Revert "ALSA: hda: Flush interrupts on disabling"
[linux/fpc-iii.git] / arch / arm / kvm / arm.c
blobdfc00a5bdc10d369f6b06356a4372dcdb44cc76e
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32 #include <kvm/arm_psci.h>
34 #define CREATE_TRACE_POINTS
35 #include "trace.h"
37 #include <asm/uaccess.h>
38 #include <asm/ptrace.h>
39 #include <asm/mman.h>
40 #include <asm/tlbflush.h>
41 #include <asm/cacheflush.h>
42 #include <asm/virt.h>
43 #include <asm/kvm_arm.h>
44 #include <asm/kvm_asm.h>
45 #include <asm/kvm_mmu.h>
46 #include <asm/kvm_emulate.h>
47 #include <asm/kvm_coproc.h>
48 #include <asm/sections.h>
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
54 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
55 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
56 static unsigned long hyp_default_vectors;
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
67 static bool vgic_present;
69 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 BUG_ON(preemptible());
74 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 /**
78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
79 * Must be called from non-preemptible context
81 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
83 BUG_ON(preemptible());
84 return __this_cpu_read(kvm_arm_running_vcpu);
87 /**
88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 return &kvm_arm_running_vcpu;
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
100 int kvm_arch_hardware_setup(void)
102 return 0;
105 void kvm_arch_check_processor_compat(void *rtn)
107 *(int *)rtn = 0;
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 int ret, cpu;
119 if (type)
120 return -EINVAL;
122 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
123 if (!kvm->arch.last_vcpu_ran)
124 return -ENOMEM;
126 for_each_possible_cpu(cpu)
127 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129 ret = kvm_alloc_stage2_pgd(kvm);
130 if (ret)
131 goto out_fail_alloc;
133 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
134 if (ret)
135 goto out_free_stage2_pgd;
137 kvm_vgic_early_init(kvm);
138 kvm_timer_init(kvm);
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
143 /* The maximum number of VCPUs is limited by the host's GIC model */
144 kvm->arch.max_vcpus = vgic_present ?
145 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
147 return ret;
148 out_free_stage2_pgd:
149 kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151 free_percpu(kvm->arch.last_vcpu_ran);
152 kvm->arch.last_vcpu_ran = NULL;
153 return ret;
156 bool kvm_arch_has_vcpu_debugfs(void)
158 return false;
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
163 return 0;
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
168 return VM_FAULT_SIGBUS;
173 * kvm_arch_destroy_vm - destroy the VM data structure
174 * @kvm: pointer to the KVM struct
176 void kvm_arch_destroy_vm(struct kvm *kvm)
178 int i;
180 free_percpu(kvm->arch.last_vcpu_ran);
181 kvm->arch.last_vcpu_ran = NULL;
183 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
184 if (kvm->vcpus[i]) {
185 kvm_arch_vcpu_free(kvm->vcpus[i]);
186 kvm->vcpus[i] = NULL;
190 kvm_vgic_destroy(kvm);
193 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 int r;
196 switch (ext) {
197 case KVM_CAP_IRQCHIP:
198 r = vgic_present;
199 break;
200 case KVM_CAP_IOEVENTFD:
201 case KVM_CAP_DEVICE_CTRL:
202 case KVM_CAP_USER_MEMORY:
203 case KVM_CAP_SYNC_MMU:
204 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
205 case KVM_CAP_ONE_REG:
206 case KVM_CAP_ARM_PSCI:
207 case KVM_CAP_ARM_PSCI_0_2:
208 case KVM_CAP_READONLY_MEM:
209 case KVM_CAP_MP_STATE:
210 r = 1;
211 break;
212 case KVM_CAP_COALESCED_MMIO:
213 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
214 break;
215 case KVM_CAP_ARM_SET_DEVICE_ADDR:
216 r = 1;
217 break;
218 case KVM_CAP_NR_VCPUS:
219 r = num_online_cpus();
220 break;
221 case KVM_CAP_MAX_VCPUS:
222 r = KVM_MAX_VCPUS;
223 break;
224 default:
225 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
226 break;
228 return r;
231 long kvm_arch_dev_ioctl(struct file *filp,
232 unsigned int ioctl, unsigned long arg)
234 return -EINVAL;
238 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
