Revert "ALSA: hda: Flush interrupts on disabling"
[linux/fpc-iii.git] / drivers / base / regmap / regmap.c
blob1799a1dfa46ea64f1e0bc0eb3d1ef35cf663c95b
1 /*
2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
27 #include "internal.h"
30 * Sometimes for failures during very early init the trace
31 * infrastructure isn't available early enough to be used. For this
32 * sort of problem defining LOG_DEVICE will add printks for basic
33 * register I/O on a specific device.
35 #undef LOG_DEVICE
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38 unsigned int mask, unsigned int val,
39 bool *change, bool force_write);
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44 unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46 unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48 unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50 unsigned int val);
52 bool regmap_reg_in_ranges(unsigned int reg,
53 const struct regmap_range *ranges,
54 unsigned int nranges)
56 const struct regmap_range *r;
57 int i;
59 for (i = 0, r = ranges; i < nranges; i++, r++)
60 if (regmap_reg_in_range(reg, r))
61 return true;
62 return false;
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67 const struct regmap_access_table *table)
69 /* Check "no ranges" first */
70 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71 return false;
73 /* In case zero "yes ranges" are supplied, any reg is OK */
74 if (!table->n_yes_ranges)
75 return true;
77 return regmap_reg_in_ranges(reg, table->yes_ranges,
78 table->n_yes_ranges);
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
84 if (map->max_register && reg > map->max_register)
85 return false;
87 if (map->writeable_reg)
88 return map->writeable_reg(map->dev, reg);
90 if (map->wr_table)
91 return regmap_check_range_table(map, reg, map->wr_table);
93 return true;
96 bool regmap_cached(struct regmap *map, unsigned int reg)
98 int ret;
99 unsigned int val;
101 if (map->cache_type == REGCACHE_NONE)
102 return false;
104 if (!map->cache_ops)
105 return false;
107 if (map->max_register && reg > map->max_register)
108 return false;
110 map->lock(map->lock_arg);
111 ret = regcache_read(map, reg, &val);
112 map->unlock(map->lock_arg);
113 if (ret)
114 return false;
116 return true;
119 bool regmap_readable(struct regmap *map, unsigned int reg)
121 if (!map->reg_read)
122 return false;
124 if (map->max_register && reg > map->max_register)
125 return false;
127 if (map->format.format_write)
128 return false;
130 if (map->readable_reg)
131 return map->readable_reg(map->dev, reg);
133 if (map->rd_table)
134 return regmap_check_range_table(map, reg, map->rd_table);
136 return true;
139 bool regmap_volatile(struct regmap *map, unsigned int reg)
141 if (!map->format.format_write && !regmap_readable(map, reg))
142 return false;
144 if (map->volatile_reg)
145 return map->volatile_reg(map->dev, reg);
147 if (map->volatile_table)
148 return regmap_check_range_table(map, reg, map->volatile_table);
150 if (map->cache_ops)
151 return false;
152 else
153 return true;
156 bool regmap_precious(struct regmap *map, unsigned int reg)
158 if (!regmap_readable(map, reg))
159 return false;
161 if (map->precious_reg)
162 return map->precious_reg(map->dev, reg);
164 if (map->precious_table)
165 return regmap_check_range_table(map, reg, map->precious_table);
167 return false;
170 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
171 size_t num)
173 unsigned int i;
175 for (i = 0; i < num; i++)
176 if (!regmap_volatile(map, reg + i))
177 return false;
179 return true;
182 static void regmap_format_2_6_write(struct regmap *map,
183 unsigned int reg, unsigned int val)
185 u8 *out = map->work_buf;
187 *out = (reg << 6) | val;
190 static void regmap_format_4_12_write(struct regmap *map,
191 unsigned int reg, unsigned int val)
193 __be16 *out = map->work_buf;
194 *out = cpu_to_be16((reg << 12) | val);
197 static void regmap_format_7_9_write(struct regmap *map,
198 unsigned int reg, unsigned int val)
200 __be16 *out = map->work_buf;
201 *out = cpu_to_be16((reg << 9) | val);
204 static void regmap_format_10_14_write(struct regmap *map,
205 unsigned int reg, unsigned int val)
207 u8 *out = map->work_buf;
209 out[2] = val;
210 out[1] = (val >> 8) | (reg << 6);
211 out[0] = reg >> 2;
214 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
216 u8 *b = buf;
218 b[0] = val << shift;
221 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
223 __be16 *b = buf;
225 b[0] = cpu_to_be16(val << shift);
228 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
230 __le16 *b = buf;
232 b[0] = cpu_to_le16(val << shift);
235 static void regmap_format_16_native(void *buf, unsigned int val,
236 unsigned int shift)
238 *(u16 *)buf = val << shift;
241 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
243 u8 *b = buf;
245 val <<= shift;
247 b[0] = val >> 16;
248 b[1] = val >> 8;
249 b[2] = val;
252 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
254 __be32 *b = buf;
256 b[0] = cpu_to_be32(val << shift);
259 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
261 __le32 *b = buf;
263 b[0] = cpu_to_le32(val << shift);
266 static void regmap_format_32_native(void *buf, unsigned int val,
267 unsigned int shift)
269 *(u32 *)buf = val << shift;
272 #ifdef CONFIG_64BIT
273 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
275 __be64 *b = buf;
277 b[0] = cpu_to_be64((u64)val << shift);
280 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
282 __le64 *b = buf;
284 b[0] = cpu_to_le64((u64)val << shift);
287 static void regmap_format_64_native(void *buf, unsigned int val,
288 unsigned int shift)
290 *(u64 *)buf = (u64)val << shift;
292 #endif
294 static void regmap_parse_inplace_noop(void *buf)
298 static unsigned int regmap_parse_8(const void *buf)
300 const u8 *b = buf;
302 return b[0];
305 static unsigned int regmap_parse_16_be(const void *buf)
307 const __be16 *b = buf;
309 return be16_to_cpu(b[0]);
312 static unsigned int regmap_parse_16_le(const void *buf)
314 const __le16 *b = buf;
316 return le16_to_cpu(b[0]);
319 static void regmap_parse_16_be_inplace(void *buf)
321 __be16 *b = buf;
323 b[0] = be16_to_cpu(b[0]);
326 static void regmap_parse_16_le_inplace(void *buf)
328 __le16 *b = buf;
330 b[0] = le16_to_cpu(b[0]);
333 static unsigned int regmap_parse_16_native(const void *buf)
335 return *(u16 *)buf;
338 static unsigned int regmap_parse_24(const void *buf)
340 const u8 *b = buf;
341 unsigned int ret = b[2];
342 ret |= ((unsigned int)b[1]) << 8;
343 ret |= ((unsigned int)b[0]) << 16;
345 return ret;
348 static unsigned int regmap_parse_32_be(const void *buf)
350 const __be32 *b = buf;
352 return be32_to_cpu(b[0]);
355 static unsigned int regmap_parse_32_le(const void *buf)
357 const __le32 *b = buf;
359 return le32_to_cpu(b[0]);
362 static void regmap_parse_32_be_inplace(void *buf)
364 __be32 *b = buf;
366 b[0] = be32_to_cpu(b[0]);
369 static void regmap_parse_32_le_inplace(void *buf)
371 __le32 *b = buf;
373 b[0] = le32_to_cpu(b[0]);
376 static unsigned int regmap_parse_32_native(const void *buf)
378 return *(u32 *)buf;
381 #ifdef CONFIG_64BIT
382 static unsigned int regmap_parse_64_be(const void *buf)
384 const __be64 *b = buf;
386 return be64_to_cpu(b[0]);
389 static unsigned int regmap_parse_64_le(const void *buf)
391 const __le64 *b = buf;
393 return le64_to_cpu(b[0]);
396 static void regmap_parse_64_be_inplace(void *buf)
398 __be64 *b = buf;
400 b[0] = be64_to_cpu(b[0]);
403 static void regmap_parse_64_le_inplace(void *buf)
405 __le64 *b = buf;
407 b[0] = le64_to_cpu(b[0]);
410 static unsigned int regmap_parse_64_native(const void *buf)
412 return *(u64 *)buf;
414 #endif
416 static void regmap_lock_mutex(void *__map)
418 struct regmap *map = __map;
419 mutex_lock(&map->mutex);
422 static void regmap_unlock_mutex(void *__map)
424 struct regmap *map = __map;
425 mutex_unlock(&map->mutex);
428 static void regmap_lock_spinlock(void *__map)
429 __acquires(&map->spinlock)
431 struct regmap *map = __map;
432 unsigned long flags;
434 spin_lock_irqsave(&map->spinlock, flags);
435 map->spinlock_flags = flags;
438 static void regmap_unlock_spinlock(void *__map)
439 __releases(&map->spinlock)
441 struct regmap *map = __map;
442 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
445 static void dev_get_regmap_release(struct device *dev, void *res)
448 * We don't actually have anything to do here; the goal here
449 * is not to manage the regmap but to provide a simple way to
450 * get the regmap back given a struct device.
