1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
11 #include <asm/unaligned.h>
13 struct kobject
*dmi_kobj
;
14 EXPORT_SYMBOL_GPL(dmi_kobj
);
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
21 static const char dmi_empty_string
[] = "";
23 static u32 dmi_ver __initdata
;
26 static u8 smbios_entry_point
[32];
27 static int smbios_entry_point_size
;
30 * Catch too early calls to dmi_check_system():
32 static int dmi_initialized
;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string
[128] __initdata
;
37 static struct dmi_memdev_info
{
42 static int dmi_memdev_nr
;
44 static const char * __init
dmi_string_nosave(const struct dmi_header
*dm
, u8 s
)
46 const u8
*bp
= ((u8
*) dm
) + dm
->length
;
50 while (--s
> 0 && *bp
)
53 /* Strings containing only spaces are considered empty */
61 return dmi_empty_string
;
64 static const char * __init
dmi_string(const struct dmi_header
*dm
, u8 s
)
66 const char *bp
= dmi_string_nosave(dm
, s
);
70 if (bp
== dmi_empty_string
)
71 return dmi_empty_string
;
82 * We have to be cautious here. We have seen BIOSes with DMI pointers
83 * pointing to completely the wrong place for example
85 static void dmi_decode_table(u8
*buf
,
86 void (*decode
)(const struct dmi_header
*, void *),
93 * Stop when we have seen all the items the table claimed to have
94 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
95 * >= 3.0 only) OR we run off the end of the table (should never
96 * happen but sometimes does on bogus implementations.)
98 while ((!dmi_num
|| i
< dmi_num
) &&
99 (data
- buf
+ sizeof(struct dmi_header
)) <= dmi_len
) {
100 const struct dmi_header
*dm
= (const struct dmi_header
*)data
;
103 * We want to know the total length (formatted area and
104 * strings) before decoding to make sure we won't run off the
105 * table in dmi_decode or dmi_string
108 while ((data
- buf
< dmi_len
- 1) && (data
[0] || data
[1]))
110 if (data
- buf
< dmi_len
- 1)
111 decode(dm
, private_data
);
117 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
118 * For tables behind a 64-bit entry point, we have no item
119 * count and no exact table length, so stop on end-of-table
120 * marker. For tables behind a 32-bit entry point, we have
121 * seen OEM structures behind the end-of-table marker on
122 * some systems, so don't trust it.
124 if (!dmi_num
&& dm
->type
== DMI_ENTRY_END_OF_TABLE
)
128 /* Trim DMI table length if needed */
129 if (dmi_len
> data
- buf
)
130 dmi_len
= data
- buf
;
133 static phys_addr_t dmi_base
;
135 static int __init
dmi_walk_early(void (*decode
)(const struct dmi_header
*,
139 u32 orig_dmi_len
= dmi_len
;
141 buf
= dmi_early_remap(dmi_base
, orig_dmi_len
);
145 dmi_decode_table(buf
, decode
, NULL
);
147 add_device_randomness(buf
, dmi_len
);
149 dmi_early_unmap(buf
, orig_dmi_len
);
153 static int __init
dmi_checksum(const u8
*buf
, u8 len
)
158 for (a
= 0; a
< len
; a
++)
164 static const char *dmi_ident
[DMI_STRING_MAX
];
165 static LIST_HEAD(dmi_devices
);
171 static void __init
dmi_save_ident(const struct dmi_header
*dm
, int slot
,
174 const char *d
= (const char *) dm
;
180 p
= dmi_string(dm
, d
[string
]);
187 static void __init
dmi_save_uuid(const struct dmi_header
*dm
, int slot
,
190 const u8
*d
= (u8
*) dm
+ index
;
192 int is_ff
= 1, is_00
= 1, i
;
197 for (i
= 0; i
< 16 && (is_ff
|| is_00
); i
++) {
207 s
= dmi_alloc(16*2+4+1);
212 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
213 * the UUID are supposed to be little-endian encoded. The specification
214 * says that this is the defacto standard.
