Revert "ALSA: hda: Flush interrupts on disabling"
[linux/fpc-iii.git] / net / sctp / associola.c
blob7e127cde1ccc1cd15989ff85fe78079791f2d6ff
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
63 /* 1st Level Abstractions. */
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
67 const struct sctp_endpoint *ep,
68 const struct sock *sk,
69 sctp_scope_t scope,
70 gfp_t gfp)
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 int i;
75 sctp_paramhdr_t *p;
76 int err;
78 /* Retrieve the SCTP per socket area. */
79 sp = sctp_sk((struct sock *)sk);
81 /* Discarding const is appropriate here. */
82 asoc->ep = (struct sctp_endpoint *)ep;
83 asoc->base.sk = (struct sock *)sk;
85 sctp_endpoint_hold(asoc->ep);
86 sock_hold(asoc->base.sk);
88 /* Initialize the common base substructure. */
89 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
91 /* Initialize the object handling fields. */
92 atomic_set(&asoc->base.refcnt, 1);
94 /* Initialize the bind addr area. */
95 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
97 asoc->state = SCTP_STATE_CLOSED;
98 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
99 asoc->user_frag = sp->user_frag;
101 /* Set the association max_retrans and RTO values from the
102 * socket values.
104 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
105 asoc->pf_retrans = net->sctp.pf_retrans;
107 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
108 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
109 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
111 /* Initialize the association's heartbeat interval based on the
112 * sock configured value.
114 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
116 /* Initialize path max retrans value. */
117 asoc->pathmaxrxt = sp->pathmaxrxt;
119 /* Initialize default path MTU. */
120 asoc->pathmtu = sp->pathmtu;
122 /* Set association default SACK delay */
123 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
124 asoc->sackfreq = sp->sackfreq;
126 /* Set the association default flags controlling
127 * Heartbeat, SACK delay, and Path MTU Discovery.
129 asoc->param_flags = sp->param_flags;
131 /* Initialize the maximum number of new data packets that can be sent
132 * in a burst.
134 asoc->max_burst = sp->max_burst;
136 /* initialize association timers */
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
141 /* sctpimpguide Section 2.12.2
142 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
143 * recommended value of 5 times 'RTO.Max'.
145 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
146 = 5 * asoc->rto_max;
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
149 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
151 /* Initializes the timers */
152 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
153 setup_timer(&asoc->timers[i], sctp_timer_events[i],
154 (unsigned long)asoc);
156 /* Pull default initialization values from the sock options.
157 * Note: This assumes that the values have already been
158 * validated in the sock.
160 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
161 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
162 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
164 asoc->max_init_timeo =
165 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
167 /* Set the local window size for receive.
168 * This is also the rcvbuf space per association.
169 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
170 * 1500 bytes in one SCTP packet.
172 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
173 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
174 else
175 asoc->rwnd = sk->sk_rcvbuf/2;
177 asoc->a_rwnd = asoc->rwnd;
179 /* Use my own max window until I learn something better. */
180 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
182 /* Initialize the receive memory counter */
183 atomic_set(&asoc->rmem_alloc, 0);
185 init_waitqueue_head(&asoc->wait);
187 asoc->c.my_vtag = sctp_generate_tag(ep);
188 asoc->c.my_port = ep->base.bind_addr.port;
190 asoc->c.initial_tsn = sctp_generate_tsn(ep);
192 asoc->next_tsn = asoc->c.initial_tsn;
194 asoc->ctsn_ack_point = asoc->next_tsn - 1;
195 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
196 asoc->highest_sacked = asoc->ctsn_ack_point;
197 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
199 /* ADDIP Section 4.1 Asconf Chunk Procedures
201 * When an endpoint has an ASCONF signaled change to be sent to the
202 * remote endpoint it should do the following:
203 * ...
204 * A2) a serial number should be assigned to the chunk. The serial
205 * number SHOULD be a monotonically increasing number. The serial
206 * numbers SHOULD be initialized at the start of the
207 * association to the same value as the initial TSN.
209 asoc->addip_serial = asoc->c.initial_tsn;
211 INIT_LIST_HEAD(&asoc->addip_chunk_list);
212 INIT_LIST_HEAD(&asoc->asconf_ack_list);
214 /* Make an empty list of remote transport addresses. */
215 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
217 /* RFC 2960 5.1 Normal Establishment of an Association
219 * After the reception of the first data chunk in an
220 * association the endpoint must immediately respond with a
221 * sack to acknowledge the data chunk. Subsequent
222 * acknowledgements should be done as described in Section
223 * 6.2.
225 * [We implement this by telling a new association that it
226 * already received one packet.]
228 asoc->peer.sack_needed = 1;
229 asoc->peer.sack_generation = 1;
231 /* Assume that the peer will tell us if he recognizes ASCONF
232 * as part of INIT exchange.
233 * The sctp_addip_noauth option is there for backward compatibility
234 * and will revert old behavior.
236 if (net->sctp.addip_noauth)
237 asoc->peer.asconf_capable = 1;
239 /* Create an input queue. */
240 sctp_inq_init(&asoc->base.inqueue);
241 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
243 /* Create an output queue. */
244 sctp_outq_init(asoc, &asoc->outqueue);
246 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
247 goto fail_init;
249 /* Assume that peer would support both address types unless we are
250 * told otherwise.