240 int err;
241 struct kvm_vcpu *vcpu;
243 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
244 err = -EBUSY;
245 goto out;
248 if (id >= kvm->arch.max_vcpus) {
249 err = -EINVAL;
250 goto out;
253 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
254 if (!vcpu) {
255 err = -ENOMEM;
256 goto out;
259 err = kvm_vcpu_init(vcpu, kvm, id);
260 if (err)
261 goto free_vcpu;
263 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
264 if (err)
265 goto vcpu_uninit;
267 return vcpu;
268 vcpu_uninit:
269 kvm_vcpu_uninit(vcpu);
270 free_vcpu:
271 kmem_cache_free(kvm_vcpu_cache, vcpu);
272 out:
273 return ERR_PTR(err);
276 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
278 kvm_vgic_vcpu_early_init(vcpu);
281 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
283 kvm_mmu_free_memory_caches(vcpu);
284 kvm_timer_vcpu_terminate(vcpu);
285 kvm_vgic_vcpu_destroy(vcpu);
286 kvm_pmu_vcpu_destroy(vcpu);
287 kvm_vcpu_uninit(vcpu);
288 kmem_cache_free(kvm_vcpu_cache, vcpu);
291 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
293 kvm_arch_vcpu_free(vcpu);
296 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
298 return kvm_timer_should_fire(vcpu);
301 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
303 kvm_timer_schedule(vcpu);
306 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
308 kvm_timer_unschedule(vcpu);
311 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
313 /* Force users to call KVM_ARM_VCPU_INIT */
314 vcpu->arch.target = -1;
315 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
317 /* Set up the timer */
318 kvm_timer_vcpu_init(vcpu);
320 kvm_arm_reset_debug_ptr(vcpu);
322 return 0;
325 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
327 int *last_ran;
329 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
332 * We might get preempted before the vCPU actually runs, but
333 * over-invalidation doesn't affect correctness.
335 if (*last_ran != vcpu->vcpu_id) {
336 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
337 *last_ran = vcpu->vcpu_id;
340 vcpu->cpu = cpu;
341 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
343 kvm_arm_set_running_vcpu(vcpu);
346 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
349 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
350 * if the vcpu is no longer assigned to a cpu. This is used for the
351 * optimized make_all_cpus_request path.
353 vcpu->cpu = -1;
355 kvm_arm_set_running_vcpu(NULL);
356 kvm_timer_vcpu_put(vcpu);
359 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
360 struct kvm_mp_state *mp_state)
362 if (vcpu->arch.power_off)
363 mp_state->mp_state = KVM_MP_STATE_STOPPED;
364 else
365 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
367 return 0;
370 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
371 struct kvm_mp_state *mp_state)
373 switch (mp_state->mp_state) {
374 case KVM_MP_STATE_RUNNABLE:
375 vcpu->arch.power_off = false;
376 break;
377 case KVM_MP_STATE_STOPPED:
378 vcpu->arch.power_off = true;
379 break;
380 default:
381 return -EINVAL;
384 return 0;
388 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
389 * @v: The VCPU pointer
391 * If the guest CPU is not waiting for interrupts or an interrupt line is
392 * asserted, the CPU is by definition runnable.
394 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
396 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
397 && !v->arch.power_off && !v->arch.pause);
400 /* Just ensure a guest exit from a particular CPU */
401 static void exit_vm_noop(void *info)
405 void force_vm_exit(const cpumask_t *mask)
407 preempt_disable();
408 smp_call_function_many(mask, exit_vm_noop, NULL, true);
409 preempt_enable();
413 * need_new_vmid_gen - check that the VMID is still valid
414 * @kvm: The VM's VMID to check
416 * return true if there is a new generation of VMIDs being used
418 * The hardware supports only 256 values with the value zero reserved for the
419 * host, so we check if an assigned value belongs to a previous generation,
420 * which which requires us to assign a new value. If we're the first to use a
421 * VMID for the new generation, we must flush necessary caches and TLBs on all
422 * CPUs.
