2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
24 #define CREATE_TRACE_POINTS
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
37 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
38 unsigned int mask
, unsigned int val
,
39 bool *change
, bool force_write
);
41 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
43 static int _regmap_bus_read(void *context
, unsigned int reg
,
45 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
47 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
49 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
52 bool regmap_reg_in_ranges(unsigned int reg
,
53 const struct regmap_range
*ranges
,
56 const struct regmap_range
*r
;
59 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
60 if (regmap_reg_in_range(reg
, r
))
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
66 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
67 const struct regmap_access_table
*table
)
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table
->n_yes_ranges
)
77 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
80 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
82 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
84 if (map
->max_register
&& reg
> map
->max_register
)
87 if (map
->writeable_reg
)
88 return map
->writeable_reg(map
->dev
, reg
);
91 return regmap_check_range_table(map
, reg
, map
->wr_table
);
96 bool regmap_cached(struct regmap
*map
, unsigned int reg
)
101 if (map
->cache_type
== REGCACHE_NONE
)
107 if (map
->max_register
&& reg
> map
->max_register
)
110 map
->lock(map
->lock_arg
);
111 ret
= regcache_read(map
, reg
, &val
);
112 map
->unlock(map
->lock_arg
);
119 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
124 if (map
->max_register
&& reg
> map
->max_register
)
127 if (map
->format
.format_write
)
130 if (map
->readable_reg
)
131 return map
->readable_reg(map
->dev
, reg
);
134 return regmap_check_range_table(map
, reg
, map
->rd_table
);
139 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
141 if (!map
->format
.format_write
&& !regmap_readable(map
, reg
))
144 if (map
->volatile_reg
)
145 return map
->volatile_reg(map
->dev
, reg
);
147 if (map
->volatile_table
)
148 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
156 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
158 if (!regmap_readable(map
, reg
))
161 if (map
->precious_reg
)
162 return map
->precious_reg(map
->dev
, reg
);
164 if (map
->precious_table
)
165 return regmap_check_range_table(map
, reg
, map
->precious_table
);
170 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
175 for (i
= 0; i
< num
; i
++)
176 if (!regmap_volatile(map
, reg
+ i
))
182 static void regmap_format_2_6_write(struct regmap
*map
,
183 unsigned int reg
, unsigned int val
)
185 u8
*out
= map
->work_buf
;
187 *out
= (reg
<< 6) | val
;
190 static void regmap_format_4_12_write(struct regmap
*map
,
191 unsigned int reg
, unsigned int val
)
193 __be16
*out
= map
->work_buf
;
194 *out
= cpu_to_be16((reg
<< 12) | val
);
197 static void regmap_format_7_9_write(struct regmap
*map
,
198 unsigned int reg
, unsigned int val
)
200 __be16
*out
= map
->work_buf
;
201 *out
= cpu_to_be16((reg
<< 9) | val
);
204 static void regmap_format_10_14_write(struct regmap
*map
,
205 unsigned int reg
, unsigned int val
)
207 u8
*out
= map
->work_buf
;
210 out
[1] = (val
>> 8) | (reg
<< 6);
214 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
221 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
225 b
[0] = cpu_to_be16(val
<< shift
);
228 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
232 b
[0] = cpu_to_le16(val
<< shift
);
235 static void regmap_format_16_native(void *buf
, unsigned int val
,
238 *(u16
*)buf
= val
<< shift
;
241 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
252 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
256 b
[0] = cpu_to_be32(val
<< shift
);
259 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
263 b
[0] = cpu_to_le32(val
<< shift
);
266 static void regmap_format_32_native(void *buf
, unsigned int val
,
269 *(u32
*)buf
= val
<< shift
;
273 static void regmap_format_64_be(void *buf
, unsigned int val
, unsigned int shift
)
277 b
[0] = cpu_to_be64((u64
)val
<< shift
);
280 static void regmap_format_64_le(void *buf
, unsigned int val
, unsigned int shift
)
284 b
[0] = cpu_to_le64((u64
)val
<< shift
);
287 static void regmap_format_64_native(void *buf
, unsigned int val
,
290 *(u64
*)buf
= (u64
)val
<< shift
;
294 static void regmap_parse_inplace_noop(void *buf
)
298 static unsigned int regmap_parse_8(const void *buf
)
305 static unsigned int regmap_parse_16_be(const void *buf
)
307 const __be16
*b
= buf
;
309 return be16_to_cpu(b
[0]);
312 static unsigned int regmap_parse_16_le(const void *buf
)
314 const __le16
*b
= buf
;
316 return le16_to_cpu(b
[0]);
319 static void regmap_parse_16_be_inplace(void *buf
)
323 b
[0] = be16_to_cpu(b
[0]);
326 static void regmap_parse_16_le_inplace(void *buf
)
330 b
[0] = le16_to_cpu(b
[0]);
333 static unsigned int regmap_parse_16_native(const void *buf
)
338 static unsigned int regmap_parse_24(const void *buf
)
341 unsigned int ret
= b
[2];
342 ret
|= ((unsigned int)b
[1]) << 8;
343 ret
|= ((unsigned int)b
[0]) << 16;
348 static unsigned int regmap_parse_32_be(const void *buf
)
350 const __be32
*b
= buf
;
352 return be32_to_cpu(b
[0]);
355 static unsigned int regmap_parse_32_le(const void *buf
)
357 const __le32
*b
= buf
;
359 return le32_to_cpu(b
[0]);
362 static void regmap_parse_32_be_inplace(void *buf
)
366 b
[0] = be32_to_cpu(b
[0]);
369 static void regmap_parse_32_le_inplace(void *buf
)
373 b
[0] = le32_to_cpu(b
[0]);
376 static unsigned int regmap_parse_32_native(const void *buf
)
382 static unsigned int regmap_parse_64_be(const void *buf
)
384 const __be64
*b
= buf
;
386 return be64_to_cpu(b
[0]);
389 static unsigned int regmap_parse_64_le(const void *buf
)
391 const __le64
*b
= buf
;
393 return le64_to_cpu(b
[0]);
396 static void regmap_parse_64_be_inplace(void *buf
)
400 b
[0] = be64_to_cpu(b
[0]);
403 static void regmap_parse_64_le_inplace(void *buf
)
407 b
[0] = le64_to_cpu(b
[0]);
410 static unsigned int regmap_parse_64_native(const void *buf
)
416 static void regmap_lock_mutex(void *__map
)
418 struct regmap
*map
= __map
;
419 mutex_lock(&map
->mutex
);
422 static void regmap_unlock_mutex(void *__map
)
424 struct regmap
*map
= __map
;
425 mutex_unlock(&map
->mutex
);
428 static void regmap_lock_spinlock(void *__map
)
429 __acquires(&map
->spinlock
)
431 struct regmap
*map
= __map
;
434 spin_lock_irqsave(&map
->spinlock
, flags
);
435 map
->spinlock_flags
= flags
;
438 static void regmap_unlock_spinlock(void *__map
)
439 __releases(&map
->spinlock
)
441 struct regmap
*map
= __map
;
442 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
445 static void dev_get_regmap_release(struct device
*dev
, void *res
)
448 * We don't actually have anything to do here; the goal here
449 * is not to manage the regmap but to provide a simple way to
450 * get the regmap back given a struct device.