216 if (dmi_ver
>= 0x020600)
217 sprintf(s
, "%pUL", d
);
219 sprintf(s
, "%pUB", d
);
224 static void __init
dmi_save_type(const struct dmi_header
*dm
, int slot
,
227 const u8
*d
= (u8
*) dm
+ index
;
237 sprintf(s
, "%u", *d
& 0x7F);
241 static void __init
dmi_save_one_device(int type
, const char *name
)
243 struct dmi_device
*dev
;
245 /* No duplicate device */
246 if (dmi_find_device(type
, name
, NULL
))
249 dev
= dmi_alloc(sizeof(*dev
) + strlen(name
) + 1);
254 strcpy((char *)(dev
+ 1), name
);
255 dev
->name
= (char *)(dev
+ 1);
256 dev
->device_data
= NULL
;
257 list_add(&dev
->list
, &dmi_devices
);
260 static void __init
dmi_save_devices(const struct dmi_header
*dm
)
262 int i
, count
= (dm
->length
- sizeof(struct dmi_header
)) / 2;
264 for (i
= 0; i
< count
; i
++) {
265 const char *d
= (char *)(dm
+ 1) + (i
* 2);
267 /* Skip disabled device */
268 if ((*d
& 0x80) == 0)
271 dmi_save_one_device(*d
& 0x7f, dmi_string_nosave(dm
, *(d
+ 1)));
275 static void __init
dmi_save_oem_strings_devices(const struct dmi_header
*dm
)
277 int i
, count
= *(u8
*)(dm
+ 1);
278 struct dmi_device
*dev
;
280 for (i
= 1; i
<= count
; i
++) {
281 const char *devname
= dmi_string(dm
, i
);
283 if (devname
== dmi_empty_string
)
286 dev
= dmi_alloc(sizeof(*dev
));
290 dev
->type
= DMI_DEV_TYPE_OEM_STRING
;
292 dev
->device_data
= NULL
;
294 list_add(&dev
->list
, &dmi_devices
);
298 static void __init
dmi_save_ipmi_device(const struct dmi_header
*dm
)
300 struct dmi_device
*dev
;
303 data
= dmi_alloc(dm
->length
);
307 memcpy(data
, dm
, dm
->length
);
309 dev
= dmi_alloc(sizeof(*dev
));
313 dev
->type
= DMI_DEV_TYPE_IPMI
;
314 dev
->name
= "IPMI controller";
315 dev
->device_data
= data
;
317 list_add_tail(&dev
->list
, &dmi_devices
);
320 static void __init
dmi_save_dev_pciaddr(int instance
, int segment
, int bus
,
321 int devfn
, const char *name
, int type
)
323 struct dmi_dev_onboard
*dev
;
325 /* Ignore invalid values */
326 if (type
== DMI_DEV_TYPE_DEV_SLOT
&&
327 segment
== 0xFFFF && bus
== 0xFF && devfn
== 0xFF)
330 dev
= dmi_alloc(sizeof(*dev
) + strlen(name
) + 1);
334 dev
->instance
= instance
;
335 dev
->segment
= segment
;
339 strcpy((char *)&dev
[1], name
);
340 dev
->dev
.type
= type
;
341 dev
->dev
.name
= (char *)&dev
[1];
342 dev
->dev
.device_data
= dev
;
344 list_add(&dev
->dev
.list
, &dmi_devices
);
347 static void __init
dmi_save_extended_devices(const struct dmi_header
*dm
)
350 const u8
*d
= (u8
*)dm
;
352 /* Skip disabled device */
353 if ((d
[0x5] & 0x80) == 0)
356 name
= dmi_string_nosave(dm
, d
[0x4]);
357 dmi_save_dev_pciaddr(d
[0x6], *(u16
*)(d
+ 0x7), d
[0x9], d
[0xA], name
,
358 DMI_DEV_TYPE_DEV_ONBOARD
);
359 dmi_save_one_device(d
[0x5] & 0x7f, name
);
362 static void __init
dmi_save_system_slot(const struct dmi_header
*dm
)
364 const u8
*d
= (u8
*)dm
;
366 /* Need SMBIOS 2.6+ structure */
367 if (dm
->length
< 0x11)
369 dmi_save_dev_pciaddr(*(u16
*)(d
+ 0x9), *(u16
*)(d
+ 0xD), d
[0xF],
370 d
[0x10], dmi_string_nosave(dm
, d
[0x4]),
371 DMI_DEV_TYPE_DEV_SLOT
);
374 static void __init
count_mem_devices(const struct dmi_header