252 asoc->peer.ipv4_address = 1;
253 if (asoc->base.sk->sk_family == PF_INET6)
254 asoc->peer.ipv6_address = 1;
255 INIT_LIST_HEAD(&asoc->asocs);
257 asoc->default_stream = sp->default_stream;
258 asoc->default_ppid = sp->default_ppid;
259 asoc->default_flags = sp->default_flags;
260 asoc->default_context = sp->default_context;
261 asoc->default_timetolive = sp->default_timetolive;
262 asoc->default_rcv_context = sp->default_rcv_context;
264 /* AUTH related initializations */
265 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
266 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
267 if (err)
268 goto fail_init;
270 asoc->active_key_id = ep->active_key_id;
271 asoc->prsctp_enable = ep->prsctp_enable;
273 /* Save the hmacs and chunks list into this association */
274 if (ep->auth_hmacs_list)
275 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
276 ntohs(ep->auth_hmacs_list->param_hdr.length));
277 if (ep->auth_chunk_list)
278 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
279 ntohs(ep->auth_chunk_list->param_hdr.length));
281 /* Get the AUTH random number for this association */
282 p = (sctp_paramhdr_t *)asoc->c.auth_random;
283 p->type = SCTP_PARAM_RANDOM;
284 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
285 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
287 return asoc;
289 fail_init:
290 sock_put(asoc->base.sk);
291 sctp_endpoint_put(asoc->ep);
292 return NULL;
295 /* Allocate and initialize a new association */
296 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
297 const struct sock *sk,
298 sctp_scope_t scope,
299 gfp_t gfp)
301 struct sctp_association *asoc;
303 asoc = kzalloc(sizeof(*asoc), gfp);
304 if (!asoc)
305 goto fail;
307 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
308 goto fail_init;
310 SCTP_DBG_OBJCNT_INC(assoc);
312 pr_debug("Created asoc %p\n", asoc);
314 return asoc;
316 fail_init:
317 kfree(asoc);
318 fail:
319 return NULL;
322 /* Free this association if possible. There may still be users, so
323 * the actual deallocation may be delayed.
325 void sctp_association_free(struct sctp_association *asoc)
327 struct sock *sk = asoc->base.sk;
328 struct sctp_transport *transport;
329 struct list_head *pos, *temp;
330 int i;
332 /* Only real associations count against the endpoint, so
333 * don't bother for if this is a temporary association.
335 if (!list_empty(&asoc->asocs)) {
336 list_del(&asoc->asocs);
338 /* Decrement the backlog value for a TCP-style listening
339 * socket.
341 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
342 sk->sk_ack_backlog--;
345 /* Mark as dead, so other users can know this structure is
346 * going away.
348 asoc->base.dead = true;
350 /* Dispose of any data lying around in the outqueue. */
351 sctp_outq_free(&asoc->outqueue);
353 /* Dispose of any pending messages for the upper layer. */
354 sctp_ulpq_free(&asoc->ulpq);
356 /* Dispose of any pending chunks on the inqueue. */
357 sctp_inq_free(&asoc->base.inqueue);
359 sctp_tsnmap_free(&asoc->peer.tsn_map);
361 /* Free ssnmap storage. */
362 sctp_ssnmap_free(asoc->ssnmap);
364 /* Clean up the bound address list. */
365 sctp_bind_addr_free(&asoc->base.bind_addr);
367 /* Do we need to go through all of our timers and
368 * delete them? To be safe we will try to delete all, but we
369 * should be able to go through and make a guess based
370 * on our state.
372 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
373 if (del_timer(&asoc->timers[i]))
374 sctp_association_put(asoc);
377 /* Free peer's cached cookie. */
378 kfree(asoc->peer.cookie);
379 kfree(asoc->peer.peer_random);
380 kfree(asoc->peer.peer_chunks);
381 kfree(asoc->peer.peer_hmacs);
383 /* Release the transport structures. */
384 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
385 transport = list_entry(pos, struct sctp_transport, transports);
386 list_del_rcu(pos);
387 sctp_unhash_transport(transport);
388 sctp_transport_free(transport);
391 asoc->peer.transport_count = 0;
393 sctp_asconf_queue_teardown(asoc);
395 /* Free pending address space being deleted */
396 kfree(asoc->asconf_addr_del_pending);
398 /* AUTH - Free the endpoint shared keys */
399 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
401 /* AUTH - Free the association shared key */
402 sctp_auth_key_put(asoc->asoc_shared_key);
404 sctp_association_put(asoc);
407 /* Cleanup and free up an association. */
408 static void sctp_association_destroy(struct sctp_association *asoc)
410 if (unlikely(!asoc->base.dead)) {
411 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
412 return;
415 sctp_endpoint_put(asoc->ep);
416 sock_put(asoc->base.sk);
418 if (asoc->assoc_id != 0) {
419 spin_lock_bh(&sctp_assocs_id_lock);
420 idr_remove(&sctp_assocs_id, asoc->assoc_id);
421 spin_unlock_bh(&sctp_assocs_id_lock);
424 WARN_ON(atomic_read(&asoc->rmem_alloc));
426 kfree(asoc);
427 SCTP_DBG_OBJCNT_DEC(assoc);
430 /* Change the primary destination address for the peer. */
431 void sctp_assoc_set_primary(struct sctp_association *asoc,
432 struct sctp_transport *transport)
434 int changeover = 0;
436 /* it's a changeover only if we already have a primary path
437 * that we are changing
439 if (asoc->peer.primary_path != NULL &&
440 asoc->peer.primary_path != transport)
441 changeover = 1 ;
443 asoc->peer.primary_path = transport;
445 /* Set a default msg_name for events. */
446 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
447 sizeof(union sctp_addr));
449 /* If the primary path is changing, assume that the
450 * user wants to use this new path.
452 if ((transport->state == SCTP_ACTIVE) ||
453 (transport->state == SCTP_UNKNOWN))
454 asoc->peer.active_path = transport;
457 * SFR-CACC algorithm:
458 * Upon the receipt of a request to change the primary
459 * destination address, on the data structure for the new
460 * primary destination, the sender MUST do the following:
462 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
463 * to this destination address earlier. The sender MUST set
464 * CYCLING_CHANGEOVER to indicate that this switch is a
465 * double switch to the same destination address.
467 * Really, only bother is we have data queued or outstanding on
468 * the association.
470 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
471 return;
473 if (transport->cacc.changeover_active)
474 transport->cacc.cycling_changeover = changeover;
476 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
477 * a changeover has occurred.
