpu_ran
= NULL
;
183 for (i
= 0; i
< KVM_MAX_VCPUS
; ++i
) {
185 kvm_arch_vcpu_free(kvm
->vcpus
[i
]);
186 kvm
->vcpus
[i
] = NULL
;
190 kvm_vgic_destroy(kvm
);
193 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
197 case KVM_CAP_IRQCHIP
:
200 case KVM_CAP_IOEVENTFD
:
201 case KVM_CAP_DEVICE_CTRL
:
202 case KVM_CAP_USER_MEMORY
:
203 case KVM_CAP_SYNC_MMU
:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
205 case KVM_CAP_ONE_REG
:
206 case KVM_CAP_ARM_PSCI
:
207 case KVM_CAP_ARM_PSCI_0_2
:
208 case KVM_CAP_READONLY_MEM
:
209 case KVM_CAP_MP_STATE
:
212 case KVM_CAP_COALESCED_MMIO
:
213 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
215 case KVM_CAP_ARM_SET_DEVICE_ADDR
:
218 case KVM_CAP_NR_VCPUS
:
219 r
= num_online_cpus();
221 case KVM_CAP_MAX_VCPUS
:
225 r
= kvm_arch_dev_ioctl_check_extension(kvm
, ext
);
231 long kvm_arch_dev_ioctl(struct file
*filp
,
232 unsigned int ioctl
, unsigned long arg
)
238 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
, unsigned int id
)
241 struct kvm_vcpu
*vcpu
;
243 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
)) {
248 if (id
>= kvm
->arch
.max_vcpus
) {
253 vcpu
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
259 err
= kvm_vcpu_init(vcpu
, kvm
, id
);
263 err
= create_hyp_mappings(vcpu
, vcpu
+ 1, PAGE_HYP
);
269 kvm_vcpu_uninit(vcpu
);
271 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
278 kvm_vgic_vcpu_early_init(vcpu
);
281 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
283 kvm_mmu_free_memory_caches(vcpu
);
284 kvm_timer_vcpu_terminate(vcpu
);
285 kvm_vgic_vcpu_destroy(vcpu
);
286 kvm_pmu_vcpu_destroy(vcpu
);
287 kvm_vcpu_uninit(vcpu
);
288 kmem_cache_free(kvm_vcpu_cache
, vcpu
);
291 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
293 kvm_arch_vcpu_free(vcpu
);
296 int kvm_cpu_has_pending_timer(struct kvm_vcpu
*vcpu
)
298 return kvm_timer_should_fire(vcpu
);
301 void kvm_arch_vcpu_blocking(struct kvm_vcpu
*vcpu
)
303 kvm_timer_schedule(vcpu
);
306 void kvm_arch_vcpu_unblocking(struct kvm_vcpu
*vcpu
)
308 kvm_timer_unschedule(vcpu
);
311 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
313 /* Force users to call KVM_ARM_VCPU_INIT */
314 vcpu
->arch
.target
= -1;
315 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
317 /* Set up the timer */
318 kvm_timer_vcpu_init(vcpu
);
320 kvm_arm_reset_debug_ptr(vcpu
);
325 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
329 last_ran
= this_cpu_ptr(vcpu
->kvm
->arch
.last_vcpu_ran
);
332 * We might get preempted before the vCPU actually runs, but
333 * over-invalidation doesn't affect correctness.
335 if (*last_ran
!= vcpu
->vcpu_id
) {
336 kvm_call_hyp(__kvm_tlb_flush_local_vmid
, vcpu
);
337 *last_ran
= vcpu
->vcpu_id
;
341 vcpu
->arch
.host_cpu_context
= this_cpu_ptr(&kvm_host_cpu_state
);
343 kvm_arm_set_running_vcpu(vcpu
);
346 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
349 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
350 * if the vcpu is no longer assigned to a cpu. This is used for the
351 * optimized make_all_cpus_request path.