454 static bool _regmap_range_add(struct regmap
*map
,
455 struct regmap_range_node
*data
)
457 struct rb_root
*root
= &map
->range_tree
;
458 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
461 struct regmap_range_node
*this =
462 container_of(*new, struct regmap_range_node
, node
);
465 if (data
->range_max
< this->range_min
)
466 new = &((*new)->rb_left
);
467 else if (data
->range_min
> this->range_max
)
468 new = &((*new)->rb_right
);
473 rb_link_node(&data
->node
, parent
, new);
474 rb_insert_color(&data
->node
, root
);
479 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
482 struct rb_node
*node
= map
->range_tree
.rb_node
;
485 struct regmap_range_node
*this =
486 container_of(node
, struct regmap_range_node
, node
);
488 if (reg
< this->range_min
)
489 node
= node
->rb_left
;
490 else if (reg
> this->range_max
)
491 node
= node
->rb_right
;
499 static void regmap_range_exit(struct regmap
*map
)
501 struct rb_node
*next
;
502 struct regmap_range_node
*range_node
;
504 next
= rb_first(&map
->range_tree
);
506 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
507 next
= rb_next(&range_node
->node
);
508 rb_erase(&range_node
->node
, &map
->range_tree
);
512 kfree(map
->selector_work_buf
);
515 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
516 const struct regmap_config
*config
)
522 regmap_debugfs_init(map
, config
->name
);
524 /* Add a devres resource for dev_get_regmap() */
525 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
527 regmap_debugfs_exit(map
);
535 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
537 static enum regmap_endian
regmap_get_reg_endian(const struct regmap_bus
*bus
,
538 const struct regmap_config
*config
)
540 enum regmap_endian endian
;
542 /* Retrieve the endianness specification from the regmap config */
543 endian
= config
->reg_format_endian
;
545 /* If the regmap config specified a non-default value, use that */
546 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
549 /* Retrieve the endianness specification from the bus config */
550 if (bus
&& bus
->reg_format_endian_default
)
551 endian
= bus
->reg_format_endian_default
;
553 /* If the bus specified a non-default value, use that */
554 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
557 /* Use this if no other value was found */
558 return REGMAP_ENDIAN_BIG
;
561 enum regmap_endian
regmap_get_val_endian(struct device
*dev
,
562 const struct regmap_bus
*bus
,
563 const struct regmap_config
*config
)
565 struct device_node
*np
;
566 enum regmap_endian endian
;
568 /* Retrieve the endianness specification from the regmap config */
569 endian
= config
->val_format_endian
;
571 /* If the regmap config specified a non-default value, use that */
572 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
575 /* If the dev and dev->of_node exist try to get endianness from DT */
576 if (dev
&& dev
->of_node
) {
579 /* Parse the device's DT node for an endianness specification */
580 if (of_property_read_bool(np
, "big-endian"))
581 endian
= REGMAP_ENDIAN_BIG
;
582 else if (of_property_read_bool(np
, "little-endian"))
583 endian
= REGMAP_ENDIAN_LITTLE
;
584 else if (of_property_read_bool(np
, "native-endian"))
585 endian
= REGMAP_ENDIAN_NATIVE
;
587 /* If the endianness was specified in DT, use that */
588 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
592 /* Retrieve the endianness specification from the bus config */
593 if (bus
&& bus
->val_format_endian_default
)
594 endian
= bus
->val_format_endian_default
;
596 /* If the bus specified a non-default value, use that */
597 if (endian
!= REGMAP_ENDIAN_DEFAULT
)
600 /* Use this if no other value was found */
601 return REGMAP_ENDIAN_BIG
;
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian
);
605 struct regmap
*__regmap_init(struct device
*dev
,
606 const struct regmap_bus
*bus
,
608 const struct regmap_config
*config
,
609 struct lock_class_key
*lock_key
,
610 const char *lock_name
)
614 enum regmap_endian reg_endian
, val_endian
;
620 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
626 if (config
->lock
&& config
->unlock
) {
627 map
->lock
= config
->lock
;
628 map
->unlock
= config
->unlock
;
629 map
->lock_arg
= config
->lock_arg
;
631 if ((bus
&& bus
->fast_io
) ||
633 spin_lock_init(&map
->spinlock
);
634 map
->lock
= regmap_lock_spinlock
;
635 map
->unlock
= regmap_unlock_spinlock
;
636 lockdep_set_class_and_name(&map
->spinlock
,
637 lock_key
, lock_name
);
639 mutex_init(&map
->mutex
);
640 map
->lock
= regmap_lock_mutex
;
641 map
->unlock
= regmap_unlock_mutex
;
642 lockdep_set_class_and_name(&map
->mutex
,
643 lock_key
, lock_name
);
649 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 * scratch buffers with sleeping allocations.
652 if ((bus
&& bus
->fast_io
) || config
->fast_io
)
653 map
->alloc_flags
= GFP_ATOMIC
;
655 map
->alloc_flags
= GFP_KERNEL
;
657 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
658 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
659 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
660 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
661 config
->val_bits
+ config
->pad_bits
, 8);
662 map
->reg_shift
= config
->pad_bits
% 8;
663 if (config
->reg_stride
)
664 map
->reg_stride
= config
->reg_stride
;
667 if (is_power_of_2(map
->reg_stride
))
668 map
->reg_stride_order
= ilog2(map
->reg_stride
);
670 map
->reg_stride_order
= -1;
671 map
->use_single_read
= config
->use_single_rw
|| !bus
|| !bus
->read
;
672 map
->use_single_write
= config
->use_single_rw
|| !bus
|| !bus
->write
;
673 map
->can_multi_write
= config
->can_multi_write
&& bus
&& bus
->write
;
675 map
->max_raw_read
= bus
->max_raw_read
;
676 map
->max_raw_write
= bus
->max_raw_write
;
680 map
->bus_context
= bus_context
;
681 map
->max_register
= config
->max_register
;
682 map
->wr_table
= config
->wr_table
;
683 map
->rd_table
= config
->rd_table
;
684 map
->volatile_table
= config
->volatile_table
;
685 map
->precious_table
= config
->precious_table
;
686 map
->writeable_reg
= config
->writeable_reg
;
687 map
->readable_reg
= config
->readable_reg
;
688 map
->volatile_reg
= config
->volatile_reg
;
689 map
->precious_reg
= config
->precious_reg
;
690 map
->cache_type
= config
->cache_type
;
691 map
->name
= config
->name
;
693 spin_lock_init(&map
->async_lock
);
694 INIT_LIST_HEAD(&map
->async_list
);
695 INIT_LIST_HEAD(&map
->async_free
);
696 init_waitqueue_head(&map
->async_waitq
);
698 if (config
->read_flag_mask
|| config
->write_flag_mask
) {
699 map
->read_flag_mask
= config
->read_flag_mask
;
700 map
->write_flag_mask
= config
->write_flag_mask
;
702 map
->read_flag_mask
= bus
->read_flag_mask
;
706 map
->reg_read
= config
->reg_read
;
707 map
->reg_write
= config
->reg_write
;
709 map
->defer_caching
= false;
710 goto skip_format_initialization
;
711 } else if (!bus
->read
|| !bus
->write
) {
712 map
->reg_read
= _regmap_bus_reg_read
;
713 map
->reg_write
= _regmap_bus_reg_write
;
715 map
->defer_caching
= false;
716 goto skip_format_initialization
;
718 map
->reg_read
= _regmap_bus_read
;
719 map
->reg_update_bits
= bus
->reg_update_bits
;
722 reg_endian
= regmap_get_reg_endian(bus
, config
);
723 val_endian
= regmap_get_val_endian(dev
, bus
, config
);
725 switch (config
->reg_bits
+ map
->reg_shift
) {
727 switch (config
->val_bits
) {
729 map
->format
.format_write
= regmap_format_2_6_write
;
737 switch (config
->val_bits
) {
739 map
->format
.format_write
= regmap_format_4_12_write
;
747 switch (config
->val_bits
) {
749 map
->format
.format_write
= regmap_format_7_9_write
;
757 switch (config
->val_bits
) {
759 map
->format
.format_write
= regmap_format_10_14_write
;
767 map
->format
.format_reg
= regmap_format_8
;
771 switch (reg_endian
) {
772 case REGMAP_ENDIAN_BIG
:
773 map
->format
.format_reg
= regmap_format_16_be
;
775 case REGMAP_ENDIAN_LITTLE
:
776 map
->format