424 static bool need_new_vmid_gen(struct kvm *kvm)
426 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
430 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
431 * @kvm The guest that we are about to run
433 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
434 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
435 * caches and TLBs.
437 static void update_vttbr(struct kvm *kvm)
439 phys_addr_t pgd_phys;
440 u64 vmid;
442 if (!need_new_vmid_gen(kvm))
443 return;
445 spin_lock(&kvm_vmid_lock);
448 * We need to re-check the vmid_gen here to ensure that if another vcpu
449 * already allocated a valid vmid for this vm, then this vcpu should
450 * use the same vmid.
452 if (!need_new_vmid_gen(kvm)) {
453 spin_unlock(&kvm_vmid_lock);
454 return;
457 /* First user of a new VMID generation? */
458 if (unlikely(kvm_next_vmid == 0)) {
459 atomic64_inc(&kvm_vmid_gen);
460 kvm_next_vmid = 1;
463 * On SMP we know no other CPUs can use this CPU's or each
464 * other's VMID after force_vm_exit returns since the
465 * kvm_vmid_lock blocks them from reentry to the guest.
467 force_vm_exit(cpu_all_mask);
469 * Now broadcast TLB + ICACHE invalidation over the inner
470 * shareable domain to make sure all data structures are
471 * clean.
473 kvm_call_hyp(__kvm_flush_vm_context);
476 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
477 kvm->arch.vmid = kvm_next_vmid;
478 kvm_next_vmid++;
479 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
481 /* update vttbr to be used with the new vmid */
482 pgd_phys = virt_to_phys(kvm->arch.pgd);
483 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
484 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
485 kvm->arch.vttbr = pgd_phys | vmid;
487 spin_unlock(&kvm_vmid_lock);
490 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
492 struct kvm *kvm = vcpu->kvm;
493 int ret = 0;
495 if (likely(vcpu->arch.has_run_once))
496 return 0;
498 vcpu->arch.has_run_once = true;
501 * Map the VGIC hardware resources before running a vcpu the first
502 * time on this VM.
504 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
505 ret = kvm_vgic_map_resources(kvm);
506 if (ret)
507 return ret;
511 * Enable the arch timers only if we have an in-kernel VGIC
512 * and it has been properly initialized, since we cannot handle
513 * interrupts from the virtual timer with a userspace gic.
515 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
516 ret = kvm_timer_enable(vcpu);
518 return ret;
521 bool kvm_arch_intc_initialized(struct kvm *kvm)
523 return vgic_initialized(kvm);
526 void kvm_arm_halt_guest(struct kvm *kvm)
528 int i;
529 struct kvm_vcpu *vcpu;
531 kvm_for_each_vcpu(i, vcpu, kvm)
532 vcpu->arch.pause = true;
533 kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
536 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
538 vcpu->arch.pause = true;
539 kvm_vcpu_kick(vcpu);
542 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
544 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
546 vcpu->arch.pause = false;
547 swake_up(wq);
550 void kvm_arm_resume_guest(struct kvm *kvm)
552 int i;
553 struct kvm_vcpu *vcpu;
555 kvm_for_each_vcpu(i, vcpu, kvm)
556 kvm_arm_resume_vcpu(vcpu);
559 static void vcpu_sleep(struct kvm_vcpu *vcpu)
561 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
563 swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
564 (!vcpu->arch.pause)));
567 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
569 return vcpu->arch.target >= 0;
573 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
574 * @vcpu: The VCPU pointer
575 * @run: The kvm_run structure pointer used for userspace state exchange
577 * This function is called through the VCPU_RUN ioctl called from user space. It
578 * will execute VM code in a loop until the time slice for the process is used
579 * or some emulation is needed from user space in which case the function will
580 * return with return value 0 and with the kvm_run structure filled in with the
581 * required data for the requested emulation.