355 kvm_arm_set_running_vcpu(NULL
);
356 kvm_timer_vcpu_put(vcpu
);
359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
360 struct kvm_mp_state
*mp_state
)
362 if (vcpu
->arch
.power_off
)
363 mp_state
->mp_state
= KVM_MP_STATE_STOPPED
;
365 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
371 struct kvm_mp_state
*mp_state
)
373 switch (mp_state
->mp_state
) {
374 case KVM_MP_STATE_RUNNABLE
:
375 vcpu
->arch
.power_off
= false;
377 case KVM_MP_STATE_STOPPED
:
378 vcpu
->arch
.power_off
= true;
388 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
389 * @v: The VCPU pointer
391 * If the guest CPU is not waiting for interrupts or an interrupt line is
392 * asserted, the CPU is by definition runnable.
394 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*v
)
396 return ((!!v
->arch
.irq_lines
|| kvm_vgic_vcpu_pending_irq(v
))
397 && !v
->arch
.power_off
&& !v
->arch
.pause
);
400 /* Just ensure a guest exit from a particular CPU */
401 static void exit_vm_noop(void *info
)
405 void force_vm_exit(const cpumask_t
*mask
)
408 smp_call_function_many(mask
, exit_vm_noop
, NULL
, true);
413 * need_new_vmid_gen - check that the VMID is still valid
414 * @kvm: The VM's VMID to check
416 * return true if there is a new generation of VMIDs being used
418 * The hardware supports only 256 values with the value zero reserved for the
419 * host, so we check if an assigned value belongs to a previous generation,
420 * which which requires us to assign a new value. If we're the first to use a
421 * VMID for the new generation, we must flush necessary caches and TLBs on all
424 static bool need_new_vmid_gen(struct kvm
*kvm
)
426 return unlikely(kvm
->arch
.vmid_gen
!= atomic64_read(&kvm_vmid_gen
));
430 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
431 * @kvm The guest that we are about to run
433 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
434 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
437 static void update_vttbr(struct kvm
*kvm
)
439 phys_addr_t pgd_phys
;
442 if (!need_new_vmid_gen(kvm
))
445 spin_lock(&kvm_vmid_lock
);
448 * We need to re-check the vmid_gen here to ensure that if another vcpu
449 * already allocated a valid vmid for this vm, then this vcpu should
452 if (!need_new_vmid_gen(kvm
)) {
453 spin_unlock(&kvm_vmid_lock
);
457 /* First user of a new VMID generation? */
458 if (unlikely(kvm_next_vmid
== 0)) {
459 atomic64_inc(&kvm_vmid_gen
);
463 * On SMP we know no other CPUs can use this CPU's or each
464 * other's VMID after force_vm_exit returns since the
465 * kvm_vmid_lock blocks them from reentry to the guest.
467 force_vm_exit(cpu_all_mask
);
469 * Now broadcast TLB + ICACHE invalidation over the inner
470 * shareable domain to make sure all data structures are
473 kvm_call_hyp(__kvm_flush_vm_context
);
476 kvm
->arch
.vmid_gen
= atomic64_read(&kvm_vmid_gen
);
477 kvm
->arch
.vmid
= kvm_next_vmid
;
479 kvm_next_vmid
&= (1 << kvm_vmid_bits
) - 1;
481 /* update vttbr to be used with the new vmid */
482 pgd_phys
= virt_to_phys(kvm
->arch
.pgd
);
483 BUG_ON(pgd_phys
& ~VTTBR_BADDR_MASK
);
484 vmid
= ((u64
)(kvm
->arch
.vmid
) << VTTBR_VMID_SHIFT
) & VTTBR_VMID_MASK(kvm_vmid_bits
);
485 kvm
->arch
.vttbr
= pgd_phys
| vmid
;
487 spin_unlock(&kvm_vmid_lock
);
490 static int kvm_vcpu_first_run_init(struct kvm_vcpu
*vcpu
)
492 struct kvm
*kvm
= vcpu
->kvm
;
495 if (likely(vcpu
->arch
.has_run_once
))
498 vcpu
->arch
.has_run_once
= true;
501 * Map the VGIC hardware resources before running a vcpu the first
504 if (unlikely(irqchip_in_kernel(kvm
) && !vgic_ready(kvm
))) {
505 ret
= kvm_vgic_map_resources(kvm
);
511 * Enable the arch timers only if we have an in-kernel VGIC
512 * and it has been properly initialized, since we cannot handle
513 * interrupts from the virtual timer with a userspace gic.
