4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly
= 100000;
33 static unsigned int m_hash_mask __read_mostly
;
34 static unsigned int m_hash_shift __read_mostly
;
35 static unsigned int mp_hash_mask __read_mostly
;
36 static unsigned int mp_hash_shift __read_mostly
;
38 static __initdata
unsigned long mhash_entries
;
39 static int __init
set_mhash_entries(char *str
)
43 mhash_entries
= simple_strtoul(str
, &str
, 0);
46 __setup("mhash_entries=", set_mhash_entries
);
48 static __initdata
unsigned long mphash_entries
;
49 static int __init
set_mphash_entries(char *str
)
53 mphash_entries
= simple_strtoul(str
, &str
, 0);
56 __setup("mphash_entries=", set_mphash_entries
);
59 static DEFINE_IDA(mnt_id_ida
);
60 static DEFINE_IDA(mnt_group_ida
);
61 static DEFINE_SPINLOCK(mnt_id_lock
);
62 static int mnt_id_start
= 0;
63 static int mnt_group_start
= 1;
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount
*mnt
)
108 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
109 spin_lock(&mnt_id_lock
);
110 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
112 mnt_id_start
= mnt
->mnt_id
+ 1;
113 spin_unlock(&mnt_id_lock
);
120 static void mnt_free_id(struct mount
*mnt
)
122 int id
= mnt
->mnt_id
;
123 spin_lock(&mnt_id_lock
);
124 ida_remove(&mnt_id_ida
, id
);
125 if (mnt_id_start
> id
)
127 spin_unlock(&mnt_id_lock
);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount
*mnt
)
139 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
142 res
= ida_get_new_above(&mnt_group_ida
,
146 mnt_group_start
= mnt
->mnt_group_id
+ 1;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount
*mnt
)
156 int id
= mnt
->mnt_group_id
;
157 ida_remove(&mnt_group_ida
, id
);
158 if (mnt_group_start
> id
)
159 mnt_group_start
= id
;
160 mnt
->mnt_group_id
= 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount
*mnt
, int n
)
169 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount
*mnt
)
183 unsigned int count
= 0;
186 for_each_possible_cpu(cpu
) {
187 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
192 return mnt
->mnt_count
;
196 static void drop_mountpoint(struct fs_pin
*p
)
198 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
199 dput(m
->mnt_ex_mountpoint
);
204 static struct mount
*alloc_vfsmnt(const char *name
)
206 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
210 err
= mnt_alloc_id(mnt
);
215 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
216 if (!mnt
->mnt_devname
)
221 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
223 goto out_free_devname
;
225 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
228 mnt
->mnt_writers
= 0;
231 INIT_HLIST_NODE(&mnt
->mnt_hash
);
232 INIT_LIST_HEAD(&mnt
->mnt_child
);
233 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
234 INIT_LIST_HEAD(&mnt
->mnt_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_expire
);
236 INIT_LIST_HEAD(&mnt
->mnt_share
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
238 INIT_LIST_HEAD(&mnt
->mnt_slave
);
239 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
240 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
244 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
250 kfree_const(mnt
->mnt_devname
);
255 kmem_cache_free(mnt_cache
, mnt
);
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
278 int __mnt_is_readonly(struct vfsmount
*mnt
)
280 if (mnt
->mnt_flags
& MNT_READONLY
)
282 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
288 static inline void mnt_inc_writers(struct mount
*mnt
)
291 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
297 static inline void mnt_dec_writers(struct mount
*mnt
)
300 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
306 static unsigned int mnt_get_writers(struct mount
*mnt
)
309 unsigned int count
= 0;
312 for_each_possible_cpu(cpu
) {
313 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
318 return mnt
->mnt_writers
;
322 static int mnt_is_readonly(struct vfsmount
*mnt
)
324 if (mnt
->mnt_sb
->s_readonly_remount
)
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 return __mnt_is_readonly(mnt
);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount
*m
)
349 struct mount
*mnt
= real_mount(m
);
353 mnt_inc_writers(mnt
);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
360 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
368 if (mnt_is_readonly(m
)) {
369 mnt_dec_writers(mnt
);
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount
*m
)
390 sb_start_write(m
->mnt_sb
);
391 ret
= __mnt_want_write(m
);
393 sb_end_write(m
->mnt_sb
);
396 EXPORT_SYMBOL_GPL(mnt_want_write
);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount
*mnt
)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt
))
416 mnt_inc_writers(real_mount(mnt
));
420 EXPORT_SYMBOL_GPL(mnt_clone_write
);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file
*file
)
431 if (!(file
->f_mode
& FMODE_WRITER
))
432 return __mnt_want_write(file
->f_path
.mnt
);
434 return mnt_clone_write(file
->f_path
.mnt
);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file
*file
)
448 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
449 ret
= __mnt_want_write_file(file
);
451 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
454 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount
*mnt
)
467 mnt_dec_writers(real_mount(mnt
));
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount
*mnt
)
481 __mnt_drop_write(mnt
);
482 sb_end_write(mnt
->mnt_sb
);
484 EXPORT_SYMBOL_GPL(mnt_drop_write
);
486 void __mnt_drop_write_file(struct file
*file
)
488 __mnt_drop_write(file
->f_path
.mnt
);
491 void mnt_drop_write_file(struct file
*file
)
493 mnt_drop_write(file
->f_path
.mnt
);
495 EXPORT_SYMBOL(mnt_drop_write_file
);
497 static int mnt_make_readonly(struct mount
*mnt
)
502 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt
) > 0)
528 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
534 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
539 static void __mnt_unmake_readonly(struct mount
*mnt
)
542 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
546 int sb_prepare_remount_readonly(struct super_block
*sb
)
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb
->s_remove_count
))
556 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
557 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
558 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
560 if (mnt_get_writers(mnt
) > 0) {
566 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
570 sb
->s_readonly_remount
= 1;
573 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
574 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
575 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
582 static void free_vfsmnt(struct mount
*mnt
)
584 kfree_const(mnt
->mnt_devname
);
586 free_percpu(mnt
->mnt_pcp
);
588 kmem_cache_free(mnt_cache
, mnt
);
591 static void delayed_free_vfsmnt(struct rcu_head
*head
)
593 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
600 if (read_seqretry(&mount_lock
, seq
))
604 mnt
= real_mount(bastard
);
605 mnt_add_count(mnt
, 1);
606 smp_mb(); // see mntput_no_expire()
607 if (likely(!read_seqretry(&mount_lock
, seq
)))
609 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
610 mnt_add_count(mnt
, -1);
614 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
615 mnt_add_count(mnt
, -1);
620 /* caller will mntput() */
624 /* call under rcu_read_lock */
625 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
627 int res
= __legitimize_mnt(bastard
, seq
);
630 if (unlikely(res
< 0)) {
639 * find the first mount at @dentry on vfsmount @mnt.
640 * call under rcu_read_lock()
642 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
644 struct hlist_head
*head
= m_hash(mnt
, dentry
);
647 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
648 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
654 * lookup_mnt - Return the first child mount mounted at path
656 * "First" means first mounted chronologically. If you create the
659 * mount /dev/sda1 /mnt
660 * mount /dev/sda2 /mnt
661 * mount /dev/sda3 /mnt
663 * Then lookup_mnt() on the base /mnt dentry in the root mount will
664 * return successively the root dentry and vfsmount of /dev/sda1, then
665 * /dev/sda2, then /dev/sda3, then NULL.
667 * lookup_mnt takes a reference to the found vfsmount.
669 struct vfsmount
*lookup_mnt(struct path
*path
)
671 struct mount
*child_mnt
;
677 seq
= read_seqbegin(&mount_lock
);
678 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
679 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
680 } while (!legitimize_mnt(m
, seq
));
686 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
687 * current mount namespace.