583 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
585 int ret;
586 sigset_t sigsaved;
588 if (unlikely(!kvm_vcpu_initialized(vcpu)))
589 return -ENOEXEC;
591 ret = kvm_vcpu_first_run_init(vcpu);
592 if (ret)
593 return ret;
595 if (run->exit_reason == KVM_EXIT_MMIO) {
596 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
597 if (ret)
598 return ret;
601 if (vcpu->sigset_active)
602 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
604 ret = 1;
605 run->exit_reason = KVM_EXIT_UNKNOWN;
606 while (ret > 0) {
608 * Check conditions before entering the guest
610 cond_resched();
612 update_vttbr(vcpu->kvm);
614 if (vcpu->arch.power_off || vcpu->arch.pause)
615 vcpu_sleep(vcpu);
618 * Preparing the interrupts to be injected also
619 * involves poking the GIC, which must be done in a
620 * non-preemptible context.
622 preempt_disable();
623 kvm_pmu_flush_hwstate(vcpu);
624 kvm_timer_flush_hwstate(vcpu);
625 kvm_vgic_flush_hwstate(vcpu);
627 local_irq_disable();
630 * Re-check atomic conditions
632 if (signal_pending(current)) {
633 ret = -EINTR;
634 run->exit_reason = KVM_EXIT_INTR;
637 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
638 vcpu->arch.power_off || vcpu->arch.pause) {
639 local_irq_enable();
640 kvm_pmu_sync_hwstate(vcpu);
641 kvm_timer_sync_hwstate(vcpu);
642 kvm_vgic_sync_hwstate(vcpu);
643 preempt_enable();
644 continue;
647 kvm_arm_setup_debug(vcpu);
649 /**************************************************************
650 * Enter the guest
652 trace_kvm_entry(*vcpu_pc(vcpu));
653 guest_enter_irqoff();
654 vcpu->mode = IN_GUEST_MODE;
656 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
658 vcpu->mode = OUTSIDE_GUEST_MODE;
659 vcpu->stat.exits++;
661 * Back from guest
662 *************************************************************/
664 kvm_arm_clear_debug(vcpu);
667 * We may have taken a host interrupt in HYP mode (ie
668 * while executing the guest). This interrupt is still
669 * pending, as we haven't serviced it yet!
671 * We're now back in SVC mode, with interrupts
672 * disabled. Enabling the interrupts now will have
673 * the effect of taking the interrupt again, in SVC
674 * mode this time.
676 local_irq_enable();
679 * We do local_irq_enable() before calling guest_exit() so
680 * that if a timer interrupt hits while running the guest we
681 * account that tick as being spent in the guest. We enable
682 * preemption after calling guest_exit() so that if we get
683 * preempted we make sure ticks after that is not counted as
684 * guest time.
686 guest_exit();
687 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
690 * We must sync the PMU and timer state before the vgic state so
691 * that the vgic can properly sample the updated state of the
692 * interrupt line.
694 kvm_pmu_sync_hwstate(vcpu);
695 kvm_timer_sync_hwstate(vcpu);
697 kvm_vgic_sync_hwstate(vcpu);
699 preempt_enable();
701 ret = handle_exit(vcpu, run, ret);
704 if (vcpu->sigset_active)
705 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
706 return ret;
709 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
711 int bit_index;
712 bool set;
713 unsigned long *ptr;
715 if (number == KVM_ARM_IRQ_CPU_IRQ)
716 bit_index = __ffs(HCR_VI);
717 else /* KVM_ARM_IRQ_CPU_FIQ */
718 bit_index = __ffs(HCR_VF);
720 ptr = (unsigned long *)&vcpu->arch.irq_lines;
721 if (level)
722 set = test_and_set_bit(bit_index, ptr);
723 else
724 set = test_and_clear_bit(bit_index, ptr);
727 * If we didn't change anything, no need to wake up or kick other CPUs
729 if (set == level)
730 return 0;
733 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
734 * trigger a world-switch round on the running physical CPU to set the
735 * virtual IRQ/FIQ fields in the HCR appropriately.