*dm
, void *v
)
376 if (dm
->type
!= DMI_ENTRY_MEM_DEVICE
)
381 static void __init
save_mem_devices(const struct dmi_header
*dm
, void *v
)
383 const char *d
= (const char *)dm
;
386 if (dm
->type
!= DMI_ENTRY_MEM_DEVICE
)
388 if (nr
>= dmi_memdev_nr
) {
389 pr_warn(FW_BUG
"Too many DIMM entries in SMBIOS table\n");
392 dmi_memdev
[nr
].handle
= get_unaligned(&dm
->handle
);
393 dmi_memdev
[nr
].device
= dmi_string(dm
, d
[0x10]);
394 dmi_memdev
[nr
].bank
= dmi_string(dm
, d
[0x11]);
398 void __init
dmi_memdev_walk(void)
403 if (dmi_walk_early(count_mem_devices
) == 0 && dmi_memdev_nr
) {
404 dmi_memdev
= dmi_alloc(sizeof(*dmi_memdev
) * dmi_memdev_nr
);
406 dmi_walk_early(save_mem_devices
);
411 * Process a DMI table entry. Right now all we care about are the BIOS
412 * and machine entries. For 2.5 we should pull the smbus controller info
415 static void __init
dmi_decode(const struct dmi_header
*dm
, void *dummy
)
418 case 0: /* BIOS Information */
419 dmi_save_ident(dm
, DMI_BIOS_VENDOR
, 4);
420 dmi_save_ident(dm
, DMI_BIOS_VERSION
, 5);
421 dmi_save_ident(dm
, DMI_BIOS_DATE
, 8);
423 case 1: /* System Information */
424 dmi_save_ident(dm
, DMI_SYS_VENDOR
, 4);
425 dmi_save_ident(dm
, DMI_PRODUCT_NAME
, 5);
426 dmi_save_ident(dm
, DMI_PRODUCT_VERSION
, 6);
427 dmi_save_ident(dm
, DMI_PRODUCT_SERIAL
, 7);
428 dmi_save_uuid(dm
, DMI_PRODUCT_UUID
, 8);
430 case 2: /* Base Board Information */
431 dmi_save_ident(dm
, DMI_BOARD_VENDOR
, 4);
432 dmi_save_ident(dm
, DMI_BOARD_NAME
, 5);
433 dmi_save_ident(dm
, DMI_BOARD_VERSION
, 6);
434 dmi_save_ident(dm
, DMI_BOARD_SERIAL
, 7);
435 dmi_save_ident(dm
, DMI_BOARD_ASSET_TAG
, 8);
437 case 3: /* Chassis Information */
438 dmi_save_ident(dm
, DMI_CHASSIS_VENDOR
, 4);
439 dmi_save_type(dm
, DMI_CHASSIS_TYPE
, 5);
440 dmi_save_ident(dm
, DMI_CHASSIS_VERSION
, 6);
441 dmi_save_ident(dm
, DMI_CHASSIS_SERIAL
, 7);
442 dmi_save_ident(dm
, DMI_CHASSIS_ASSET_TAG
, 8);
444 case 9: /* System Slots */
445 dmi_save_system_slot(dm
);
447 case 10: /* Onboard Devices Information */
448 dmi_save_devices(dm
);
450 case 11: /* OEM Strings */
451 dmi_save_oem_strings_devices(dm
);
453 case 38: /* IPMI Device Information */
454 dmi_save_ipmi_device(dm
);
456 case 41: /* Onboard Devices Extended Information */
457 dmi_save_extended_devices(dm
);
461 static int __init
print_filtered(char *buf
, size_t len
, const char *info
)
469 for (p
= info
; *p
; p
++)
471 c
+= scnprintf(buf
+ c
, len
- c
, "%c", *p
);
473 c
+= scnprintf(buf
+ c
, len
- c
, "\\x%02x", *p
& 0xff);
477 static void __init
dmi_format_ids(char *buf
, size_t len
)
480 const char *board
; /* Board Name is optional */
482 c
+= print_filtered(buf
+ c
, len
- c
,
483 dmi_get_system_info(DMI_SYS_VENDOR
));
484 c
+= scnprintf(buf
+ c
, len
- c
, " ");
485 c
+= print_filtered(buf
+ c
, len
- c
,
486 dmi_get_system_info(DMI_PRODUCT_NAME
));
488 board
= dmi_get_system_info(DMI_BOARD_NAME
);
490 c
+= scnprintf(buf
+ c
, len
- c
, "/");
491 c
+= print_filtered(buf
+ c
, len
- c
, board
);
493 c
+= scnprintf(buf
+ c
, len
- c
, ", BIOS ");