689 * The common case is dentries are not mountpoints at all and that
690 * test is handled inline. For the slow case when we are actually
691 * dealing with a mountpoint of some kind, walk through all of the
692 * mounts in the current mount namespace and test to see if the dentry
695 * The mount_hashtable is not usable in the context because we
696 * need to identify all mounts that may be in the current mount
697 * namespace not just a mount that happens to have some specified
700 bool __is_local_mountpoint(struct dentry
*dentry
)
702 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
704 bool is_covered
= false;
706 if (!d_mountpoint(dentry
))
709 down_read(&namespace_sem
);
710 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
711 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
715 up_read(&namespace_sem
);
720 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
722 struct hlist_head
*chain
= mp_hash(dentry
);
723 struct mountpoint
*mp
;
725 hlist_for_each_entry(mp
, chain
, m_hash
) {
726 if (mp
->m_dentry
== dentry
) {
727 /* might be worth a WARN_ON() */
728 if (d_unlinked(dentry
))
729 return ERR_PTR(-ENOENT
);
737 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
739 struct mountpoint
*mp
, *new = NULL
;
742 if (d_mountpoint(dentry
)) {
744 read_seqlock_excl(&mount_lock
);
745 mp
= lookup_mountpoint(dentry
);
746 read_sequnlock_excl(&mount_lock
);
752 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
754 return ERR_PTR(-ENOMEM
);
757 /* Exactly one processes may set d_mounted */
758 ret
= d_set_mounted(dentry
);
760 /* Someone else set d_mounted? */
764 /* The dentry is not available as a mountpoint? */
769 /* Add the new mountpoint to the hash table */
770 read_seqlock_excl(&mount_lock
);
771 new->m_dentry
= dentry
;
773 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
774 INIT_HLIST_HEAD(&new->m_list
);
775 read_sequnlock_excl(&mount_lock
);
784 static void put_mountpoint(struct mountpoint
*mp
)
786 if (!--mp
->m_count
) {
787 struct dentry
*dentry
= mp
->m_dentry
;
788 BUG_ON(!hlist_empty(&mp
->m_list
));
789 spin_lock(&dentry
->d_lock
);
790 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
791 spin_unlock(&dentry
->d_lock
);
792 hlist_del(&mp
->m_hash
);
797 static inline int check_mnt(struct mount
*mnt
)
799 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
803 * vfsmount lock must be held for write
805 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
809 wake_up_interruptible(&ns
->poll
);
814 * vfsmount lock must be held for write
816 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
818 if (ns
&& ns
->event
!= event
) {
820 wake_up_interruptible(&ns
->poll
);
825 * vfsmount lock must be held for write
827 static void unhash_mnt(struct mount
*mnt
)
829 mnt
->mnt_parent
= mnt
;
830 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
831 list_del_init(&mnt
->mnt_child
);
832 hlist_del_init_rcu(&mnt
->mnt_hash
);
833 hlist_del_init(&mnt
->mnt_mp_list
);
834 put_mountpoint(mnt
->mnt_mp
);
839 * vfsmount lock must be held for write
841 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
843 old_path
->dentry
= mnt
->mnt_mountpoint
;
844 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
849 * vfsmount lock must be held for write
851 static void umount_mnt(struct mount
*mnt
)
853 /* old mountpoint will be dropped when we can do that */
854 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
859 * vfsmount lock must be held for write
861 void mnt_set_mountpoint(struct mount
*mnt
,
862 struct mountpoint
*mp
,
863 struct mount
*child_mnt
)
866 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
867 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
868 child_mnt
->mnt_parent
= mnt
;
869 child_mnt
->mnt_mp
= mp
;
870 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
873 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
875 hlist_add_head_rcu(&mnt
->mnt_hash
,
876 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
877 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
881 * vfsmount lock must be held for write
883 static void attach_mnt(struct mount
*mnt
,
884 struct mount
*parent
,
885 struct mountpoint
*mp
)
887 mnt_set_mountpoint(parent
, mp
, mnt
);
888 __attach_mnt(mnt
, parent
);
891 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
893 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
894 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
895 struct mount
*old_parent
= mnt
->mnt_parent
;
897 list_del_init(&mnt
->mnt_child
);
898 hlist_del_init(&mnt
->mnt_mp_list
);
899 hlist_del_init_rcu(&mnt
->mnt_hash
);
901 attach_mnt(mnt
, parent
, mp
);
903 put_mountpoint(old_mp
);
906 * Safely avoid even the suggestion this code might sleep or
907 * lock the mount hash by taking advantage of the knowledge that
908 * mnt_change_mountpoint will not release the final reference
911 * During mounting, the mount passed in as the parent mount will
912 * continue to use the old mountpoint and during unmounting, the
913 * old mountpoint will continue to exist until namespace_unlock,
914 * which happens well after mnt_change_mountpoint.
916 spin_lock(&old_mountpoint
->d_lock
);
917 old_mountpoint
->d_lockref
.count
--;
918 spin_unlock(&old_mountpoint
->d_lock
);
920 mnt_add_count(old_parent
, -1);
924 * vfsmount lock must be held for write
926 static void commit_tree(struct mount
*mnt
)
928 struct mount
*parent
= mnt
->mnt_parent
;
931 struct mnt_namespace
*n
= parent
->mnt_ns
;
933 BUG_ON(parent
== mnt
);
935 list_add_tail(&head
, &mnt
->mnt_list
);
936 list_for_each_entry(m
, &head
, mnt_list
)
939 list_splice(&head
, n
->list
.prev
);
941 n
->mounts
+= n
->pending_mounts
;
942 n
->pending_mounts
= 0;
944 __attach_mnt(mnt
, parent
);
945 touch_mnt_namespace(n
);
948 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
950 struct list_head
*next
= p
->mnt_mounts
.next
;
951 if (next
== &p
->mnt_mounts
) {
955 next
= p
->mnt_child
.next
;
956 if (next
!= &p
->mnt_parent
->mnt_mounts
)
961 return list_entry(next
, struct mount
, mnt_child
);
964 static struct mount
*skip_mnt_tree(struct mount
*p
)
966 struct list_head
*prev
= p
->mnt_mounts
.prev
;
967 while (prev
!= &p
->mnt_mounts
) {
968 p
= list_entry(prev
, struct mount
, mnt_child
);
969 prev
= p
->mnt_mounts
.prev
;
975 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
981 return ERR_PTR(-ENODEV
);
983 mnt
= alloc_vfsmnt(name
);
985 return ERR_PTR(-ENOMEM
);
987 if (flags
& MS_KERNMOUNT
)
988 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
990 root
= mount_fs(type
, flags
, name
, data
);
994 return ERR_CAST(root
);
997 mnt
->mnt
.mnt_root
= root
;
998 mnt
->mnt
.mnt_sb
= root
->d_sb
;
999 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1000 mnt
->mnt_parent
= mnt
;
1002 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
1003 unlock_mount_hash();
1006 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1009 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1010 const char *name
, void *data
)
1012 /* Until it is worked out how to pass the user namespace
1013 * through from the parent mount to the submount don't support
1014 * unprivileged mounts with submounts.
1016 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1017 return ERR_PTR(-EPERM
);
1019 return vfs_kern_mount(type
, MS_SUBMOUNT
, name
, data
);
1021 EXPORT_SYMBOL_GPL(vfs_submount
);
1023 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1026 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1030 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1032 return ERR_PTR(-ENOMEM
);
1034 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1035 mnt
->mnt_group_id
= 0; /* not a peer of original */
1037 mnt
->mnt_group_id
= old
->mnt_group_id
;
1039 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1040 err
= mnt_alloc_group_id(mnt
);
1045 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1046 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1047 /* Don't allow unprivileged users to change mount flags */
1048 if (flag
& CL_UNPRIVILEGED
) {
1049 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1051 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1052 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1054 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1055 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1057 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1058 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1060 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1061 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1064 /* Don't allow unprivileged users to reveal what is under a mount */
1065 if ((flag
& CL_UNPRIVILEGED
) &&
1066 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1067 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1069 atomic_inc(&sb
->s_active
);
1070 mnt
->mnt
.mnt_sb
= sb
;
1071 mnt
->mnt
.mnt_root
= dget(root
);
1072 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1073 mnt
->mnt_parent
= mnt
;
1075 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1076 unlock_mount_hash();
1078 if ((flag
& CL_SLAVE
) ||
1079 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1080 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1081 mnt
->mnt_master
= old
;
1082 CLEAR_MNT_SHARED(mnt
);
1083 } else if (!(flag
& CL_PRIVATE
)) {
1084 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1085 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1086 if (IS_MNT_SLAVE(old
))
1087 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1088 mnt
->mnt_master
= old
->mnt_master
;
1090 if (flag
& CL_MAKE_SHARED
)
1091 set_mnt_shared(mnt
);
1093 /* stick the duplicate mount on the same expiry list
1094 * as the original if that was on one */
1095 if (flag
& CL_EXPIRE
) {
1096 if (!list_empty(&old
->mnt_expire
))
1097 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1105 return ERR_PTR(err
);
1108 static void cleanup_mnt(struct mount
*mnt
)
1111 * This probably indicates that somebody messed
1112 * up a mnt_want/drop_write() pair. If this
1113 * happens, the filesystem was probably unable
1114 * to make r/w->r/o transitions.
