Revert "ALSA: hda: Flush interrupts on disabling"
[linux/fpc-iii.git] / security / keys / keyring.c
blob7308067dcc5d84e2f4edaee7caf7e5c2319b4f25
1 /* Keyring handling
3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/seq_file.h>
18 #include <linux/err.h>
19 #include <keys/keyring-type.h>
20 #include <keys/user-type.h>
21 #include <linux/assoc_array_priv.h>
22 #include <linux/uaccess.h>
23 #include "internal.h"
26 * When plumbing the depths of the key tree, this sets a hard limit
27 * set on how deep we're willing to go.
29 #define KEYRING_SEARCH_MAX_DEPTH 6
32 * We keep all named keyrings in a hash to speed looking them up.
34 #define KEYRING_NAME_HASH_SIZE (1 << 5)
37 * We mark pointers we pass to the associative array with bit 1 set if
38 * they're keyrings and clear otherwise.
40 #define KEYRING_PTR_SUBTYPE 0x2UL
42 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
44 return (unsigned long)x & KEYRING_PTR_SUBTYPE;
46 static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
48 void *object = assoc_array_ptr_to_leaf(x);
49 return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
51 static inline void *keyring_key_to_ptr(struct key *key)
53 if (key->type == &key_type_keyring)
54 return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
55 return key;
58 static struct list_head keyring_name_hash[KEYRING_NAME_HASH_SIZE];
59 static DEFINE_RWLOCK(keyring_name_lock);
61 static inline unsigned keyring_hash(const char *desc)
63 unsigned bucket = 0;
65 for (; *desc; desc++)
66 bucket += (unsigned char)*desc;
68 return bucket & (KEYRING_NAME_HASH_SIZE - 1);
72 * The keyring key type definition. Keyrings are simply keys of this type and
73 * can be treated as ordinary keys in addition to having their own special
74 * operations.
76 static int keyring_preparse(struct key_preparsed_payload *prep);
77 static void keyring_free_preparse(struct key_preparsed_payload *prep);
78 static int keyring_instantiate(struct key *keyring,
79 struct key_preparsed_payload *prep);
80 static void keyring_revoke(struct key *keyring);
81 static void keyring_destroy(struct key *keyring);
82 static void keyring_describe(const struct key *keyring, struct seq_file *m);
83 static long keyring_read(const struct key *keyring,
84 char __user *buffer, size_t buflen);
86 struct key_type key_type_keyring = {
87 .name = "keyring",
88 .def_datalen = 0,
89 .preparse = keyring_preparse,
90 .free_preparse = keyring_free_preparse,
91 .instantiate = keyring_instantiate,
92 .revoke = keyring_revoke,
93 .destroy = keyring_destroy,
94 .describe = keyring_describe,
95 .read = keyring_read,
97 EXPORT_SYMBOL(key_type_keyring);
100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
101 * introducing a cycle.
103 static DECLARE_RWSEM(keyring_serialise_link_sem);
106 * Publish the name of a keyring so that it can be found by name (if it has
107 * one).
109 static void keyring_publish_name(struct key *keyring)
111 int bucket;
113 if (keyring->description) {
114 bucket = keyring_hash(keyring->description);
116 write_lock(&keyring_name_lock);
118 if (!keyring_name_hash[bucket].next)
119 INIT_LIST_HEAD(&keyring_name_hash[bucket]);
121 list_add_tail(&keyring->name_link,
122 &keyring_name_hash[bucket]);
124 write_unlock(&keyring_name_lock);
129 * Preparse a keyring payload
131 static int keyring_preparse(struct key_preparsed_payload *prep)
133 return prep->datalen != 0 ? -EINVAL : 0;
137 * Free a preparse of a user defined key payload
139 static void keyring_free_preparse(struct key_preparsed_payload *prep)
144 * Initialise a keyring.
146 * Returns 0 on success, -EINVAL if given any data.
148 static int keyring_instantiate(struct key *keyring,
149 struct key_preparsed_payload *prep)
151 assoc_array_init(&keyring->keys);
152 /* make the keyring available by name if it has one */
153 keyring_publish_name(keyring);
154 return 0;
158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
159 * fold the carry back too, but that requires inline asm.
161 static u64 mult_64x32_and_fold(u64 x, u32 y)
163 u64 hi = (u64)(u32)(x >> 32) * y;
164 u64 lo = (u64)(u32)(x) * y;
165 return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
169 * Hash a key type and description.