515 if (irqchip_in_kernel(kvm
) && vgic_initialized(kvm
))
516 ret
= kvm_timer_enable(vcpu
);
521 bool kvm_arch_intc_initialized(struct kvm
*kvm
)
523 return vgic_initialized(kvm
);
526 void kvm_arm_halt_guest(struct kvm
*kvm
)
529 struct kvm_vcpu
*vcpu
;
531 kvm_for_each_vcpu(i
, vcpu
, kvm
)
532 vcpu
->arch
.pause
= true;
533 kvm_make_all_cpus_request(kvm
, KVM_REQ_VCPU_EXIT
);
536 void kvm_arm_halt_vcpu(struct kvm_vcpu
*vcpu
)
538 vcpu
->arch
.pause
= true;
542 void kvm_arm_resume_vcpu(struct kvm_vcpu
*vcpu
)
544 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
546 vcpu
->arch
.pause
= false;
550 void kvm_arm_resume_guest(struct kvm
*kvm
)
553 struct kvm_vcpu
*vcpu
;
555 kvm_for_each_vcpu(i
, vcpu
, kvm
)
556 kvm_arm_resume_vcpu(vcpu
);
559 static void vcpu_sleep(struct kvm_vcpu
*vcpu
)
561 struct swait_queue_head
*wq
= kvm_arch_vcpu_wq(vcpu
);
563 swait_event_interruptible(*wq
, ((!vcpu
->arch
.power_off
) &&
564 (!vcpu
->arch
.pause
)));
567 static int kvm_vcpu_initialized(struct kvm_vcpu
*vcpu
)
569 return vcpu
->arch
.target
>= 0;
573 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
574 * @vcpu: The VCPU pointer
575 * @run: The kvm_run structure pointer used for userspace state exchange
577 * This function is called through the VCPU_RUN ioctl called from user space. It
578 * will execute VM code in a loop until the time slice for the process is used
579 * or some emulation is needed from user space in which case the function will
580 * return with return value 0 and with the kvm_run structure filled in with the
581 * required data for the requested emulation.
583 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
588 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
591 ret
= kvm_vcpu_first_run_init(vcpu
);
595 if (run
->exit_reason
== KVM_EXIT_MMIO
) {
596 ret
= kvm_handle_mmio_return(vcpu
, vcpu
->run
);
601 if (vcpu
->sigset_active
)
602 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
605 run
->exit_reason
= KVM_EXIT_UNKNOWN
;
608 * Check conditions before entering the guest
612 update_vttbr(vcpu
->kvm
);
614 if (vcpu
->arch
.power_off
|| vcpu
->arch
.pause
)
618 * Preparing the interrupts to be injected also
619 * involves poking the GIC, which must be done in a
620 * non-preemptible context.
623 kvm_pmu_flush_hwstate(vcpu
);
624 kvm_timer_flush_hwstate(vcpu
);
625 kvm_vgic_flush_hwstate(vcpu
);
630 * Re-check atomic conditions
632 if (signal_pending(current
)) {
634 run
->exit_reason
= KVM_EXIT_INTR
;
637 if (ret
<= 0 || need_new_vmid_gen(vcpu
->kvm
) ||
638 vcpu
->arch
.power_off
|| vcpu
->arch
.pause
) {
640 kvm_pmu_sync_hwstate(vcpu
);
641 kvm_timer_sync_hwstate(vcpu
);
642 kvm_vgic_sync_hwstate(vcpu
);
647 kvm_arm_setup_debug(vcpu
);
649 /**************************************************************
652 trace_kvm_entry(*vcpu_pc(vcpu
));
653 guest_enter_irqoff();
654 vcpu
->mode
= IN_GUEST_MODE
;
656 ret
= kvm_call_hyp(__kvm_vcpu_run
, vcpu
);
658 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
662 *************************************************************/
664 kvm_arm_clear_debug(vcpu
);
667 * We may have taken a host interrupt in HYP mode (ie
668 * while executing the guest). This interrupt is still
669 * pending, as we haven't serviced it yet!