1117 * The locking used to deal with mnt_count decrement provides barriers,
1118 * so mnt_get_writers() below is safe.
1120 WARN_ON(mnt_get_writers(mnt
));
1121 if (unlikely(mnt
->mnt_pins
.first
))
1123 fsnotify_vfsmount_delete(&mnt
->mnt
);
1124 dput(mnt
->mnt
.mnt_root
);
1125 deactivate_super(mnt
->mnt
.mnt_sb
);
1127 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1130 static void __cleanup_mnt(struct rcu_head
*head
)
1132 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1135 static LLIST_HEAD(delayed_mntput_list
);
1136 static void delayed_mntput(struct work_struct
*unused
)
1138 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1139 struct llist_node
*next
;
1141 for (; node
; node
= next
) {
1142 next
= llist_next(node
);
1143 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1146 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1148 static void mntput_no_expire(struct mount
*mnt
)
1151 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1153 * Since we don't do lock_mount_hash() here,
1154 * ->mnt_ns can change under us. However, if it's
1155 * non-NULL, then there's a reference that won't
1156 * be dropped until after an RCU delay done after
1157 * turning ->mnt_ns NULL. So if we observe it
1158 * non-NULL under rcu_read_lock(), the reference
1159 * we are dropping is not the final one.
1161 mnt_add_count(mnt
, -1);
1167 * make sure that if __legitimize_mnt() has not seen us grab
1168 * mount_lock, we'll see their refcount increment here.
1171 mnt_add_count(mnt
, -1);
1172 if (mnt_get_count(mnt
)) {
1174 unlock_mount_hash();
1177 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1179 unlock_mount_hash();
1182 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1185 list_del(&mnt
->mnt_instance
);
1187 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1188 struct mount
*p
, *tmp
;
1189 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1193 unlock_mount_hash();
1195 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1196 struct task_struct
*task
= current
;
1197 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1198 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1199 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1202 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1203 schedule_delayed_work(&delayed_mntput_work
, 1);
1209 void mntput(struct vfsmount
*mnt
)
1212 struct mount
*m
= real_mount(mnt
);
1213 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1214 if (unlikely(m
->mnt_expiry_mark
))
1215 m
->mnt_expiry_mark
= 0;
1216 mntput_no_expire(m
);
1219 EXPORT_SYMBOL(mntput
);
1221 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1224 mnt_add_count(real_mount(mnt
), 1);
1227 EXPORT_SYMBOL(mntget
);
1229 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1232 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1235 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1239 static inline void mangle(struct seq_file
*m
, const char *s
)
1241 seq_escape(m
, s
, " \t\n\\");
1245 * Simple .show_options callback for filesystems which don't want to
1246 * implement more complex mount option showing.
1248 * See also save_mount_options().
1250 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1252 const char *options
;
1255 options
= rcu_dereference(root
->d_sb
->s_options
);
1257 if (options
!= NULL
&& options
[0]) {
1265 EXPORT_SYMBOL(generic_show_options
);
1268 * If filesystem uses generic_show_options(), this function should be
1269 * called from the fill_super() callback.
1271 * The .remount_fs callback usually needs to be handled in a special
1272 * way, to make sure, that previous options are not overwritten if the
1275 * Also note, that if the filesystem's .remount_fs function doesn't
1276 * reset all options to their default value, but changes only newly
1277 * given options, then the displayed options will not reflect reality
1280 void save_mount_options(struct super_block
*sb
, char *options
)
1282 BUG_ON(sb
->s_options
);
1283 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1285 EXPORT_SYMBOL(save_mount_options
);
1287 void replace_mount_options(struct super_block
*sb
, char *options
)
1289 char *old
= sb
->s_options
;
1290 rcu_assign_pointer(sb
->s_options
, options
);
1296 EXPORT_SYMBOL(replace_mount_options
);
1298 #ifdef CONFIG_PROC_FS
1299 /* iterator; we want it to have access to namespace_sem, thus here... */
1300 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1302 struct proc_mounts
*p
= m
->private;
1304 down_read(&namespace_sem
);
1305 if (p
->cached_event
== p
->ns
->event
) {
1306 void *v
= p
->cached_mount
;
1307 if (*pos
== p
->cached_index
)
1309 if (*pos
== p
->cached_index
+ 1) {
1310 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1311 return p
->cached_mount
= v
;
1315 p
->cached_event
= p
->ns
->event
;
1316 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1317 p
->cached_index
= *pos
;
1318 return p
->cached_mount
;
1321 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1323 struct proc_mounts
*p
= m
->private;
1325 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1326 p
->cached_index
= *pos
;
1327 return p
->cached_mount
;
1330 static void m_stop(struct seq_file
*m
, void *v
)
1332 up_read(&namespace_sem
);
1335 static int m_show(struct seq_file
*m
, void *v
)
1337 struct proc_mounts
*p
= m
->private;
1338 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1339 return p
->show(m
, &r
->mnt
);
1342 const struct seq_operations mounts_op
= {
1348 #endif /* CONFIG_PROC_FS */
1351 * may_umount_tree - check if a mount tree is busy
1352 * @mnt: root of mount tree
1354 * This is called to check if a tree of mounts has any
1355 * open files, pwds, chroots or sub mounts that are
1358 int may_umount_tree(struct vfsmount
*m
)
1360 struct mount
*mnt
= real_mount(m
);
1361 int actual_refs
= 0;
1362 int minimum_refs
= 0;
1366 /* write lock needed for mnt_get_count */
1368 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1369 actual_refs
+= mnt_get_count(p
);
1372 unlock_mount_hash();
1374 if (actual_refs
> minimum_refs
)
1380 EXPORT_SYMBOL(may_umount_tree
);
1383 * may_umount - check if a mount point is busy
1384 * @mnt: root of mount
1386 * This is called to check if a mount point has any
1387 * open files, pwds, chroots or sub mounts. If the
1388 * mount has sub mounts this will return busy
1389 * regardless of whether the sub mounts are busy.
1391 * Doesn't take quota and stuff into account. IOW, in some cases it will
1392 * give false negatives. The main reason why it's here is that we need
1393 * a non-destructive way to look for easily umountable filesystems.
1395 int may_umount(struct vfsmount
*mnt
)
1398 down_read(&namespace_sem
);
1400 if (propagate_mount_busy(real_mount(mnt
), 2))
1402 unlock_mount_hash();
1403 up_read(&namespace_sem
);
1407 EXPORT_SYMBOL(may_umount
);
1409 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1411 static void namespace_unlock(void)
1413 struct hlist_head head
;
1415 hlist_move_list(&unmounted
, &head
);
1417 up_write(&namespace_sem
);
1419 if (likely(hlist_empty(&head
)))
1424 group_pin_kill(&head
);
1427 static inline void namespace_lock(void)
1429 down_write(&namespace_sem
);
1432 enum umount_tree_flags
{
1434 UMOUNT_PROPAGATE
= 2,
1435 UMOUNT_CONNECTED
= 4,
1438 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1440 /* Leaving mounts connected is only valid for lazy umounts */
1441 if (how
& UMOUNT_SYNC
)
1444 /* A mount without a parent has nothing to be connected to */
1445 if (!mnt_has_parent(mnt
))
1448 /* Because the reference counting rules change when mounts are
1449 * unmounted and connected, umounted mounts may not be
1450 * connected to mounted mounts.