494 c
+= print_filtered(buf
+ c
, len
- c
,
495 dmi_get_system_info(DMI_BIOS_VERSION
));
496 c
+= scnprintf(buf
+ c
, len
- c
, " ");
497 c
+= print_filtered(buf
+ c
, len
- c
,
498 dmi_get_system_info(DMI_BIOS_DATE
));
502 * Check for DMI/SMBIOS headers in the system firmware image. Any
503 * SMBIOS header must start 16 bytes before the DMI header, so take a
504 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
505 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
506 * takes precedence) and return 0. Otherwise return 1.
508 static int __init
dmi_present(const u8
*buf
)
512 if (memcmp(buf
, "_SM_", 4) == 0 &&
513 buf
[5] < 32 && dmi_checksum(buf
, buf
[5])) {
514 smbios_ver
= get_unaligned_be16(buf
+ 6);
515 smbios_entry_point_size
= buf
[5];
516 memcpy(smbios_entry_point
, buf
, smbios_entry_point_size
);
518 /* Some BIOS report weird SMBIOS version, fix that up */
519 switch (smbios_ver
) {
522 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
523 smbios_ver
& 0xFF, 3);
527 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
537 if (memcmp(buf
, "_DMI_", 5) == 0 && dmi_checksum(buf
, 15)) {
539 dmi_ver
= smbios_ver
;
541 dmi_ver
= (buf
[14] & 0xF0) << 4 | (buf
[14] & 0x0F);
543 dmi_num
= get_unaligned_le16(buf
+ 12);
544 dmi_len
= get_unaligned_le16(buf
+ 6);
545 dmi_base
= get_unaligned_le32(buf
+ 8);
547 if (dmi_walk_early(dmi_decode
) == 0) {
549 pr_info("SMBIOS %d.%d present.\n",
550 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF);
552 smbios_entry_point_size
= 15;
553 memcpy(smbios_entry_point
, buf
,
554 smbios_entry_point_size
);
555 pr_info("Legacy DMI %d.%d present.\n",
556 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF);
558 dmi_format_ids(dmi_ids_string
, sizeof(dmi_ids_string
));
559 printk(KERN_DEBUG
"DMI: %s\n", dmi_ids_string
);
568 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
569 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
571 static int __init
dmi_smbios3_present(const u8
*buf
)
573 if (memcmp(buf
, "_SM3_", 5) == 0 &&
574 buf
[6] < 32 && dmi_checksum(buf
, buf
[6])) {
575 dmi_ver
= get_unaligned_be32(buf
+ 6) & 0xFFFFFF;
576 dmi_num
= 0; /* No longer specified */
577 dmi_len
= get_unaligned_le32(buf
+ 12);
578 dmi_base
= get_unaligned_le64(buf
+ 16);
579 smbios_entry_point_size
= buf
[6];
580 memcpy(smbios_entry_point
, buf
, smbios_entry_point_size
);
582 if (dmi_walk_early(dmi_decode
) == 0) {
583 pr_info("SMBIOS %d.%d.%d present.\n",
584 dmi_ver
>> 16, (dmi_ver
>> 8) & 0xFF,
586 dmi_format_ids(dmi_ids_string
, sizeof(dmi_ids_string
));
587 pr_debug("DMI: %s\n", dmi_ids_string
);
594 void __init
dmi_scan_machine(void)
599 if (efi_enabled(EFI_CONFIG_TABLES
)) {
601 * According to the DMTF SMBIOS reference spec v3.0.0, it is
602 * allowed to define both the 64-bit entry point (smbios3) and
603 * the 32-bit entry point (smbios), in which case they should
604 * either both point to the same SMBIOS structure table, or the
605 * table pointed to by the 64-bit entry point should contain a
606 * superset of the table contents pointed to by the 32-bit entry
607 * point (section 5.2)