737 kvm_vcpu_kick(vcpu);
739 return 0;
742 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
743 bool line_status)
745 u32 irq = irq_level->irq;
746 unsigned int irq_type, vcpu_idx, irq_num;
747 int nrcpus = atomic_read(&kvm->online_vcpus);
748 struct kvm_vcpu *vcpu = NULL;
749 bool level = irq_level->level;
751 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
752 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
753 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
755 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
757 switch (irq_type) {
758 case KVM_ARM_IRQ_TYPE_CPU:
759 if (irqchip_in_kernel(kvm))
760 return -ENXIO;
762 if (vcpu_idx >= nrcpus)
763 return -EINVAL;
765 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
766 if (!vcpu)
767 return -EINVAL;
769 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
770 return -EINVAL;
772 return vcpu_interrupt_line(vcpu, irq_num, level);
773 case KVM_ARM_IRQ_TYPE_PPI:
774 if (!irqchip_in_kernel(kvm))
775 return -ENXIO;
777 if (vcpu_idx >= nrcpus)
778 return -EINVAL;
780 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
781 if (!vcpu)
782 return -EINVAL;
784 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
785 return -EINVAL;
787 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
788 case KVM_ARM_IRQ_TYPE_SPI:
789 if (!irqchip_in_kernel(kvm))
790 return -ENXIO;
792 if (irq_num < VGIC_NR_PRIVATE_IRQS)
793 return -EINVAL;
795 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
798 return -EINVAL;
801 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
802 const struct kvm_vcpu_init *init)
804 unsigned int i, ret;
805 int phys_target = kvm_target_cpu();
807 if (init->target != phys_target)
808 return -EINVAL;
811 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
812 * use the same target.
814 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
815 return -EINVAL;
817 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
818 for (i = 0; i < sizeof(init->features) * 8; i++) {
819 bool set = (init->features[i / 32] & (1 << (i % 32)));
821 if (set && i >= KVM_VCPU_MAX_FEATURES)
822 return -ENOENT;
825 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
826 * use the same feature set.
828 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
829 test_bit(i, vcpu->arch.features) != set)
830 return -EINVAL;
832 if (set)
833 set_bit(i, vcpu->arch.features);
836 vcpu->arch.target = phys_target;
838 /* Now we know what it is, we can reset it. */
839 ret = kvm_reset_vcpu(vcpu);
840 if (ret) {
841 vcpu->arch.target = -1;
842 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
845 return ret;
848 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
849 struct kvm_vcpu_init *init)
851 int ret;
853 ret = kvm_vcpu_set_target(vcpu, init);
854 if (ret)
855 return ret;
858 * Ensure a rebooted VM will fault in RAM pages and detect if the
859 * guest MMU is turned off and flush the caches as needed.
861 if (vcpu->arch.has_run_once)
862 stage2_unmap_vm(vcpu->kvm);
864 vcpu_reset_hcr(vcpu);
867 * Handle the "start in power-off" case.
869 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
870 vcpu->arch.power_off = true;
871 else
872 vcpu->arch.power_off = false;
874 return 0;
877 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
878 struct kvm_device_attr *attr)
880 int ret = -ENXIO;
882 switch (attr->group) {
883 default:
884 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
885 break;
888 return ret;
891 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
892 struct kvm_device_attr *attr)
894 int ret = -ENXIO;
896 switch (attr->group) {
897 default:
898 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
899 break;
902 return ret;
905 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
906 struct kvm_device_attr *attr)
908 int ret = -ENXIO;
910 switch (attr->group) {
911 default:
912 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
913 break;
916 return ret;
919 long kvm_arch_vcpu_ioctl(struct file *filp,
920 unsigned int ioctl, unsigned long arg)
922 struct kvm_vcpu *vcpu = filp->private_data;
923 void __user *argp = (void __user *)arg;
924 struct kvm_device_attr attr;
926 switch (ioctl) {
927 case KVM_ARM_VCPU_INIT: {
928 struct kvm_vcpu_init init;
930 if (copy_from_user(&init, argp, sizeof(init)))
931 return -EFAULT;
933 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
935 case KVM_SET_ONE_REG:
936 case KVM_GET_ONE_REG: {
937 struct kvm_one_reg reg;
939 if (unlikely(!kvm_vcpu_initialized(vcpu)))