479 transport->cacc.changeover_active = changeover;
481 /* 3) The sender MUST store the next TSN to be sent in
482 * next_tsn_at_change.
484 transport->cacc.next_tsn_at_change = asoc->next_tsn;
487 /* Remove a transport from an association. */
488 void sctp_assoc_rm_peer(struct sctp_association *asoc,
489 struct sctp_transport *peer)
491 struct sctp_transport *transport;
492 struct list_head *pos;
493 struct sctp_chunk *ch;
495 pr_debug("%s: association:%p addr:%pISpc\n",
496 __func__, asoc, &peer->ipaddr.sa);
498 /* If we are to remove the current retran_path, update it
499 * to the next peer before removing this peer from the list.
501 if (asoc->peer.retran_path == peer)
502 sctp_assoc_update_retran_path(asoc);
504 /* Remove this peer from the list. */
505 list_del_rcu(&peer->transports);
506 /* Remove this peer from the transport hashtable */
507 sctp_unhash_transport(peer);
509 /* Get the first transport of asoc. */
510 pos = asoc->peer.transport_addr_list.next;
511 transport = list_entry(pos, struct sctp_transport, transports);
513 /* Update any entries that match the peer to be deleted. */
514 if (asoc->peer.primary_path == peer)
515 sctp_assoc_set_primary(asoc, transport);
516 if (asoc->peer.active_path == peer)
517 asoc->peer.active_path = transport;
518 if (asoc->peer.retran_path == peer)
519 asoc->peer.retran_path = transport;
520 if (asoc->peer.last_data_from == peer)
521 asoc->peer.last_data_from = transport;
523 /* If we remove the transport an INIT was last sent to, set it to
524 * NULL. Combined with the update of the retran path above, this
525 * will cause the next INIT to be sent to the next available
526 * transport, maintaining the cycle.
528 if (asoc->init_last_sent_to == peer)
529 asoc->init_last_sent_to = NULL;
531 /* If we remove the transport an SHUTDOWN was last sent to, set it
532 * to NULL. Combined with the update of the retran path above, this
533 * will cause the next SHUTDOWN to be sent to the next available
534 * transport, maintaining the cycle.
536 if (asoc->shutdown_last_sent_to == peer)
537 asoc->shutdown_last_sent_to = NULL;
539 /* If we remove the transport an ASCONF was last sent to, set it to
540 * NULL.
542 if (asoc->addip_last_asconf &&
543 asoc->addip_last_asconf->transport == peer)
544 asoc->addip_last_asconf->transport = NULL;
546 /* If we have something on the transmitted list, we have to
547 * save it off. The best place is the active path.
549 if (!list_empty(&peer->transmitted)) {
550 struct sctp_transport *active = asoc->peer.active_path;
552 /* Reset the transport of each chunk on this list */
553 list_for_each_entry(ch, &peer->transmitted,
554 transmitted_list) {
555 ch->transport = NULL;
556 ch->rtt_in_progress = 0;
559 list_splice_tail_init(&peer->transmitted,
560 &active->transmitted);
562 /* Start a T3 timer here in case it wasn't running so
563 * that these migrated packets have a chance to get
564 * retransmitted.
566 if (!timer_pending(&active->T3_rtx_timer))
567 if (!mod_timer(&active->T3_rtx_timer,
568 jiffies + active->rto))
569 sctp_transport_hold(active);
572 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
573 if (ch->transport == peer)
574 ch->transport = NULL;
576 asoc->peer.transport_count--;
578 sctp_transport_free(peer);
581 /* Add a transport address to an association. */
582 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
583 const union sctp_addr *addr,
584 const gfp_t gfp,
585 const int peer_state)
587 struct net *net = sock_net(asoc->base.sk);
588 struct sctp_transport *peer;
589 struct sctp_sock *sp;
590 unsigned short port;
592 sp = sctp_sk(asoc->base.sk);
594 /* AF_INET and AF_INET6 share common port field. */
595 port = ntohs(addr->v4.sin_port);
597 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
598 asoc, &addr->sa, peer_state);
600 /* Set the port if it has not been set yet. */
601 if (0 == asoc->peer.port)
602 asoc->peer.port = port;
604 /* Check to see if this is a duplicate. */
605 peer = sctp_assoc_lookup_paddr(asoc, addr);
606 if (peer) {
607 /* An UNKNOWN state is only set on transports added by
608 * user in sctp_connectx() call. Such transports should be
609 * considered CONFIRMED per RFC 4960, Section 5.4.
611 if (peer->state == SCTP_UNKNOWN) {
612 peer->state = SCTP_ACTIVE;
614 return peer;
617 peer = sctp_transport_new(net, addr, gfp);
618 if (!peer)
619 return NULL;
621 sctp_transport_set_owner(peer, asoc);
623 /* Initialize the peer's heartbeat interval based on the
624 * association configured value.
626 peer->hbinterval = asoc->hbinterval;
628 /* Set the path max_retrans. */
629 peer->pathmaxrxt = asoc->pathmaxrxt;
631 /* And the partial failure retrans threshold */
632 peer->pf_retrans = asoc->pf_retrans;
634 /* Initialize the peer's SACK delay timeout based on the
635 * association configured value.
637 peer->sackdelay = asoc->sackdelay;
638 peer->sackfreq = asoc->sackfreq;
640 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
641 * based on association setting.
643 peer->param_flags = asoc->param_flags;
645 sctp_transport_route(peer, NULL, sp);
647 /* Initialize the pmtu of the transport. */
648 if (peer->param_flags & SPP_PMTUD_DISABLE) {
649 if (asoc->pathmtu)
650 peer->pathmtu = asoc->pathmtu;
651 else
652 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
655 /* If this is the first transport addr on this association,
656 * initialize the association PMTU to the peer's PMTU.