671 * We're now back in SVC mode, with interrupts
672 * disabled. Enabling the interrupts now will have
673 * the effect of taking the interrupt again, in SVC
679 * We do local_irq_enable() before calling guest_exit() so
680 * that if a timer interrupt hits while running the guest we
681 * account that tick as being spent in the guest. We enable
682 * preemption after calling guest_exit() so that if we get
683 * preempted we make sure ticks after that is not counted as
687 trace_kvm_exit(ret
, kvm_vcpu_trap_get_class(vcpu
), *vcpu_pc(vcpu
));
690 * We must sync the PMU and timer state before the vgic state so
691 * that the vgic can properly sample the updated state of the
694 kvm_pmu_sync_hwstate(vcpu
);
695 kvm_timer_sync_hwstate(vcpu
);
697 kvm_vgic_sync_hwstate(vcpu
);
701 ret
= handle_exit(vcpu
, run
, ret
);
704 if (vcpu
->sigset_active
)
705 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
709 static int vcpu_interrupt_line(struct kvm_vcpu
*vcpu
, int number
, bool level
)
715 if (number
== KVM_ARM_IRQ_CPU_IRQ
)
716 bit_index
= __ffs(HCR_VI
);
717 else /* KVM_ARM_IRQ_CPU_FIQ */
718 bit_index
= __ffs(HCR_VF
);
720 ptr
= (unsigned long *)&vcpu
->arch
.irq_lines
;
722 set
= test_and_set_bit(bit_index
, ptr
);
724 set
= test_and_clear_bit(bit_index
, ptr
);
727 * If we didn't change anything, no need to wake up or kick other CPUs
733 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
734 * trigger a world-switch round on the running physical CPU to set the
735 * virtual IRQ/FIQ fields in the HCR appropriately.
742 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_level
,
745 u32 irq
= irq_level
->irq
;
746 unsigned int irq_type
, vcpu_idx
, irq_num
;
747 int nrcpus
= atomic_read(&kvm
->online_vcpus
);
748 struct kvm_vcpu
*vcpu
= NULL
;
749 bool level
= irq_level
->level
;
751 irq_type
= (irq
>> KVM_ARM_IRQ_TYPE_SHIFT
) & KVM_ARM_IRQ_TYPE_MASK
;
752 vcpu_idx
= (irq
>> KVM_ARM_IRQ_VCPU_SHIFT
) & KVM_ARM_IRQ_VCPU_MASK
;
753 irq_num
= (irq
>> KVM_ARM_IRQ_NUM_SHIFT
) & KVM_ARM_IRQ_NUM_MASK
;
755 trace_kvm_irq_line(irq_type
, vcpu_idx
, irq_num
, irq_level
->level
);
758 case KVM_ARM_IRQ_TYPE_CPU
:
759 if (irqchip_in_kernel(kvm
))
762 if (vcpu_idx
>= nrcpus
)
765 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
769 if (irq_num
> KVM_ARM_IRQ_CPU_FIQ
)
772 return vcpu_interrupt_line(vcpu
, irq_num
, level
);
773 case KVM_ARM_IRQ_TYPE_PPI
:
774 if (!irqchip_in_kernel(kvm
))
777 if (vcpu_idx
>= nrcpus
)
780 vcpu
= kvm_get_vcpu(kvm
, vcpu_idx
);
784 if (irq_num
< VGIC_NR_SGIS
|| irq_num
>= VGIC_NR_PRIVATE_IRQS
)
787 return kvm_vgic_inject_irq(kvm
, vcpu
->vcpu_id
, irq_num
, level
);
788 case KVM_ARM_IRQ_TYPE_SPI
:
789 if (!irqchip_in_kernel(kvm
))
792 if (irq_num
< VGIC_NR_PRIVATE_IRQS
)
795 return kvm_vgic_inject_irq(kvm
, 0, irq_num
, level
);
801 static int kvm_vcpu_set_target(struct kvm_vcpu
*vcpu
,
802 const struct kvm_vcpu_init
*init
)
805 int phys_target
= kvm_target_cpu();
807 if (init
->target
!= phys_target
)
811 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
812 * use the same target.