1452 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1455 /* Has it been requested that the mount remain connected? */
1456 if (how
& UMOUNT_CONNECTED
)
1459 /* Is the mount locked such that it needs to remain connected? */
1460 if (IS_MNT_LOCKED(mnt
))
1463 /* By default disconnect the mount */
1468 * mount_lock must be held
1469 * namespace_sem must be held for write
1471 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1473 LIST_HEAD(tmp_list
);
1476 if (how
& UMOUNT_PROPAGATE
)
1477 propagate_mount_unlock(mnt
);
1479 /* Gather the mounts to umount */
1480 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1481 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1482 list_move(&p
->mnt_list
, &tmp_list
);
1485 /* Hide the mounts from mnt_mounts */
1486 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1487 list_del_init(&p
->mnt_child
);
1490 /* Add propogated mounts to the tmp_list */
1491 if (how
& UMOUNT_PROPAGATE
)
1492 propagate_umount(&tmp_list
);
1494 while (!list_empty(&tmp_list
)) {
1495 struct mnt_namespace
*ns
;
1497 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1498 list_del_init(&p
->mnt_expire
);
1499 list_del_init(&p
->mnt_list
);
1503 __touch_mnt_namespace(ns
);
1506 if (how
& UMOUNT_SYNC
)
1507 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1509 disconnect
= disconnect_mount(p
, how
);
1511 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1512 disconnect
? &unmounted
: NULL
);
1513 if (mnt_has_parent(p
)) {
1514 mnt_add_count(p
->mnt_parent
, -1);
1516 /* Don't forget about p */
1517 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1522 change_mnt_propagation(p
, MS_PRIVATE
);
1526 static void shrink_submounts(struct mount
*mnt
);
1528 static int do_umount(struct mount
*mnt
, int flags
)
1530 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1533 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1538 * Allow userspace to request a mountpoint be expired rather than
1539 * unmounting unconditionally. Unmount only happens if:
1540 * (1) the mark is already set (the mark is cleared by mntput())
1541 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1543 if (flags
& MNT_EXPIRE
) {
1544 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1545 flags
& (MNT_FORCE
| MNT_DETACH
))
1549 * probably don't strictly need the lock here if we examined
1550 * all race cases, but it's a slowpath.
1553 if (mnt_get_count(mnt
) != 2) {
1554 unlock_mount_hash();
1557 unlock_mount_hash();
1559 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1564 * If we may have to abort operations to get out of this
1565 * mount, and they will themselves hold resources we must
1566 * allow the fs to do things. In the Unix tradition of
1567 * 'Gee thats tricky lets do it in userspace' the umount_begin
1568 * might fail to complete on the first run through as other tasks
1569 * must return, and the like. Thats for the mount program to worry
1570 * about for the moment.
1573 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1574 sb
->s_op
->umount_begin(sb
);
1578 * No sense to grab the lock for this test, but test itself looks
1579 * somewhat bogus. Suggestions for better replacement?
1580 * Ho-hum... In principle, we might treat that as umount + switch
1581 * to rootfs. GC would eventually take care of the old vfsmount.
1582 * Actually it makes sense, especially if rootfs would contain a
1583 * /reboot - static binary that would close all descriptors and
1584 * call reboot(9). Then init(8) could umount root and exec /reboot.
1586 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1588 * Special case for "unmounting" root ...
1589 * we just try to remount it readonly.
1591 if (!capable(CAP_SYS_ADMIN
))
1593 down_write(&sb
->s_umount
);
1594 if (!(sb
->s_flags
& MS_RDONLY
))
1595 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1596 up_write(&sb
->s_umount
);
1603 /* Recheck MNT_LOCKED with the locks held */
1605 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1609 if (flags
& MNT_DETACH
) {
1610 if (!list_empty(&mnt
->mnt_list
))
1611 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1614 shrink_submounts(mnt
);
1616 if (!propagate_mount_busy(mnt
, 2)) {
1617 if (!list_empty(&mnt
->mnt_list
))
1618 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1623 unlock_mount_hash();
1629 * __detach_mounts - lazily unmount all mounts on the specified dentry
1631 * During unlink, rmdir, and d_drop it is possible to loose the path
1632 * to an existing mountpoint, and wind up leaking the mount.
1633 * detach_mounts allows lazily unmounting those mounts instead of
1636 * The caller may hold dentry->d_inode->i_mutex.
1638 void __detach_mounts(struct dentry
*dentry
)
1640 struct mountpoint
*mp
;
1645 mp
= lookup_mountpoint(dentry
);
1646 if (IS_ERR_OR_NULL(mp
))
1650 while (!hlist_empty(&mp
->m_list
)) {
1651 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1652 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1653 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1656 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1660 unlock_mount_hash();
1665 * Is the caller allowed to modify his namespace?
1667 static inline bool may_mount(void)
1669 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1672 static inline bool may_mandlock(void)
1674 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1677 return capable(CAP_SYS_ADMIN
);
1681 * Now umount can handle mount points as well as block devices.
1682 * This is important for filesystems which use unnamed block devices.
1684 * We now support a flag for forced unmount like the other 'big iron'
1685 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1688 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1693 int lookup_flags
= 0;
1695 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1701 if (!(flags
& UMOUNT_NOFOLLOW
))
1702 lookup_flags
|= LOOKUP_FOLLOW
;
1704 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1707 mnt
= real_mount(path
.mnt
);
1709 if (path
.dentry
!= path
.mnt
->mnt_root
)
1711 if (!check_mnt(mnt
))
1713 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
) /* Check optimistically */
1716 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1719 retval
= do_umount(mnt
, flags
);
1721 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1723 mntput_no_expire(mnt
);
1728 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1731 * The 2.0 compatible umount. No flags.
1733 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1735 return sys_umount(name
, 0);
1740 static bool is_mnt_ns_file(struct dentry
*dentry
)
1742 /* Is this a proxy for a mount namespace? */
1743 return dentry
->d_op
== &ns_dentry_operations
&&
1744 dentry
->d_fsdata
== &mntns_operations
;
1747 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1749 return container_of(ns
, struct mnt_namespace
, ns
);
1752 static bool mnt_ns_loop(struct dentry
*dentry
)
1754 /* Could bind mounting the mount namespace inode cause a
1755 * mount namespace loop?
1757 struct mnt_namespace
*mnt_ns
;
1758 if (!is_mnt_ns_file(dentry
))
1761 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1762 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1765 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1768 struct mount
*res
, *p
, *q
, *r
, *parent
;
1770 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1771 return ERR_PTR(-EINVAL
);
1773 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1774 return ERR_PTR(-EINVAL
);
1776 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1780 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1783 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1785 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1788 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1789 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1790 IS_MNT_UNBINDABLE(s
)) {
1791 if (s
->mnt
.mnt_flags
& MNT_LOCKED
) {
1792 /* Both unbindable and locked. */
1793 q
= ERR_PTR(-EPERM
);
1796 s
= skip_mnt_tree(s
);
1800 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1801 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1802 s
= skip_mnt_tree(s
);
1805 while (p
!= s
->mnt_parent
) {
1811 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1815 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1816 attach_mnt(q
, parent
, p
->mnt_mp
);
1817 unlock_mount_hash();
1824 umount_tree(res
, UMOUNT_SYNC
);
1825 unlock_mount_hash();
1830 /* Caller should check returned pointer for errors */
1832 struct vfsmount
*collect_mounts(struct path
*path
)
1836 if (!check_mnt(real_mount(path
->mnt
)))
1837 tree
= ERR_PTR(-EINVAL
);
1839 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1840 CL_COPY_ALL
| CL_PRIVATE
);
1843 return ERR_CAST(tree
);
1847 void drop_collected_mounts(struct vfsmount
*mnt
)
1851 umount_tree(real_mount(mnt
), 0);
1852 unlock_mount_hash();
1857 * clone_private_mount - create a private clone of a path
1859 * This creates a new vfsmount, which will be the clone of @path. The new will
1860 * not be attached anywhere in the namespace and will be private (i.e. changes
1861 * to the originating mount won't be propagated into this).
1863 * Release with mntput().