171 static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
173 const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
174 const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
175 const char *description = index_key->description;
176 unsigned long hash, type;
177 u32 piece;
178 u64 acc;
179 int n, desc_len = index_key->desc_len;
181 type = (unsigned long)index_key->type;
183 acc = mult_64x32_and_fold(type, desc_len + 13);
184 acc = mult_64x32_and_fold(acc, 9207);
185 for (;;) {
186 n = desc_len;
187 if (n <= 0)
188 break;
189 if (n > 4)
190 n = 4;
191 piece = 0;
192 memcpy(&piece, description, n);
193 description += n;
194 desc_len -= n;
195 acc = mult_64x32_and_fold(acc, piece);
196 acc = mult_64x32_and_fold(acc, 9207);
199 /* Fold the hash down to 32 bits if need be. */
200 hash = acc;
201 if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
202 hash ^= acc >> 32;
204 /* Squidge all the keyrings into a separate part of the tree to
205 * ordinary keys by making sure the lowest level segment in the hash is
206 * zero for keyrings and non-zero otherwise.
208 if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
209 return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
210 if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
211 return (hash + (hash << level_shift)) & ~fan_mask;
212 return hash;
216 * Build the next index key chunk.
218 * On 32-bit systems the index key is laid out as:
220 * 0 4 5 9...
221 * hash desclen typeptr desc[]
223 * On 64-bit systems:
225 * 0 8 9 17...
226 * hash desclen typeptr desc[]
228 * We return it one word-sized chunk at a time.
230 static unsigned long keyring_get_key_chunk(const void *data, int level)
232 const struct keyring_index_key *index_key = data;
233 unsigned long chunk = 0;
234 long offset = 0;
235 int desc_len = index_key->desc_len, n = sizeof(chunk);
237 level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
238 switch (level) {
239 case 0:
240 return hash_key_type_and_desc(index_key);
241 case 1:
242 return ((unsigned long)index_key->type << 8) | desc_len;
243 case 2:
244 if (desc_len == 0)
245 return (u8)((unsigned long)index_key->type >>
246 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
247 n--;
248 offset = 1;
249 default:
250 offset += sizeof(chunk) - 1;
251 offset += (level - 3) * sizeof(chunk);
252 if (offset >= desc_len)
253 return 0;
254 desc_len -= offset;
255 if (desc_len > n)
256 desc_len = n;
257 offset += desc_len;
258 do {
259 chunk <<= 8;
260 chunk |= ((u8*)index_key->description)[--offset];
261 } while (--desc_len > 0);
263 if (level == 2) {
264 chunk <<= 8;
265 chunk |= (u8)((unsigned long)index_key->type >>
266 (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
268 return chunk;
272 static unsigned long keyring_get_object_key_chunk(const void *object, int level)
274 const struct key *key = keyring_ptr_to_key(object);
275 return keyring_get_key_chunk(&key->index_key, level);
278 static bool keyring_compare_object(const void *object, const void *data)
280 const struct keyring_index_key *index_key = data;
281 const struct key *key = keyring_ptr_to_key(object);
283 return key->index_key.type == index_key->type &&
284 key->index_key.desc_len == index_key->desc_len &&
285 memcmp(key->index_key.description, index_key->description,
286 index_key->desc_len) == 0;
290 * Compare the index keys of a pair of objects and determine the bit position
291 * at which they differ - if they differ.
293 static int keyring_diff_objects(const void *object, const void *data)
295 const struct key *key_a = keyring_ptr_to_key(object);
296 const struct keyring_index_key *a = &key_a->index_key;
297 const struct keyring_index_key *b = data;
298 unsigned long seg_a, seg_b;
299 int level, i;
301 level = 0;
302 seg_a = hash_key_type_and_desc(a);
303 seg_b = hash_key_type_and_desc(b);
304 if ((seg_a ^ seg_b) != 0)
305 goto differ;
307 /* The number of bits contributed by the hash is controlled by a
308 * constant in the assoc_array headers. Everything else thereafter we
309 * can deal with as being machine word-size dependent.