814 if (vcpu
->arch
.target
!= -1 && vcpu
->arch
.target
!= init
->target
)
817 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
818 for (i
= 0; i
< sizeof(init
->features
) * 8; i
++) {
819 bool set
= (init
->features
[i
/ 32] & (1 << (i
% 32)));
821 if (set
&& i
>= KVM_VCPU_MAX_FEATURES
)
825 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
826 * use the same feature set.
828 if (vcpu
->arch
.target
!= -1 && i
< KVM_VCPU_MAX_FEATURES
&&
829 test_bit(i
, vcpu
->arch
.features
) != set
)
833 set_bit(i
, vcpu
->arch
.features
);
836 vcpu
->arch
.target
= phys_target
;
838 /* Now we know what it is, we can reset it. */
839 ret
= kvm_reset_vcpu(vcpu
);
841 vcpu
->arch
.target
= -1;
842 bitmap_zero(vcpu
->arch
.features
, KVM_VCPU_MAX_FEATURES
);
848 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu
*vcpu
,
849 struct kvm_vcpu_init
*init
)
853 ret
= kvm_vcpu_set_target(vcpu
, init
);
858 * Ensure a rebooted VM will fault in RAM pages and detect if the
859 * guest MMU is turned off and flush the caches as needed.
861 if (vcpu
->arch
.has_run_once
)
862 stage2_unmap_vm(vcpu
->kvm
);
864 vcpu_reset_hcr(vcpu
);
867 * Handle the "start in power-off" case.
869 if (test_bit(KVM_ARM_VCPU_POWER_OFF
, vcpu
->arch
.features
))
870 vcpu
->arch
.power_off
= true;
872 vcpu
->arch
.power_off
= false;
877 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu
*vcpu
,
878 struct kvm_device_attr
*attr
)
882 switch (attr
->group
) {
884 ret
= kvm_arm_vcpu_arch_set_attr(vcpu
, attr
);
891 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu
*vcpu
,
892 struct kvm_device_attr
*attr
)
896 switch (attr
->group
) {
898 ret
= kvm_arm_vcpu_arch_get_attr(vcpu
, attr
);
905 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu
*vcpu
,
906 struct kvm_device_attr
*attr
)
910 switch (attr
->group
) {
912 ret
= kvm_arm_vcpu_arch_has_attr(vcpu
, attr
);
919 long kvm_arch_vcpu_ioctl(struct file
*filp
,
920 unsigned int ioctl
, unsigned long arg
)
922 struct kvm_vcpu
*vcpu
= filp
->private_data
;
923 void __user
*argp
= (void __user
*)arg
;
924 struct kvm_device_attr attr
;
927 case KVM_ARM_VCPU_INIT
: {
928 struct kvm_vcpu_init init
;
930 if (copy_from_user(&init
, argp
, sizeof(init
)))
933 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu
, &init
);
935 case KVM_SET_ONE_REG
:
936 case KVM_GET_ONE_REG
: {
937 struct kvm_one_reg reg
;
939 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
942 if (copy_from_user(®
, argp
, sizeof(reg
)))
944 if (ioctl
== KVM_SET_ONE_REG
)
945 return kvm_arm_set_reg(vcpu
, ®
);
947 return kvm_arm_get_reg(vcpu
, ®
);
949 case KVM_GET_REG_LIST
: {
950 struct kvm_reg_list __user
*user_list
= argp
;
951 struct kvm_reg_list reg_list
;
954 if (unlikely(!kvm_vcpu_initialized(vcpu
)))
957 if (copy_from_user(®_list
, user_list
, sizeof(reg_list
)))
960 reg_list
.n
= kvm_arm_num_regs(vcpu
);
961 if (copy_to_user(user_list
, ®_list
, sizeof(reg_list
)))
965 return kvm_arm_copy_reg_indices(vcpu
, user_list
->reg
);
967 case KVM_SET_DEVICE_ATTR
: {
968 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
970 return kvm_arm_vcpu_set_attr(vcpu
, &attr
);
972 case KVM_GET_DEVICE_ATTR
: {
973 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
975 return kvm_arm_vcpu_get_attr(vcpu
, &attr
);
977 case KVM_HAS_DEVICE_ATTR
: {
978 if (copy_from_user(&attr
, argp
, sizeof(attr
)))
980 return kvm_arm_vcpu_has_attr(vcpu
, &attr
);
988 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
990 * @log: slot id and address to which we copy the log
992 * Steps 1-4 below provide general overview of dirty page logging. See
993 * kvm_get_dirty_log_protect() function description for additional details.
