Revert "ALSA: hda: Flush interrupts on disabling"
[linux/fpc-iii.git] / drivers / firmware / dmi_scan.c
blob42844c318445ebd664f490b2e1e0ced0a0683b1c
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
17 * DMI stands for "Desktop Management Interface". It is part
18 * of and an antecedent to, SMBIOS, which stands for System
19 * Management BIOS. See further: http://www.dmtf.org/standards
21 static const char dmi_empty_string[] = "";
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
30 * Catch too early calls to dmi_check_system():
32 static int dmi_initialized;
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
37 static struct dmi_memdev_info {
38 const char *device;
39 const char *bank;
40 u16 handle;
41 } *dmi_memdev;
42 static int dmi_memdev_nr;
44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
46 const u8 *bp = ((u8 *) dm) + dm->length;
47 const u8 *nsp;
49 if (s) {
50 while (--s > 0 && *bp)
51 bp += strlen(bp) + 1;
53 /* Strings containing only spaces are considered empty */
54 nsp = bp;
55 while (*nsp == ' ')
56 nsp++;
57 if (*nsp != '\0')
58 return bp;
61 return dmi_empty_string;
64 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
66 const char *bp = dmi_string_nosave(dm, s);
67 char *str;
68 size_t len;
70 if (bp == dmi_empty_string)
71 return dmi_empty_string;
73 len = strlen(bp) + 1;
74 str = dmi_alloc(len);
75 if (str != NULL)
76 strcpy(str, bp);
78 return str;
82 * We have to be cautious here. We have seen BIOSes with DMI pointers
83 * pointing to completely the wrong place for example
85 static void dmi_decode_table(u8 *buf,
86 void (*decode)(const struct dmi_header *, void *),
87 void *private_data)
89 u8 *data = buf;
90 int i = 0;
93 * Stop when we have seen all the items the table claimed to have
94 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
95 * >= 3.0 only) OR we run off the end of the table (should never
96 * happen but sometimes does on bogus implementations.)
98 while ((!dmi_num || i < dmi_num) &&
99 (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
100 const struct dmi_header *dm = (const struct dmi_header *)data;
103 * We want to know the total length (formatted area and
104 * strings) before decoding to make sure we won't run off the
105 * table in dmi_decode or dmi_string
107 data += dm->length;
108 while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
109 data++;
110 if (data - buf < dmi_len - 1)
111 decode(dm, private_data);
113 data += 2;
114 i++;
117 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
118 * For tables behind a 64-bit entry point, we have no item
119 * count and no exact table length, so stop on end-of-table
120 * marker. For tables behind a 32-bit entry point, we have
121 * seen OEM structures behind the end-of-table marker on
122 * some systems, so don't trust it.
124 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
125 break;
128 /* Trim DMI table length if needed */
129 if (dmi_len > data - buf)
130 dmi_len = data - buf;
133 static phys_addr_t dmi_base;
135 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
136 void *))
138 u8 *buf;
139 u32 orig_dmi_len = dmi_len;
141 buf = dmi_early_remap(dmi_base, orig_dmi_len);
142 if (buf == NULL)
143 return -1;
145 dmi_decode_table(buf, decode, NULL);
147 add_device_randomness(buf, dmi_len);
149 dmi_early_unmap(buf, orig_dmi_len);
150 return 0;
153 static int __init dmi_checksum(const u8 *buf, u8 len)
155 u8 sum = 0;
156 int a;
158 for (a = 0; a < len; a++)
159 sum += buf[a];
161 return sum == 0;
164 static const char *dmi_ident[DMI_STRING_MAX];
165 static LIST_HEAD(dmi_devices);
166 int dmi_available;
169 * Save a DMI string
171 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
172 int string)
174 const char *d = (const char *) dm;
175 const char *p;
177 if (dmi_ident[slot])
178 return;
180 p = dmi_string(dm, d[string]);
181 if (p == NULL)
182 return;
184 dmi_ident[slot] = p;
187 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
188 int index)
190 const u8 *d = (u8 *) dm + index;
191 char *s;
192 int is_ff = 1, is_00 = 1, i;
194 if (dmi_ident[slot])
195 return;
197 for (i = 0; i < 16 && (is_ff || is_00); i++) {
198 if (d[i] != 0x00)
199 is_00 = 0;
200 if (d[i] != 0xFF)
201 is_ff = 0;
204 if (is_ff || is_00)
205 return;
207 s = dmi_alloc(16*2+4+1);
208 if (!s)
209 return;
212 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
213 * the UUID are supposed to be little-endian encoded. The specification
214 * says that this is the defacto standard.