940 return -ENOEXEC;
942 if (copy_from_user(&reg, argp, sizeof(reg)))
943 return -EFAULT;
944 if (ioctl == KVM_SET_ONE_REG)
945 return kvm_arm_set_reg(vcpu, &reg);
946 else
947 return kvm_arm_get_reg(vcpu, &reg);
949 case KVM_GET_REG_LIST: {
950 struct kvm_reg_list __user *user_list = argp;
951 struct kvm_reg_list reg_list;
952 unsigned n;
954 if (unlikely(!kvm_vcpu_initialized(vcpu)))
955 return -ENOEXEC;
957 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
958 return -EFAULT;
959 n = reg_list.n;
960 reg_list.n = kvm_arm_num_regs(vcpu);
961 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
962 return -EFAULT;
963 if (n < reg_list.n)
964 return -E2BIG;
965 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
967 case KVM_SET_DEVICE_ATTR: {
968 if (copy_from_user(&attr, argp, sizeof(attr)))
969 return -EFAULT;
970 return kvm_arm_vcpu_set_attr(vcpu, &attr);
972 case KVM_GET_DEVICE_ATTR: {
973 if (copy_from_user(&attr, argp, sizeof(attr)))
974 return -EFAULT;
975 return kvm_arm_vcpu_get_attr(vcpu, &attr);
977 case KVM_HAS_DEVICE_ATTR: {
978 if (copy_from_user(&attr, argp, sizeof(attr)))
979 return -EFAULT;
980 return kvm_arm_vcpu_has_attr(vcpu, &attr);
982 default:
983 return -EINVAL;
988 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
989 * @kvm: kvm instance
990 * @log: slot id and address to which we copy the log
992 * Steps 1-4 below provide general overview of dirty page logging. See
993 * kvm_get_dirty_log_protect() function description for additional details.
995 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
996 * always flush the TLB (step 4) even if previous step failed and the dirty
997 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
998 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
999 * writes will be marked dirty for next log read.
1001 * 1. Take a snapshot of the bit and clear it if needed.
1002 * 2. Write protect the corresponding page.
1003 * 3. Copy the snapshot to the userspace.
1004 * 4. Flush TLB's if needed.
1006 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1008 bool is_dirty = false;
1009 int r;
1011 mutex_lock(&kvm->slots_lock);
1013 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1015 if (is_dirty)
1016 kvm_flush_remote_tlbs(kvm);
1018 mutex_unlock(&kvm->slots_lock);
1019 return r;
1022 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1023 struct kvm_arm_device_addr *dev_addr)
1025 unsigned long dev_id, type;
1027 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1028 KVM_ARM_DEVICE_ID_SHIFT;
1029 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1030 KVM_ARM_DEVICE_TYPE_SHIFT;
1032 switch (dev_id) {
1033 case KVM_ARM_DEVICE_VGIC_V2:
1034 if (!vgic_present)
1035 return -ENXIO;
1036 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1037 default:
1038 return -ENODEV;
1042 long kvm_arch_vm_ioctl(struct file *filp,
1043 unsigned int ioctl, unsigned long arg)
1045 struct kvm *kvm = filp->private_data;
1046 void __user *argp = (void __user *)arg;
1048 switch (ioctl) {
1049 case KVM_CREATE_IRQCHIP: {
1050 int ret;
1051 if (!vgic_present)
1052 return -ENXIO;
1053 mutex_lock(&kvm->lock);
1054 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1055 mutex_unlock(&kvm->lock);
1056 return ret;
1058 case KVM_ARM_SET_DEVICE_ADDR: {
1059 struct kvm_arm_device_addr dev_addr;
1061 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1062 return -EFAULT;
1063 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1065 case KVM_ARM_PREFERRED_TARGET: {
1066 int err;
1067 struct kvm_vcpu_init init;
1069 err = kvm_vcpu_preferred_target(&init);
1070 if (err)
1071 return err;
1073 if (copy_to_user(argp, &init, sizeof(init)))
1074 return -EFAULT;
1076 return 0;
1078 default:
1079 return -EINVAL;
1083 static void cpu_init_hyp_mode(void *dummy)
1085 phys_addr_t pgd_ptr;
1086 unsigned long hyp_stack_ptr;
1087 unsigned long stack_page;
1088 unsigned long vector_ptr;
1090 /* Switch from the HYP stub to our own HYP init vector */
1091 __hyp_set_vectors(kvm_get_idmap_vector());
1093 pgd_ptr = kvm_mmu_get_httbr();
1094 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1095 hyp_stack_ptr = stack_page + PAGE_SIZE;
1096 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1098 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1099 __cpu_init_stage2();
1102 static void cpu_hyp_reinit(void)
1104 if (is_kernel_in_hyp_mode()) {
1106 * __cpu_init_stage2() is safe to call even if the PM
1107 * event was cancelled before the CPU was reset.