311 level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
312 seg_a = a->desc_len;
313 seg_b = b->desc_len;
314 if ((seg_a ^ seg_b) != 0)
315 goto differ;
317 /* The next bit may not work on big endian */
318 level++;
319 seg_a = (unsigned long)a->type;
320 seg_b = (unsigned long)b->type;
321 if ((seg_a ^ seg_b) != 0)
322 goto differ;
324 level += sizeof(unsigned long);
325 if (a->desc_len == 0)
326 goto same;
328 i = 0;
329 if (((unsigned long)a->description | (unsigned long)b->description) &
330 (sizeof(unsigned long) - 1)) {
331 do {
332 seg_a = *(unsigned long *)(a->description + i);
333 seg_b = *(unsigned long *)(b->description + i);
334 if ((seg_a ^ seg_b) != 0)
335 goto differ_plus_i;
336 i += sizeof(unsigned long);
337 } while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
340 for (; i < a->desc_len; i++) {
341 seg_a = *(unsigned char *)(a->description + i);
342 seg_b = *(unsigned char *)(b->description + i);
343 if ((seg_a ^ seg_b) != 0)
344 goto differ_plus_i;
347 same:
348 return -1;
350 differ_plus_i:
351 level += i;
352 differ:
353 i = level * 8 + __ffs(seg_a ^ seg_b);
354 return i;
358 * Free an object after stripping the keyring flag off of the pointer.
360 static void keyring_free_object(void *object)
362 key_put(keyring_ptr_to_key(object));
366 * Operations for keyring management by the index-tree routines.
368 static const struct assoc_array_ops keyring_assoc_array_ops = {
369 .get_key_chunk = keyring_get_key_chunk,
370 .get_object_key_chunk = keyring_get_object_key_chunk,
371 .compare_object = keyring_compare_object,
372 .diff_objects = keyring_diff_objects,
373 .free_object = keyring_free_object,
377 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
378 * and dispose of its data.
380 * The garbage collector detects the final key_put(), removes the keyring from
381 * the serial number tree and then does RCU synchronisation before coming here,
382 * so we shouldn't need to worry about code poking around here with the RCU
383 * readlock held by this time.
385 static void keyring_destroy(struct key *keyring)
387 if (keyring->description) {
388 write_lock(&keyring_name_lock);
390 if (keyring->name_link.next != NULL &&
391 !list_empty(&keyring->name_link))
392 list_del(&keyring->name_link);
394 write_unlock(&keyring_name_lock);
397 assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
401 * Describe a keyring for /proc.
403 static void keyring_describe(const struct key *keyring, struct seq_file *m)
405 if (keyring->description)
406 seq_puts(m, keyring->description);
407 else
408 seq_puts(m, "[anon]");
410 if (key_is_positive(keyring)) {
411 if (keyring->keys.nr_leaves_on_tree != 0)
412 seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
413 else
414 seq_puts(m, ": empty");
418 struct keyring_read_iterator_context {
419 size_t buflen;
420 size_t count;
421 key_serial_t __user *buffer;
424 static int keyring_read_iterator(const void *object, void *data)
426 struct keyring_read_iterator_context *ctx = data;
427 const struct key *key = keyring_ptr_to_key(object);
428 int ret;
430 kenter("{%s,%d},,{%zu/%zu}",
431 key->type->name, key->serial, ctx->count, ctx->buflen);
433 if (ctx->count >= ctx->buflen)
434 return 1;
436 ret = put_user(key->serial, ctx->buffer);
437 if (ret < 0)
438 return ret;
439 ctx->buffer++;
440 ctx->count += sizeof(key->serial);
441 return 0;
445 * Read a list of key IDs from the keyring's contents in binary form
447 * The keyring's semaphore is read-locked by the caller. This prevents someone
448 * from modifying it under us - which could cause us to read key IDs multiple
449 * times.
451 static long keyring_read(const struct key *keyring,
452 char __user *buffer, size_t buflen)
454 struct keyring_read_iterator_context ctx;
455 long ret;
457 kenter("{%d},,%zu", key_serial(keyring), buflen);
459 if (buflen & (sizeof(key_serial_t) - 1))
460 return -EINVAL;
462 /* Copy as many key IDs as fit into the buffer */
463 if (buffer && buflen) {
464 ctx.buffer = (key_serial_t __user *)buffer;
465 ctx.buflen = buflen;
466 ctx.count = 0;
467 ret = assoc_array_iterate(&keyring->keys,
468 keyring_read_iterator, &ctx);
469 if (ret < 0) {
470 kleave(" = %ld [iterate]", ret);
471 return ret;
475 /* Return the size of the buffer needed */
476 ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
477 if (ret <= buflen)
478 kleave("= %ld [ok]", ret);
479 else
480 kleave("= %ld [buffer too small]", ret);
481 return ret;
485 * Allocate a keyring and link into the destination keyring.