.format_reg
= regmap_format_16_le
;
778 case REGMAP_ENDIAN_NATIVE
:
779 map
->format
.format_reg
= regmap_format_16_native
;
787 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
789 map
->format
.format_reg
= regmap_format_24
;
793 switch (reg_endian
) {
794 case REGMAP_ENDIAN_BIG
:
795 map
->format
.format_reg
= regmap_format_32_be
;
797 case REGMAP_ENDIAN_LITTLE
:
798 map
->format
.format_reg
= regmap_format_32_le
;
800 case REGMAP_ENDIAN_NATIVE
:
801 map
->format
.format_reg
= regmap_format_32_native
;
810 switch (reg_endian
) {
811 case REGMAP_ENDIAN_BIG
:
812 map
->format
.format_reg
= regmap_format_64_be
;
814 case REGMAP_ENDIAN_LITTLE
:
815 map
->format
.format_reg
= regmap_format_64_le
;
817 case REGMAP_ENDIAN_NATIVE
:
818 map
->format
.format_reg
= regmap_format_64_native
;
830 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
831 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
833 switch (config
->val_bits
) {
835 map
->format
.format_val
= regmap_format_8
;
836 map
->format
.parse_val
= regmap_parse_8
;
837 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
840 switch (val_endian
) {
841 case REGMAP_ENDIAN_BIG
:
842 map
->format
.format_val
= regmap_format_16_be
;
843 map
->format
.parse_val
= regmap_parse_16_be
;
844 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
846 case REGMAP_ENDIAN_LITTLE
:
847 map
->format
.format_val
= regmap_format_16_le
;
848 map
->format
.parse_val
= regmap_parse_16_le
;
849 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
851 case REGMAP_ENDIAN_NATIVE
:
852 map
->format
.format_val
= regmap_format_16_native
;
853 map
->format
.parse_val
= regmap_parse_16_native
;
860 if (val_endian
!= REGMAP_ENDIAN_BIG
)
862 map
->format
.format_val
= regmap_format_24
;
863 map
->format
.parse_val
= regmap_parse_24
;
866 switch (val_endian
) {
867 case REGMAP_ENDIAN_BIG
:
868 map
->format
.format_val
= regmap_format_32_be
;
869 map
->format
.parse_val
= regmap_parse_32_be
;
870 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
872 case REGMAP_ENDIAN_LITTLE
:
873 map
->format
.format_val
= regmap_format_32_le
;
874 map
->format
.parse_val
= regmap_parse_32_le
;
875 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
877 case REGMAP_ENDIAN_NATIVE
:
878 map
->format
.format_val
= regmap_format_32_native
;
879 map
->format
.parse_val
= regmap_parse_32_native
;
887 switch (val_endian
) {
888 case REGMAP_ENDIAN_BIG
:
889 map
->format
.format_val
= regmap_format_64_be
;
890 map
->format
.parse_val
= regmap_parse_64_be
;
891 map
->format
.parse_inplace
= regmap_parse_64_be_inplace
;
893 case REGMAP_ENDIAN_LITTLE
:
894 map
->format
.format_val
= regmap_format_64_le
;
895 map
->format
.parse_val
= regmap_parse_64_le
;
896 map
->format
.parse_inplace
= regmap_parse_64_le_inplace
;
898 case REGMAP_ENDIAN_NATIVE
:
899 map
->format
.format_val
= regmap_format_64_native
;
900 map
->format
.parse_val
= regmap_parse_64_native
;
909 if (map
->format
.format_write
) {
910 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
911 (val_endian
!= REGMAP_ENDIAN_BIG
))
913 map
->use_single_write
= true;
916 if (!map
->format
.format_write
&&
917 !(map
->format
.format_reg
&& map
->format
.format_val
))
920 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
921 if (map
->work_buf
== NULL
) {
926 if (map
->format
.format_write
) {
927 map
->defer_caching
= false;
928 map
->reg_write
= _regmap_bus_formatted_write
;
929 } else if (map
->format
.format_val
) {
930 map
->defer_caching
= true;
931 map
->reg_write
= _regmap_bus_raw_write
;
934 skip_format_initialization
:
936 map
->range_tree
= RB_ROOT
;
937 for (i
= 0; i
< config
->num_ranges
; i
++) {
938 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
939 struct regmap_range_node
*new;
942 if (range_cfg
->range_max
< range_cfg
->range_min
) {
943 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
944 range_cfg
->range_max
, range_cfg
->range_min
);
948 if (range_cfg
->range_max
> map
->max_register
) {
949 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
950 range_cfg
->range_max
, map
->max_register
);
954 if (range_cfg
->selector_reg
> map
->max_register
) {
956 "Invalid range %d: selector out of map\n", i
);
960 if (range_cfg
->window_len
== 0) {
961 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
966 /* Make sure, that this register range has no selector
967 or data window within its boundary */
968 for (j
= 0; j
< config
->num_ranges
; j
++) {
969 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
970 unsigned win_min
= config
->ranges
[j
].window_start
;
971 unsigned win_max
= win_min
+
972 config
->ranges
[j
].window_len
- 1;
974 /* Allow data window inside its own virtual range */
978 if (range_cfg
->range_min
<= sel_reg
&&
979 sel_reg
<= range_cfg
->range_max
) {
981 "Range %d: selector for %d in window\n",
986 if (!(win_max
< range_cfg
->range_min
||
987 win_min
> range_cfg
->range_max
)) {
989 "Range %d: window for %d in window\n",
995 new = kzalloc(sizeof(*new), GFP_KERNEL
);
1002 new->name
= range_cfg
->name
;
1003 new->range_min
= range_cfg
->range_min
;
1004 new->range_max
= range_cfg
->range_max
;
1005 new->selector_reg
= range_cfg
->selector_reg
;
1006 new->selector_mask
= range_cfg
->selector_mask
;
1007 new->selector_shift
= range_cfg
->selector_shift
;
1008 new->window_start
= range_cfg
->window_start
;
1009 new->window_len
= range_cfg
->window_len
;
1011 if (!_regmap_range_add(map
, new)) {
1012 dev_err(map
->dev
, "Failed to add range %d\n", i
);
1017 if (map
->selector_work_buf
== NULL
) {
1018 map
->selector_work_buf
=
1019 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
1020 if (map
->selector_work_buf
== NULL
) {
1027 ret
= regcache_init(map
, config
);
1032 ret
= regmap_attach_dev(dev
, map
, config
);
1042 regmap_range_exit(map
);
1043 kfree(map
->work_buf
);
1047 return ERR_PTR(ret
);
1049 EXPORT_SYMBOL_GPL(__regmap_init
);
1051 static void devm_regmap_release(struct device
*dev
, void *res
)
1053 regmap_exit(*(struct regmap
**)res
);
1056 struct regmap
*__devm_regmap_init(struct device
*dev
,
1057 const struct regmap_bus
*bus
,
1059 const struct regmap_config
*config
,
1060 struct lock_class_key
*lock_key
,
1061 const char *lock_name
)
1063 struct regmap
**ptr
, *regmap
;
1065 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
1067 return ERR_PTR(-ENOMEM
);
1069 regmap
= __regmap_init(dev
, bus
, bus_context
, config
,
1070 lock_key
, lock_name
);
1071 if (!IS_ERR(regmap
)) {
1073 devres_add(dev
, ptr
);
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init
);
1082 static void regmap_field_init(struct regmap_field
*rm_field
,
1083 struct regmap
*regmap
, struct reg_field reg_field
)
1085 rm_field
->regmap
= regmap
;
1086 rm_field
->reg
= reg_field
.reg
;
1087 rm_field
->shift
= reg_field
.lsb
;
1088 rm_field
->mask
= GENMASK(reg_field
.msb
, reg_field
.lsb
);
1089 rm_field
->id_size
= reg_field
.id_size
;
1090 rm_field
->id_offset
= reg_field
.id_offset
;
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1105 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
1106 struct regmap
*regmap
, struct reg_field reg_field
)
1108 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
1109 sizeof(*rm_field
), GFP_KERNEL
);
1111 return ERR_PTR(-ENOMEM
);
1113 regmap_field_init(rm_field
, regmap
, reg_field
);
1118 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1129 void devm_regmap_field_free(struct device
*dev
,
1130 struct regmap_field
*field
)
1132 devm_kfree(dev
, field
);
1134 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1147 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
1148 struct reg_field reg_field
)
1150 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
1153 return ERR_PTR(-ENOMEM
);
1155 regmap_field_init(rm_field
, regmap
, reg_field
);
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1164 * @field: regmap field which should be freed.