1865 struct vfsmount
*clone_private_mount(struct path
*path
)
1867 struct mount
*old_mnt
= real_mount(path
->mnt
);
1868 struct mount
*new_mnt
;
1870 if (IS_MNT_UNBINDABLE(old_mnt
))
1871 return ERR_PTR(-EINVAL
);
1873 down_read(&namespace_sem
);
1874 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1875 up_read(&namespace_sem
);
1876 if (IS_ERR(new_mnt
))
1877 return ERR_CAST(new_mnt
);
1879 return &new_mnt
->mnt
;
1881 EXPORT_SYMBOL_GPL(clone_private_mount
);
1883 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1884 struct vfsmount
*root
)
1887 int res
= f(root
, arg
);
1890 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1891 res
= f(&mnt
->mnt
, arg
);
1898 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1902 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1903 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1904 mnt_release_group_id(p
);
1908 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1912 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1913 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1914 int err
= mnt_alloc_group_id(p
);
1916 cleanup_group_ids(mnt
, p
);
1925 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1927 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1928 unsigned int mounts
= 0, old
, pending
, sum
;
1931 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1935 pending
= ns
->pending_mounts
;
1936 sum
= old
+ pending
;
1940 (mounts
> (max
- sum
)))
1943 ns
->pending_mounts
= pending
+ mounts
;
1948 * @source_mnt : mount tree to be attached
1949 * @nd : place the mount tree @source_mnt is attached
1950 * @parent_nd : if non-null, detach the source_mnt from its parent and
1951 * store the parent mount and mountpoint dentry.
1952 * (done when source_mnt is moved)
1954 * NOTE: in the table below explains the semantics when a source mount
1955 * of a given type is attached to a destination mount of a given type.
1956 * ---------------------------------------------------------------------------
1957 * | BIND MOUNT OPERATION |
1958 * |**************************************************************************
1959 * | source-->| shared | private | slave | unbindable |
1963 * |**************************************************************************
1964 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1966 * |non-shared| shared (+) | private | slave (*) | invalid |
1967 * ***************************************************************************
1968 * A bind operation clones the source mount and mounts the clone on the
1969 * destination mount.
1971 * (++) the cloned mount is propagated to all the mounts in the propagation
1972 * tree of the destination mount and the cloned mount is added to
1973 * the peer group of the source mount.
1974 * (+) the cloned mount is created under the destination mount and is marked
1975 * as shared. The cloned mount is added to the peer group of the source
1977 * (+++) the mount is propagated to all the mounts in the propagation tree
1978 * of the destination mount and the cloned mount is made slave
1979 * of the same master as that of the source mount. The cloned mount
1980 * is marked as 'shared and slave'.
1981 * (*) the cloned mount is made a slave of the same master as that of the
1984 * ---------------------------------------------------------------------------
1985 * | MOVE MOUNT OPERATION |
1986 * |**************************************************************************
1987 * | source-->| shared | private | slave | unbindable |
1991 * |**************************************************************************
1992 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1994 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1995 * ***************************************************************************
1997 * (+) the mount is moved to the destination. And is then propagated to
1998 * all the mounts in the propagation tree of the destination mount.
1999 * (+*) the mount is moved to the destination.
2000 * (+++) the mount is moved to the destination and is then propagated to
2001 * all the mounts belonging to the destination mount's propagation tree.
2002 * the mount is marked as 'shared and slave'.
2003 * (*) the mount continues to be a slave at the new location.
2005 * if the source mount is a tree, the operations explained above is
2006 * applied to each mount in the tree.
2007 * Must be called without spinlocks held, since this function can sleep
2010 static int attach_recursive_mnt(struct mount
*source_mnt
,
2011 struct mount
*dest_mnt
,
2012 struct mountpoint
*dest_mp
,
2013 struct path
*parent_path
)
2015 HLIST_HEAD(tree_list
);
2016 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
2017 struct mountpoint
*smp
;
2018 struct mount
*child
, *p
;
2019 struct hlist_node
*n
;
2022 /* Preallocate a mountpoint in case the new mounts need
2023 * to be tucked under other mounts.
2025 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2027 return PTR_ERR(smp
);
2029 /* Is there space to add these mounts to the mount namespace? */
2031 err
= count_mounts(ns
, source_mnt
);
2036 if (IS_MNT_SHARED(dest_mnt
)) {
2037 err
= invent_group_ids(source_mnt
, true);
2040 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2043 goto out_cleanup_ids
;
2044 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2050 detach_mnt(source_mnt
, parent_path
);
2051 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2052 touch_mnt_namespace(source_mnt
->mnt_ns
);
2054 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2055 commit_tree(source_mnt
);
2058 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2060 hlist_del_init(&child
->mnt_hash
);
2061 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2062 child
->mnt_mountpoint
);
2064 mnt_change_mountpoint(child
, smp
, q
);
2067 put_mountpoint(smp
);
2068 unlock_mount_hash();
2073 while (!hlist_empty(&tree_list
)) {
2074 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2075 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2076 umount_tree(child
, UMOUNT_SYNC
);
2078 unlock_mount_hash();
2079 cleanup_group_ids(source_mnt
, NULL
);
2081 ns
->pending_mounts
= 0;
2083 read_seqlock_excl(&mount_lock
);
2084 put_mountpoint(smp
);
2085 read_sequnlock_excl(&mount_lock
);
2090 static struct mountpoint
*lock_mount(struct path
*path
)
2092 struct vfsmount
*mnt
;
2093 struct dentry
*dentry
= path
->dentry
;
2095 inode_lock(dentry
->d_inode
);
2096 if (unlikely(cant_mount(dentry
))) {
2097 inode_unlock(dentry
->d_inode
);
2098 return ERR_PTR(-ENOENT
);
2101 mnt
= lookup_mnt(path
);
2103 struct mountpoint
*mp
= get_mountpoint(dentry
);
2106 inode_unlock(dentry
->d_inode
);
2112 inode_unlock(path
->dentry
->d_inode
);
2115 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2119 static void unlock_mount(struct mountpoint
*where
)
2121 struct dentry
*dentry
= where
->m_dentry
;
2123 read_seqlock_excl(&mount_lock
);
2124 put_mountpoint(where
);
2125 read_sequnlock_excl(&mount_lock
);
2128 inode_unlock(dentry
->d_inode
);
2131 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2133 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2136 if (d_is_dir(mp
->m_dentry
) !=
2137 d_is_dir(mnt
->mnt
.mnt_root
))
2140 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2144 * Sanity check the flags to change_mnt_propagation.
2147 static int flags_to_propagation_type(int flags
)
2149 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2151 /* Fail if any non-propagation flags are set */
2152 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2154 /* Only one propagation flag should be set */
2155 if (!is_power_of_2(type
))
2161 * recursively change the type of the mountpoint.
2163 static int do_change_type(struct path
*path
, int flag
)
2166 struct mount
*mnt
= real_mount(path
->mnt
);
2167 int recurse
= flag
& MS_REC
;
2171 if (path
->dentry
!= path
->mnt
->mnt_root
)
2174 type
= flags_to_propagation_type(flag
);
2179 if (type
== MS_SHARED
) {
2180 err
= invent_group_ids(mnt
, recurse
);
2186 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2187 change_mnt_propagation(m
, type
);
2188 unlock_mount_hash();
2195 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2197 struct mount
*child
;
2198 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2199 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2202 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2209 * do loopback mount.
2211 static int do_loopback(struct path
*path
, const char *old_name
,
2214 struct path old_path
;
2215 struct mount
*mnt
= NULL
, *old
, *parent
;
2216 struct mountpoint
*mp
;
2218 if (!old_name
|| !*old_name
)
2220 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2225 if (mnt_ns_loop(old_path
.dentry
))
2228 mp
= lock_mount(path
);
2233 old
= real_mount(old_path
.mnt
);
2234 parent
= real_mount(path
->mnt
);
2237 if (IS_MNT_UNBINDABLE(old
))
2240 if (!check_mnt(parent
))
2243 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2246 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2250 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2252 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2259 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2261 err
= graft_tree(mnt
, parent
, mp
);
2264 umount_tree(mnt
, UMOUNT_SYNC
);
2265 unlock_mount_hash();
2270 path_put(&old_path
);
2274 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2277 int readonly_request
= 0;
2279 if (ms_flags
& MS_RDONLY
)
2280 readonly_request
= 1;
2281 if (readonly_request
== __mnt_is_readonly(mnt
))
2284 if (readonly_request
)
2285 error
= mnt_make_readonly(real_mount(mnt
));
2287 __mnt_unmake_readonly(real_mount(mnt
));
2292 * change filesystem flags. dir should be a physical root of filesystem.