995 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
996 * always flush the TLB (step 4) even if previous step failed and the dirty
997 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
998 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
999 * writes will be marked dirty for next log read.
1001 * 1. Take a snapshot of the bit and clear it if needed.
1002 * 2. Write protect the corresponding page.
1003 * 3. Copy the snapshot to the userspace.
1004 * 4. Flush TLB's if needed.
1006 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
1008 bool is_dirty
= false;
1011 mutex_lock(&kvm
->slots_lock
);
1013 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
1016 kvm_flush_remote_tlbs(kvm
);
1018 mutex_unlock(&kvm
->slots_lock
);
1022 static int kvm_vm_ioctl_set_device_addr(struct kvm
*kvm
,
1023 struct kvm_arm_device_addr
*dev_addr
)
1025 unsigned long dev_id
, type
;
1027 dev_id
= (dev_addr
->id
& KVM_ARM_DEVICE_ID_MASK
) >>
1028 KVM_ARM_DEVICE_ID_SHIFT
;
1029 type
= (dev_addr
->id
& KVM_ARM_DEVICE_TYPE_MASK
) >>
1030 KVM_ARM_DEVICE_TYPE_SHIFT
;
1033 case KVM_ARM_DEVICE_VGIC_V2
:
1036 return kvm_vgic_addr(kvm
, type
, &dev_addr
->addr
, true);
1042 long kvm_arch_vm_ioctl(struct file
*filp
,
1043 unsigned int ioctl
, unsigned long arg
)
1045 struct kvm
*kvm
= filp
->private_data
;
1046 void __user
*argp
= (void __user
*)arg
;
1049 case KVM_CREATE_IRQCHIP
: {
1053 mutex_lock(&kvm
->lock
);
1054 ret
= kvm_vgic_create(kvm
, KVM_DEV_TYPE_ARM_VGIC_V2
);
1055 mutex_unlock(&kvm
->lock
);
1058 case KVM_ARM_SET_DEVICE_ADDR
: {
1059 struct kvm_arm_device_addr dev_addr
;
1061 if (copy_from_user(&dev_addr
, argp
, sizeof(dev_addr
)))
1063 return kvm_vm_ioctl_set_device_addr(kvm
, &dev_addr
);
1065 case KVM_ARM_PREFERRED_TARGET
: {
1067 struct kvm_vcpu_init init
;
1069 err
= kvm_vcpu_preferred_target(&init
);
1073 if (copy_to_user(argp
, &init
, sizeof(init
)))
1083 static void cpu_init_hyp_mode(void *dummy
)
1085 phys_addr_t pgd_ptr
;
1086 unsigned long hyp_stack_ptr
;
1087 unsigned long stack_page
;
1088 unsigned long vector_ptr
;
1090 /* Switch from the HYP stub to our own HYP init vector */
1091 __hyp_set_vectors(kvm_get_idmap_vector());
1093 pgd_ptr
= kvm_mmu_get_httbr();
1094 stack_page
= __this_cpu_read(kvm_arm_hyp_stack_page
);
1095 hyp_stack_ptr
= stack_page
+ PAGE_SIZE
;
1096 vector_ptr
= (unsigned long)kvm_get_hyp_vector();
1098 __cpu_init_hyp_mode(pgd_ptr
, hyp_stack_ptr
, vector_ptr
);
1099 __cpu_init_stage2();
1102 static void cpu_hyp_reinit(void)
1104 if (is_kernel_in_hyp_mode()) {
1106 * __cpu_init_stage2() is safe to call even if the PM
1107 * event was cancelled before the CPU was reset.