454 static bool _regmap_range_add(struct regmap *map,
455 struct regmap_range_node *data)
457 struct rb_root *root = &map->range_tree;
458 struct rb_node **new = &(root->rb_node), *parent = NULL;
460 while (*new) {
461 struct regmap_range_node *this =
462 container_of(*new, struct regmap_range_node, node);
464 parent = *new;
465 if (data->range_max < this->range_min)
466 new = &((*new)->rb_left);
467 else if (data->range_min > this->range_max)
468 new = &((*new)->rb_right);
469 else
470 return false;
473 rb_link_node(&data->node, parent, new);
474 rb_insert_color(&data->node, root);
476 return true;
479 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
480 unsigned int reg)
482 struct rb_node *node = map->range_tree.rb_node;
484 while (node) {
485 struct regmap_range_node *this =
486 container_of(node, struct regmap_range_node, node);
488 if (reg < this->range_min)
489 node = node->rb_left;
490 else if (reg > this->range_max)
491 node = node->rb_right;
492 else
493 return this;
496 return NULL;
499 static void regmap_range_exit(struct regmap *map)
501 struct rb_node *next;
502 struct regmap_range_node *range_node;
504 next = rb_first(&map->range_tree);
505 while (next) {
506 range_node = rb_entry(next, struct regmap_range_node, node);
507 next = rb_next(&range_node->node);
508 rb_erase(&range_node->node, &map->range_tree);
509 kfree(range_node);
512 kfree(map->selector_work_buf);
515 int regmap_attach_dev(struct device *dev, struct regmap *map,
516 const struct regmap_config *config)
518 struct regmap **m;
520 map->dev = dev;
522 regmap_debugfs_init(map, config->name);
524 /* Add a devres resource for dev_get_regmap() */
525 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
526 if (!m) {
527 regmap_debugfs_exit(map);
528 return -ENOMEM;
530 *m = map;
531 devres_add(dev, m);
533 return 0;
535 EXPORT_SYMBOL_GPL(regmap_attach_dev);
537 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
538 const struct regmap_config *config)
540 enum regmap_endian endian;
542 /* Retrieve the endianness specification from the regmap config */
543 endian = config->reg_format_endian;
545 /* If the regmap config specified a non-default value, use that */
546 if (endian != REGMAP_ENDIAN_DEFAULT)
547 return endian;
549 /* Retrieve the endianness specification from the bus config */
550 if (bus && bus->reg_format_endian_default)
551 endian = bus->reg_format_endian_default;
553 /* If the bus specified a non-default value, use that */
554 if (endian != REGMAP_ENDIAN_DEFAULT)
555 return endian;
557 /* Use this if no other value was found */
558 return REGMAP_ENDIAN_BIG;
561 enum regmap_endian regmap_get_val_endian(struct device *dev,
562 const struct regmap_bus *bus,
563 const struct regmap_config *config)
565 struct device_node *np;
566 enum regmap_endian endian;
568 /* Retrieve the endianness specification from the regmap config */
569 endian = config->val_format_endian;
571 /* If the regmap config specified a non-default value, use that */
572 if (endian != REGMAP_ENDIAN_DEFAULT)
573 return endian;
575 /* If the dev and dev->of_node exist try to get endianness from DT */
576 if (dev && dev->of_node) {
577 np = dev->of_node;
579 /* Parse the device's DT node for an endianness specification */
580 if (of_property_read_bool(np, "big-endian"))
581 endian = REGMAP_ENDIAN_BIG;
582 else if (of_property_read_bool(np, "little-endian"))
583 endian = REGMAP_ENDIAN_LITTLE;
584 else if (of_property_read_bool(np, "native-endian"))
585 endian = REGMAP_ENDIAN_NATIVE;
587 /* If the endianness was specified in DT, use that */
588 if (endian != REGMAP_ENDIAN_DEFAULT)
589 return endian;
592 /* Retrieve the endianness specification from the bus config */
593 if (bus && bus->val_format_endian_default)
594 endian = bus->val_format_endian_default;
596 /* If the bus specified a non-default value, use that */
597 if (endian != REGMAP_ENDIAN_DEFAULT)
598 return endian;
600 /* Use this if no other value was found */
601 return REGMAP_ENDIAN_BIG;
603 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
605 struct regmap *__regmap_init(struct device *dev,
606 const struct regmap_bus *bus,
607 void *bus_context,
608 const struct regmap_config *config,
609 struct lock_class_key *lock_key,
610 const char *lock_name)
612 struct regmap *map;
613 int ret = -EINVAL;
614 enum regmap_endian reg_endian, val_endian;
615 int i, j;
617 if (!config)
618 goto err;
620 map = kzalloc(sizeof(*map), GFP_KERNEL);
621 if (map == NULL) {
622 ret = -ENOMEM;
623 goto err;
626 if (config->lock && config->unlock) {
627 map->lock = config->lock;
628 map->unlock = config->unlock;
629 map->lock_arg = config->lock_arg;
630 } else {
631 if ((bus && bus->fast_io) ||
632 config->fast_io) {
633 spin_lock_init(&map->spinlock);
634 map->lock = regmap_lock_spinlock;
635 map->unlock = regmap_unlock_spinlock;
636 lockdep_set_class_and_name(&map->spinlock,
637 lock_key, lock_name);
638 } else {
639 mutex_init(&map->mutex);
640 map->lock = regmap_lock_mutex;
641 map->unlock = regmap_unlock_mutex;
642 lockdep_set_class_and_name(&map->mutex,
643 lock_key, lock_name);
645 map->lock_arg = map;
649 * When we write in fast-paths with regmap_bulk_write() don't allocate
650 * scratch buffers with sleeping allocations.
652 if ((bus && bus->fast_io) || config->fast_io)
653 map->alloc_flags = GFP_ATOMIC;
654 else
655 map->alloc_flags = GFP_KERNEL;
657 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
658 map->format.pad_bytes = config->pad_bits / 8;
659 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
660 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
661 config->val_bits + config->pad_bits, 8);
662 map->reg_shift = config->pad_bits % 8;
663 if (config->reg_stride)
664 map->reg_stride = config->reg_stride;
665 else
666 map->reg_stride = 1;
667 if (is_power_of_2(map->reg_stride))
668 map->reg_stride_order = ilog2(map->reg_stride);
669 else
670 map->reg_stride_order = -1;
671 map->use_single_read = config->use_single_rw || !bus || !bus->read;
672 map->use_single_write = config->use_single_rw || !bus || !bus->write;
673 map->can_multi_write = config->can_multi_write && bus && bus->write;
674 if (bus) {
675 map->max_raw_read = bus->max_raw_read;
676 map->max_raw_write = bus->max_raw_write;
678 map->dev = dev;
679 map->bus = bus;
680 map->bus_context = bus_context;
681 map->max_register = config->max_register;
682 map->wr_table = config->wr_table;
683 map->rd_table = config->rd_table;
684 map->volatile_table = config->volatile_table;
685 map->precious_table = config->precious_table;
686 map->writeable_reg = config->writeable_reg;
687 map->readable_reg = config->readable_reg;
688 map->volatile_reg = config->volatile_reg;
689 map->precious_reg = config->precious_reg;
690 map->cache_type = config->cache_type;
691 map->name = config->name;
693 spin_lock_init(&map->async_lock);
694 INIT_LIST_HEAD(&map->async_list);
695 INIT_LIST_HEAD(&map->async_free);
696 init_waitqueue_head(&map->async_waitq);
698 if (config->read_flag_mask || config->write_flag_mask) {
699 map->read_flag_mask = config->read_flag_mask;
700 map->write_flag_mask = config->write_flag_mask;
701 } else if (bus) {
702 map->read_flag_mask = bus->read_flag_mask;
705 if (!bus) {
706 map->reg_read = config->reg_read;
707 map->reg_write = config->reg_write;
709 map->defer_caching = false;
710 goto skip_format_initialization;
711 } else if (!bus->read || !bus->write) {
712 map->reg_read = _regmap_bus_reg_read;
713 map->reg_write = _regmap_bus_reg_write;
715 map->defer_caching = false;
716 goto skip_format_initialization;
717 } else {
718 map->reg_read = _regmap_bus_read;
719 map->reg_update_bits = bus->reg_update_bits;
722 reg_endian = regmap_get_reg_endian(bus, config);
723 val_endian = regmap_get_val_endian(dev, bus, config);
725 switch (config->reg_bits + map->reg_shift) {
726 case 2:
727 switch (config->val_bits) {
728 case 6:
729 map->format.format_write = regmap_format_2_6_write;
730 break;
731 default:
732 goto err_map;
734 break;
736 case 4:
737 switch (config->val_bits) {
738 case 12:
739 map->format.format_write = regmap_format_4_12_write;
740 break;
741 default:
742 goto err_map;
744 break;
746 case 7:
747 switch (config->val_bits) {
748 case 9:
749 map->format.format_write = regmap_format_7_9_write;
750 break;
751 default:
752 goto err_map;
754 break;
756 case 10:
757 switch (config->val_bits) {
758 case 14:
759 map->format.format_write = regmap_format_10_14_write;
760 break;
761 default:
762 goto err_map;
764 break;
766 case 8:
767 map->format.format_reg = regmap_format_8;
768 break;
770 case 16:
771 switch (reg_endian) {
772 case REGMAP_ENDIAN_BIG:
773 map->format.format_reg = regmap_format_16_be;
774 break;