657 * If not and the current association PMTU is higher than the new
658 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
660 if (asoc->pathmtu)
661 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
662 else
663 asoc->pathmtu = peer->pathmtu;
665 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
666 asoc->pathmtu);
668 peer->pmtu_pending = 0;
670 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
672 /* The asoc->peer.port might not be meaningful yet, but
673 * initialize the packet structure anyway.
675 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
676 asoc->peer.port);
678 /* 7.2.1 Slow-Start
680 * o The initial cwnd before DATA transmission or after a sufficiently
681 * long idle period MUST be set to
682 * min(4*MTU, max(2*MTU, 4380 bytes))
684 * o The initial value of ssthresh MAY be arbitrarily high
685 * (for example, implementations MAY use the size of the
686 * receiver advertised window).
688 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
690 /* At this point, we may not have the receiver's advertised window,
691 * so initialize ssthresh to the default value and it will be set
692 * later when we process the INIT.
694 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
696 peer->partial_bytes_acked = 0;
697 peer->flight_size = 0;
698 peer->burst_limited = 0;
700 /* Set the transport's RTO.initial value */
701 peer->rto = asoc->rto_initial;
702 sctp_max_rto(asoc, peer);
704 /* Set the peer's active state. */
705 peer->state = peer_state;
707 /* Attach the remote transport to our asoc. */
708 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
709 asoc->peer.transport_count++;
710 /* Add this peer into the transport hashtable */
711 sctp_hash_transport(peer);
713 /* If we do not yet have a primary path, set one. */
714 if (!asoc->peer.primary_path) {
715 sctp_assoc_set_primary(asoc, peer);
716 asoc->peer.retran_path = peer;
719 if (asoc->peer.active_path == asoc->peer.retran_path &&
720 peer->state != SCTP_UNCONFIRMED) {
721 asoc->peer.retran_path = peer;
724 return peer;
727 /* Delete a transport address from an association. */
728 void sctp_assoc_del_peer(struct sctp_association *asoc,
729 const union sctp_addr *addr)
731 struct list_head *pos;
732 struct list_head *temp;
733 struct sctp_transport *transport;
735 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
736 transport = list_entry(pos, struct sctp_transport, transports);
737 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
738 /* Do book keeping for removing the peer and free it. */
739 sctp_assoc_rm_peer(asoc, transport);
740 break;
745 /* Lookup a transport by address. */
746 struct sctp_transport *sctp_assoc_lookup_paddr(
747 const struct sctp_association *asoc,
748 const union sctp_addr *address)
750 struct sctp_transport *t;
752 /* Cycle through all transports searching for a peer address. */
754 list_for_each_entry(t, &asoc->peer.transport_addr_list,
755 transports) {
756 if (sctp_cmp_addr_exact(address, &t->ipaddr))
757 return t;
760 return NULL;
763 /* Remove all transports except a give one */
764 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
765 struct sctp_transport *primary)
767 struct sctp_transport *temp;
768 struct sctp_transport *t;
770 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
771 transports) {
772 /* if the current transport is not the primary one, delete it */
773 if (t != primary)
774 sctp_assoc_rm_peer(asoc, t);
778 /* Engage in transport control operations.
779 * Mark the transport up or down and send a notification to the user.
780 * Select and update the new active and retran paths.
782 void sctp_assoc_control_transport(struct sctp_association *asoc,
783 struct sctp_transport *transport,
784 sctp_transport_cmd_t command,
785 sctp_sn_error_t error)
787 struct sctp_ulpevent *event;
788 struct sockaddr_storage addr;
789 int spc_state = 0;
790 bool ulp_notify = true;
792 /* Record the transition on the transport. */
793 switch (command) {
794 case SCTP_TRANSPORT_UP:
795 /* If we are moving from UNCONFIRMED state due
796 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
797 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
799 if (SCTP_UNCONFIRMED == transport->state &&
800 SCTP_HEARTBEAT_SUCCESS == error)
801 spc_state = SCTP_ADDR_CONFIRMED;
802 else
803 spc_state = SCTP_ADDR_AVAILABLE;
804 /* Don't inform ULP about transition from PF to
805 * active state and set cwnd to 1 MTU, see SCTP
806 * Quick failover draft section 5.1, point 5
808 if (transport->state == SCTP_PF) {
809 ulp_notify = false;
810 transport->cwnd = asoc->pathmtu;
812 transport->state = SCTP_ACTIVE;
813 break;
815 case SCTP_TRANSPORT_DOWN:
816 /* If the transport was never confirmed, do not transition it
817 * to inactive state. Also, release the cached route since
818 * there may be a better route next time.
820 if (transport->state != SCTP_UNCONFIRMED)
821 transport->state = SCTP_INACTIVE;
822 else {
823 dst_release(transport->dst);
824 transport->dst = NULL;
825 ulp_notify = false;
828 spc_state = SCTP_ADDR_UNREACHABLE;
829 break;
831 case SCTP_TRANSPORT_PF:
832 transport->state = SCTP_PF;
833 ulp_notify = false;
834 break;
836 default:
837 return;
840 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
841 * to the user.
843 if (ulp_notify) {
844 memset(&addr, 0, sizeof(struct sockaddr_storage));
845 memcpy(&addr, &transport->ipaddr,
846 transport->af_specific->sockaddr_len);
848 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
849 0, spc_state, error, GFP_ATOMIC);
850 if (event)
851 sctp_ulpq_tail_event(&asoc->ulpq, event);
854 /* Select new active and retran paths. */
855 sctp_select_active_and_retran_path(asoc);
858 /* Hold a reference to an association. */
859 void sctp_association_hold(struct sctp_association *asoc)
861 atomic_inc(&asoc->base.refcnt);
864 /* Release a reference to an association and cleanup
865 * if there are no more references.
867 void sctp_association_put(struct sctp_association *asoc)
869 if (atomic_dec_and_test(&asoc->base.refcnt))
870 sctp_association_destroy(asoc);
873 /* Allocate the next TSN, Transmission Sequence Number, for the given
874 * association.