1109 __cpu_init_stage2();
1110 } else {
1111 if (__hyp_get_vectors() == hyp_default_vectors)
1112 cpu_init_hyp_mode(NULL);
1115 kvm_arm_init_debug();
1118 static void cpu_hyp_reset(void)
1120 if (!is_kernel_in_hyp_mode())
1121 __cpu_reset_hyp_mode(hyp_default_vectors,
1122 kvm_get_idmap_start());
1125 static void _kvm_arch_hardware_enable(void *discard)
1127 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1128 cpu_hyp_reinit();
1129 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1133 int kvm_arch_hardware_enable(void)
1135 _kvm_arch_hardware_enable(NULL);
1136 return 0;
1139 static void _kvm_arch_hardware_disable(void *discard)
1141 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1142 cpu_hyp_reset();
1143 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1147 void kvm_arch_hardware_disable(void)
1149 _kvm_arch_hardware_disable(NULL);
1152 #ifdef CONFIG_CPU_PM
1153 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1154 unsigned long cmd,
1155 void *v)
1158 * kvm_arm_hardware_enabled is left with its old value over
1159 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1160 * re-enable hyp.
1162 switch (cmd) {
1163 case CPU_PM_ENTER:
1164 if (__this_cpu_read(kvm_arm_hardware_enabled))
1166 * don't update kvm_arm_hardware_enabled here
1167 * so that the hardware will be re-enabled
1168 * when we resume. See below.
1170 cpu_hyp_reset();
1172 return NOTIFY_OK;
1173 case CPU_PM_ENTER_FAILED:
1174 case CPU_PM_EXIT:
1175 if (__this_cpu_read(kvm_arm_hardware_enabled))
1176 /* The hardware was enabled before suspend. */
1177 cpu_hyp_reinit();
1179 return NOTIFY_OK;
1181 default:
1182 return NOTIFY_DONE;
1186 static struct notifier_block hyp_init_cpu_pm_nb = {
1187 .notifier_call = hyp_init_cpu_pm_notifier,
1190 static void __init hyp_cpu_pm_init(void)
1192 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1194 static void __init hyp_cpu_pm_exit(void)
1196 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1198 #else
1199 static inline void hyp_cpu_pm_init(void)
1202 static inline void hyp_cpu_pm_exit(void)
1205 #endif
1207 static int init_common_resources(void)
1209 /* set size of VMID supported by CPU */
1210 kvm_vmid_bits = kvm_get_vmid_bits();
1211 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1213 return 0;
1216 static int init_subsystems(void)
1218 int err = 0;
1221 * Enable hardware so that subsystem initialisation can access EL2.
1223 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1226 * Register CPU lower-power notifier
1228 hyp_cpu_pm_init();
1231 * Init HYP view of VGIC
1233 err = kvm_vgic_hyp_init();
1234 switch (err) {
1235 case 0:
1236 vgic_present = true;
1237 break;
1238 case -ENODEV:
1239 case -ENXIO:
1240 vgic_present = false;
1241 err = 0;
1242 break;
1243 default:
1244 goto out;
1248 * Init HYP architected timer support
1250 err = kvm_timer_hyp_init();
1251 if (err)
1252 goto out;
1254 kvm_perf_init();
1255 kvm_coproc_table_init();
1257 out:
1258 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1260 return err;
1263 static void teardown_hyp_mode(void)
1265 int cpu;
1267 if (is_kernel_in_hyp_mode())
1268 return;
1270 free_hyp_pgds();
1271 for_each_possible_cpu(cpu)
1272 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1273 hyp_cpu_pm_exit();
1276 static int init_vhe_mode(void)
1278 kvm_info("VHE mode initialized successfully\n");
1279 return 0;
1283 * Inits Hyp-mode on all online CPUs
1285 static int init_hyp_mode(void)
1287 int cpu;
1288 int err = 0;
1291 * Allocate Hyp PGD and setup Hyp identity mapping
1293 err = kvm_mmu_init();
1294 if (err)
1295 goto out_err;
1298 * It is probably enough to obtain the default on one
1299 * CPU. It's unlikely to be different on the others.