2293 * If you've mounted a non-root directory somewhere and want to do remount
2294 * on it - tough luck.
2296 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2300 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2301 struct mount
*mnt
= real_mount(path
->mnt
);
2303 if (!check_mnt(mnt
))
2306 if (path
->dentry
!= path
->mnt
->mnt_root
)
2309 /* Don't allow changing of locked mnt flags.
2311 * No locks need to be held here while testing the various
2312 * MNT_LOCK flags because those flags can never be cleared
2313 * once they are set.
2315 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2316 !(mnt_flags
& MNT_READONLY
)) {
2319 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2320 !(mnt_flags
& MNT_NODEV
)) {
2323 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2324 !(mnt_flags
& MNT_NOSUID
)) {
2327 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2328 !(mnt_flags
& MNT_NOEXEC
)) {
2331 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2332 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2336 err
= security_sb_remount(sb
, data
);
2340 down_write(&sb
->s_umount
);
2341 if (flags
& MS_BIND
)
2342 err
= change_mount_flags(path
->mnt
, flags
);
2343 else if (!capable(CAP_SYS_ADMIN
))
2346 err
= do_remount_sb(sb
, flags
, data
, 0);
2349 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2350 mnt
->mnt
.mnt_flags
= mnt_flags
;
2351 touch_mnt_namespace(mnt
->mnt_ns
);
2352 unlock_mount_hash();
2354 up_write(&sb
->s_umount
);
2358 static inline int tree_contains_unbindable(struct mount
*mnt
)
2361 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2362 if (IS_MNT_UNBINDABLE(p
))
2368 static int do_move_mount(struct path
*path
, const char *old_name
)
2370 struct path old_path
, parent_path
;
2373 struct mountpoint
*mp
;
2375 if (!old_name
|| !*old_name
)
2377 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2381 mp
= lock_mount(path
);
2386 old
= real_mount(old_path
.mnt
);
2387 p
= real_mount(path
->mnt
);
2390 if (!check_mnt(p
) || !check_mnt(old
))
2393 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2397 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2400 if (!mnt_has_parent(old
))
2403 if (d_is_dir(path
->dentry
) !=
2404 d_is_dir(old_path
.dentry
))
2407 * Don't move a mount residing in a shared parent.
2409 if (IS_MNT_SHARED(old
->mnt_parent
))
2412 * Don't move a mount tree containing unbindable mounts to a destination
2413 * mount which is shared.
2415 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2418 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2422 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2426 /* if the mount is moved, it should no longer be expire
2428 list_del_init(&old
->mnt_expire
);
2433 path_put(&parent_path
);
2434 path_put(&old_path
);
2438 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2441 const char *subtype
= strchr(fstype
, '.');
2450 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2452 if (!mnt
->mnt_sb
->s_subtype
)
2458 return ERR_PTR(err
);
2462 * add a mount into a namespace's mount tree
2464 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2466 struct mountpoint
*mp
;
2467 struct mount
*parent
;
2470 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2472 mp
= lock_mount(path
);
2476 parent
= real_mount(path
->mnt
);
2478 if (unlikely(!check_mnt(parent
))) {
2479 /* that's acceptable only for automounts done in private ns */
2480 if (!(mnt_flags
& MNT_SHRINKABLE
))
2482 /* ... and for those we'd better have mountpoint still alive */
2483 if (!parent
->mnt_ns
)
2487 /* Refuse the same filesystem on the same mount point */
2489 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2490 path
->mnt
->mnt_root
== path
->dentry
)
2494 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2497 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2498 err
= graft_tree(newmnt
, parent
, mp
);
2505 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2508 * create a new mount for userspace and request it to be added into the
2511 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2512 int mnt_flags
, const char *name
, void *data
)
2514 struct file_system_type
*type
;
2515 struct vfsmount
*mnt
;
2521 type
= get_fs_type(fstype
);
2525 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2526 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2527 !mnt
->mnt_sb
->s_subtype
)
2528 mnt
= fs_set_subtype(mnt
, fstype
);
2530 put_filesystem(type
);
2532 return PTR_ERR(mnt
);
2534 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2539 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2545 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2547 struct mount
*mnt
= real_mount(m
);
2549 /* The new mount record should have at least 2 refs to prevent it being
2550 * expired before we get a chance to add it
2552 BUG_ON(mnt_get_count(mnt
) < 2);
2554 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2555 m
->mnt_root
== path
->dentry
) {
2560 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2564 /* remove m from any expiration list it may be on */
2565 if (!list_empty(&mnt
->mnt_expire
)) {
2567 list_del_init(&mnt
->mnt_expire
);
2576 * mnt_set_expiry - Put a mount on an expiration list
2577 * @mnt: The mount to list.
2578 * @expiry_list: The list to add the mount to.
2580 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2584 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2588 EXPORT_SYMBOL(mnt_set_expiry
);
2591 * process a list of expirable mountpoints with the intent of discarding any
2592 * mountpoints that aren't in use and haven't been touched since last we came
2595 void mark_mounts_for_expiry(struct list_head
*mounts
)
2597 struct mount
*mnt
, *next
;
2598 LIST_HEAD(graveyard
);
2600 if (list_empty(mounts
))
2606 /* extract from the expiration list every vfsmount that matches the
2607 * following criteria:
2608 * - only referenced by its parent vfsmount
2609 * - still marked for expiry (marked on the last call here; marks are
2610 * cleared by mntput())
2612 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2613 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2614 propagate_mount_busy(mnt
, 1))
2616 list_move(&mnt
->mnt_expire
, &graveyard
);
2618 while (!list_empty(&graveyard
)) {
2619 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2620 touch_mnt_namespace(mnt
->mnt_ns
);
2621 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2623 unlock_mount_hash();
2627 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2630 * Ripoff of 'select_parent()'
2632 * search the list of submounts for a given mountpoint, and move any
2633 * shrinkable submounts to the 'graveyard' list.
2635 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2637 struct mount
*this_parent
= parent
;
2638 struct list_head
*next
;
2642 next
= this_parent
->mnt_mounts
.next
;
2644 while (next
!= &this_parent
->mnt_mounts
) {
2645 struct list_head
*tmp
= next
;
2646 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2649 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2652 * Descend a level if the d_mounts list is non-empty.
2654 if (!list_empty(&mnt
->mnt_mounts
)) {
2659 if (!propagate_mount_busy(mnt
, 1)) {
2660 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2665 * All done at this level ... ascend and resume the search
2667 if (this_parent
!= parent
) {
2668 next
= this_parent
->mnt_child
.next
;
2669 this_parent
= this_parent
->mnt_parent
;
2676 * process a list of expirable mountpoints with the intent of discarding any
2677 * submounts of a specific parent mountpoint
2679 * mount_lock must be held for write
2681 static void shrink_submounts(struct mount
*mnt
)
2683 LIST_HEAD(graveyard
);
2686 /* extract submounts of 'mountpoint' from the expiration list */
2687 while (select_submounts(mnt
, &graveyard
)) {
2688 while (!list_empty(&graveyard
)) {
2689 m
= list_first_entry(&graveyard
, struct mount
,
2691 touch_mnt_namespace(m
->mnt_ns
);
2692 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2698 * Some copy_from_user() implementations do not return the exact number of
2699 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2700 * Note that this function differs from copy_from_user() in that it will oops
2701 * on bad values of `to', rather than returning a short copy.
2703 static long exact_copy_from_user(void *to
, const void __user
* from
,
2707 const char __user
*f
= from
;
2710 if (!access_ok(VERIFY_READ
, from
, n
))
2714 if (__get_user(c
, f
)) {
2725 void *copy_mount_options(const void __user
* data
)
2734 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2736 return ERR_PTR(-ENOMEM
);
2738 /* We only care that *some* data at the address the user
2739 * gave us is valid. Just in case, we'll zero
2740 * the remainder of the page.