775 case REGMAP_ENDIAN_LITTLE:
776 map->format.format_reg = regmap_format_16_le;
777 break;
778 case REGMAP_ENDIAN_NATIVE:
779 map->format.format_reg = regmap_format_16_native;
780 break;
781 default:
782 goto err_map;
784 break;
786 case 24:
787 if (reg_endian != REGMAP_ENDIAN_BIG)
788 goto err_map;
789 map->format.format_reg = regmap_format_24;
790 break;
792 case 32:
793 switch (reg_endian) {
794 case REGMAP_ENDIAN_BIG:
795 map->format.format_reg = regmap_format_32_be;
796 break;
797 case REGMAP_ENDIAN_LITTLE:
798 map->format.format_reg = regmap_format_32_le;
799 break;
800 case REGMAP_ENDIAN_NATIVE:
801 map->format.format_reg = regmap_format_32_native;
802 break;
803 default:
804 goto err_map;
806 break;
808 #ifdef CONFIG_64BIT
809 case 64:
810 switch (reg_endian) {
811 case REGMAP_ENDIAN_BIG:
812 map->format.format_reg = regmap_format_64_be;
813 break;
814 case REGMAP_ENDIAN_LITTLE:
815 map->format.format_reg = regmap_format_64_le;
816 break;
817 case REGMAP_ENDIAN_NATIVE:
818 map->format.format_reg = regmap_format_64_native;
819 break;
820 default:
821 goto err_map;
823 break;
824 #endif
826 default:
827 goto err_map;
830 if (val_endian == REGMAP_ENDIAN_NATIVE)
831 map->format.parse_inplace = regmap_parse_inplace_noop;
833 switch (config->val_bits) {
834 case 8:
835 map->format.format_val = regmap_format_8;
836 map->format.parse_val = regmap_parse_8;
837 map->format.parse_inplace = regmap_parse_inplace_noop;
838 break;
839 case 16:
840 switch (val_endian) {
841 case REGMAP_ENDIAN_BIG:
842 map->format.format_val = regmap_format_16_be;
843 map->format.parse_val = regmap_parse_16_be;
844 map->format.parse_inplace = regmap_parse_16_be_inplace;
845 break;
846 case REGMAP_ENDIAN_LITTLE:
847 map->format.format_val = regmap_format_16_le;
848 map->format.parse_val = regmap_parse_16_le;
849 map->format.parse_inplace = regmap_parse_16_le_inplace;
850 break;
851 case REGMAP_ENDIAN_NATIVE:
852 map->format.format_val = regmap_format_16_native;
853 map->format.parse_val = regmap_parse_16_native;
854 break;
855 default:
856 goto err_map;
858 break;
859 case 24:
860 if (val_endian != REGMAP_ENDIAN_BIG)
861 goto err_map;
862 map->format.format_val = regmap_format_24;
863 map->format.parse_val = regmap_parse_24;
864 break;
865 case 32:
866 switch (val_endian) {
867 case REGMAP_ENDIAN_BIG:
868 map->format.format_val = regmap_format_32_be;
869 map->format.parse_val = regmap_parse_32_be;
870 map->format.parse_inplace = regmap_parse_32_be_inplace;
871 break;
872 case REGMAP_ENDIAN_LITTLE:
873 map->format.format_val = regmap_format_32_le;
874 map->format.parse_val = regmap_parse_32_le;
875 map->format.parse_inplace = regmap_parse_32_le_inplace;
876 break;
877 case REGMAP_ENDIAN_NATIVE:
878 map->format.format_val = regmap_format_32_native;
879 map->format.parse_val = regmap_parse_32_native;
880 break;
881 default:
882 goto err_map;
884 break;
885 #ifdef CONFIG_64BIT
886 case 64:
887 switch (val_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_val = regmap_format_64_be;
890 map->format.parse_val = regmap_parse_64_be;
891 map->format.parse_inplace = regmap_parse_64_be_inplace;
892 break;
893 case REGMAP_ENDIAN_LITTLE:
894 map->format.format_val = regmap_format_64_le;
895 map->format.parse_val = regmap_parse_64_le;
896 map->format.parse_inplace = regmap_parse_64_le_inplace;
897 break;
898 case REGMAP_ENDIAN_NATIVE:
899 map->format.format_val = regmap_format_64_native;
900 map->format.parse_val = regmap_parse_64_native;
901 break;
902 default:
903 goto err_map;
905 break;
906 #endif
909 if (map->format.format_write) {
910 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
911 (val_endian != REGMAP_ENDIAN_BIG))
912 goto err_map;
913 map->use_single_write = true;
916 if (!map->format.format_write &&
917 !(map->format.format_reg && map->format.format_val))
918 goto err_map;
920 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
921 if (map->work_buf == NULL) {
922 ret = -ENOMEM;
923 goto err_map;
926 if (map->format.format_write) {
927 map->defer_caching = false;
928 map->reg_write = _regmap_bus_formatted_write;
929 } else if (map->format.format_val) {
930 map->defer_caching = true;
931 map->reg_write = _regmap_bus_raw_write;
934 skip_format_initialization:
936 map->range_tree = RB_ROOT;
937 for (i = 0; i < config->num_ranges; i++) {
938 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
939 struct regmap_range_node *new;
941 /* Sanity check */
942 if (range_cfg->range_max < range_cfg->range_min) {
943 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
944 range_cfg->range_max, range_cfg->range_min);
945 goto err_range;
948 if (range_cfg->range_max > map->max_register) {
949 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
950 range_cfg->range_max, map->max_register);
951 goto err_range;
954 if (range_cfg->selector_reg > map->max_register) {
955 dev_err(map->dev,
956 "Invalid range %d: selector out of map\n", i);
957 goto err_range;
960 if (range_cfg->window_len == 0) {
961 dev_err(map->dev, "Invalid range %d: window_len 0\n",
963 goto err_range;
966 /* Make sure, that this register range has no selector
967 or data window within its boundary */
968 for (j = 0; j < config->num_ranges; j++) {
969 unsigned sel_reg = config->ranges[j].selector_reg;
970 unsigned win_min = config->ranges[j].window_start;
971 unsigned win_max = win_min +
972 config->ranges[j].window_len - 1;
974 /* Allow data window inside its own virtual range */
975 if (j == i)
976 continue;
978 if (range_cfg->range_min <= sel_reg &&
979 sel_reg <= range_cfg->range_max) {
980 dev_err(map->dev,
981 "Range %d: selector for %d in window\n",
982 i, j);
983 goto err_range;
986 if (!(win_max < range_cfg->range_min ||
987 win_min > range_cfg->range_max)) {
988 dev_err(map->dev,
989 "Range %d: window for %d in window\n",
990 i, j);
991 goto err_range;
995 new = kzalloc(sizeof(*new), GFP_KERNEL);
996 if (new == NULL) {
997 ret = -ENOMEM;
998 goto err_range;
1001 new->map = map;
1002 new->name = range_cfg->name;
1003 new->range_min = range_cfg->range_min;
1004 new->range_max = range_cfg->range_max;
1005 new->selector_reg = range_cfg->selector_reg;
1006 new->selector_mask = range_cfg->selector_mask;
1007 new->selector_shift = range_cfg->selector_shift;
1008 new->window_start = range_cfg->window_start;
1009 new->window_len = range_cfg->window_len;
1011 if (!_regmap_range_add(map, new)) {
1012 dev_err(map->dev, "Failed to add range %d\n", i);
1013 kfree(new);
1014 goto err_range;
1017 if (map->selector_work_buf == NULL) {
1018 map->selector_work_buf =
1019 kzalloc(map->format.buf_size, GFP_KERNEL);
1020 if (map->selector_work_buf == NULL) {
1021 ret = -ENOMEM;
1022 goto err_range;
1027 ret = regcache_init(map, config);
1028 if (ret != 0)
1029 goto err_range;
1031 if (dev) {
1032 ret = regmap_attach_dev(dev, map, config);
1033 if (ret != 0)
1034 goto err_regcache;
1037 return map;
1039 err_regcache:
1040 regcache_exit(map);
1041 err_range:
1042 regmap_range_exit(map);
1043 kfree(map->work_buf);
1044 err_map:
1045 kfree(map);
1046 err:
1047 return ERR_PTR(ret);
1049 EXPORT_SYMBOL_GPL(__regmap_init);
1051 static void devm_regmap_release(struct device *dev, void *res)
1053 regmap_exit(*(struct regmap **)res);
1056 struct regmap *__devm_regmap_init(struct device *dev,
1057 const struct regmap_bus *bus,
1058 void *bus_context,
1059 const struct regmap_config *config,
1060 struct lock_class_key *lock_key,
1061 const char *lock_name)
1063 struct regmap **ptr, *regmap;
1065 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1066 if (!ptr)
1067 return ERR_PTR(-ENOMEM);
1069 regmap = __regmap_init(dev, bus, bus_context, config,
1070 lock_key, lock_name);
1071 if (!IS_ERR(regmap)) {
1072 *ptr = regmap;
1073 devres_add(dev, ptr);
1074 } else {
1075 devres_free(ptr);
1078 return regmap;
1080 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1082 static void regmap_field_init(struct regmap_field *rm_field,
1083 struct regmap *regmap, struct reg_field reg_field)
1085 rm_field->regmap = regmap;
1086 rm_field->reg = reg_field.reg;
1087 rm_field->shift = reg_field.lsb;
1088 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1089 rm_field->id_size = reg_field.id_size;
1090 rm_field->id_offset = reg_field.id_offset;
1094 * devm_regmap_field_alloc(): Allocate and initialise a register field
1095 * in a register map.
1097 * @dev: Device that will be interacted with
1098 * @regmap: regmap bank in which this register field is located.
1099 * @reg_field: Register field with in the bank.
1101 * The return value will be an ERR_PTR() on error or a valid pointer
1102 * to a struct regmap_field. The regmap_field will be automatically freed
1103 * by the device management code.