216 if (dmi_ver >= 0x020600)
217 sprintf(s, "%pUL", d);
218 else
219 sprintf(s, "%pUB", d);
221 dmi_ident[slot] = s;
224 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
225 int index)
227 const u8 *d = (u8 *) dm + index;
228 char *s;
230 if (dmi_ident[slot])
231 return;
233 s = dmi_alloc(4);
234 if (!s)
235 return;
237 sprintf(s, "%u", *d & 0x7F);
238 dmi_ident[slot] = s;
241 static void __init dmi_save_one_device(int type, const char *name)
243 struct dmi_device *dev;
245 /* No duplicate device */
246 if (dmi_find_device(type, name, NULL))
247 return;
249 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
250 if (!dev)
251 return;
253 dev->type = type;
254 strcpy((char *)(dev + 1), name);
255 dev->name = (char *)(dev + 1);
256 dev->device_data = NULL;
257 list_add(&dev->list, &dmi_devices);
260 static void __init dmi_save_devices(const struct dmi_header *dm)
262 int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
264 for (i = 0; i < count; i++) {
265 const char *d = (char *)(dm + 1) + (i * 2);
267 /* Skip disabled device */
268 if ((*d & 0x80) == 0)
269 continue;
271 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
275 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
277 int i, count = *(u8 *)(dm + 1);
278 struct dmi_device *dev;
280 for (i = 1; i <= count; i++) {
281 const char *devname = dmi_string(dm, i);
283 if (devname == dmi_empty_string)
284 continue;
286 dev = dmi_alloc(sizeof(*dev));
287 if (!dev)
288 break;
290 dev->type = DMI_DEV_TYPE_OEM_STRING;
291 dev->name = devname;
292 dev->device_data = NULL;
294 list_add(&dev->list, &dmi_devices);
298 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
300 struct dmi_device *dev;
301 void *data;
303 data = dmi_alloc(dm->length);
304 if (data == NULL)
305 return;
307 memcpy(data, dm, dm->length);
309 dev = dmi_alloc(sizeof(*dev));
310 if (!dev)
311 return;
313 dev->type = DMI_DEV_TYPE_IPMI;
314 dev->name = "IPMI controller";
315 dev->device_data = data;
317 list_add_tail(&dev->list, &dmi_devices);
320 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
321 int devfn, const char *name, int type)
323 struct dmi_dev_onboard *dev;
325 /* Ignore invalid values */
326 if (type == DMI_DEV_TYPE_DEV_SLOT &&
327 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
328 return;
330 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
331 if (!dev)
332 return;
334 dev->instance = instance;
335 dev->segment = segment;
336 dev->bus = bus;
337 dev->devfn = devfn;
339 strcpy((char *)&dev[1], name);
340 dev->dev.type = type;
341 dev->dev.name = (char *)&dev[1];
342 dev->dev.device_data = dev;
344 list_add(&dev->dev.list, &dmi_devices);
347 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
349 const char *name;
350 const u8 *d = (u8 *)dm;
352 /* Skip disabled device */
353 if ((d[0x5] & 0x80) == 0)
354 return;
356 name = dmi_string_nosave(dm, d[0x4]);
357 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
358 DMI_DEV_TYPE_DEV_ONBOARD);
359 dmi_save_one_device(d[0x5] & 0x7f, name);
362 static void __init dmi_save_system_slot(const struct dmi_header *dm)
364 const u8 *d = (u8 *)dm;
366 /* Need SMBIOS 2.6+ structure */
367 if (dm->length < 0x11)
368 return;
369 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
370 d[0x10], dmi_string_nosave(dm, d[0x4]),
371 DMI_DEV_TYPE_DEV_SLOT);
374 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
376 if (dm->type != DMI_ENTRY_MEM_DEVICE)
377 return;
378 dmi_memdev_nr++;
381 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
383 const char *d = (const char *)dm;
384 static int nr;
386 if (dm->type != DMI_ENTRY_MEM_DEVICE)
387 return;
388 if (nr >= dmi_memdev_nr) {
389 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
390 return;
392 dmi_memdev[nr].handle = get_unaligned(&dm->handle);
393 dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
394 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
395 nr++;
398 void __init dmi_memdev_walk(void)
400 if (!dmi_available)
401 return;
403 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
404 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
405 if (dmi_memdev)
406 dmi_walk_early(save_mem_devices);
411 * Process a DMI table entry. Right now all we care about are the BIOS
412 * and machine entries. For 2.5 we should pull the smbus controller info
413 * out of here.