1109 __cpu_init_stage2();
1111 if (__hyp_get_vectors() == hyp_default_vectors
)
1112 cpu_init_hyp_mode(NULL
);
1115 kvm_arm_init_debug();
1118 static void cpu_hyp_reset(void)
1120 if (!is_kernel_in_hyp_mode())
1121 __cpu_reset_hyp_mode(hyp_default_vectors
,
1122 kvm_get_idmap_start());
1125 static void _kvm_arch_hardware_enable(void *discard
)
1127 if (!__this_cpu_read(kvm_arm_hardware_enabled
)) {
1129 __this_cpu_write(kvm_arm_hardware_enabled
, 1);
1133 int kvm_arch_hardware_enable(void)
1135 _kvm_arch_hardware_enable(NULL
);
1139 static void _kvm_arch_hardware_disable(void *discard
)
1141 if (__this_cpu_read(kvm_arm_hardware_enabled
)) {
1143 __this_cpu_write(kvm_arm_hardware_enabled
, 0);
1147 void kvm_arch_hardware_disable(void)
1149 _kvm_arch_hardware_disable(NULL
);
1152 #ifdef CONFIG_CPU_PM
1153 static int hyp_init_cpu_pm_notifier(struct notifier_block
*self
,
1158 * kvm_arm_hardware_enabled is left with its old value over
1159 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1164 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1166 * don't update kvm_arm_hardware_enabled here
1167 * so that the hardware will be re-enabled
1168 * when we resume. See below.
1173 case CPU_PM_ENTER_FAILED
:
1175 if (__this_cpu_read(kvm_arm_hardware_enabled
))
1176 /* The hardware was enabled before suspend. */
1186 static struct notifier_block hyp_init_cpu_pm_nb
= {
1187 .notifier_call
= hyp_init_cpu_pm_notifier
,
1190 static void __init
hyp_cpu_pm_init(void)
1192 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb
);
1194 static void __init
hyp_cpu_pm_exit(void)
1196 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb
);
1199 static inline void hyp_cpu_pm_init(void)
1202 static inline void hyp_cpu_pm_exit(void)
1207 static int init_common_resources(void)
1209 /* set size of VMID supported by CPU */
1210 kvm_vmid_bits
= kvm_get_vmid_bits();
1211 kvm_info("%d-bit VMID\n", kvm_vmid_bits
);
1216 static int init_subsystems(void)
1221 * Enable hardware so that subsystem initialisation can access EL2.
1223 on_each_cpu(_kvm_arch_hardware_enable
, NULL
, 1);
1226 * Register CPU lower-power notifier
1231 * Init HYP view of VGIC
1233 err
= kvm_vgic_hyp_init();
1236 vgic_present
= true;
1240 vgic_present
= false;
1248 * Init HYP architected timer support
1250 err
= kvm_timer_hyp_init();
1255 kvm_coproc_table_init();
1258 on_each_cpu(_kvm_arch_hardware_disable
, NULL
, 1);
1263 static void teardown_hyp_mode(void)
1267 if (is_kernel_in_hyp_mode())
1271 for_each_possible_cpu(cpu
)
1272 free_page(per_cpu(kvm_arm_hyp_stack_page
, cpu
));
1276 static int init_vhe_mode(void)
1278 kvm_info("VHE mode initialized successfully\n");
1283 * Inits Hyp-mode on all online CPUs
1285 static int init_hyp_mode(void)
1291 * Allocate Hyp PGD and setup Hyp identity mapping
1293 err
= kvm_mmu_init();
1298 * It is probably enough to obtain the default on one
1299 * CPU. It's unlikely to be different on the others.