1105 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1106 struct regmap *regmap, struct reg_field reg_field)
1108 struct regmap_field *rm_field = devm_kzalloc(dev,
1109 sizeof(*rm_field), GFP_KERNEL);
1110 if (!rm_field)
1111 return ERR_PTR(-ENOMEM);
1113 regmap_field_init(rm_field, regmap, reg_field);
1115 return rm_field;
1118 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1121 * devm_regmap_field_free(): Free register field allocated using
1122 * devm_regmap_field_alloc. Usally drivers need not call this function,
1123 * as the memory allocated via devm will be freed as per device-driver
1124 * life-cyle.
1126 * @dev: Device that will be interacted with
1127 * @field: regmap field which should be freed.
1129 void devm_regmap_field_free(struct device *dev,
1130 struct regmap_field *field)
1132 devm_kfree(dev, field);
1134 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1137 * regmap_field_alloc(): Allocate and initialise a register field
1138 * in a register map.
1140 * @regmap: regmap bank in which this register field is located.
1141 * @reg_field: Register field with in the bank.
1143 * The return value will be an ERR_PTR() on error or a valid pointer
1144 * to a struct regmap_field. The regmap_field should be freed by the
1145 * user once its finished working with it using regmap_field_free().
1147 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1148 struct reg_field reg_field)
1150 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1152 if (!rm_field)
1153 return ERR_PTR(-ENOMEM);
1155 regmap_field_init(rm_field, regmap, reg_field);
1157 return rm_field;
1159 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1162 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1164 * @field: regmap field which should be freed.
1166 void regmap_field_free(struct regmap_field *field)
1168 kfree(field);
1170 EXPORT_SYMBOL_GPL(regmap_field_free);
1173 * regmap_reinit_cache(): Reinitialise the current register cache
1175 * @map: Register map to operate on.
1176 * @config: New configuration. Only the cache data will be used.
1178 * Discard any existing register cache for the map and initialize a
1179 * new cache. This can be used to restore the cache to defaults or to
1180 * update the cache configuration to reflect runtime discovery of the
1181 * hardware.
1183 * No explicit locking is done here, the user needs to ensure that
1184 * this function will not race with other calls to regmap.
1186 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1188 regcache_exit(map);
1189 regmap_debugfs_exit(map);
1191 map->max_register = config->max_register;
1192 map->writeable_reg = config->writeable_reg;
1193 map->readable_reg = config->readable_reg;
1194 map->volatile_reg = config->volatile_reg;
1195 map->precious_reg = config->precious_reg;
1196 map->cache_type = config->cache_type;
1198 regmap_debugfs_init(map, config->name);
1200 map->cache_bypass = false;
1201 map->cache_only = false;
1203 return regcache_init(map, config);
1205 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1208 * regmap_exit(): Free a previously allocated register map
1210 void regmap_exit(struct regmap *map)
1212 struct regmap_async *async;
1214 regcache_exit(map);
1215 regmap_debugfs_exit(map);
1216 regmap_range_exit(map);
1217 if (map->bus && map->bus->free_context)
1218 map->bus->free_context(map->bus_context);
1219 kfree(map->work_buf);
1220 while (!list_empty(&map->async_free)) {
1221 async = list_first_entry_or_null(&map->async_free,
1222 struct regmap_async,
1223 list);
1224 list_del(&async->list);
1225 kfree(async->work_buf);
1226 kfree(async);
1228 kfree(map);
1230 EXPORT_SYMBOL_GPL(regmap_exit);
1232 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1234 struct regmap **r = res;
1235 if (!r || !*r) {
1236 WARN_ON(!r || !*r);
1237 return 0;
1240 /* If the user didn't specify a name match any */
1241 if (data)
1242 return (*r)->name == data;
1243 else
1244 return 1;
1248 * dev_get_regmap(): Obtain the regmap (if any) for a device
1250 * @dev: Device to retrieve the map for
1251 * @name: Optional name for the register map, usually NULL.
1253 * Returns the regmap for the device if one is present, or NULL. If
1254 * name is specified then it must match the name specified when
1255 * registering the device, if it is NULL then the first regmap found
1256 * will be used. Devices with multiple register maps are very rare,
1257 * generic code should normally not need to specify a name.
1259 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1261 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1262 dev_get_regmap_match, (void *)name);
1264 if (!r)
1265 return NULL;
1266 return *r;
1268 EXPORT_SYMBOL_GPL(dev_get_regmap);
1271 * regmap_get_device(): Obtain the device from a regmap
1273 * @map: Register map to operate on.
1275 * Returns the underlying device that the regmap has been created for.
1277 struct device *regmap_get_device(struct regmap *map)
1279 return map->dev;
1281 EXPORT_SYMBOL_GPL(regmap_get_device);
1283 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1284 struct regmap_range_node *range,
1285 unsigned int val_num)
1287 void *orig_work_buf;
1288 unsigned int win_offset;
1289 unsigned int win_page;
1290 bool page_chg;
1291 int ret;
1293 win_offset = (*reg - range->range_min) % range->window_len;
1294 win_page = (*reg - range->range_min) / range->window_len;
1296 if (val_num > 1) {
1297 /* Bulk write shouldn't cross range boundary */
1298 if (*reg + val_num - 1 > range->range_max)
1299 return -EINVAL;
1301 /* ... or single page boundary */
1302 if (val_num > range->window_len - win_offset)
1303 return -EINVAL;
1306 /* It is possible to have selector register inside data window.
1307 In that case, selector register is located on every page and
1308 it needs no page switching, when accessed alone. */
1309 if (val_num > 1 ||
1310 range->window_start + win_offset != range->selector_reg) {
1311 /* Use separate work_buf during page switching */
1312 orig_work_buf = map->work_buf;
1313 map->work_buf = map->selector_work_buf;
1315 ret = _regmap_update_bits(map, range->selector_reg,
1316 range->selector_mask,
1317 win_page << range->selector_shift,
1318 &page_chg, false);
1320 map->work_buf = orig_work_buf;
1322 if (ret != 0)
1323 return ret;
1326 *reg = range->window_start + win_offset;
1328 return 0;
1331 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1332 unsigned long mask)
1334 u8 *buf;
1335 int i;
1337 if (!mask || !map->work_buf)
1338 return;
1340 buf = map->work_buf;
1342 for (i = 0; i < max_bytes; i++)
1343 buf[i] |= (mask >> (8 * i)) & 0xff;
1346 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1347 const void *val, size_t val_len)
1349 struct regmap_range_node *range;
1350 unsigned long flags;
1351 void *work_val = map->work_buf + map->format.reg_bytes +
1352 map->format.pad_bytes;
1353 void *buf;
1354 int ret = -ENOTSUPP;
1355 size_t len;
1356 int i;
1358 WARN_ON(!map->bus);
1360 /* Check for unwritable registers before we start */
1361 if (map->writeable_reg)
1362 for (i = 0; i < val_len / map->format.val_bytes; i++)
1363 if (!map->writeable_reg(map->dev,
1364 reg + regmap_get_offset(map, i)))
1365 return -EINVAL;
1367 if (!map->cache_bypass && map->format.parse_val) {
1368 unsigned int ival;
1369 int val_bytes = map->format.val_bytes;
1370 for (i = 0; i < val_len / val_bytes; i++) {
1371 ival = map->format.parse_val(val + (i * val_bytes));
1372 ret = regcache_write(map,
1373 reg + regmap_get_offset(map, i),
1374 ival);
1375 if (ret) {
1376 dev_err(map->dev,
1377 "Error in caching of register: %x ret: %d\n",
1378 reg + i, ret);
1379 return ret;
1382 if (map->cache_only) {
1383 map->cache_dirty = true;
1384 return 0;
1388 range = _regmap_range_lookup(map, reg);
1389 if (range) {
1390 int val_num = val_len / map->format.val_bytes;
1391 int win_offset = (reg - range->range_min) % range->window_len;
1392 int win_residue = range->window_len - win_offset;
1394 /* If the write goes beyond the end of the window split it */
1395 while (val_num > win_residue) {
1396 dev_dbg(map->dev, "Writing window %d/%zu\n",
1397 win_residue, val_len / map->format.val_bytes);
1398 ret = _regmap_raw_write(map, reg, val, win_residue *
1399 map->format.val_bytes);
1400 if (ret != 0)
1401 return ret;
1403 reg += win_residue;
1404 val_num -= win_residue;
1405 val += win_residue * map->format.val_bytes;
1406 val_len -= win_residue * map->format.val_bytes;
1408 win_offset = (reg - range->range_min) %
1409 range->window_len;
1410 win_residue = range->window_len - win_offset;
1413 ret = _regmap_select_page(map, &reg, range, val_num);
1414 if (ret != 0)
1415 return ret;
1418 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1419 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1420 map->write_flag_mask);
1423 * Essentially all I/O mechanisms will be faster with a single
1424 * buffer to write. Since register syncs often generate raw
1425 * writes of single registers optimise that case.