415 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
417 switch (dm->type) {
418 case 0: /* BIOS Information */
419 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
420 dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
421 dmi_save_ident(dm, DMI_BIOS_DATE, 8);
422 break;
423 case 1: /* System Information */
424 dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
425 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
426 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
427 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
428 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
429 break;
430 case 2: /* Base Board Information */
431 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
432 dmi_save_ident(dm, DMI_BOARD_NAME, 5);
433 dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
434 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
435 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
436 break;
437 case 3: /* Chassis Information */
438 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
439 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
440 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
441 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
442 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
443 break;
444 case 9: /* System Slots */
445 dmi_save_system_slot(dm);
446 break;
447 case 10: /* Onboard Devices Information */
448 dmi_save_devices(dm);
449 break;
450 case 11: /* OEM Strings */
451 dmi_save_oem_strings_devices(dm);
452 break;
453 case 38: /* IPMI Device Information */
454 dmi_save_ipmi_device(dm);
455 break;
456 case 41: /* Onboard Devices Extended Information */
457 dmi_save_extended_devices(dm);
461 static int __init print_filtered(char *buf, size_t len, const char *info)
463 int c = 0;
464 const char *p;
466 if (!info)
467 return c;
469 for (p = info; *p; p++)
470 if (isprint(*p))
471 c += scnprintf(buf + c, len - c, "%c", *p);
472 else
473 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
474 return c;
477 static void __init dmi_format_ids(char *buf, size_t len)
479 int c = 0;
480 const char *board; /* Board Name is optional */
482 c += print_filtered(buf + c, len - c,
483 dmi_get_system_info(DMI_SYS_VENDOR));
484 c += scnprintf(buf + c, len - c, " ");
485 c += print_filtered(buf + c, len - c,
486 dmi_get_system_info(DMI_PRODUCT_NAME));
488 board = dmi_get_system_info(DMI_BOARD_NAME);
489 if (board) {
490 c += scnprintf(buf + c, len - c, "/");
491 c += print_filtered(buf + c, len - c, board);
493 c += scnprintf(buf + c, len - c, ", BIOS ");
494 c += print_filtered(buf + c, len - c,
495 dmi_get_system_info(DMI_BIOS_VERSION));
496 c += scnprintf(buf + c, len - c, " ");
497 c += print_filtered(buf + c, len - c,
498 dmi_get_system_info(DMI_BIOS_DATE));
502 * Check for DMI/SMBIOS headers in the system firmware image. Any
503 * SMBIOS header must start 16 bytes before the DMI header, so take a
504 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
505 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
506 * takes precedence) and return 0. Otherwise return 1.
508 static int __init dmi_present(const u8 *buf)
510 u32 smbios_ver;
512 if (memcmp(buf, "_SM_", 4) == 0 &&
513 buf[5] < 32 && dmi_checksum(buf, buf[5])) {
514 smbios_ver = get_unaligned_be16(buf + 6);
515 smbios_entry_point_size = buf[5];
516 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
518 /* Some BIOS report weird SMBIOS version, fix that up */
519 switch (smbios_ver) {
520 case 0x021F:
521 case 0x0221:
522 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
523 smbios_ver & 0xFF, 3);
524 smbios_ver = 0x0203;
525 break;
526 case 0x0233:
527 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
528 smbios_ver = 0x0206;
529 break;
531 } else {
532 smbios_ver = 0;
535 buf += 16;
537 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
538 if (smbios_ver)
539 dmi_ver = smbios_ver;
540 else
541 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
542 dmi_ver <<= 8;
543 dmi_num = get_unaligned_le16(buf + 12);
544 dmi_len = get_unaligned_le16(buf + 6);
545 dmi_base = get_unaligned_le32(buf + 8);
547 if (dmi_walk_early(dmi_decode) == 0) {
548 if (smbios_ver) {