1166 void regmap_field_free(struct regmap_field
*field
)
1170 EXPORT_SYMBOL_GPL(regmap_field_free
);
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1175 * @map: Register map to operate on.
1176 * @config: New configuration. Only the cache data will be used.
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache. This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
1186 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
1189 regmap_debugfs_exit(map
);
1191 map
->max_register
= config
->max_register
;
1192 map
->writeable_reg
= config
->writeable_reg
;
1193 map
->readable_reg
= config
->readable_reg
;
1194 map
->volatile_reg
= config
->volatile_reg
;
1195 map
->precious_reg
= config
->precious_reg
;
1196 map
->cache_type
= config
->cache_type
;
1198 regmap_debugfs_init(map
, config
->name
);
1200 map
->cache_bypass
= false;
1201 map
->cache_only
= false;
1203 return regcache_init(map
, config
);
1205 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1208 * regmap_exit(): Free a previously allocated register map
1210 void regmap_exit(struct regmap
*map
)
1212 struct regmap_async
*async
;
1215 regmap_debugfs_exit(map
);
1216 regmap_range_exit(map
);
1217 if (map
->bus
&& map
->bus
->free_context
)
1218 map
->bus
->free_context(map
->bus_context
);
1219 kfree(map
->work_buf
);
1220 while (!list_empty(&map
->async_free
)) {
1221 async
= list_first_entry_or_null(&map
->async_free
,
1222 struct regmap_async
,
1224 list_del(&async
->list
);
1225 kfree(async
->work_buf
);
1230 EXPORT_SYMBOL_GPL(regmap_exit
);
1232 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1234 struct regmap
**r
= res
;
1240 /* If the user didn't specify a name match any */
1242 return (*r
)->name
== data
;
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1253 * Returns the regmap for the device if one is present, or NULL. If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used. Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1259 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1261 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1262 dev_get_regmap_match
, (void *)name
);
1268 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1271 * regmap_get_device(): Obtain the device from a regmap
1273 * @map: Register map to operate on.
1275 * Returns the underlying device that the regmap has been created for.
1277 struct device
*regmap_get_device(struct regmap
*map
)
1281 EXPORT_SYMBOL_GPL(regmap_get_device
);
1283 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1284 struct regmap_range_node
*range
,
1285 unsigned int val_num
)
1287 void *orig_work_buf
;
1288 unsigned int win_offset
;
1289 unsigned int win_page
;
1293 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1294 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1297 /* Bulk write shouldn't cross range boundary */
1298 if (*reg
+ val_num
- 1 > range
->range_max
)
1301 /* ... or single page boundary */
1302 if (val_num
> range
->window_len
- win_offset
)
1306 /* It is possible to have selector register inside data window.
1307 In that case, selector register is located on every page and
1308 it needs no page switching, when accessed alone. */
1310 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1311 /* Use separate work_buf during page switching */
1312 orig_work_buf
= map
->work_buf
;
1313 map
->work_buf
= map
->selector_work_buf
;
1315 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1316 range
->selector_mask
,
1317 win_page
<< range
->selector_shift
,
1320 map
->work_buf
= orig_work_buf
;
1326 *reg
= range
->window_start
+ win_offset
;
1331 static void regmap_set_work_buf_flag_mask(struct regmap
*map
, int max_bytes
,
1337 if (!mask
|| !map
->work_buf
)
1340 buf
= map
->work_buf
;
1342 for (i
= 0; i
< max_bytes
; i
++)
1343 buf
[i
] |= (mask
>> (8 * i
)) & 0xff;
1346 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1347 const void *val
, size_t val_len
)
1349 struct regmap_range_node
*range
;
1350 unsigned long flags
;
1351 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1352 map
->format
.pad_bytes
;
1354 int ret
= -ENOTSUPP
;
1360 /* Check for unwritable registers before we start */
1361 if (map
->writeable_reg
)
1362 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1363 if (!map
->writeable_reg(map
->dev
,
1364 reg
+ regmap_get_offset(map
, i
)))
1367 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1369 int val_bytes
= map
->format
.val_bytes
;
1370 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1371 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1372 ret
= regcache_write(map
,
1373 reg
+ regmap_get_offset(map
, i
),
1377 "Error in caching of register: %x ret: %d\n",
1382 if (map
->cache_only
) {
1383 map
->cache_dirty
= true;
1388 range
= _regmap_range_lookup(map
, reg
);
1390 int val_num
= val_len
/ map
->format
.val_bytes
;
1391 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1392 int win_residue
= range
->window_len
- win_offset
;
1394 /* If the write goes beyond the end of the window split it */
1395 while (val_num
> win_residue
) {
1396 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1397 win_residue
, val_len
/ map
->format
.val_bytes
);
1398 ret
= _regmap_raw_write(map
, reg
, val
, win_residue
*
1399 map
->format
.val_bytes
);
1404 val_num
-= win_residue
;
1405 val
+= win_residue
* map
->format
.val_bytes
;
1406 val_len
-= win_residue
* map
->format
.val_bytes
;
1408 win_offset
= (reg
- range
->range_min
) %
1410 win_residue
= range
->window_len
- win_offset
;
1413 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1418 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1419 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
1420 map
->write_flag_mask
);
1423 * Essentially all I/O mechanisms will be faster with a single
1424 * buffer to write. Since register syncs often generate raw
1425 * writes of single registers optimise that case.