1301 hyp_default_vectors = __hyp_get_vectors();
1304 * Allocate stack pages for Hypervisor-mode
1306 for_each_possible_cpu(cpu) {
1307 unsigned long stack_page;
1309 stack_page = __get_free_page(GFP_KERNEL);
1310 if (!stack_page) {
1311 err = -ENOMEM;
1312 goto out_err;
1315 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1319 * Map the Hyp-code called directly from the host
1321 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1322 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1323 if (err) {
1324 kvm_err("Cannot map world-switch code\n");
1325 goto out_err;
1328 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1329 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1330 if (err) {
1331 kvm_err("Cannot map rodata section\n");
1332 goto out_err;
1335 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1336 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1337 if (err) {
1338 kvm_err("Cannot map bss section\n");
1339 goto out_err;
1343 err = kvm_map_vectors();
1344 if (err) {
1345 kvm_err("Cannot map vectors\n");
1346 goto out_err;
1350 * Map the Hyp stack pages
1352 for_each_possible_cpu(cpu) {
1353 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1354 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1355 PAGE_HYP);
1357 if (err) {
1358 kvm_err("Cannot map hyp stack\n");
1359 goto out_err;
1363 for_each_possible_cpu(cpu) {
1364 kvm_cpu_context_t *cpu_ctxt;
1366 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1367 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1369 if (err) {
1370 kvm_err("Cannot map host CPU state: %d\n", err);
1371 goto out_err;
1375 err = hyp_map_aux_data();
1376 if (err) {
1377 kvm_err("Cannot map host auxilary data: %d\n", err);
1378 goto out_err;
1381 kvm_info("Hyp mode initialized successfully\n");
1383 return 0;
1385 out_err:
1386 teardown_hyp_mode();
1387 kvm_err("error initializing Hyp mode: %d\n", err);
1388 return err;
1391 static void check_kvm_target_cpu(void *ret)
1393 *(int *)ret = kvm_target_cpu();
1396 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1398 struct kvm_vcpu *vcpu;
1399 int i;
1401 mpidr &= MPIDR_HWID_BITMASK;
1402 kvm_for_each_vcpu(i, vcpu, kvm) {
1403 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1404 return vcpu;
1406 return NULL;
1410 * Initialize Hyp-mode and memory mappings on all CPUs.
1412 int kvm_arch_init(void *opaque)
1414 int err;
1415 int ret, cpu;
1417 if (!is_hyp_mode_available()) {
1418 kvm_err("HYP mode not available\n");
1419 return -ENODEV;
1422 for_each_online_cpu(cpu) {
1423 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1424 if (ret < 0) {
1425 kvm_err("Error, CPU %d not supported!\n", cpu);
1426 return -ENODEV;
1430 err = init_common_resources();
1431 if (err)
1432 return err;
1434 if (is_kernel_in_hyp_mode())
1435 err = init_vhe_mode();
1436 else
1437 err = init_hyp_mode();
1438 if (err)
1439 goto out_err;
1441 err = init_subsystems();
1442 if (err)
1443 goto out_hyp;
1445 return 0;
1447 out_hyp:
1448 teardown_hyp_mode();
1449 out_err:
1450 return err;
1453 /* NOP: Compiling as a module not supported */
1454 void kvm_arch_exit(void)
1456 kvm_perf_teardown();
1459 static int arm_init(void)
1461 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1462 return rc;
1465 module_init(arm_init);