549 pr_info("SMBIOS %d.%d present.\n",
550 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
551 } else {
552 smbios_entry_point_size = 15;
553 memcpy(smbios_entry_point, buf,
554 smbios_entry_point_size);
555 pr_info("Legacy DMI %d.%d present.\n",
556 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
558 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
559 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
560 return 0;
564 return 1;
568 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
569 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
571 static int __init dmi_smbios3_present(const u8 *buf)
573 if (memcmp(buf, "_SM3_", 5) == 0 &&
574 buf[6] < 32 && dmi_checksum(buf, buf[6])) {
575 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
576 dmi_num = 0; /* No longer specified */
577 dmi_len = get_unaligned_le32(buf + 12);
578 dmi_base = get_unaligned_le64(buf + 16);
579 smbios_entry_point_size = buf[6];
580 memcpy(smbios_entry_point, buf, smbios_entry_point_size);
582 if (dmi_walk_early(dmi_decode) == 0) {
583 pr_info("SMBIOS %d.%d.%d present.\n",
584 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
585 dmi_ver & 0xFF);
586 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
587 pr_debug("DMI: %s\n", dmi_ids_string);
588 return 0;
591 return 1;
594 void __init dmi_scan_machine(void)
596 char __iomem *p, *q;
597 char buf[32];
599 if (efi_enabled(EFI_CONFIG_TABLES)) {
601 * According to the DMTF SMBIOS reference spec v3.0.0, it is
602 * allowed to define both the 64-bit entry point (smbios3) and
603 * the 32-bit entry point (smbios), in which case they should
604 * either both point to the same SMBIOS structure table, or the
605 * table pointed to by the 64-bit entry point should contain a
606 * superset of the table contents pointed to by the 32-bit entry
607 * point (section 5.2)
608 * This implies that the 64-bit entry point should have
609 * precedence if it is defined and supported by the OS. If we
610 * have the 64-bit entry point, but fail to decode it, fall
611 * back to the legacy one (if available)
613 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
614 p = dmi_early_remap(efi.smbios3, 32);
615 if (p == NULL)
616 goto error;
617 memcpy_fromio(buf, p, 32);
618 dmi_early_unmap(p, 32);
620 if (!dmi_smbios3_present(buf)) {
621 dmi_available = 1;
622 goto out;
625 if (efi.smbios == EFI_INVALID_TABLE_ADDR)
626 goto error;
628 /* This is called as a core_initcall() because it isn't
629 * needed during early boot. This also means we can
630 * iounmap the space when we're done with it.
632 p = dmi_early_remap(efi.smbios, 32);
633 if (p == NULL)
634 goto error;
635 memcpy_fromio(buf, p, 32);
636 dmi_early_unmap(p, 32);
638 if (!dmi_present(buf)) {
639 dmi_available = 1;
640 goto out;
642 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
643 p = dmi_early_remap(0xF0000, 0x10000);
644 if (p == NULL)
645 goto error;
648 * Iterate over all possible DMI header addresses q.
649 * Maintain the 32 bytes around q in buf. On the
650 * first iteration, substitute zero for the
651 * out-of-range bytes so there is no chance of falsely
652 * detecting an SMBIOS header.
654 memset(buf, 0, 16);
655 for (q = p; q < p + 0x10000; q += 16) {
656 memcpy_fromio(buf + 16, q, 16);
657 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
658 dmi_available = 1;
659 dmi_early_unmap(p, 0x10000);
660 goto out;
662 memcpy(buf, buf + 16, 16);
664 dmi_early_unmap(p, 0x10000);
666 error:
667 pr_info("DMI not present or invalid.\n");
668 out:
669 dmi_initialized = 1;
672 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
673 struct bin_attribute *attr, char *buf,
674 loff_t pos, size_t count)
676 memcpy(buf, attr->private + pos, count);
677 return count;
680 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
681 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
683 static int __init dmi_init(void)
685 struct kobject *tables_kobj;
686 u8 *dmi_table;
687 int ret = -ENOMEM;
689 if (!dmi_available) {
690 ret = -ENODATA;
691 goto err;
695 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
696 * even after farther error, as it can be used by other modules like
697 * dmi-sysfs.