1301 hyp_default_vectors
= __hyp_get_vectors();
1304 * Allocate stack pages for Hypervisor-mode
1306 for_each_possible_cpu(cpu
) {
1307 unsigned long stack_page
;
1309 stack_page
= __get_free_page(GFP_KERNEL
);
1315 per_cpu(kvm_arm_hyp_stack_page
, cpu
) = stack_page
;
1319 * Map the Hyp-code called directly from the host
1321 err
= create_hyp_mappings(kvm_ksym_ref(__hyp_text_start
),
1322 kvm_ksym_ref(__hyp_text_end
), PAGE_HYP_EXEC
);
1324 kvm_err("Cannot map world-switch code\n");
1328 err
= create_hyp_mappings(kvm_ksym_ref(__start_rodata
),
1329 kvm_ksym_ref(__end_rodata
), PAGE_HYP_RO
);
1331 kvm_err("Cannot map rodata section\n");
1335 err
= create_hyp_mappings(kvm_ksym_ref(__bss_start
),
1336 kvm_ksym_ref(__bss_stop
), PAGE_HYP_RO
);
1338 kvm_err("Cannot map bss section\n");
1343 err
= kvm_map_vectors();
1345 kvm_err("Cannot map vectors\n");
1350 * Map the Hyp stack pages
1352 for_each_possible_cpu(cpu
) {
1353 char *stack_page
= (char *)per_cpu(kvm_arm_hyp_stack_page
, cpu
);
1354 err
= create_hyp_mappings(stack_page
, stack_page
+ PAGE_SIZE
,
1358 kvm_err("Cannot map hyp stack\n");
1363 for_each_possible_cpu(cpu
) {
1364 kvm_cpu_context_t
*cpu_ctxt
;
1366 cpu_ctxt
= per_cpu_ptr(&kvm_host_cpu_state
, cpu
);
1367 err
= create_hyp_mappings(cpu_ctxt
, cpu_ctxt
+ 1, PAGE_HYP
);
1370 kvm_err("Cannot map host CPU state: %d\n", err
);
1375 err
= hyp_map_aux_data();
1377 kvm_err("Cannot map host auxilary data: %d\n", err
);
1381 kvm_info("Hyp mode initialized successfully\n");
1386 teardown_hyp_mode();
1387 kvm_err("error initializing Hyp mode: %d\n", err
);
1391 static void check_kvm_target_cpu(void *ret
)
1393 *(int *)ret
= kvm_target_cpu();
1396 struct kvm_vcpu
*kvm_mpidr_to_vcpu(struct kvm
*kvm
, unsigned long mpidr
)
1398 struct kvm_vcpu
*vcpu
;
1401 mpidr
&= MPIDR_HWID_BITMASK
;
1402 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1403 if (mpidr
== kvm_vcpu_get_mpidr_aff(vcpu
))
1410 * Initialize Hyp-mode and memory mappings on all CPUs.
1412 int kvm_arch_init(void *opaque
)
1417 if (!is_hyp_mode_available()) {
1418 kvm_err("HYP mode not available\n");
1422 for_each_online_cpu(cpu
) {
1423 smp_call_function_single(cpu
, check_kvm_target_cpu
, &ret
, 1);
1425 kvm_err("Error, CPU %d not supported!\n", cpu
);
1430 err
= init_common_resources();
1434 if (is_kernel_in_hyp_mode())
1435 err
= init_vhe_mode();
1437 err
= init_hyp_mode();
1441 err
= init_subsystems();
1448 teardown_hyp_mode();
1453 /* NOP: Compiling as a module not supported */
1454 void kvm_arch_exit(void)
1456 kvm_perf_teardown();
1459 static int arm_init(void)
1461 int rc
= kvm_init(NULL
, sizeof(struct kvm_vcpu
), 0, THIS_MODULE
);
1465 module_init(arm_init
);