1427 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1428 memcpy(work_val
, val
, map
->format
.val_bytes
);
1432 if (map
->async
&& map
->bus
->async_write
) {
1433 struct regmap_async
*async
;
1435 trace_regmap_async_write_start(map
, reg
, val_len
);
1437 spin_lock_irqsave(&map
->async_lock
, flags
);
1438 async
= list_first_entry_or_null(&map
->async_free
,
1439 struct regmap_async
,
1442 list_del(&async
->list
);
1443 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1446 async
= map
->bus
->async_alloc();
1450 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1451 GFP_KERNEL
| GFP_DMA
);
1452 if (!async
->work_buf
) {
1460 /* If the caller supplied the value we can use it safely. */
1461 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1462 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1464 spin_lock_irqsave(&map
->async_lock
, flags
);
1465 list_add_tail(&async
->list
, &map
->async_list
);
1466 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1468 if (val
!= work_val
)
1469 ret
= map
->bus
->async_write(map
->bus_context
,
1471 map
->format
.reg_bytes
+
1472 map
->format
.pad_bytes
,
1473 val
, val_len
, async
);
1475 ret
= map
->bus
->async_write(map
->bus_context
,
1477 map
->format
.reg_bytes
+
1478 map
->format
.pad_bytes
+
1479 val_len
, NULL
, 0, async
);
1482 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1485 spin_lock_irqsave(&map
->async_lock
, flags
);
1486 list_move(&async
->list
, &map
->async_free
);
1487 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1493 trace_regmap_hw_write_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
1495 /* If we're doing a single register write we can probably just
1496 * send the work_buf directly, otherwise try to do a gather
1499 if (val
== work_val
)
1500 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1501 map
->format
.reg_bytes
+
1502 map
->format
.pad_bytes
+
1504 else if (map
->bus
->gather_write
)
1505 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1506 map
->format
.reg_bytes
+
1507 map
->format
.pad_bytes
,
1512 /* If that didn't work fall back on linearising by hand. */
1513 if (ret
== -ENOTSUPP
) {
1514 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1515 buf
= kzalloc(len
, GFP_KERNEL
);
1519 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1520 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1522 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1525 } else if (ret
!= 0 && !map
->cache_bypass
&& map
->format
.parse_val
) {
1526 /* regcache_drop_region() takes lock that we already have,
1527 * thus call map->cache_ops->drop() directly
1529 if (map
->cache_ops
&& map
->cache_ops
->drop
)
1530 map
->cache_ops
->drop(map
, reg
, reg
+ 1);
1533 trace_regmap_hw_write_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
1539 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1541 * @map: Map to check.
1543 bool regmap_can_raw_write(struct regmap
*map
)
1545 return map
->bus
&& map
->bus
->write
&& map
->format
.format_val
&&
1546 map
->format
.format_reg
;
1548 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1551 * regmap_get_raw_read_max - Get the maximum size we can read
1553 * @map: Map to check.
1555 size_t regmap_get_raw_read_max(struct regmap
*map
)
1557 return map
->max_raw_read
;
1559 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max
);
1562 * regmap_get_raw_write_max - Get the maximum size we can read
1564 * @map: Map to check.
1566 size_t regmap_get_raw_write_max(struct regmap
*map
)
1568 return map
->max_raw_write
;
1570 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max
);
1572 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1576 struct regmap_range_node
*range
;
1577 struct regmap
*map
= context
;
1579 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1581 range
= _regmap_range_lookup(map
, reg
);
1583 ret
= _regmap_select_page(map
, ®
, range
, 1);
1588 map
->format
.format_write(map
, reg
, val
);
1590 trace_regmap_hw_write_start(map
, reg
, 1);
1592 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1593 map
->format
.buf_size
);
1595 trace_regmap_hw_write_done(map
, reg
, 1);
1600 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1603 struct regmap
*map
= context
;
1605 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1608 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1611 struct regmap
*map
= context
;
1613 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1615 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1616 + map
->format
.pad_bytes
, val
, 0);
1617 return _regmap_raw_write(map
, reg
,
1619 map
->format
.reg_bytes
+
1620 map
->format
.pad_bytes
,
1621 map
->format
.val_bytes
);
1624 static inline void *_regmap_map_get_context(struct regmap
*map
)
1626 return (map
->bus
) ? map
: map
->bus_context
;
1629 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1633 void *context
= _regmap_map_get_context(map
);
1635 if (!regmap_writeable(map
, reg
))
1638 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1639 ret
= regcache_write(map
, reg
, val
);
1642 if (map
->cache_only
) {
1643 map
->cache_dirty
= true;
1649 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
1650 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1653 trace_regmap_reg_write(map
, reg
, val
);
1655 return map
->reg_write(context
, reg
, val
);
1659 * regmap_write(): Write a value to a single register
1661 * @map: Register map to write to
1662 * @reg: Register to write to
1663 * @val: Value to be written
1665 * A value of zero will be returned on success, a negative errno will
1666 * be returned in error cases.
1668 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1672 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1675 map
->lock(map
->lock_arg
);
1677 ret
= _regmap_write(map
, reg
, val
);
1679 map
->unlock(map
->lock_arg
);
1683 EXPORT_SYMBOL_GPL(regmap_write
);
1686 * regmap_write_async(): Write a value to a single register asynchronously
1688 * @map: Register map to write to
1689 * @reg: Register to write to
1690 * @val: Value to be written
1692 * A value of zero will be returned on success, a negative errno will
1693 * be returned in error cases.
1695 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1699 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1702 map
->lock(map
->lock_arg
);
1706 ret
= _regmap_write(map
, reg
, val
);
1710 map
->unlock(map
->lock_arg
);
1714 EXPORT_SYMBOL_GPL(regmap_write_async
);
1717 * regmap_raw_write(): Write raw values to one or more registers
1719 * @map: Register map to write to
1720 * @reg: Initial register to write to
1721 * @val: Block of data to be written, laid out for direct transmission to the
1723 * @val_len: Length of data pointed to by val.
1725 * This function is intended to be used for things like firmware
1726 * download where a large block of data needs to be transferred to the
1727 * device. No formatting will be done on the data provided.
1729 * A value of zero will be returned on success, a negative errno will
1730 * be returned in error cases.
1732 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1733 const void *val
, size_t val_len
)
1737 if (!regmap_can_raw_write(map
))
1739 if (val_len
% map
->format
.val_bytes
)
1741 if (map
->max_raw_write
&& map
->max_raw_write
< val_len
)
1744 map
->lock(map
->lock_arg
);
1746 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1748 map
->unlock(map
->lock_arg
);
1752 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1755 * regmap_field_update_bits_base():
1756 * Perform a read/modify/write cycle on the register field
1757 * with change, async, force option
1759 * @field: Register field to write to
1760 * @mask: Bitmask to change
1761 * @val: Value to be written
1762 * @change: Boolean indicating if a write was done
1763 * @async: Boolean indicating asynchronously
1764 * @force: Boolean indicating use force update
1766 * A value of zero will be returned on success, a negative errno will
1767 * be returned in error cases.
1769 int regmap_field_update_bits_base(struct regmap_field
*field
,
1770 unsigned int mask
, unsigned int val
,
1771 bool *change
, bool async
, bool force
)
1773 mask
= (mask
<< field
->shift
) & field
->mask
;
1775 return regmap_update_bits_base(field
->regmap
, field
->reg
,
1776 mask
, val
<< field
->shift
,
1777 change
, async
, force
);
1779 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base
);
1782 * regmap_fields_update_bits_base():
1783 * Perform a read/modify/write cycle on the register field
1784 * with change, async, force option
1786 * @field: Register field to write to
1788 * @mask: Bitmask to change
1789 * @val: Value to be written
1790 * @change: Boolean indicating if a write was done
1791 * @async: Boolean indicating asynchronously
1792 * @force: Boolean indicating use force update
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1797 int regmap_fields_update_bits_base(struct regmap_field
*field
, unsigned int id
,
1798 unsigned int mask
, unsigned int val
,
1799 bool *change
, bool async
, bool force
)
1801 if (id
>= field
->id_size
)
1804 mask
= (mask
<< field
->shift
) & field
->mask
;
1806 return regmap_update_bits_base(field
->regmap
,
1807 field
->reg
+ (field
->id_offset
* id
),
1808 mask
, val
<< field
->shift
,
1809 change
, async
, force
);
1811 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base
);
1814 * regmap_bulk_write(): Write multiple registers to the device
1816 * @map: Register map to write to
1817 * @reg: First register to be write from
1818 * @val: Block of data to be written, in native register size for device
1819 * @val_count: Number of registers to write
1821 * This function is intended to be used for writing a large block of
1822 * data to the device either in single transfer or multiple transfer.