2742 /* copy_from_user cannot cross TASK_SIZE ! */
2743 size
= TASK_SIZE
- (unsigned long)data
;
2744 if (size
> PAGE_SIZE
)
2747 i
= size
- exact_copy_from_user(copy
, data
, size
);
2750 return ERR_PTR(-EFAULT
);
2753 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2757 char *copy_mount_string(const void __user
*data
)
2759 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2763 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2764 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2766 * data is a (void *) that can point to any structure up to
2767 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2768 * information (or be NULL).
2770 * Pre-0.97 versions of mount() didn't have a flags word.
2771 * When the flags word was introduced its top half was required
2772 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2773 * Therefore, if this magic number is present, it carries no information
2774 * and must be discarded.
2776 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2777 const char *type_page
, unsigned long flags
, void *data_page
)
2784 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2785 flags
&= ~MS_MGC_MSK
;
2787 /* Basic sanity checks */
2789 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2791 /* ... and get the mountpoint */
2792 retval
= user_path(dir_name
, &path
);
2796 retval
= security_sb_mount(dev_name
, &path
,
2797 type_page
, flags
, data_page
);
2798 if (!retval
&& !may_mount())
2800 if (!retval
&& (flags
& MS_MANDLOCK
) && !may_mandlock())
2805 /* Default to relatime unless overriden */
2806 if (!(flags
& MS_NOATIME
))
2807 mnt_flags
|= MNT_RELATIME
;
2809 /* Separate the per-mountpoint flags */
2810 if (flags
& MS_NOSUID
)
2811 mnt_flags
|= MNT_NOSUID
;
2812 if (flags
& MS_NODEV
)
2813 mnt_flags
|= MNT_NODEV
;
2814 if (flags
& MS_NOEXEC
)
2815 mnt_flags
|= MNT_NOEXEC
;
2816 if (flags
& MS_NOATIME
)
2817 mnt_flags
|= MNT_NOATIME
;
2818 if (flags
& MS_NODIRATIME
)
2819 mnt_flags
|= MNT_NODIRATIME
;
2820 if (flags
& MS_STRICTATIME
)
2821 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2822 if (flags
& MS_RDONLY
)
2823 mnt_flags
|= MNT_READONLY
;
2825 /* The default atime for remount is preservation */
2826 if ((flags
& MS_REMOUNT
) &&
2827 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2828 MS_STRICTATIME
)) == 0)) {
2829 mnt_flags
&= ~MNT_ATIME_MASK
;
2830 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2833 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2834 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2835 MS_STRICTATIME
| MS_NOREMOTELOCK
| MS_SUBMOUNT
);
2837 if (flags
& MS_REMOUNT
)
2838 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2840 else if (flags
& MS_BIND
)
2841 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2842 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2843 retval
= do_change_type(&path
, flags
);
2844 else if (flags
& MS_MOVE
)
2845 retval
= do_move_mount(&path
, dev_name
);
2847 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2848 dev_name
, data_page
);
2854 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2856 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2859 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2861 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2864 static void free_mnt_ns(struct mnt_namespace
*ns
)
2866 ns_free_inum(&ns
->ns
);
2867 dec_mnt_namespaces(ns
->ucounts
);
2868 put_user_ns(ns
->user_ns
);
2873 * Assign a sequence number so we can detect when we attempt to bind
2874 * mount a reference to an older mount namespace into the current
2875 * mount namespace, preventing reference counting loops. A 64bit
2876 * number incrementing at 10Ghz will take 12,427 years to wrap which
2877 * is effectively never, so we can ignore the possibility.
2879 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2881 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2883 struct mnt_namespace
*new_ns
;
2884 struct ucounts
*ucounts
;
2887 ucounts
= inc_mnt_namespaces(user_ns
);
2889 return ERR_PTR(-ENOSPC
);
2891 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2893 dec_mnt_namespaces(ucounts
);
2894 return ERR_PTR(-ENOMEM
);
2896 ret
= ns_alloc_inum(&new_ns
->ns
);
2899 dec_mnt_namespaces(ucounts
);
2900 return ERR_PTR(ret
);
2902 new_ns
->ns
.ops
= &mntns_operations
;
2903 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2904 atomic_set(&new_ns
->count
, 1);
2905 new_ns
->root
= NULL
;
2906 INIT_LIST_HEAD(&new_ns
->list
);
2907 init_waitqueue_head(&new_ns
->poll
);
2909 new_ns
->user_ns
= get_user_ns(user_ns
);
2910 new_ns
->ucounts
= ucounts
;
2912 new_ns
->pending_mounts
= 0;
2917 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2918 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2920 struct mnt_namespace
*new_ns
;
2921 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2922 struct mount
*p
, *q
;
2929 if (likely(!(flags
& CLONE_NEWNS
))) {
2936 new_ns
= alloc_mnt_ns(user_ns
);
2941 /* First pass: copy the tree topology */
2942 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2943 if (user_ns
!= ns
->user_ns
)
2944 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2945 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2948 free_mnt_ns(new_ns
);
2949 return ERR_CAST(new);
2952 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2955 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2956 * as belonging to new namespace. We have already acquired a private
2957 * fs_struct, so tsk->fs->lock is not needed.
2965 if (&p
->mnt
== new_fs
->root
.mnt
) {
2966 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2969 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2970 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2974 p
= next_mnt(p
, old
);
2975 q
= next_mnt(q
, new);
2978 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2979 p
= next_mnt(p
, old
);
2992 * create_mnt_ns - creates a private namespace and adds a root filesystem
2993 * @mnt: pointer to the new root filesystem mountpoint
2995 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2997 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2998 if (!IS_ERR(new_ns
)) {
2999 struct mount
*mnt
= real_mount(m
);
3000 mnt
->mnt_ns
= new_ns
;
3003 list_add(&mnt
->mnt_list
, &new_ns
->list
);
3010 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
3012 struct mnt_namespace
*ns
;
3013 struct super_block
*s
;
3017 ns
= create_mnt_ns(mnt
);
3019 return ERR_CAST(ns
);
3021 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
3022 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3027 return ERR_PTR(err
);
3029 /* trade a vfsmount reference for active sb one */
3030 s
= path
.mnt
->mnt_sb
;
3031 atomic_inc(&s
->s_active
);
3033 /* lock the sucker */
3034 down_write(&s
->s_umount
);
3035 /* ... and return the root of (sub)tree on it */
3038 EXPORT_SYMBOL(mount_subtree
);
3040 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3041 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3048 kernel_type
= copy_mount_string(type
);
3049 ret
= PTR_ERR(kernel_type
);
3050 if (IS_ERR(kernel_type
))
3053 kernel_dev
= copy_mount_string(dev_name
);
3054 ret
= PTR_ERR(kernel_dev
);
3055 if (IS_ERR(kernel_dev
))
3058 options
= copy_mount_options(data
);
3059 ret
= PTR_ERR(options
);
3060 if (IS_ERR(options
))
3063 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3075 * Return true if path is reachable from root
3077 * namespace_sem or mount_lock is held
3079 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3080 const struct path
*root
)
3082 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3083 dentry
= mnt
->mnt_mountpoint
;
3084 mnt
= mnt
->mnt_parent
;
3086 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3089 bool path_is_under(struct path
*path1
, struct path
*path2
)
3092 read_seqlock_excl(&mount_lock
);
3093 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3094 read_sequnlock_excl(&mount_lock
);
3097 EXPORT_SYMBOL(path_is_under
);
3100 * pivot_root Semantics:
3101 * Moves the root file system of the current process to the directory put_old,
3102 * makes new_root as the new root file system of the current process, and sets
3103 * root/cwd of all processes which had them on the current root to new_root.
3106 * The new_root and put_old must be directories, and must not be on the
3107 * same file system as the current process root. The put_old must be
3108 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3109 * pointed to by put_old must yield the same directory as new_root. No other
3110 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3112 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3113 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3114 * in this situation.