608 * This implies that the 64-bit entry point should have
609 * precedence if it is defined and supported by the OS. If we
610 * have the 64-bit entry point, but fail to decode it, fall
611 * back to the legacy one (if available)
613 if (efi
.smbios3
!= EFI_INVALID_TABLE_ADDR
) {
614 p
= dmi_early_remap(efi
.smbios3
, 32);
617 memcpy_fromio(buf
, p
, 32);
618 dmi_early_unmap(p
, 32);
620 if (!dmi_smbios3_present(buf
)) {
625 if (efi
.smbios
== EFI_INVALID_TABLE_ADDR
)
628 /* This is called as a core_initcall() because it isn't
629 * needed during early boot. This also means we can
630 * iounmap the space when we're done with it.
632 p
= dmi_early_remap(efi
.smbios
, 32);
635 memcpy_fromio(buf
, p
, 32);
636 dmi_early_unmap(p
, 32);
638 if (!dmi_present(buf
)) {
642 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK
)) {
643 p
= dmi_early_remap(0xF0000, 0x10000);
648 * Iterate over all possible DMI header addresses q.
649 * Maintain the 32 bytes around q in buf. On the
650 * first iteration, substitute zero for the
651 * out-of-range bytes so there is no chance of falsely
652 * detecting an SMBIOS header.
655 for (q
= p
; q
< p
+ 0x10000; q
+= 16) {
656 memcpy_fromio(buf
+ 16, q
, 16);
657 if (!dmi_smbios3_present(buf
) || !dmi_present(buf
)) {
659 dmi_early_unmap(p
, 0x10000);
662 memcpy(buf
, buf
+ 16, 16);
664 dmi_early_unmap(p
, 0x10000);
667 pr_info("DMI not present or invalid.\n");
672 static ssize_t
raw_table_read(struct file
*file
, struct kobject
*kobj
,
673 struct bin_attribute
*attr
, char *buf
,
674 loff_t pos
, size_t count
)
676 memcpy(buf
, attr
->private + pos
, count
);
680 static BIN_ATTR(smbios_entry_point
, S_IRUSR
, raw_table_read
, NULL
, 0);
681 static BIN_ATTR(DMI
, S_IRUSR
, raw_table_read
, NULL
, 0);
683 static int __init
dmi_init(void)
685 struct kobject
*tables_kobj
;
689 if (!dmi_available
) {
695 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
696 * even after farther error, as it can be used by other modules like
699 dmi_kobj
= kobject_create_and_add("dmi", firmware_kobj
);
703 tables_kobj
= kobject_create_and_add("tables", dmi_kobj
);
707 dmi_table
= dmi_remap(dmi_base
, dmi_len
);
711 bin_attr_smbios_entry_point
.size
= smbios_entry_point_size
;
712 bin_attr_smbios_entry_point
.private = smbios_entry_point
;
713 ret
= sysfs_create_bin_file(tables_kobj
, &bin_attr_smbios_entry_point
);
717 bin_attr_DMI
.size
= dmi_len
;
718 bin_attr_DMI
.private = dmi_table
;
719 ret
= sysfs_create_bin_file(tables_kobj
, &bin_attr_DMI
);
723 sysfs_remove_bin_file(tables_kobj
,
724 &bin_attr_smbios_entry_point
);
726 dmi_unmap(dmi_table
);
728 kobject_del(tables_kobj
);
729 kobject_put(tables_kobj
);
731 pr_err("dmi: Firmware registration failed.\n");
735 subsys_initcall(dmi_init
);
738 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
740 * Invoke dump_stack_set_arch_desc() with DMI system information so that
741 * DMI identifiers are printed out on task dumps. Arch boot code should
742 * call this function after dmi_scan_machine() if it wants to print out DMI
743 * identifiers on task dumps.