1824 * A value of zero will be returned on success, a negative errno will
1825 * be returned in error cases.
1827 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
1831 size_t val_bytes
= map
->format
.val_bytes
;
1832 size_t total_size
= val_bytes
* val_count
;
1834 if (!IS_ALIGNED(reg
, map
->reg_stride
))
1838 * Some devices don't support bulk write, for
1839 * them we have a series of single write operations in the first two if
1842 * The first if block is used for memory mapped io. It does not allow
1843 * val_bytes of 3 for example.
1844 * The second one is for busses that do not provide raw I/O.
1845 * The third one is used for busses which do not have these limitations
1846 * and can write arbitrary value lengths.
1849 map
->lock(map
->lock_arg
);
1850 for (i
= 0; i
< val_count
; i
++) {
1853 switch (val_bytes
) {
1855 ival
= *(u8
*)(val
+ (i
* val_bytes
));
1858 ival
= *(u16
*)(val
+ (i
* val_bytes
));
1861 ival
= *(u32
*)(val
+ (i
* val_bytes
));
1865 ival
= *(u64
*)(val
+ (i
* val_bytes
));
1873 ret
= _regmap_write(map
,
1874 reg
+ regmap_get_offset(map
, i
),
1880 map
->unlock(map
->lock_arg
);
1881 } else if (map
->bus
&& !map
->format
.parse_inplace
) {
1883 const u16
*u16
= val
;
1884 const u32
*u32
= val
;
1887 for (i
= 0; i
< val_count
; i
++) {
1888 switch (map
->format
.val_bytes
) {
1902 ret
= regmap_write(map
, reg
+ (i
* map
->reg_stride
),
1907 } else if (map
->use_single_write
||
1908 (map
->max_raw_write
&& map
->max_raw_write
< total_size
)) {
1909 int chunk_stride
= map
->reg_stride
;
1910 size_t chunk_size
= val_bytes
;
1911 size_t chunk_count
= val_count
;
1913 if (!map
->use_single_write
) {
1914 chunk_size
= map
->max_raw_write
;
1915 if (chunk_size
% val_bytes
)
1916 chunk_size
-= chunk_size
% val_bytes
;
1917 chunk_count
= total_size
/ chunk_size
;
1918 chunk_stride
*= chunk_size
/ val_bytes
;
1921 map
->lock(map
->lock_arg
);
1922 /* Write as many bytes as possible with chunk_size */
1923 for (i
= 0; i
< chunk_count
; i
++) {
1924 ret
= _regmap_raw_write(map
,
1925 reg
+ (i
* chunk_stride
),
1926 val
+ (i
* chunk_size
),
1932 /* Write remaining bytes */
1933 if (!ret
&& chunk_size
* i
< total_size
) {
1934 ret
= _regmap_raw_write(map
, reg
+ (i
* chunk_stride
),
1935 val
+ (i
* chunk_size
),
1936 total_size
- i
* chunk_size
);
1938 map
->unlock(map
->lock_arg
);
1945 wval
= kmemdup(val
, val_count
* val_bytes
, map
->alloc_flags
);
1947 dev_err(map
->dev
, "Error in memory allocation\n");
1950 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
1951 map
->format
.parse_inplace(wval
+ i
);
1953 map
->lock(map
->lock_arg
);
1954 ret
= _regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
1955 map
->unlock(map
->lock_arg
);
1961 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
1964 * _regmap_raw_multi_reg_write()
1966 * the (register,newvalue) pairs in regs have not been formatted, but
1967 * they are all in the same page and have been changed to being page
1968 * relative. The page register has been written if that was necessary.
1970 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
1971 const struct reg_sequence
*regs
,
1978 size_t val_bytes
= map
->format
.val_bytes
;
1979 size_t reg_bytes
= map
->format
.reg_bytes
;
1980 size_t pad_bytes
= map
->format
.pad_bytes
;
1981 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
1982 size_t len
= pair_size
* num_regs
;
1987 buf
= kzalloc(len
, GFP_KERNEL
);
1991 /* We have to linearise by hand. */
1995 for (i
= 0; i
< num_regs
; i
++) {
1996 unsigned int reg
= regs
[i
].reg
;
1997 unsigned int val
= regs
[i
].def
;
1998 trace_regmap_hw_write_start(map
, reg
, 1);
1999 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
2000 u8
+= reg_bytes
+ pad_bytes
;
2001 map
->format
.format_val(u8
, val
, 0);
2005 *u8
|= map
->write_flag_mask
;
2007 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
2011 for (i
= 0; i
< num_regs
; i
++) {
2012 int reg
= regs
[i
].reg
;
2013 trace_regmap_hw_write_done(map
, reg
, 1);
2018 static unsigned int _regmap_register_page(struct regmap
*map
,
2020 struct regmap_range_node
*range
)
2022 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
2027 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
2028 struct reg_sequence
*regs
,
2033 struct reg_sequence
*base
;
2034 unsigned int this_page
= 0;
2035 unsigned int page_change
= 0;
2037 * the set of registers are not neccessarily in order, but
2038 * since the order of write must be preserved this algorithm
2039 * chops the set each time the page changes. This also applies
2040 * if there is a delay required at any point in the sequence.
2043 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
2044 unsigned int reg
= regs
[i
].reg
;
2045 struct regmap_range_node
*range
;
2047 range
= _regmap_range_lookup(map
, reg
);
2049 unsigned int win_page
= _regmap_register_page(map
, reg
,
2053 this_page
= win_page
;
2054 if (win_page
!= this_page
) {
2055 this_page
= win_page
;
2060 /* If we have both a page change and a delay make sure to
2061 * write the regs and apply the delay before we change the
2065 if (page_change
|| regs
[i
].delay_us
) {
2067 /* For situations where the first write requires
2068 * a delay we need to make sure we don't call
2069 * raw_multi_reg_write with n=0
2070 * This can't occur with page breaks as we
2071 * never write on the first iteration
2073 if (regs
[i
].delay_us
&& i
== 0)
2076 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
2080 if (regs
[i
].delay_us
)
2081 udelay(regs
[i
].delay_us
);
2087 ret
= _regmap_select_page(map
,
2100 return _regmap_raw_multi_reg_write(map
, base
, n
);
2104 static int _regmap_multi_reg_write(struct regmap
*map
,
2105 const struct reg_sequence
*regs
,
2111 if (!map
->can_multi_write
) {
2112 for (i
= 0; i
< num_regs
; i
++) {
2113 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
2117 if (regs
[i
].delay_us
)
2118 udelay(regs
[i
].delay_us
);
2123 if (!map
->format
.parse_inplace
)
2126 if (map
->writeable_reg
)
2127 for (i
= 0; i
< num_regs
; i
++) {
2128 int reg
= regs
[i
].reg
;
2129 if (!map
->writeable_reg(map
->dev
, reg
))
2131 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2135 if (!map
->cache_bypass
) {
2136 for (i
= 0; i
< num_regs
; i
++) {
2137 unsigned int val
= regs
[i
].def
;
2138 unsigned int reg
= regs
[i
].reg
;
2139 ret
= regcache_write(map
, reg
, val
);
2142 "Error in caching of register: %x ret: %d\n",
2147 if (map
->cache_only
) {
2148 map
->cache_dirty
= true;
2155 for (i
= 0; i
< num_regs
; i
++) {
2156 unsigned int reg
= regs
[i
].reg
;
2157 struct regmap_range_node
*range
;
2159 /* Coalesce all the writes between a page break or a delay
2162 range
= _regmap_range_lookup(map
, reg
);
2163 if (range
|| regs
[i
].delay_us
) {
2164 size_t len
= sizeof(struct reg_sequence
)*num_regs
;
2165 struct reg_sequence
*base
= kmemdup(regs
, len
,
2169 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
2176 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
2180 * regmap_multi_reg_write(): Write multiple registers to the device
2182 * where the set of register,value pairs are supplied in any order,
2183 * possibly not all in a single range.