1427 if (val != work_val && val_len == map->format.val_bytes) {
1428 memcpy(work_val, val, map->format.val_bytes);
1429 val = work_val;
1432 if (map->async && map->bus->async_write) {
1433 struct regmap_async *async;
1435 trace_regmap_async_write_start(map, reg, val_len);
1437 spin_lock_irqsave(&map->async_lock, flags);
1438 async = list_first_entry_or_null(&map->async_free,
1439 struct regmap_async,
1440 list);
1441 if (async)
1442 list_del(&async->list);
1443 spin_unlock_irqrestore(&map->async_lock, flags);
1445 if (!async) {
1446 async = map->bus->async_alloc();
1447 if (!async)
1448 return -ENOMEM;
1450 async->work_buf = kzalloc(map->format.buf_size,
1451 GFP_KERNEL | GFP_DMA);
1452 if (!async->work_buf) {
1453 kfree(async);
1454 return -ENOMEM;
1458 async->map = map;
1460 /* If the caller supplied the value we can use it safely. */
1461 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1462 map->format.reg_bytes + map->format.val_bytes);
1464 spin_lock_irqsave(&map->async_lock, flags);
1465 list_add_tail(&async->list, &map->async_list);
1466 spin_unlock_irqrestore(&map->async_lock, flags);
1468 if (val != work_val)
1469 ret = map->bus->async_write(map->bus_context,
1470 async->work_buf,
1471 map->format.reg_bytes +
1472 map->format.pad_bytes,
1473 val, val_len, async);
1474 else
1475 ret = map->bus->async_write(map->bus_context,
1476 async->work_buf,
1477 map->format.reg_bytes +
1478 map->format.pad_bytes +
1479 val_len, NULL, 0, async);
1481 if (ret != 0) {
1482 dev_err(map->dev, "Failed to schedule write: %d\n",
1483 ret);
1485 spin_lock_irqsave(&map->async_lock, flags);
1486 list_move(&async->list, &map->async_free);
1487 spin_unlock_irqrestore(&map->async_lock, flags);
1490 return ret;
1493 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1495 /* If we're doing a single register write we can probably just
1496 * send the work_buf directly, otherwise try to do a gather
1497 * write.
1499 if (val == work_val)
1500 ret = map->bus->write(map->bus_context, map->work_buf,
1501 map->format.reg_bytes +
1502 map->format.pad_bytes +
1503 val_len);
1504 else if (map->bus->gather_write)
1505 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1506 map->format.reg_bytes +
1507 map->format.pad_bytes,
1508 val, val_len);
1509 else
1510 ret = -ENOTSUPP;
1512 /* If that didn't work fall back on linearising by hand. */
1513 if (ret == -ENOTSUPP) {
1514 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1515 buf = kzalloc(len, GFP_KERNEL);
1516 if (!buf)
1517 return -ENOMEM;
1519 memcpy(buf, map->work_buf, map->format.reg_bytes);
1520 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1521 val, val_len);
1522 ret = map->bus->write(map->bus_context, buf, len);
1524 kfree(buf);
1525 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1526 /* regcache_drop_region() takes lock that we already have,
1527 * thus call map->cache_ops->drop() directly
1529 if (map->cache_ops && map->cache_ops->drop)
1530 map->cache_ops->drop(map, reg, reg + 1);
1533 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1535 return ret;
1539 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1541 * @map: Map to check.
1543 bool regmap_can_raw_write(struct regmap *map)
1545 return map->bus && map->bus->write && map->format.format_val &&
1546 map->format.format_reg;
1548 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1551 * regmap_get_raw_read_max - Get the maximum size we can read
1553 * @map: Map to check.
1555 size_t regmap_get_raw_read_max(struct regmap *map)
1557 return map->max_raw_read;
1559 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1562 * regmap_get_raw_write_max - Get the maximum size we can read
1564 * @map: Map to check.
1566 size_t regmap_get_raw_write_max(struct regmap *map)
1568 return map->max_raw_write;
1570 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1572 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1573 unsigned int val)
1575 int ret;
1576 struct regmap_range_node *range;
1577 struct regmap *map = context;
1579 WARN_ON(!map->bus || !map->format.format_write);
1581 range = _regmap_range_lookup(map, reg);
1582 if (range) {
1583 ret = _regmap_select_page(map, &reg, range, 1);
1584 if (ret != 0)
1585 return ret;
1588 map->format.format_write(map, reg, val);
1590 trace_regmap_hw_write_start(map, reg, 1);
1592 ret = map->bus->write(map->bus_context, map->work_buf,
1593 map->format.buf_size);
1595 trace_regmap_hw_write_done(map, reg, 1);
1597 return ret;
1600 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1601 unsigned int val)
1603 struct regmap *map = context;
1605 return map->bus->reg_write(map->bus_context, reg, val);
1608 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1609 unsigned int val)
1611 struct regmap *map = context;
1613 WARN_ON(!map->bus || !map->format.format_val);
1615 map->format.format_val(map->work_buf + map->format.reg_bytes
1616 + map->format.pad_bytes, val, 0);
1617 return _regmap_raw_write(map, reg,
1618 map->work_buf +
1619 map->format.reg_bytes +
1620 map->format.pad_bytes,
1621 map->format.val_bytes);
1624 static inline void *_regmap_map_get_context(struct regmap *map)
1626 return (map->bus) ? map : map->bus_context;
1629 int _regmap_write(struct regmap *map, unsigned int reg,
1630 unsigned int val)
1632 int ret;
1633 void *context = _regmap_map_get_context(map);
1635 if (!regmap_writeable(map, reg))
1636 return -EIO;
1638 if (!map->cache_bypass && !map->defer_caching) {
1639 ret = regcache_write(map, reg, val);
1640 if (ret != 0)
1641 return ret;
1642 if (map->cache_only) {
1643 map->cache_dirty = true;
1644 return 0;
1648 #ifdef LOG_DEVICE
1649 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1650 dev_info(map->dev, "%x <= %x\n", reg, val);
1651 #endif
1653 trace_regmap_reg_write(map, reg, val);
1655 return map->reg_write(context, reg, val);
1659 * regmap_write(): Write a value to a single register
1661 * @map: Register map to write to
1662 * @reg: Register to write to
1663 * @val: Value to be written
1665 * A value of zero will be returned on success, a negative errno will
1666 * be returned in error cases.
1668 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1670 int ret;
1672 if (!IS_ALIGNED(reg, map->reg_stride))
1673 return -EINVAL;
1675 map->lock(map->lock_arg);
1677 ret = _regmap_write(map, reg, val);
1679 map->unlock(map->lock_arg);
1681 return ret;
1683 EXPORT_SYMBOL_GPL(regmap_write);
1686 * regmap_write_async(): Write a value to a single register asynchronously
1688 * @map: Register map to write to
1689 * @reg: Register to write to
1690 * @val: Value to be written
1692 * A value of zero will be returned on success, a negative errno will
1693 * be returned in error cases.
1695 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1697 int ret;
1699 if (!IS_ALIGNED(reg, map->reg_stride))
1700 return -EINVAL;
1702 map->lock(map->lock_arg);
1704 map->async = true;
1706 ret = _regmap_write(map, reg, val);
1708 map->async = false;
1710 map->unlock(map->lock_arg);
1712 return ret;
1714 EXPORT_SYMBOL_GPL(regmap_write_async);
1717 * regmap_raw_write(): Write raw values to one or more registers
1719 * @map: Register map to write to
1720 * @reg: Initial register to write to
1721 * @val: Block of data to be written, laid out for direct transmission to the
1722 * device
1723 * @val_len: Length of data pointed to by val.
1725 * This function is intended to be used for things like firmware
1726 * download where a large block of data needs to be transferred to the
1727 * device. No formatting will be done on the data provided.
1729 * A value of zero will be returned on success, a negative errno will
1730 * be returned in error cases.
1732 int regmap_raw_write(struct regmap *map, unsigned int reg,
1733 const void *val, size_t val_len)
1735 int ret;
1737 if (!regmap_can_raw_write(map))
1738 return -EINVAL;
1739 if (val_len % map->format.val_bytes)
1740 return -EINVAL;
1741 if (map->max_raw_write && map->max_raw_write < val_len)
1742 return -E2BIG;
1744 map->lock(map->lock_arg);
1746 ret = _regmap_raw_write(map, reg, val, val_len);
1748 map->unlock(map->lock_arg);
1750 return ret;
1752 EXPORT_SYMBOL_GPL(regmap_raw_write);
1755 * regmap_field_update_bits_base():
1756 * Perform a read/modify/write cycle on the register field
1757 * with change, async, force option
1759 * @field: Register field to write to
1760 * @mask: Bitmask to change
1761 * @val: Value to be written
1762 * @change: Boolean indicating if a write was done
1763 * @async: Boolean indicating asynchronously
1764 * @force: Boolean indicating use force update
1766 * A value of zero will be returned on success, a negative errno will
1767 * be returned in error cases.
1769 int regmap_field_update_bits_base(struct regmap_field *field,
1770 unsigned int mask, unsigned int val,
1771 bool *change, bool async, bool force)
1773 mask = (mask << field->shift) & field->mask;
1775 return regmap_update_bits_base(field->regmap, field->reg,
1776 mask, val << field->shift,
1777 change, async, force);
1779 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1782 * regmap_fields_update_bits_base():
1783 * Perform a read/modify/write cycle on the register field
1784 * with change, async, force option
1786 * @field: Register field to write to
1787 * @id: port ID
1788 * @mask: Bitmask to change
1789 * @val: Value to be written
1790 * @change: Boolean indicating if a write was done
1791 * @async: Boolean indicating asynchronously
1792 * @force: Boolean indicating use force update
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1797 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
1798 unsigned int mask, unsigned int val,
1799 bool *change, bool async, bool force)
1801 if (id >= field->id_size)
1802 return -EINVAL;
1804 mask = (mask << field->shift) & field->mask;
1806 return regmap_update_bits_base(field->regmap,
1807 field->reg + (field->id_offset * id),
1808 mask, val << field->shift,
1809 change, async, force);
1811 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1814 * regmap_bulk_write(): Write multiple registers to the device
1816 * @map: Register map to write to
1817 * @reg: First register to be write from
1818 * @val: Block of data to be written, in native register size for device
1819 * @val_count: Number of registers to write
1821 * This function is intended to be used for writing a large block of
1822 * data to the device either in single transfer or multiple transfer.