745 void __init
dmi_set_dump_stack_arch_desc(void)
747 dump_stack_set_arch_desc("%s", dmi_ids_string
);
751 * dmi_matches - check if dmi_system_id structure matches system DMI data
752 * @dmi: pointer to the dmi_system_id structure to check
754 static bool dmi_matches(const struct dmi_system_id
*dmi
)
758 WARN(!dmi_initialized
, KERN_ERR
"dmi check: not initialized yet.\n");
760 for (i
= 0; i
< ARRAY_SIZE(dmi
->matches
); i
++) {
761 int s
= dmi
->matches
[i
].slot
;
765 if (!dmi
->matches
[i
].exact_match
&&
766 strstr(dmi_ident
[s
], dmi
->matches
[i
].substr
))
768 else if (dmi
->matches
[i
].exact_match
&&
769 !strcmp(dmi_ident
[s
], dmi
->matches
[i
].substr
))
780 * dmi_is_end_of_table - check for end-of-table marker
781 * @dmi: pointer to the dmi_system_id structure to check
783 static bool dmi_is_end_of_table(const struct dmi_system_id
*dmi
)
785 return dmi
->matches
[0].slot
== DMI_NONE
;
789 * dmi_check_system - check system DMI data
790 * @list: array of dmi_system_id structures to match against
791 * All non-null elements of the list must match
792 * their slot's (field index's) data (i.e., each
793 * list string must be a substring of the specified
794 * DMI slot's string data) to be considered a
797 * Walk the blacklist table running matching functions until someone
798 * returns non zero or we hit the end. Callback function is called for
799 * each successful match. Returns the number of matches.
801 int dmi_check_system(const struct dmi_system_id
*list
)
804 const struct dmi_system_id
*d
;
806 for (d
= list
; !dmi_is_end_of_table(d
); d
++)
807 if (dmi_matches(d
)) {
809 if (d
->callback
&& d
->callback(d
))
815 EXPORT_SYMBOL(dmi_check_system
);
818 * dmi_first_match - find dmi_system_id structure matching system DMI data
819 * @list: array of dmi_system_id structures to match against
820 * All non-null elements of the list must match
821 * their slot's (field index's) data (i.e., each
822 * list string must be a substring of the specified
823 * DMI slot's string data) to be considered a
826 * Walk the blacklist table until the first match is found. Return the
827 * pointer to the matching entry or NULL if there's no match.
829 const struct dmi_system_id
*dmi_first_match(const struct dmi_system_id
*list
)
831 const struct dmi_system_id
*d
;
833 for (d
= list
; !dmi_is_end_of_table(d
); d
++)
839 EXPORT_SYMBOL(dmi_first_match
);
842 * dmi_get_system_info - return DMI data value
843 * @field: data index (see enum dmi_field)
845 * Returns one DMI data value, can be used to perform
846 * complex DMI data checks.
848 const char *dmi_get_system_info(int field
)
850 return dmi_ident
[field
];
852 EXPORT_SYMBOL(dmi_get_system_info
);
855 * dmi_name_in_serial - Check if string is in the DMI product serial information
856 * @str: string to check for
858 int dmi_name_in_serial(const char *str
)
860 int f
= DMI_PRODUCT_SERIAL
;
861 if (dmi_ident
[f
] && strstr(dmi_ident
[f
], str
))
867 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
868 * @str: Case sensitive Name
870 int dmi_name_in_vendors(const char *str
)
872 static int fields
[] = { DMI_SYS_VENDOR
, DMI_BOARD_VENDOR
, DMI_NONE
};
874 for (i
= 0; fields
[i
] != DMI_NONE
; i
++) {
876 if (dmi_ident
[f
] && strstr(dmi_ident
[f
], str
))
881 EXPORT_SYMBOL(dmi_name_in_vendors
);
884 * dmi_find_device - find onboard device by type/name
885 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
886 * @name: device name string or %NULL to match all
887 * @from: previous device found in search, or %NULL for new search.