3117 * - we don't move root/cwd if they are not at the root (reason: if something
3118 * cared enough to change them, it's probably wrong to force them elsewhere)
3119 * - it's okay to pick a root that isn't the root of a file system, e.g.
3120 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3121 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3124 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3125 const char __user
*, put_old
)
3127 struct path
new, old
, parent_path
, root_parent
, root
;
3128 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3129 struct mountpoint
*old_mp
, *root_mp
;
3135 error
= user_path_dir(new_root
, &new);
3139 error
= user_path_dir(put_old
, &old
);
3143 error
= security_sb_pivotroot(&old
, &new);
3147 get_fs_root(current
->fs
, &root
);
3148 old_mp
= lock_mount(&old
);
3149 error
= PTR_ERR(old_mp
);
3154 new_mnt
= real_mount(new.mnt
);
3155 root_mnt
= real_mount(root
.mnt
);
3156 old_mnt
= real_mount(old
.mnt
);
3157 if (IS_MNT_SHARED(old_mnt
) ||
3158 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3159 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3161 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3163 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3166 if (d_unlinked(new.dentry
))
3169 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3170 goto out4
; /* loop, on the same file system */
3172 if (root
.mnt
->mnt_root
!= root
.dentry
)
3173 goto out4
; /* not a mountpoint */
3174 if (!mnt_has_parent(root_mnt
))
3175 goto out4
; /* not attached */
3176 root_mp
= root_mnt
->mnt_mp
;
3177 if (new.mnt
->mnt_root
!= new.dentry
)
3178 goto out4
; /* not a mountpoint */
3179 if (!mnt_has_parent(new_mnt
))
3180 goto out4
; /* not attached */
3181 /* make sure we can reach put_old from new_root */
3182 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3184 /* make certain new is below the root */
3185 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3187 root_mp
->m_count
++; /* pin it so it won't go away */
3189 detach_mnt(new_mnt
, &parent_path
);
3190 detach_mnt(root_mnt
, &root_parent
);
3191 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3192 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3193 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3195 /* mount old root on put_old */
3196 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3197 /* mount new_root on / */
3198 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3199 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3200 /* A moved mount should not expire automatically */
3201 list_del_init(&new_mnt
->mnt_expire
);
3202 put_mountpoint(root_mp
);
3203 unlock_mount_hash();
3204 chroot_fs_refs(&root
, &new);
3207 unlock_mount(old_mp
);
3209 path_put(&root_parent
);
3210 path_put(&parent_path
);
3222 static void __init
init_mount_tree(void)
3224 struct vfsmount
*mnt
;
3225 struct mnt_namespace
*ns
;
3227 struct file_system_type
*type
;
3229 type
= get_fs_type("rootfs");
3231 panic("Can't find rootfs type");
3232 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3233 put_filesystem(type
);
3235 panic("Can't create rootfs");
3237 ns
= create_mnt_ns(mnt
);
3239 panic("Can't allocate initial namespace");
3241 init_task
.nsproxy
->mnt_ns
= ns
;
3245 root
.dentry
= mnt
->mnt_root
;
3246 mnt
->mnt_flags
|= MNT_LOCKED
;
3248 set_fs_pwd(current
->fs
, &root
);
3249 set_fs_root(current
->fs
, &root
);
3252 void __init
mnt_init(void)
3257 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3258 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3260 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3261 sizeof(struct hlist_head
),
3264 &m_hash_shift
, &m_hash_mask
, 0, 0);
3265 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3266 sizeof(struct hlist_head
),
3269 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3271 if (!mount_hashtable
|| !mountpoint_hashtable
)
3272 panic("Failed to allocate mount hash table\n");
3274 for (u
= 0; u
<= m_hash_mask
; u
++)
3275 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3276 for (u
= 0; u
<= mp_hash_mask
; u
++)
3277 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3283 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3285 fs_kobj
= kobject_create_and_add("fs", NULL
);
3287 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3292 void put_mnt_ns(struct mnt_namespace
*ns
)
3294 if (!atomic_dec_and_test(&ns
->count
))
3296 drop_collected_mounts(&ns
->root
->mnt
);
3300 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3302 struct vfsmount
*mnt
;
3303 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3306 * it is a longterm mount, don't release mnt until
3307 * we unmount before file sys is unregistered
3309 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3313 EXPORT_SYMBOL_GPL(kern_mount_data
);
3315 void kern_unmount(struct vfsmount
*mnt
)
3317 /* release long term mount so mount point can be released */
3318 if (!IS_ERR_OR_NULL(mnt
)) {
3319 real_mount(mnt
)->mnt_ns
= NULL
;
3320 synchronize_rcu(); /* yecchhh... */
3324 EXPORT_SYMBOL(kern_unmount
);
3326 bool our_mnt(struct vfsmount
*mnt
)
3328 return check_mnt(real_mount(mnt
));
3331 bool current_chrooted(void)
3333 /* Does the current process have a non-standard root */
3334 struct path ns_root
;
3335 struct path fs_root
;
3338 /* Find the namespace root */
3339 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3340 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3342 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3345 get_fs_root(current
->fs
, &fs_root
);
3347 chrooted
= !path_equal(&fs_root
, &ns_root
);
3355 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3358 int new_flags
= *new_mnt_flags
;
3360 bool visible
= false;
3362 down_read(&namespace_sem
);
3363 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3364 struct mount
*child
;
3367 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3370 /* This mount is not fully visible if it's root directory
3371 * is not the root directory of the filesystem.
3373 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3376 /* A local view of the mount flags */
3377 mnt_flags
= mnt
->mnt
.mnt_flags
;
3379 /* Don't miss readonly hidden in the superblock flags */
3380 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3381 mnt_flags
|= MNT_LOCK_READONLY
;
3383 /* Verify the mount flags are equal to or more permissive
3384 * than the proposed new mount.
3386 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3387 !(new_flags
& MNT_READONLY
))
3389 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3390 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3393 /* This mount is not fully visible if there are any
3394 * locked child mounts that cover anything except for
3395 * empty directories.
3397 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3398 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3399 /* Only worry about locked mounts */
3400 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3402 /* Is the directory permanetly empty? */
3403 if (!is_empty_dir_inode(inode
))
3406 /* Preserve the locked attributes */
3407 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3414 up_read(&namespace_sem
);
3418 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3420 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3421 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3422 unsigned long s_iflags
;
3424 if (ns
->user_ns
== &init_user_ns
)
3427 /* Can this filesystem be too revealing? */
3428 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3429 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3432 if ((s_iflags
& required_iflags
) != required_iflags
) {
3433 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3438 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3441 bool mnt_may_suid(struct vfsmount
*mnt
)
3444 * Foreign mounts (accessed via fchdir or through /proc
3445 * symlinks) are always treated as if they are nosuid. This
3446 * prevents namespaces from trusting potentially unsafe
3447 * suid/sgid bits, file caps, or security labels that originate
3448 * in other namespaces.
3450 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3451 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3454 static struct ns_common
*mntns_get(struct task_struct
*task
)
3456 struct ns_common
*ns
= NULL
;
3457 struct nsproxy
*nsproxy
;
3460 nsproxy
= task
->nsproxy
;
3462 ns
= &nsproxy
->mnt_ns
->ns
;
3463 get_mnt_ns(to_mnt_ns(ns
));
3470 static void mntns_put(struct ns_common
*ns
)
3472 put_mnt_ns(to_mnt_ns(ns
));
3475 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3477 struct fs_struct
*fs
= current
->fs
;
3478 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3481 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3482 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3483 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3490 put_mnt_ns(nsproxy
->mnt_ns
);
3491 nsproxy
->mnt_ns
= mnt_ns
;
3494 root
.mnt
= &mnt_ns
->root
->mnt
;
3495 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3497 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3500 /* Update the pwd and root */
3501 set_fs_pwd(fs
, &root
);
3502 set_fs_root(fs
, &root
);
3508 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3510 return to_mnt_ns(ns
)->user_ns
;
3513 const struct proc_ns_operations mntns_operations
= {
3515 .type
= CLONE_NEWNS
,
3518 .install
= mntns_install
,
3519 .owner
= mntns_owner
,