1824 * A value of zero will be returned on success, a negative errno will
1825 * be returned in error cases.
1827 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1828 size_t val_count)
1830 int ret = 0, i;
1831 size_t val_bytes = map->format.val_bytes;
1832 size_t total_size = val_bytes * val_count;
1834 if (!IS_ALIGNED(reg, map->reg_stride))
1835 return -EINVAL;
1838 * Some devices don't support bulk write, for
1839 * them we have a series of single write operations in the first two if
1840 * blocks.
1842 * The first if block is used for memory mapped io. It does not allow
1843 * val_bytes of 3 for example.
1844 * The second one is for busses that do not provide raw I/O.
1845 * The third one is used for busses which do not have these limitations
1846 * and can write arbitrary value lengths.
1848 if (!map->bus) {
1849 map->lock(map->lock_arg);
1850 for (i = 0; i < val_count; i++) {
1851 unsigned int ival;
1853 switch (val_bytes) {
1854 case 1:
1855 ival = *(u8 *)(val + (i * val_bytes));
1856 break;
1857 case 2:
1858 ival = *(u16 *)(val + (i * val_bytes));
1859 break;
1860 case 4:
1861 ival = *(u32 *)(val + (i * val_bytes));
1862 break;
1863 #ifdef CONFIG_64BIT
1864 case 8:
1865 ival = *(u64 *)(val + (i * val_bytes));
1866 break;
1867 #endif
1868 default:
1869 ret = -EINVAL;
1870 goto out;
1873 ret = _regmap_write(map,
1874 reg + regmap_get_offset(map, i),
1875 ival);
1876 if (ret != 0)
1877 goto out;
1879 out:
1880 map->unlock(map->lock_arg);
1881 } else if (map->bus && !map->format.parse_inplace) {
1882 const u8 *u8 = val;
1883 const u16 *u16 = val;
1884 const u32 *u32 = val;
1885 unsigned int ival;
1887 for (i = 0; i < val_count; i++) {
1888 switch (map->format.val_bytes) {
1889 case 4:
1890 ival = u32[i];
1891 break;
1892 case 2:
1893 ival = u16[i];
1894 break;
1895 case 1:
1896 ival = u8[i];
1897 break;
1898 default:
1899 return -EINVAL;
1902 ret = regmap_write(map, reg + (i * map->reg_stride),
1903 ival);
1904 if (ret)
1905 return ret;
1907 } else if (map->use_single_write ||
1908 (map->max_raw_write && map->max_raw_write < total_size)) {
1909 int chunk_stride = map->reg_stride;
1910 size_t chunk_size = val_bytes;
1911 size_t chunk_count = val_count;
1913 if (!map->use_single_write) {
1914 chunk_size = map->max_raw_write;
1915 if (chunk_size % val_bytes)
1916 chunk_size -= chunk_size % val_bytes;
1917 chunk_count = total_size / chunk_size;
1918 chunk_stride *= chunk_size / val_bytes;
1921 map->lock(map->lock_arg);
1922 /* Write as many bytes as possible with chunk_size */
1923 for (i = 0; i < chunk_count; i++) {
1924 ret = _regmap_raw_write(map,
1925 reg + (i * chunk_stride),
1926 val + (i * chunk_size),
1927 chunk_size);
1928 if (ret)
1929 break;
1932 /* Write remaining bytes */
1933 if (!ret && chunk_size * i < total_size) {
1934 ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1935 val + (i * chunk_size),
1936 total_size - i * chunk_size);
1938 map->unlock(map->lock_arg);
1939 } else {
1940 void *wval;
1942 if (!val_count)
1943 return -EINVAL;
1945 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1946 if (!wval) {
1947 dev_err(map->dev, "Error in memory allocation\n");
1948 return -ENOMEM;
1950 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1951 map->format.parse_inplace(wval + i);
1953 map->lock(map->lock_arg);
1954 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1955 map->unlock(map->lock_arg);
1957 kfree(wval);
1959 return ret;
1961 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1964 * _regmap_raw_multi_reg_write()
1966 * the (register,newvalue) pairs in regs have not been formatted, but
1967 * they are all in the same page and have been changed to being page
1968 * relative. The page register has been written if that was necessary.
1970 static int _regmap_raw_multi_reg_write(struct regmap *map,
1971 const struct reg_sequence *regs,
1972 size_t num_regs)
1974 int ret;
1975 void *buf;
1976 int i;
1977 u8 *u8;
1978 size_t val_bytes = map->format.val_bytes;
1979 size_t reg_bytes = map->format.reg_bytes;
1980 size_t pad_bytes = map->format.pad_bytes;
1981 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1982 size_t len = pair_size * num_regs;
1984 if (!len)
1985 return -EINVAL;
1987 buf = kzalloc(len, GFP_KERNEL);
1988 if (!buf)
1989 return -ENOMEM;
1991 /* We have to linearise by hand. */
1993 u8 = buf;
1995 for (i = 0; i < num_regs; i++) {
1996 unsigned int reg = regs[i].reg;
1997 unsigned int val = regs[i].def;
1998 trace_regmap_hw_write_start(map, reg, 1);
1999 map->format.format_reg(u8, reg, map->reg_shift);
2000 u8 += reg_bytes + pad_bytes;
2001 map->format.format_val(u8, val, 0);
2002 u8 += val_bytes;
2004 u8 = buf;
2005 *u8 |= map->write_flag_mask;
2007 ret = map->bus->write(map->bus_context, buf, len);
2009 kfree(buf);
2011 for (i = 0; i < num_regs; i++) {
2012 int reg = regs[i].reg;
2013 trace_regmap_hw_write_done(map, reg, 1);
2015 return ret;
2018 static unsigned int _regmap_register_page(struct regmap *map,
2019 unsigned int reg,
2020 struct regmap_range_node *range)
2022 unsigned int win_page = (reg - range->range_min) / range->window_len;
2024 return win_page;
2027 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2028 struct reg_sequence *regs,
2029 size_t num_regs)
2031 int ret;
2032 int i, n;
2033 struct reg_sequence *base;
2034 unsigned int this_page = 0;
2035 unsigned int page_change = 0;
2037 * the set of registers are not neccessarily in order, but
2038 * since the order of write must be preserved this algorithm
2039 * chops the set each time the page changes. This also applies
2040 * if there is a delay required at any point in the sequence.
2042 base = regs;
2043 for (i = 0, n = 0; i < num_regs; i++, n++) {
2044 unsigned int reg = regs[i].reg;
2045 struct regmap_range_node *range;
2047 range = _regmap_range_lookup(map, reg);
2048 if (range) {
2049 unsigned int win_page = _regmap_register_page(map, reg,
2050 range);
2052 if (i == 0)
2053 this_page = win_page;
2054 if (win_page != this_page) {
2055 this_page = win_page;
2056 page_change = 1;
2060 /* If we have both a page change and a delay make sure to
2061 * write the regs and apply the delay before we change the
2062 * page.
2065 if (page_change || regs[i].delay_us) {
2067 /* For situations where the first write requires
2068 * a delay we need to make sure we don't call
2069 * raw_multi_reg_write with n=0
2070 * This can't occur with page breaks as we
2071 * never write on the first iteration
2073 if (regs[i].delay_us && i == 0)
2074 n = 1;
2076 ret = _regmap_raw_multi_reg_write(map, base, n);
2077 if (ret != 0)
2078 return ret;
2080 if (regs[i].delay_us)
2081 udelay(regs[i].delay_us);
2083 base += n;
2084 n = 0;
2086 if (page_change) {
2087 ret = _regmap_select_page(map,
2088 &base[n].reg,
2089 range, 1);
2090 if (ret != 0)
2091 return ret;
2093 page_change = 0;
2099 if (n > 0)
2100 return _regmap_raw_multi_reg_write(map, base, n);
2101 return 0;
2104 static int _regmap_multi_reg_write(struct regmap *map,
2105 const struct reg_sequence *regs,
2106 size_t num_regs)
2108 int i;
2109 int ret;
2111 if (!map->can_multi_write) {
2112 for (i = 0; i < num_regs; i++) {
2113 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2114 if (ret != 0)
2115 return ret;
2117 if (regs[i].delay_us)
2118 udelay(regs[i].delay_us);
2120 return 0;
2123 if (!map->format.parse_inplace)
2124 return -EINVAL;
2126 if (map->writeable_reg)
2127 for (i = 0; i < num_regs; i++) {
2128 int reg = regs[i].reg;
2129 if (!map->writeable_reg(map->dev, reg))
2130 return -EINVAL;
2131 if (!IS_ALIGNED(reg, map->reg_stride))
2132 return -EINVAL;
2135 if (!map->cache_bypass) {
2136 for (i = 0; i < num_regs; i++) {
2137 unsigned int val = regs[i].def;
2138 unsigned int reg = regs[i].reg;
2139 ret = regcache_write(map, reg, val);
2140 if (ret) {
2141 dev_err(map->dev,
2142 "Error in caching of register: %x ret: %d\n",
2143 reg, ret);
2144 return ret;
2147 if (map->cache_only) {
2148 map->cache_dirty = true;
2149 return 0;
2153 WARN_ON(!map->bus);
2155 for (i = 0; i < num_regs; i++) {
2156 unsigned int reg = regs[i].reg;
2157 struct regmap_range_node *range;
2159 /* Coalesce all the writes between a page break or a delay
2160 * in a sequence
2162 range = _regmap_range_lookup(map, reg);
2163 if (range || regs[i].delay_us) {
2164 size_t len = sizeof(struct reg_sequence)*num_regs;
2165 struct reg_sequence *base = kmemdup(regs, len,
2166 GFP_KERNEL);
2167 if (!base)
2168 return -ENOMEM;
2169 ret = _regmap_range_multi_paged_reg_write(map, base,
2170 num_regs);
2171 kfree(base);
2173 return ret;
2176 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2180 * regmap_multi_reg_write(): Write multiple registers to the device
2182 * where the set of register,value pairs are supplied in any order,
2183 * possibly not all in a single range.