889 * Iterates through the list of known onboard devices. If a device is
890 * found with a matching @type and @name, a pointer to its device
891 * structure is returned. Otherwise, %NULL is returned.
892 * A new search is initiated by passing %NULL as the @from argument.
893 * If @from is not %NULL, searches continue from next device.
895 const struct dmi_device
*dmi_find_device(int type
, const char *name
,
896 const struct dmi_device
*from
)
898 const struct list_head
*head
= from
? &from
->list
: &dmi_devices
;
901 for (d
= head
->next
; d
!= &dmi_devices
; d
= d
->next
) {
902 const struct dmi_device
*dev
=
903 list_entry(d
, struct dmi_device
, list
);
905 if (((type
== DMI_DEV_TYPE_ANY
) || (dev
->type
== type
)) &&
906 ((name
== NULL
) || (strcmp(dev
->name
, name
) == 0)))
912 EXPORT_SYMBOL(dmi_find_device
);
915 * dmi_get_date - parse a DMI date
916 * @field: data index (see enum dmi_field)
917 * @yearp: optional out parameter for the year
918 * @monthp: optional out parameter for the month
919 * @dayp: optional out parameter for the day
921 * The date field is assumed to be in the form resembling
922 * [mm[/dd]]/yy[yy] and the result is stored in the out
923 * parameters any or all of which can be omitted.
925 * If the field doesn't exist, all out parameters are set to zero
926 * and false is returned. Otherwise, true is returned with any
927 * invalid part of date set to zero.
929 * On return, year, month and day are guaranteed to be in the
930 * range of [0,9999], [0,12] and [0,31] respectively.
932 bool dmi_get_date(int field
, int *yearp
, int *monthp
, int *dayp
)
934 int year
= 0, month
= 0, day
= 0;
939 s
= dmi_get_system_info(field
);
945 * Determine year first. We assume the date string resembles
946 * mm/dd/yy[yy] but the original code extracted only the year
947 * from the end. Keep the behavior in the spirit of no
955 year
= simple_strtoul(y
, &e
, 10);
956 if (y
!= e
&& year
< 100) { /* 2-digit year */
958 if (year
< 1996) /* no dates < spec 1.0 */
961 if (year
> 9999) /* year should fit in %04d */
964 /* parse the mm and dd */
965 month
= simple_strtoul(s
, &e
, 10);
966 if (s
== e
|| *e
!= '/' || !month
|| month
> 12) {
972 day
= simple_strtoul(s
, &e
, 10);
973 if (s
== y
|| s
== e
|| *e
!= '/' || day
> 31)
984 EXPORT_SYMBOL(dmi_get_date
);
987 * dmi_walk - Walk the DMI table and get called back for every record
988 * @decode: Callback function
989 * @private_data: Private data to be passed to the callback function
991 * Returns -1 when the DMI table can't be reached, 0 on success.
993 int dmi_walk(void (*decode
)(const struct dmi_header
*, void *),
1001 buf
= dmi_remap(dmi_base
, dmi_len
);
1005 dmi_decode_table(buf
, decode
, private_data
);
1010 EXPORT_SYMBOL_GPL(dmi_walk
);
1013 * dmi_match - compare a string to the dmi field (if exists)
1014 * @f: DMI field identifier
1015 * @str: string to compare the DMI field to
1017 * Returns true if the requested field equals to the str (including NULL).
1019 bool dmi_match(enum dmi_field f
, const char *str
)
1021 const char *info
= dmi_get_system_info(f
);
1023 if (info
== NULL
|| str
== NULL
)
1026 return !strcmp(info
, str
);
1028 EXPORT_SYMBOL_GPL(dmi_match
);
1030 void dmi_memdev_name(u16 handle
, const char **bank
, const char **device
)
1034 if (dmi_memdev
== NULL
)
1037 for (n
= 0; n
< dmi_memdev_nr
; n
++) {
1038 if (handle
== dmi_memdev
[n
].handle
) {
1039 *bank
= dmi_memdev
[n
].bank
;
1040 *device
= dmi_memdev
[n
].device
;
1045 EXPORT_SYMBOL_GPL(dmi_memdev_name
);