876 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
878 /* From Section 1.6 Serial Number Arithmetic:
879 * Transmission Sequence Numbers wrap around when they reach
880 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
881 * after transmitting TSN = 2*32 - 1 is TSN = 0.
883 __u32 retval = asoc->next_tsn;
884 asoc->next_tsn++;
885 asoc->unack_data++;
887 return retval;
890 /* Compare two addresses to see if they match. Wildcard addresses
891 * only match themselves.
893 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
894 const union sctp_addr *ss2)
896 struct sctp_af *af;
898 af = sctp_get_af_specific(ss1->sa.sa_family);
899 if (unlikely(!af))
900 return 0;
902 return af->cmp_addr(ss1, ss2);
905 /* Return an ecne chunk to get prepended to a packet.
906 * Note: We are sly and return a shared, prealloced chunk. FIXME:
907 * No we don't, but we could/should.
909 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
911 if (!asoc->need_ecne)
912 return NULL;
914 /* Send ECNE if needed.
915 * Not being able to allocate a chunk here is not deadly.
917 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
921 * Find which transport this TSN was sent on.
923 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
924 __u32 tsn)
926 struct sctp_transport *active;
927 struct sctp_transport *match;
928 struct sctp_transport *transport;
929 struct sctp_chunk *chunk;
930 __be32 key = htonl(tsn);
932 match = NULL;
935 * FIXME: In general, find a more efficient data structure for
936 * searching.
940 * The general strategy is to search each transport's transmitted
941 * list. Return which transport this TSN lives on.
943 * Let's be hopeful and check the active_path first.
944 * Another optimization would be to know if there is only one
945 * outbound path and not have to look for the TSN at all.
949 active = asoc->peer.active_path;
951 list_for_each_entry(chunk, &active->transmitted,
952 transmitted_list) {
954 if (key == chunk->subh.data_hdr->tsn) {
955 match = active;
956 goto out;
960 /* If not found, go search all the other transports. */
961 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
962 transports) {
964 if (transport == active)
965 continue;
966 list_for_each_entry(chunk, &transport->transmitted,
967 transmitted_list) {
968 if (key == chunk->subh.data_hdr->tsn) {
969 match = transport;
970 goto out;
974 out:
975 return match;
978 /* Is this the association we are looking for? */
979 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
980 struct net *net,
981 const union sctp_addr *laddr,
982 const union sctp_addr *paddr)
984 struct sctp_transport *transport;
986 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
987 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
988 net_eq(sock_net(asoc->base.sk), net)) {
989 transport = sctp_assoc_lookup_paddr(asoc, paddr);
990 if (!transport)
991 goto out;
993 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
994 sctp_sk(asoc->base.sk)))
995 goto out;
997 transport = NULL;
999 out:
1000 return transport;
1003 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1004 static void sctp_assoc_bh_rcv(struct work_struct *work)
1006 struct sctp_association *asoc =
1007 container_of(work, struct sctp_association,
1008 base.inqueue.immediate);
1009 struct net *net = sock_net(asoc->base.sk);
1010 struct sctp_endpoint *ep;
1011 struct sctp_chunk *chunk;
1012 struct sctp_inq *inqueue;
1013 sctp_subtype_t subtype;
1014 int first_time = 1; /* is this the first time through the loop */
1015 int error = 0;
1016 int state;
1018 /* The association should be held so we should be safe. */
1019 ep = asoc->ep;
1021 inqueue = &asoc->base.inqueue;
1022 sctp_association_hold(asoc);
1023 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1024 state = asoc->state;
1025 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1027 /* If the first chunk in the packet is AUTH, do special
1028 * processing specified in Section 6.3 of SCTP-AUTH spec
1030 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1031 struct sctp_chunkhdr *next_hdr;
1033 next_hdr = sctp_inq_peek(inqueue);
1034 if (!next_hdr)
1035 goto normal;
1037 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1038 * chunk while saving a pointer to it so we can do
1039 * Authentication later (during cookie-echo
1040 * processing).
1042 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1043 chunk->auth_chunk = skb_clone(chunk->skb,
1044 GFP_ATOMIC);
1045 chunk->auth = 1;
1046 continue;
1050 normal:
1051 /* SCTP-AUTH, Section 6.3:
1052 * The receiver has a list of chunk types which it expects
1053 * to be received only after an AUTH-chunk. This list has
1054 * been sent to the peer during the association setup. It
1055 * MUST silently discard these chunks if they are not placed
1056 * after an AUTH chunk in the packet.
1058 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1059 continue;
1061 /* Remember where the last DATA chunk came from so we
1062 * know where to send the SACK.
1064 if (sctp_chunk_is_data(chunk))
1065 asoc->peer.last_data_from = chunk->transport;
1066 else {
1067 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1068 asoc->stats.ictrlchunks++;
1069 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1070 asoc->stats.isacks++;
1073 if (chunk->transport)
1074 chunk->transport->last_time_heard = ktime_get();
1076 /* Run through the state machine. */
1077 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1078 state, ep, asoc, chunk, GFP_ATOMIC);
1080 /* Check to see if the association is freed in response to
1081 * the incoming chunk. If so, get out of the while loop.
1083 if (asoc->base.dead)
1084 break;
1086 /* If there is an error on chunk, discard this packet. */
1087 if (error && chunk)
1088 chunk->pdiscard = 1;
1090 if (first_time)
1091 first_time = 0;
1093 sctp_association_put(asoc);
1096 /* This routine moves an association from its old sk to a new sk. */
1097 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1099 struct sctp_sock *newsp = sctp_sk(newsk);
1100 struct sock *oldsk = assoc->base.sk;
1102 /* Delete the association from the old endpoint's list of
1103 * associations.