2185 * @map: Register map to write to
2186 * @regs: Array of structures containing register,value to be written
2187 * @num_regs: Number of registers to write
2189 * The 'normal' block write mode will send ultimately send data on the
2190 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2191 * addressed. However, this alternative block multi write mode will send
2192 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2193 * must of course support the mode.
2195 * A value of zero will be returned on success, a negative errno will be
2196 * returned in error cases.
2198 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2199 int num_regs)
2201 int ret;
2203 map->lock(map->lock_arg);
2205 ret = _regmap_multi_reg_write(map, regs, num_regs);
2207 map->unlock(map->lock_arg);
2209 return ret;
2211 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2214 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2215 * device but not the cache
2217 * where the set of register are supplied in any order
2219 * @map: Register map to write to
2220 * @regs: Array of structures containing register,value to be written
2221 * @num_regs: Number of registers to write
2223 * This function is intended to be used for writing a large block of data
2224 * atomically to the device in single transfer for those I2C client devices
2225 * that implement this alternative block write mode.
2227 * A value of zero will be returned on success, a negative errno will
2228 * be returned in error cases.
2230 int regmap_multi_reg_write_bypassed(struct regmap *map,
2231 const struct reg_sequence *regs,
2232 int num_regs)
2234 int ret;
2235 bool bypass;
2237 map->lock(map->lock_arg);
2239 bypass = map->cache_bypass;
2240 map->cache_bypass = true;
2242 ret = _regmap_multi_reg_write(map, regs, num_regs);
2244 map->cache_bypass = bypass;
2246 map->unlock(map->lock_arg);
2248 return ret;
2250 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2253 * regmap_raw_write_async(): Write raw values to one or more registers
2254 * asynchronously
2256 * @map: Register map to write to
2257 * @reg: Initial register to write to
2258 * @val: Block of data to be written, laid out for direct transmission to the
2259 * device. Must be valid until regmap_async_complete() is called.
2260 * @val_len: Length of data pointed to by val.
2262 * This function is intended to be used for things like firmware
2263 * download where a large block of data needs to be transferred to the
2264 * device. No formatting will be done on the data provided.
2266 * If supported by the underlying bus the write will be scheduled
2267 * asynchronously, helping maximise I/O speed on higher speed buses
2268 * like SPI. regmap_async_complete() can be called to ensure that all
2269 * asynchrnous writes have been completed.
2271 * A value of zero will be returned on success, a negative errno will
2272 * be returned in error cases.
2274 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2275 const void *val, size_t val_len)
2277 int ret;
2279 if (val_len % map->format.val_bytes)
2280 return -EINVAL;
2281 if (!IS_ALIGNED(reg, map->reg_stride))
2282 return -EINVAL;
2284 map->lock(map->lock_arg);
2286 map->async = true;
2288 ret = _regmap_raw_write(map, reg, val, val_len);
2290 map->async = false;
2292 map->unlock(map->lock_arg);
2294 return ret;
2296 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2298 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2299 unsigned int val_len)
2301 struct regmap_range_node *range;
2302 int ret;
2304 WARN_ON(!map->bus);
2306 if (!map->bus || !map->bus->read)
2307 return -EINVAL;
2309 range = _regmap_range_lookup(map, reg);
2310 if (range) {
2311 ret = _regmap_select_page(map, &reg, range,
2312 val_len / map->format.val_bytes);
2313 if (ret != 0)
2314 return ret;
2317 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2318 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2319 map->read_flag_mask);
2320 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2322 ret = map->bus->read(map->bus_context, map->work_buf,
2323 map->format.reg_bytes + map->format.pad_bytes,
2324 val, val_len);
2326 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2328 return ret;
2331 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2332 unsigned int *val)
2334 struct regmap *map = context;
2336 return map->bus->reg_read(map->bus_context, reg, val);
2339 static int _regmap_bus_read(void *context, unsigned int reg,
2340 unsigned int *val)
2342 int ret;
2343 struct regmap *map = context;
2345 if (!map->format.parse_val)
2346 return -EINVAL;
2348 ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2349 if (ret == 0)
2350 *val = map->format.parse_val(map->work_buf);
2352 return ret;
2355 static int _regmap_read(struct regmap *map, unsigned int reg,
2356 unsigned int *val)
2358 int ret;
2359 void *context = _regmap_map_get_context(map);
2361 if (!map->cache_bypass) {
2362 ret = regcache_read(map, reg, val);
2363 if (ret == 0)
2364 return 0;
2367 if (map->cache_only)
2368 return -EBUSY;
2370 if (!regmap_readable(map, reg))
2371 return -EIO;
2373 ret = map->reg_read(context, reg, val);
2374 if (ret == 0) {
2375 #ifdef LOG_DEVICE
2376 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2377 dev_info(map->dev, "%x => %x\n", reg, *val);
2378 #endif
2380 trace_regmap_reg_read(map, reg, *val);
2382 if (!map->cache_bypass)
2383 regcache_write(map, reg, *val);
2386 return ret;
2390 * regmap_read(): Read a value from a single register
2392 * @map: Register map to read from
2393 * @reg: Register to be read from
2394 * @val: Pointer to store read value
2396 * A value of zero will be returned on success, a negative errno will
2397 * be returned in error cases.
2399 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2401 int ret;
2403 if (!IS_ALIGNED(reg, map->reg_stride))
2404 return -EINVAL;
2406 map->lock(map->lock_arg);
2408 ret = _regmap_read(map, reg, val);
2410 map->unlock(map->lock_arg);
2412 return ret;
2414 EXPORT_SYMBOL_GPL(regmap_read);
2417 * regmap_raw_read(): Read raw data from the device
2419 * @map: Register map to read from
2420 * @reg: First register to be read from
2421 * @val: Pointer to store read value
2422 * @val_len: Size of data to read
2424 * A value of zero will be returned on success, a negative errno will
2425 * be returned in error cases.
2427 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2428 size_t val_len)
2430 size_t val_bytes = map->format.val_bytes;
2431 size_t val_count = val_len / val_bytes;
2432 unsigned int v;
2433 int ret, i;
2435 if (!map->bus)
2436 return -EINVAL;
2437 if (val_len % map->format.val_bytes)
2438 return -EINVAL;
2439 if (!IS_ALIGNED(reg, map->reg_stride))
2440 return -EINVAL;
2441 if (val_count == 0)
2442 return -EINVAL;
2444 map->lock(map->lock_arg);
2446 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2447 map->cache_type == REGCACHE_NONE) {
2448 if (!map->bus->read) {
2449 ret = -ENOTSUPP;
2450 goto out;
2452 if (map->max_raw_read && map->max_raw_read < val_len) {
2453 ret = -E2BIG;
2454 goto out;
2457 /* Physical block read if there's no cache involved */
2458 ret = _regmap_raw_read(map, reg, val, val_len);
2460 } else {
2461 /* Otherwise go word by word for the cache; should be low
2462 * cost as we expect to hit the cache.
2464 for (i = 0; i < val_count; i++) {
2465 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2466 &v);
2467 if (ret != 0)
2468 goto out;
2470 map->format.format_val(val + (i * val_bytes), v, 0);
2474 out:
2475 map->unlock(map->lock_arg);
2477 return ret;
2479 EXPORT_SYMBOL_GPL(regmap_raw_read);
2482 * regmap_field_read(): Read a value to a single register field
2484 * @field: Register field to read from
2485 * @val: Pointer to store read value
2487 * A value of zero will be returned on success, a negative errno will
2488 * be returned in error cases.
2490 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2492 int ret;
2493 unsigned int reg_val;
2494 ret = regmap_read(field->regmap, field->reg, &reg_val);
2495 if (ret != 0)
2496 return ret;
2498 reg_val &= field->mask;
2499 reg_val >>= field->shift;
2500 *val = reg_val;
2502 return ret;
2504 EXPORT_SYMBOL_GPL(regmap_field_read);
2507 * regmap_fields_read(): Read a value to a single register field with port ID
2509 * @field: Register field to read from
2510 * @id: port ID
2511 * @val: Pointer to store read value
2513 * A value of zero will be returned on success, a negative errno will
2514 * be returned in error cases.
2516 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2517 unsigned int *val)
2519 int ret;
2520 unsigned int reg_val;
2522 if (id >= field->id_size)
2523 return -EINVAL;
2525 ret = regmap_read(field->regmap,
2526 field->reg + (field->id_offset * id),
2527 &reg_val);
2528 if (ret != 0)
2529 return ret;
2531 reg_val &= field->mask;
2532 reg_val >>= field->shift;
2533 *val = reg_val;
2535 return ret;
2537 EXPORT_SYMBOL_GPL(regmap_fields_read);
2540 * regmap_bulk_read(): Read multiple registers from the device
2542 * @map: Register map to read from
2543 * @reg: First register to be read from
2544 * @val: Pointer to store read value, in native register size for device
2545 * @val_count: Number of registers to read
2547 * A value of zero will be returned on success, a negative errno will
2548 * be returned in error cases.