2185 * @map: Register map to write to
2186 * @regs: Array of structures containing register,value to be written
2187 * @num_regs: Number of registers to write
2189 * The 'normal' block write mode will send ultimately send data on the
2190 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2191 * addressed. However, this alternative block multi write mode will send
2192 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2193 * must of course support the mode.
2195 * A value of zero will be returned on success, a negative errno will be
2196 * returned in error cases.
2198 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_sequence
*regs
,
2203 map
->lock(map
->lock_arg
);
2205 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2207 map
->unlock(map
->lock_arg
);
2211 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
2214 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2215 * device but not the cache
2217 * where the set of register are supplied in any order
2219 * @map: Register map to write to
2220 * @regs: Array of structures containing register,value to be written
2221 * @num_regs: Number of registers to write
2223 * This function is intended to be used for writing a large block of data
2224 * atomically to the device in single transfer for those I2C client devices
2225 * that implement this alternative block write mode.
2227 * A value of zero will be returned on success, a negative errno will
2228 * be returned in error cases.
2230 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
2231 const struct reg_sequence
*regs
,
2237 map
->lock(map
->lock_arg
);
2239 bypass
= map
->cache_bypass
;
2240 map
->cache_bypass
= true;
2242 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2244 map
->cache_bypass
= bypass
;
2246 map
->unlock(map
->lock_arg
);
2250 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
2253 * regmap_raw_write_async(): Write raw values to one or more registers
2256 * @map: Register map to write to
2257 * @reg: Initial register to write to
2258 * @val: Block of data to be written, laid out for direct transmission to the
2259 * device. Must be valid until regmap_async_complete() is called.
2260 * @val_len: Length of data pointed to by val.
2262 * This function is intended to be used for things like firmware
2263 * download where a large block of data needs to be transferred to the
2264 * device. No formatting will be done on the data provided.
2266 * If supported by the underlying bus the write will be scheduled
2267 * asynchronously, helping maximise I/O speed on higher speed buses
2268 * like SPI. regmap_async_complete() can be called to ensure that all
2269 * asynchrnous writes have been completed.
2271 * A value of zero will be returned on success, a negative errno will
2272 * be returned in error cases.
2274 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
2275 const void *val
, size_t val_len
)
2279 if (val_len
% map
->format
.val_bytes
)
2281 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2284 map
->lock(map
->lock_arg
);
2288 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
2292 map
->unlock(map
->lock_arg
);
2296 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
2298 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2299 unsigned int val_len
)
2301 struct regmap_range_node
*range
;
2306 if (!map
->bus
|| !map
->bus
->read
)
2309 range
= _regmap_range_lookup(map
, reg
);
2311 ret
= _regmap_select_page(map
, ®
, range
,
2312 val_len
/ map
->format
.val_bytes
);
2317 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
2318 regmap_set_work_buf_flag_mask(map
, map
->format
.reg_bytes
,
2319 map
->read_flag_mask
);
2320 trace_regmap_hw_read_start(map
, reg
, val_len
/ map
->format
.val_bytes
);
2322 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
2323 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
2326 trace_regmap_hw_read_done(map
, reg
, val_len
/ map
->format
.val_bytes
);
2331 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2334 struct regmap
*map
= context
;
2336 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2339 static int _regmap_bus_read(void *context
, unsigned int reg
,
2343 struct regmap
*map
= context
;
2345 if (!map
->format
.parse_val
)
2348 ret
= _regmap_raw_read(map
, reg
, map
->work_buf
, map
->format
.val_bytes
);
2350 *val
= map
->format
.parse_val(map
->work_buf
);
2355 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2359 void *context
= _regmap_map_get_context(map
);
2361 if (!map
->cache_bypass
) {
2362 ret
= regcache_read(map
, reg
, val
);
2367 if (map
->cache_only
)
2370 if (!regmap_readable(map
, reg
))
2373 ret
= map
->reg_read(context
, reg
, val
);
2376 if (map
->dev
&& strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
2377 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2380 trace_regmap_reg_read(map
, reg
, *val
);
2382 if (!map
->cache_bypass
)
2383 regcache_write(map
, reg
, *val
);
2390 * regmap_read(): Read a value from a single register
2392 * @map: Register map to read from
2393 * @reg: Register to be read from
2394 * @val: Pointer to store read value
2396 * A value of zero will be returned on success, a negative errno will
2397 * be returned in error cases.
2399 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2403 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2406 map
->lock(map
->lock_arg
);
2408 ret
= _regmap_read(map
, reg
, val
);
2410 map
->unlock(map
->lock_arg
);
2414 EXPORT_SYMBOL_GPL(regmap_read
);
2417 * regmap_raw_read(): Read raw data from the device
2419 * @map: Register map to read from
2420 * @reg: First register to be read from
2421 * @val: Pointer to store read value
2422 * @val_len: Size of data to read
2424 * A value of zero will be returned on success, a negative errno will
2425 * be returned in error cases.
2427 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2430 size_t val_bytes
= map
->format
.val_bytes
;
2431 size_t val_count
= val_len
/ val_bytes
;
2437 if (val_len
% map
->format
.val_bytes
)
2439 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2444 map
->lock(map
->lock_arg
);
2446 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2447 map
->cache_type
== REGCACHE_NONE
) {
2448 if (!map
->bus
->read
) {
2452 if (map
->max_raw_read
&& map
->max_raw_read
< val_len
) {
2457 /* Physical block read if there's no cache involved */
2458 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2461 /* Otherwise go word by word for the cache; should be low
2462 * cost as we expect to hit the cache.
2464 for (i
= 0; i
< val_count
; i
++) {
2465 ret
= _regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2470 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2475 map
->unlock(map
->lock_arg
);
2479 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2482 * regmap_field_read(): Read a value to a single register field
2484 * @field: Register field to read from
2485 * @val: Pointer to store read value
2487 * A value of zero will be returned on success, a negative errno will
2488 * be returned in error cases.
2490 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2493 unsigned int reg_val
;
2494 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2498 reg_val
&= field
->mask
;
2499 reg_val
>>= field
->shift
;
2504 EXPORT_SYMBOL_GPL(regmap_field_read
);
2507 * regmap_fields_read(): Read a value to a single register field with port ID
2509 * @field: Register field to read from
2511 * @val: Pointer to store read value
2513 * A value of zero will be returned on success, a negative errno will
2514 * be returned in error cases.
2516 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2520 unsigned int reg_val
;
2522 if (id
>= field
->id_size
)
2525 ret
= regmap_read(field
->regmap
,
2526 field
->reg
+ (field
->id_offset
* id
),
2531 reg_val
&= field
->mask
;
2532 reg_val
>>= field
->shift
;
2537 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2540 * regmap_bulk_read(): Read multiple registers from the device
2542 * @map: Register map to read from
2543 * @reg: First register to be read from
2544 * @val: Pointer to store read value, in native register size for device
2545 * @val_count: Number of registers to read
2547 * A value of zero will be returned on success, a negative errno will
2548 * be returned in error cases.
2550 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2554 size_t val_bytes
= map
->format
.val_bytes
;
2555 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2557 if (!IS_ALIGNED(reg
, map
->reg_stride
))
2560 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2562 * Some devices does not support bulk read, for
2563 * them we have a series of single read operations.