1105 list_del_init(&assoc->asocs);
1107 /* Decrement the backlog value for a TCP-style socket. */
1108 if (sctp_style(oldsk, TCP))
1109 oldsk->sk_ack_backlog--;
1111 /* Release references to the old endpoint and the sock. */
1112 sctp_endpoint_put(assoc->ep);
1113 sock_put(assoc->base.sk);
1115 /* Get a reference to the new endpoint. */
1116 assoc->ep = newsp->ep;
1117 sctp_endpoint_hold(assoc->ep);
1119 /* Get a reference to the new sock. */
1120 assoc->base.sk = newsk;
1121 sock_hold(assoc->base.sk);
1123 /* Add the association to the new endpoint's list of associations. */
1124 sctp_endpoint_add_asoc(newsp->ep, assoc);
1127 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1128 void sctp_assoc_update(struct sctp_association *asoc,
1129 struct sctp_association *new)
1131 struct sctp_transport *trans;
1132 struct list_head *pos, *temp;
1134 /* Copy in new parameters of peer. */
1135 asoc->c = new->c;
1136 asoc->peer.rwnd = new->peer.rwnd;
1137 asoc->peer.sack_needed = new->peer.sack_needed;
1138 asoc->peer.auth_capable = new->peer.auth_capable;
1139 asoc->peer.i = new->peer.i;
1140 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1141 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1143 /* Remove any peer addresses not present in the new association. */
1144 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1145 trans = list_entry(pos, struct sctp_transport, transports);
1146 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1147 sctp_assoc_rm_peer(asoc, trans);
1148 continue;
1151 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1152 sctp_transport_reset(trans);
1155 /* If the case is A (association restart), use
1156 * initial_tsn as next_tsn. If the case is B, use
1157 * current next_tsn in case data sent to peer
1158 * has been discarded and needs retransmission.
1160 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1161 asoc->next_tsn = new->next_tsn;
1162 asoc->ctsn_ack_point = new->ctsn_ack_point;
1163 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1165 /* Reinitialize SSN for both local streams
1166 * and peer's streams.
1168 sctp_ssnmap_clear(asoc->ssnmap);
1170 /* Flush the ULP reassembly and ordered queue.
1171 * Any data there will now be stale and will
1172 * cause problems.
1174 sctp_ulpq_flush(&asoc->ulpq);
1176 /* reset the overall association error count so
1177 * that the restarted association doesn't get torn
1178 * down on the next retransmission timer.
1180 asoc->overall_error_count = 0;
1182 } else {
1183 /* Add any peer addresses from the new association. */
1184 list_for_each_entry(trans, &new->peer.transport_addr_list,
1185 transports) {
1186 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1187 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1188 GFP_ATOMIC, trans->state);
1191 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1192 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1193 if (!asoc->ssnmap) {
1194 /* Move the ssnmap. */
1195 asoc->ssnmap = new->ssnmap;
1196 new->ssnmap = NULL;
1199 if (!asoc->assoc_id) {
1200 /* get a new association id since we don't have one
1201 * yet.
1203 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1207 /* SCTP-AUTH: Save the peer parameters from the new associations
1208 * and also move the association shared keys over
1210 kfree(asoc->peer.peer_random);
1211 asoc->peer.peer_random = new->peer.peer_random;
1212 new->peer.peer_random = NULL;
1214 kfree(asoc->peer.peer_chunks);
1215 asoc->peer.peer_chunks = new->peer.peer_chunks;
1216 new->peer.peer_chunks = NULL;
1218 kfree(asoc->peer.peer_hmacs);
1219 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1220 new->peer.peer_hmacs = NULL;
1222 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1225 /* Update the retran path for sending a retransmitted packet.
1226 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1228 * When there is outbound data to send and the primary path
1229 * becomes inactive (e.g., due to failures), or where the
1230 * SCTP user explicitly requests to send data to an
1231 * inactive destination transport address, before reporting
1232 * an error to its ULP, the SCTP endpoint should try to send
1233 * the data to an alternate active destination transport
1234 * address if one exists.
1236 * When retransmitting data that timed out, if the endpoint
1237 * is multihomed, it should consider each source-destination
1238 * address pair in its retransmission selection policy.
1239 * When retransmitting timed-out data, the endpoint should
1240 * attempt to pick the most divergent source-destination
1241 * pair from the original source-destination pair to which
1242 * the packet was transmitted.
1244 * Note: Rules for picking the most divergent source-destination
1245 * pair are an implementation decision and are not specified
1246 * within this document.
1248 * Our basic strategy is to round-robin transports in priorities
1249 * according to sctp_trans_score() e.g., if no such
1250 * transport with state SCTP_ACTIVE exists, round-robin through
1251 * SCTP_UNKNOWN, etc. You get the picture.
1253 static u8 sctp_trans_score(const struct sctp_transport *trans)
1255 switch (trans->state) {
1256 case SCTP_ACTIVE:
1257 return 3; /* best case */
1258 case SCTP_UNKNOWN:
1259 return 2;
1260 case SCTP_PF:
1261 return 1;
1262 default: /* case SCTP_INACTIVE */
1263 return 0; /* worst case */
1267 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1268 struct sctp_transport *trans2)
1270 if (trans1->error_count > trans2->error_count) {
1271 return trans2;
1272 } else if (trans1->error_count == trans2->error_count &&
1273 ktime_after(trans2->last_time_heard,
1274 trans1->last_time_heard)) {
1275 return trans2;
1276 } else {
1277 return trans1;
1281 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1282 struct sctp_transport *best)
1284 u8 score_curr, score_best;
1286 if (best == NULL || curr == best)
1287 return curr;
1289 score_curr = sctp_trans_score(curr);
1290 score_best = sctp_trans_score(best);
1292 /* First, try a score-based selection if both transport states
1293 * differ. If we're in a tie, lets try to make a more clever
1294 * decision here based on error counts and last time heard.