2550 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2551 size_t val_count)
2553 int ret, i;
2554 size_t val_bytes = map->format.val_bytes;
2555 bool vol = regmap_volatile_range(map, reg, val_count);
2557 if (!IS_ALIGNED(reg, map->reg_stride))
2558 return -EINVAL;
2560 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2562 * Some devices does not support bulk read, for
2563 * them we have a series of single read operations.
2565 size_t total_size = val_bytes * val_count;
2567 if (!map->use_single_read &&
2568 (!map->max_raw_read || map->max_raw_read > total_size)) {
2569 ret = regmap_raw_read(map, reg, val,
2570 val_bytes * val_count);
2571 if (ret != 0)
2572 return ret;
2573 } else {
2575 * Some devices do not support bulk read or do not
2576 * support large bulk reads, for them we have a series
2577 * of read operations.
2579 int chunk_stride = map->reg_stride;
2580 size_t chunk_size = val_bytes;
2581 size_t chunk_count = val_count;
2583 if (!map->use_single_read) {
2584 chunk_size = map->max_raw_read;
2585 if (chunk_size % val_bytes)
2586 chunk_size -= chunk_size % val_bytes;
2587 chunk_count = total_size / chunk_size;
2588 chunk_stride *= chunk_size / val_bytes;
2591 /* Read bytes that fit into a multiple of chunk_size */
2592 for (i = 0; i < chunk_count; i++) {
2593 ret = regmap_raw_read(map,
2594 reg + (i * chunk_stride),
2595 val + (i * chunk_size),
2596 chunk_size);
2597 if (ret != 0)
2598 return ret;
2601 /* Read remaining bytes */
2602 if (chunk_size * i < total_size) {
2603 ret = regmap_raw_read(map,
2604 reg + (i * chunk_stride),
2605 val + (i * chunk_size),
2606 total_size - i * chunk_size);
2607 if (ret != 0)
2608 return ret;
2612 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2613 map->format.parse_inplace(val + i);
2614 } else {
2615 for (i = 0; i < val_count; i++) {
2616 unsigned int ival;
2617 ret = regmap_read(map, reg + regmap_get_offset(map, i),
2618 &ival);
2619 if (ret != 0)
2620 return ret;
2622 if (map->format.format_val) {
2623 map->format.format_val(val + (i * val_bytes), ival, 0);
2624 } else {
2625 /* Devices providing read and write
2626 * operations can use the bulk I/O
2627 * functions if they define a val_bytes,
2628 * we assume that the values are native
2629 * endian.
2631 #ifdef CONFIG_64BIT
2632 u64 *u64 = val;
2633 #endif
2634 u32 *u32 = val;
2635 u16 *u16 = val;
2636 u8 *u8 = val;
2638 switch (map->format.val_bytes) {
2639 #ifdef CONFIG_64BIT
2640 case 8:
2641 u64[i] = ival;
2642 break;
2643 #endif
2644 case 4:
2645 u32[i] = ival;
2646 break;
2647 case 2:
2648 u16[i] = ival;
2649 break;
2650 case 1:
2651 u8[i] = ival;
2652 break;
2653 default:
2654 return -EINVAL;
2660 return 0;
2662 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2664 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2665 unsigned int mask, unsigned int val,
2666 bool *change, bool force_write)
2668 int ret;
2669 unsigned int tmp, orig;
2671 if (change)
2672 *change = false;
2674 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2675 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2676 if (ret == 0 && change)
2677 *change = true;
2678 } else {
2679 ret = _regmap_read(map, reg, &orig);
2680 if (ret != 0)
2681 return ret;
2683 tmp = orig & ~mask;
2684 tmp |= val & mask;
2686 if (force_write || (tmp != orig)) {
2687 ret = _regmap_write(map, reg, tmp);
2688 if (ret == 0 && change)
2689 *change = true;
2693 return ret;
2697 * regmap_update_bits_base:
2698 * Perform a read/modify/write cycle on the
2699 * register map with change, async, force option
2701 * @map: Register map to update
2702 * @reg: Register to update
2703 * @mask: Bitmask to change
2704 * @val: New value for bitmask
2705 * @change: Boolean indicating if a write was done
2706 * @async: Boolean indicating asynchronously
2707 * @force: Boolean indicating use force update
2709 * if async was true,
2710 * With most buses the read must be done synchronously so this is most
2711 * useful for devices with a cache which do not need to interact with
2712 * the hardware to determine the current register value.
2714 * Returns zero for success, a negative number on error.
2716 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2717 unsigned int mask, unsigned int val,
2718 bool *change, bool async, bool force)
2720 int ret;
2722 map->lock(map->lock_arg);
2724 map->async = async;
2726 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2728 map->async = false;
2730 map->unlock(map->lock_arg);
2732 return ret;
2734 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2736 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2738 struct regmap *map = async->map;
2739 bool wake;
2741 trace_regmap_async_io_complete(map);
2743 spin_lock(&map->async_lock);
2744 list_move(&async->list, &map->async_free);
2745 wake = list_empty(&map->async_list);
2747 if (ret != 0)
2748 map->async_ret = ret;
2750 spin_unlock(&map->async_lock);
2752 if (wake)
2753 wake_up(&map->async_waitq);
2755 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2757 static int regmap_async_is_done(struct regmap *map)
2759 unsigned long flags;
2760 int ret;
2762 spin_lock_irqsave(&map->async_lock, flags);
2763 ret = list_empty(&map->async_list);
2764 spin_unlock_irqrestore(&map->async_lock, flags);
2766 return ret;
2770 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2772 * @map: Map to operate on.
2774 * Blocks until any pending asynchronous I/O has completed. Returns
2775 * an error code for any failed I/O operations.
2777 int regmap_async_complete(struct regmap *map)
2779 unsigned long flags;
2780 int ret;
2782 /* Nothing to do with no async support */
2783 if (!map->bus || !map->bus->async_write)
2784 return 0;
2786 trace_regmap_async_complete_start(map);
2788 wait_event(map->async_waitq, regmap_async_is_done(map));
2790 spin_lock_irqsave(&map->async_lock, flags);
2791 ret = map->async_ret;
2792 map->async_ret = 0;
2793 spin_unlock_irqrestore(&map->async_lock, flags);
2795 trace_regmap_async_complete_done(map);
2797 return ret;
2799 EXPORT_SYMBOL_GPL(regmap_async_complete);
2802 * regmap_register_patch: Register and apply register updates to be applied
2803 * on device initialistion
2805 * @map: Register map to apply updates to.
2806 * @regs: Values to update.
2807 * @num_regs: Number of entries in regs.
2809 * Register a set of register updates to be applied to the device
2810 * whenever the device registers are synchronised with the cache and
2811 * apply them immediately. Typically this is used to apply
2812 * corrections to be applied to the device defaults on startup, such
2813 * as the updates some vendors provide to undocumented registers.
2815 * The caller must ensure that this function cannot be called
2816 * concurrently with either itself or regcache_sync().
2818 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2819 int num_regs)
2821 struct reg_sequence *p;
2822 int ret;
2823 bool bypass;
2825 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2826 num_regs))
2827 return 0;
2829 p = krealloc(map->patch,
2830 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2831 GFP_KERNEL);
2832 if (p) {
2833 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2834 map->patch = p;
2835 map->patch_regs += num_regs;
2836 } else {
2837 return -ENOMEM;
2840 map->lock(map->lock_arg);
2842 bypass = map->cache_bypass;
2844 map->cache_bypass = true;
2845 map->async = true;
2847 ret = _regmap_multi_reg_write(map, regs, num_regs);
2849 map->async = false;
2850 map->cache_bypass = bypass;
2852 map->unlock(map->lock_arg);
2854 regmap_async_complete(map);
2856 return ret;
2858 EXPORT_SYMBOL_GPL(regmap_register_patch);
2861 * regmap_get_val_bytes(): Report the size of a register value
2863 * Report the size of a register value, mainly intended to for use by
2864 * generic infrastructure built on top of regmap.
2866 int regmap_get_val_bytes(struct regmap *map)
2868 if (map->format.format_write)
2869 return -EINVAL;
2871 return map->format.val_bytes;
2873 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2876 * regmap_get_max_register(): Report the max register value
2878 * Report the max register value, mainly intended to for use by
2879 * generic infrastructure built on top of regmap.
2881 int regmap_get_max_register(struct regmap *map)
2883 return map->max_register ? map->max_register : -EINVAL;
2885 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2888 * regmap_get_reg_stride(): Report the register address stride
2890 * Report the register address stride, mainly intended to for use by
2891 * generic infrastructure built on top of regmap.
2893 int regmap_get_reg_stride(struct regmap *map)
2895 return map->reg_stride;
2897 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2899 int regmap_parse_val(struct regmap *map, const void *buf,
2900 unsigned int *val)
2902 if (!map->format.parse_val)
2903 return -EINVAL;
2905 *val = map->format.parse_val(buf);
2907 return 0;
2909 EXPORT_SYMBOL_GPL(regmap_parse_val);
2911 static int __init regmap_initcall(void)
2913 regmap_debugfs_initcall();
2915 return 0;
2917 postcore_initcall(regmap_initcall);