699 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
700 if (!dmi_kobj)
701 goto err;
703 tables_kobj = kobject_create_and_add("tables", dmi_kobj);
704 if (!tables_kobj)
705 goto err;
707 dmi_table = dmi_remap(dmi_base, dmi_len);
708 if (!dmi_table)
709 goto err_tables;
711 bin_attr_smbios_entry_point.size = smbios_entry_point_size;
712 bin_attr_smbios_entry_point.private = smbios_entry_point;
713 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
714 if (ret)
715 goto err_unmap;
717 bin_attr_DMI.size = dmi_len;
718 bin_attr_DMI.private = dmi_table;
719 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
720 if (!ret)
721 return 0;
723 sysfs_remove_bin_file(tables_kobj,
724 &bin_attr_smbios_entry_point);
725 err_unmap:
726 dmi_unmap(dmi_table);
727 err_tables:
728 kobject_del(tables_kobj);
729 kobject_put(tables_kobj);
730 err:
731 pr_err("dmi: Firmware registration failed.\n");
733 return ret;
735 subsys_initcall(dmi_init);
738 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
740 * Invoke dump_stack_set_arch_desc() with DMI system information so that
741 * DMI identifiers are printed out on task dumps. Arch boot code should
742 * call this function after dmi_scan_machine() if it wants to print out DMI
743 * identifiers on task dumps.
745 void __init dmi_set_dump_stack_arch_desc(void)
747 dump_stack_set_arch_desc("%s", dmi_ids_string);
751 * dmi_matches - check if dmi_system_id structure matches system DMI data
752 * @dmi: pointer to the dmi_system_id structure to check
754 static bool dmi_matches(const struct dmi_system_id *dmi)
756 int i;
758 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
760 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
761 int s = dmi->matches[i].slot;
762 if (s == DMI_NONE)
763 break;
764 if (dmi_ident[s]) {
765 if (!dmi->matches[i].exact_match &&
766 strstr(dmi_ident[s], dmi->matches[i].substr))
767 continue;
768 else if (dmi->matches[i].exact_match &&
769 !strcmp(dmi_ident[s], dmi->matches[i].substr))
770 continue;
773 /* No match */
774 return false;
776 return true;
780 * dmi_is_end_of_table - check for end-of-table marker
781 * @dmi: pointer to the dmi_system_id structure to check
783 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
785 return dmi->matches[0].slot == DMI_NONE;
789 * dmi_check_system - check system DMI data
790 * @list: array of dmi_system_id structures to match against
791 * All non-null elements of the list must match
792 * their slot's (field index's) data (i.e., each
793 * list string must be a substring of the specified
794 * DMI slot's string data) to be considered a
795 * successful match.
797 * Walk the blacklist table running matching functions until someone
798 * returns non zero or we hit the end. Callback function is called for
799 * each successful match. Returns the number of matches.
801 int dmi_check_system(const struct dmi_system_id *list)
803 int count = 0;
804 const struct dmi_system_id *d;
806 for (d = list; !dmi_is_end_of_table(d); d++)
807 if (dmi_matches(d)) {
808 count++;
809 if (d->callback && d->callback(d))
810 break;
813 return count;
815 EXPORT_SYMBOL(dmi_check_system);
818 * dmi_first_match - find dmi_system_id structure matching system DMI data
819 * @list: array of dmi_system_id structures to match against
820 * All non-null elements of the list must match
821 * their slot's (field index's) data (i.e., each
822 * list string must be a substring of the specified
823 * DMI slot's string data) to be considered a
824 * successful match.
826 * Walk the blacklist table until the first match is found. Return the
827 * pointer to the matching entry or NULL if there's no match.
829 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
831 const struct dmi_system_id *d;
833 for (d = list; !dmi_is_end_of_table(d); d++)
834 if (dmi_matches(d))
835 return d;
837 return NULL;
839 EXPORT_SYMBOL(dmi_first_match);
842 * dmi_get_system_info - return DMI data value
843 * @field: data index (see enum dmi_field)
845 * Returns one DMI data value, can be used to perform
846 * complex DMI data checks.
848 const char *dmi_get_system_info(int field)
850 return dmi_ident[field];
852 EXPORT_SYMBOL(dmi_get_system_info);
855 * dmi_name_in_serial - Check if string is in the DMI product serial information
856 * @str: string to check for
858 int dmi_name_in_serial(const char *str)
860 int f = DMI_PRODUCT_SERIAL;
861 if (dmi_ident[f] && strstr(dmi_ident[f], str))
862 return 1;
863 return 0;
867 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
868 * @str: Case sensitive Name
870 int dmi_name_in_vendors(const char *str)
872 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
873 int i;
874 for (i = 0; fields[i] != DMI_NONE; i++) {
875 int f = fields[i];
876 if (dmi_ident[f] && strstr(dmi_ident[f], str))
877 return 1;
879 return 0;
881 EXPORT_SYMBOL(dmi_name_in_vendors);
884 * dmi_find_device - find onboard device by type/name
885 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
886 * @name: device name string or %NULL to match all
887 * @from: previous device found in search, or %NULL for new search.