1296 if (score_curr > score_best)
1297 return curr;
1298 else if (score_curr == score_best)
1299 return sctp_trans_elect_tie(best, curr);
1300 else
1301 return best;
1304 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1306 struct sctp_transport *trans = asoc->peer.retran_path;
1307 struct sctp_transport *trans_next = NULL;
1309 /* We're done as we only have the one and only path. */
1310 if (asoc->peer.transport_count == 1)
1311 return;
1312 /* If active_path and retran_path are the same and active,
1313 * then this is the only active path. Use it.
1315 if (asoc->peer.active_path == asoc->peer.retran_path &&
1316 asoc->peer.active_path->state == SCTP_ACTIVE)
1317 return;
1319 /* Iterate from retran_path's successor back to retran_path. */
1320 for (trans = list_next_entry(trans, transports); 1;
1321 trans = list_next_entry(trans, transports)) {
1322 /* Manually skip the head element. */
1323 if (&trans->transports == &asoc->peer.transport_addr_list)
1324 continue;
1325 if (trans->state == SCTP_UNCONFIRMED)
1326 continue;
1327 trans_next = sctp_trans_elect_best(trans, trans_next);
1328 /* Active is good enough for immediate return. */
1329 if (trans_next->state == SCTP_ACTIVE)
1330 break;
1331 /* We've reached the end, time to update path. */
1332 if (trans == asoc->peer.retran_path)
1333 break;
1336 asoc->peer.retran_path = trans_next;
1338 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1339 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1342 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1344 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1345 struct sctp_transport *trans_pf = NULL;
1347 /* Look for the two most recently used active transports. */
1348 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1349 transports) {
1350 /* Skip uninteresting transports. */
1351 if (trans->state == SCTP_INACTIVE ||
1352 trans->state == SCTP_UNCONFIRMED)
1353 continue;
1354 /* Keep track of the best PF transport from our
1355 * list in case we don't find an active one.
1357 if (trans->state == SCTP_PF) {
1358 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1359 continue;
1361 /* For active transports, pick the most recent ones. */
1362 if (trans_pri == NULL ||
1363 ktime_after(trans->last_time_heard,
1364 trans_pri->last_time_heard)) {
1365 trans_sec = trans_pri;
1366 trans_pri = trans;
1367 } else if (trans_sec == NULL ||
1368 ktime_after(trans->last_time_heard,
1369 trans_sec->last_time_heard)) {
1370 trans_sec = trans;
1374 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1376 * By default, an endpoint should always transmit to the primary
1377 * path, unless the SCTP user explicitly specifies the
1378 * destination transport address (and possibly source transport
1379 * address) to use. [If the primary is active but not most recent,
1380 * bump the most recently used transport.]
1382 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1383 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1384 asoc->peer.primary_path != trans_pri) {
1385 trans_sec = trans_pri;
1386 trans_pri = asoc->peer.primary_path;
1389 /* We did not find anything useful for a possible retransmission
1390 * path; either primary path that we found is the the same as
1391 * the current one, or we didn't generally find an active one.
1393 if (trans_sec == NULL)
1394 trans_sec = trans_pri;
1396 /* If we failed to find a usable transport, just camp on the
1397 * active or pick a PF iff it's the better choice.
1399 if (trans_pri == NULL) {
1400 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1401 trans_sec = trans_pri;
1404 /* Set the active and retran transports. */
1405 asoc->peer.active_path = trans_pri;
1406 asoc->peer.retran_path = trans_sec;
1409 struct sctp_transport *
1410 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1411 struct sctp_transport *last_sent_to)
1413 /* If this is the first time packet is sent, use the active path,
1414 * else use the retran path. If the last packet was sent over the
1415 * retran path, update the retran path and use it.
1417 if (last_sent_to == NULL) {
1418 return asoc->peer.active_path;
1419 } else {
1420 if (last_sent_to == asoc->peer.retran_path)
1421 sctp_assoc_update_retran_path(asoc);
1423 return asoc->peer.retran_path;
1427 /* Update the association's pmtu and frag_point by going through all the
1428 * transports. This routine is called when a transport's PMTU has changed.
1430 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1432 struct sctp_transport *t;
1433 __u32 pmtu = 0;
1435 if (!asoc)
1436 return;
1438 /* Get the lowest pmtu of all the transports. */
1439 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1440 transports) {
1441 if (t->pmtu_pending && t->dst) {
1442 sctp_transport_update_pmtu(sk, t,
1443 SCTP_TRUNC4(dst_mtu(t->dst)));
1444 t->pmtu_pending = 0;
1446 if (!pmtu || (t->pathmtu < pmtu))
1447 pmtu = t->pathmtu;
1450 if (pmtu) {
1451 asoc->pathmtu = pmtu;
1452 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1455 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1456 asoc->pathmtu, asoc->frag_point);
1459 /* Should we send a SACK to update our peer? */
1460 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1462 struct net *net = sock_net(asoc->base.sk);
1463 switch (asoc->state) {
1464 case SCTP_STATE_ESTABLISHED:
1465 case SCTP_STATE_SHUTDOWN_PENDING:
1466 case SCTP_STATE_SHUTDOWN_RECEIVED:
1467 case SCTP_STATE_SHUTDOWN_SENT:
1468 if ((asoc->rwnd > asoc->a_rwnd) &&
1469 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1470 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1471 asoc->pathmtu)))
1472 return true;
1473 break;
1474 default:
1475 break;
1477 return false;
1480 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1481 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1483 struct sctp_chunk *sack;
1484 struct timer_list *timer;
1486 if (asoc->rwnd_over) {
1487 if (asoc->rwnd_over >= len) {
1488 asoc->rwnd_over -= len;
1489 } else {
1490 asoc->rwnd += (len - asoc->rwnd_over);
1491 asoc->rwnd_over = 0;
1493 } else {
1494 asoc->rwnd += len;
1497 /* If we had window pressure, start recovering it
1498 * once our rwnd had reached the accumulated pressure
1499 * threshold. The idea is to recover slowly, but up
1500 * to the initial advertised window.