2565 size_t total_size
= val_bytes
* val_count
;
2567 if (!map
->use_single_read
&&
2568 (!map
->max_raw_read
|| map
->max_raw_read
> total_size
)) {
2569 ret
= regmap_raw_read(map
, reg
, val
,
2570 val_bytes
* val_count
);
2575 * Some devices do not support bulk read or do not
2576 * support large bulk reads, for them we have a series
2577 * of read operations.
2579 int chunk_stride
= map
->reg_stride
;
2580 size_t chunk_size
= val_bytes
;
2581 size_t chunk_count
= val_count
;
2583 if (!map
->use_single_read
) {
2584 chunk_size
= map
->max_raw_read
;
2585 if (chunk_size
% val_bytes
)
2586 chunk_size
-= chunk_size
% val_bytes
;
2587 chunk_count
= total_size
/ chunk_size
;
2588 chunk_stride
*= chunk_size
/ val_bytes
;
2591 /* Read bytes that fit into a multiple of chunk_size */
2592 for (i
= 0; i
< chunk_count
; i
++) {
2593 ret
= regmap_raw_read(map
,
2594 reg
+ (i
* chunk_stride
),
2595 val
+ (i
* chunk_size
),
2601 /* Read remaining bytes */
2602 if (chunk_size
* i
< total_size
) {
2603 ret
= regmap_raw_read(map
,
2604 reg
+ (i
* chunk_stride
),
2605 val
+ (i
* chunk_size
),
2606 total_size
- i
* chunk_size
);
2612 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2613 map
->format
.parse_inplace(val
+ i
);
2615 for (i
= 0; i
< val_count
; i
++) {
2617 ret
= regmap_read(map
, reg
+ regmap_get_offset(map
, i
),
2622 if (map
->format
.format_val
) {
2623 map
->format
.format_val(val
+ (i
* val_bytes
), ival
, 0);
2625 /* Devices providing read and write
2626 * operations can use the bulk I/O
2627 * functions if they define a val_bytes,
2628 * we assume that the values are native
2638 switch (map
->format
.val_bytes
) {
2662 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2664 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2665 unsigned int mask
, unsigned int val
,
2666 bool *change
, bool force_write
)
2669 unsigned int tmp
, orig
;
2674 if (regmap_volatile(map
, reg
) && map
->reg_update_bits
) {
2675 ret
= map
->reg_update_bits(map
->bus_context
, reg
, mask
, val
);
2676 if (ret
== 0 && change
)
2679 ret
= _regmap_read(map
, reg
, &orig
);
2686 if (force_write
|| (tmp
!= orig
)) {
2687 ret
= _regmap_write(map
, reg
, tmp
);
2688 if (ret
== 0 && change
)
2697 * regmap_update_bits_base:
2698 * Perform a read/modify/write cycle on the
2699 * register map with change, async, force option
2701 * @map: Register map to update
2702 * @reg: Register to update
2703 * @mask: Bitmask to change
2704 * @val: New value for bitmask
2705 * @change: Boolean indicating if a write was done
2706 * @async: Boolean indicating asynchronously
2707 * @force: Boolean indicating use force update
2709 * if async was true,
2710 * With most buses the read must be done synchronously so this is most
2711 * useful for devices with a cache which do not need to interact with
2712 * the hardware to determine the current register value.
2714 * Returns zero for success, a negative number on error.
2716 int regmap_update_bits_base(struct regmap
*map
, unsigned int reg
,
2717 unsigned int mask
, unsigned int val
,
2718 bool *change
, bool async
, bool force
)
2722 map
->lock(map
->lock_arg
);
2726 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
, force
);
2730 map
->unlock(map
->lock_arg
);
2734 EXPORT_SYMBOL_GPL(regmap_update_bits_base
);
2736 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2738 struct regmap
*map
= async
->map
;
2741 trace_regmap_async_io_complete(map
);
2743 spin_lock(&map
->async_lock
);
2744 list_move(&async
->list
, &map
->async_free
);
2745 wake
= list_empty(&map
->async_list
);
2748 map
->async_ret
= ret
;
2750 spin_unlock(&map
->async_lock
);
2753 wake_up(&map
->async_waitq
);
2755 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2757 static int regmap_async_is_done(struct regmap
*map
)
2759 unsigned long flags
;
2762 spin_lock_irqsave(&map
->async_lock
, flags
);
2763 ret
= list_empty(&map
->async_list
);
2764 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2770 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2772 * @map: Map to operate on.
2774 * Blocks until any pending asynchronous I/O has completed. Returns
2775 * an error code for any failed I/O operations.
2777 int regmap_async_complete(struct regmap
*map
)
2779 unsigned long flags
;
2782 /* Nothing to do with no async support */
2783 if (!map
->bus
|| !map
->bus
->async_write
)
2786 trace_regmap_async_complete_start(map
);
2788 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2790 spin_lock_irqsave(&map
->async_lock
, flags
);
2791 ret
= map
->async_ret
;
2793 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2795 trace_regmap_async_complete_done(map
);
2799 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2802 * regmap_register_patch: Register and apply register updates to be applied
2803 * on device initialistion
2805 * @map: Register map to apply updates to.
2806 * @regs: Values to update.
2807 * @num_regs: Number of entries in regs.
2809 * Register a set of register updates to be applied to the device
2810 * whenever the device registers are synchronised with the cache and
2811 * apply them immediately. Typically this is used to apply
2812 * corrections to be applied to the device defaults on startup, such
2813 * as the updates some vendors provide to undocumented registers.
2815 * The caller must ensure that this function cannot be called
2816 * concurrently with either itself or regcache_sync().
2818 int regmap_register_patch(struct regmap
*map
, const struct reg_sequence
*regs
,
2821 struct reg_sequence
*p
;
2825 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
2829 p
= krealloc(map
->patch
,
2830 sizeof(struct reg_sequence
) * (map
->patch_regs
+ num_regs
),
2833 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
2835 map
->patch_regs
+= num_regs
;
2840 map
->lock(map
->lock_arg
);
2842 bypass
= map
->cache_bypass
;
2844 map
->cache_bypass
= true;
2847 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2850 map
->cache_bypass
= bypass
;
2852 map
->unlock(map
->lock_arg
);
2854 regmap_async_complete(map
);
2858 EXPORT_SYMBOL_GPL(regmap_register_patch
);
2861 * regmap_get_val_bytes(): Report the size of a register value
2863 * Report the size of a register value, mainly intended to for use by
2864 * generic infrastructure built on top of regmap.
2866 int regmap_get_val_bytes(struct regmap
*map
)
2868 if (map
->format
.format_write
)
2871 return map
->format
.val_bytes
;
2873 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
2876 * regmap_get_max_register(): Report the max register value
2878 * Report the max register value, mainly intended to for use by
2879 * generic infrastructure built on top of regmap.
2881 int regmap_get_max_register(struct regmap
*map
)
2883 return map
->max_register
? map
->max_register
: -EINVAL
;
2885 EXPORT_SYMBOL_GPL(regmap_get_max_register
);
2888 * regmap_get_reg_stride(): Report the register address stride
2890 * Report the register address stride, mainly intended to for use by
2891 * generic infrastructure built on top of regmap.
2893 int regmap_get_reg_stride(struct regmap
*map
)
2895 return map
->reg_stride
;
2897 EXPORT_SYMBOL_GPL(regmap_get_reg_stride
);
2899 int regmap_parse_val(struct regmap
*map
, const void *buf
,
2902 if (!map
->format
.parse_val
)
2905 *val
= map
->format
.parse_val(buf
);
2909 EXPORT_SYMBOL_GPL(regmap_parse_val
);
2911 static int __init
regmap_initcall(void)
2913 regmap_debugfs_initcall();
2917 postcore_initcall(regmap_initcall
);