889 * Iterates through the list of known onboard devices. If a device is
890 * found with a matching @type and @name, a pointer to its device
891 * structure is returned. Otherwise, %NULL is returned.
892 * A new search is initiated by passing %NULL as the @from argument.
893 * If @from is not %NULL, searches continue from next device.
895 const struct dmi_device *dmi_find_device(int type, const char *name,
896 const struct dmi_device *from)
898 const struct list_head *head = from ? &from->list : &dmi_devices;
899 struct list_head *d;
901 for (d = head->next; d != &dmi_devices; d = d->next) {
902 const struct dmi_device *dev =
903 list_entry(d, struct dmi_device, list);
905 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
906 ((name == NULL) || (strcmp(dev->name, name) == 0)))
907 return dev;
910 return NULL;
912 EXPORT_SYMBOL(dmi_find_device);
915 * dmi_get_date - parse a DMI date
916 * @field: data index (see enum dmi_field)
917 * @yearp: optional out parameter for the year
918 * @monthp: optional out parameter for the month
919 * @dayp: optional out parameter for the day
921 * The date field is assumed to be in the form resembling
922 * [mm[/dd]]/yy[yy] and the result is stored in the out
923 * parameters any or all of which can be omitted.
925 * If the field doesn't exist, all out parameters are set to zero
926 * and false is returned. Otherwise, true is returned with any
927 * invalid part of date set to zero.
929 * On return, year, month and day are guaranteed to be in the
930 * range of [0,9999], [0,12] and [0,31] respectively.
932 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
934 int year = 0, month = 0, day = 0;
935 bool exists;
936 const char *s, *y;
937 char *e;
939 s = dmi_get_system_info(field);
940 exists = s;
941 if (!exists)
942 goto out;
945 * Determine year first. We assume the date string resembles
946 * mm/dd/yy[yy] but the original code extracted only the year
947 * from the end. Keep the behavior in the spirit of no
948 * surprises.
950 y = strrchr(s, '/');
951 if (!y)
952 goto out;
954 y++;
955 year = simple_strtoul(y, &e, 10);
956 if (y != e && year < 100) { /* 2-digit year */
957 year += 1900;
958 if (year < 1996) /* no dates < spec 1.0 */
959 year += 100;
961 if (year > 9999) /* year should fit in %04d */
962 year = 0;
964 /* parse the mm and dd */
965 month = simple_strtoul(s, &e, 10);
966 if (s == e || *e != '/' || !month || month > 12) {
967 month = 0;
968 goto out;
971 s = e + 1;
972 day = simple_strtoul(s, &e, 10);
973 if (s == y || s == e || *e != '/' || day > 31)
974 day = 0;
975 out:
976 if (yearp)
977 *yearp = year;
978 if (monthp)
979 *monthp = month;
980 if (dayp)
981 *dayp = day;
982 return exists;
984 EXPORT_SYMBOL(dmi_get_date);
987 * dmi_walk - Walk the DMI table and get called back for every record
988 * @decode: Callback function
989 * @private_data: Private data to be passed to the callback function
991 * Returns -1 when the DMI table can't be reached, 0 on success.
993 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
994 void *private_data)
996 u8 *buf;
998 if (!dmi_available)
999 return -1;
1001 buf = dmi_remap(dmi_base, dmi_len);
1002 if (buf == NULL)
1003 return -1;
1005 dmi_decode_table(buf, decode, private_data);
1007 dmi_unmap(buf);
1008 return 0;
1010 EXPORT_SYMBOL_GPL(dmi_walk);
1013 * dmi_match - compare a string to the dmi field (if exists)
1014 * @f: DMI field identifier
1015 * @str: string to compare the DMI field to
1017 * Returns true if the requested field equals to the str (including NULL).
1019 bool dmi_match(enum dmi_field f, const char *str)
1021 const char *info = dmi_get_system_info(f);
1023 if (info == NULL || str == NULL)
1024 return info == str;
1026 return !strcmp(info, str);
1028 EXPORT_SYMBOL_GPL(dmi_match);
1030 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1032 int n;
1034 if (dmi_memdev == NULL)
1035 return;
1037 for (n = 0; n < dmi_memdev_nr; n++) {
1038 if (handle == dmi_memdev[n].handle) {
1039 *bank = dmi_memdev[n].bank;
1040 *device = dmi_memdev[n].device;
1041 break;
1045 EXPORT_SYMBOL_GPL(dmi_memdev_name);