1502 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1503 int change = min(asoc->pathmtu, asoc->rwnd_press);
1504 asoc->rwnd += change;
1505 asoc->rwnd_press -= change;
1508 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1509 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1510 asoc->a_rwnd);
1512 /* Send a window update SACK if the rwnd has increased by at least the
1513 * minimum of the association's PMTU and half of the receive buffer.
1514 * The algorithm used is similar to the one described in
1515 * Section 4.2.3.3 of RFC 1122.
1517 if (sctp_peer_needs_update(asoc)) {
1518 asoc->a_rwnd = asoc->rwnd;
1520 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1521 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1522 asoc->a_rwnd);
1524 sack = sctp_make_sack(asoc);
1525 if (!sack)
1526 return;
1528 asoc->peer.sack_needed = 0;
1530 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1532 /* Stop the SACK timer. */
1533 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1534 if (del_timer(timer))
1535 sctp_association_put(asoc);
1539 /* Decrease asoc's rwnd by len. */
1540 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1542 int rx_count;
1543 int over = 0;
1545 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1546 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1547 "asoc->rwnd_over:%u!\n", __func__, asoc,
1548 asoc->rwnd, asoc->rwnd_over);
1550 if (asoc->ep->rcvbuf_policy)
1551 rx_count = atomic_read(&asoc->rmem_alloc);
1552 else
1553 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1555 /* If we've reached or overflowed our receive buffer, announce
1556 * a 0 rwnd if rwnd would still be positive. Store the
1557 * the potential pressure overflow so that the window can be restored
1558 * back to original value.
1560 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1561 over = 1;
1563 if (asoc->rwnd >= len) {
1564 asoc->rwnd -= len;
1565 if (over) {
1566 asoc->rwnd_press += asoc->rwnd;
1567 asoc->rwnd = 0;
1569 } else {
1570 asoc->rwnd_over = len - asoc->rwnd;
1571 asoc->rwnd = 0;
1574 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1575 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1576 asoc->rwnd_press);
1579 /* Build the bind address list for the association based on info from the
1580 * local endpoint and the remote peer.
1582 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1583 sctp_scope_t scope, gfp_t gfp)
1585 int flags;
1587 /* Use scoping rules to determine the subset of addresses from
1588 * the endpoint.
1590 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1591 if (asoc->peer.ipv4_address)
1592 flags |= SCTP_ADDR4_PEERSUPP;
1593 if (asoc->peer.ipv6_address)
1594 flags |= SCTP_ADDR6_PEERSUPP;
1596 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1597 &asoc->base.bind_addr,
1598 &asoc->ep->base.bind_addr,
1599 scope, gfp, flags);
1602 /* Build the association's bind address list from the cookie. */
1603 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1604 struct sctp_cookie *cookie,
1605 gfp_t gfp)
1607 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1608 int var_size3 = cookie->raw_addr_list_len;
1609 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1611 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1612 asoc->ep->base.bind_addr.port, gfp);
1615 /* Lookup laddr in the bind address list of an association. */
1616 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1617 const union sctp_addr *laddr)
1619 int found = 0;
1621 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1622 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1623 sctp_sk(asoc->base.sk)))
1624 found = 1;
1626 return found;
1629 /* Set an association id for a given association */
1630 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1632 bool preload = gfpflags_allow_blocking(gfp);
1633 int ret;
1635 /* If the id is already assigned, keep it. */
1636 if (asoc->assoc_id)
1637 return 0;
1639 if (preload)
1640 idr_preload(gfp);
1641 spin_lock_bh(&sctp_assocs_id_lock);
1642 /* 0 is not a valid assoc_id, must be >= 1 */
1643 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1644 spin_unlock_bh(&sctp_assocs_id_lock);
1645 if (preload)
1646 idr_preload_end();
1647 if (ret < 0)
1648 return ret;
1650 asoc->assoc_id = (sctp_assoc_t)ret;
1651 return 0;
1654 /* Free the ASCONF queue */
1655 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1657 struct sctp_chunk *asconf;
1658 struct sctp_chunk *tmp;
1660 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1661 list_del_init(&asconf->list);
1662 sctp_chunk_free(asconf);
1666 /* Free asconf_ack cache */
1667 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1669 struct sctp_chunk *ack;
1670 struct sctp_chunk *tmp;
1672 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1673 transmitted_list) {
1674 list_del_init(&ack->transmitted_list);
1675 sctp_chunk_free(ack);
1679 /* Clean up the ASCONF_ACK queue */
1680 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1682 struct sctp_chunk *ack;
1683 struct sctp_chunk *tmp;
1685 /* We can remove all the entries from the queue up to
1686 * the "Peer-Sequence-Number".
1688 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1689 transmitted_list) {
1690 if (ack->subh.addip_hdr->serial ==
1691 htonl(asoc->peer.addip_serial))
1692 break;
1694 list_del_init(&ack->transmitted_list);
1695 sctp_chunk_free(ack);
1699 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1700 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1701 const struct sctp_association *asoc,
1702 __be32 serial)
1704 struct sctp_chunk *ack;
1706 /* Walk through the list of cached ASCONF-ACKs and find the
1707 * ack chunk whose serial number matches that of the request.
1709 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1710 if (sctp_chunk_pending(ack))
1711 continue;
1712 if (ack->subh.addip_hdr->serial == serial) {
1713 sctp_chunk_hold(ack);
1714 return ack;
1718 return NULL;
1721 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1723 /* Free any cached ASCONF_ACK chunk. */
1724 sctp_assoc_free_asconf_acks(asoc);
1726 /* Free the ASCONF queue. */
1727 sctp_assoc_free_asconf_queue(asoc);
1729 /* Free any cached ASCONF chunk. */
1730 if (asoc->addip_last_asconf)
1731 sctp_chunk_free(asoc->addip_last_asconf);