487 struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
488 const struct cred *cred, key_perm_t perm,
489 unsigned long flags,
490 int (*restrict_link)(struct key *,
491 const struct key_type *,
492 const union key_payload *),
493 struct key *dest)
495 struct key *keyring;
496 int ret;
498 keyring = key_alloc(&key_type_keyring, description,
499 uid, gid, cred, perm, flags, restrict_link);
500 if (!IS_ERR(keyring)) {
501 ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
502 if (ret < 0) {
503 key_put(keyring);
504 keyring = ERR_PTR(ret);
508 return keyring;
510 EXPORT_SYMBOL(keyring_alloc);
513 * restrict_link_reject - Give -EPERM to restrict link
514 * @keyring: The keyring being added to.
515 * @type: The type of key being added.
516 * @payload: The payload of the key intended to be added.
518 * Reject the addition of any links to a keyring. It can be overridden by
519 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
520 * adding a key to a keyring.
522 * This is meant to be passed as the restrict_link parameter to
523 * keyring_alloc().
525 int restrict_link_reject(struct key *keyring,
526 const struct key_type *type,
527 const union key_payload *payload)
529 return -EPERM;
533 * By default, we keys found by getting an exact match on their descriptions.
535 bool key_default_cmp(const struct key *key,
536 const struct key_match_data *match_data)
538 return strcmp(key->description, match_data->raw_data) == 0;
542 * Iteration function to consider each key found.
544 static int keyring_search_iterator(const void *object, void *iterator_data)
546 struct keyring_search_context *ctx = iterator_data;
547 const struct key *key = keyring_ptr_to_key(object);
548 unsigned long kflags = READ_ONCE(key->flags);
549 short state = READ_ONCE(key->state);
551 kenter("{%d}", key->serial);
553 /* ignore keys not of this type */
554 if (key->type != ctx->index_key.type) {
555 kleave(" = 0 [!type]");
556 return 0;
559 /* skip invalidated, revoked and expired keys */
560 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
561 if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
562 (1 << KEY_FLAG_REVOKED))) {
563 ctx->result = ERR_PTR(-EKEYREVOKED);
564 kleave(" = %d [invrev]", ctx->skipped_ret);
565 goto skipped;
568 if (key->expiry && ctx->now.tv_sec >= key->expiry) {
569 if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
570 ctx->result = ERR_PTR(-EKEYEXPIRED);
571 kleave(" = %d [expire]", ctx->skipped_ret);
572 goto skipped;
576 /* keys that don't match */
577 if (!ctx->match_data.cmp(key, &ctx->match_data)) {
578 kleave(" = 0 [!match]");
579 return 0;
582 /* key must have search permissions */
583 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
584 key_task_permission(make_key_ref(key, ctx->possessed),
585 ctx->cred, KEY_NEED_SEARCH) < 0) {
586 ctx->result = ERR_PTR(-EACCES);
587 kleave(" = %d [!perm]", ctx->skipped_ret);
588 goto skipped;
591 if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
592 /* we set a different error code if we pass a negative key */
593 if (state < 0) {
594 ctx->result = ERR_PTR(state);
595 kleave(" = %d [neg]", ctx->skipped_ret);
596 goto skipped;
600 /* Found */
601 ctx->result = make_key_ref(key, ctx->possessed);
602 kleave(" = 1 [found]");
603 return 1;
605 skipped:
606 return ctx->skipped_ret;
610 * Search inside a keyring for a key. We can search by walking to it
611 * directly based on its index-key or we can iterate over the entire
612 * tree looking for it, based on the match function.
614 static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
616 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
617 const void *object;
619 object = assoc_array_find(&keyring->keys,
620 &keyring_assoc_array_ops,
621 &ctx->index_key);
622 return object ? ctx->iterator(object, ctx) : 0;
624 return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
628 * Search a tree of keyrings that point to other keyrings up to the maximum
629 * depth.
631 static bool search_nested_keyrings(struct key *keyring,
632 struct keyring_search_context *ctx)
634 struct {
635 struct key *keyring;
636 struct assoc_array_node *node;
637 int slot;
638 } stack[KEYRING_SEARCH_MAX_DEPTH];
640 struct assoc_array_shortcut *shortcut;
641 struct assoc_array_node *node;
642 struct assoc_array_ptr *ptr;
643 struct key *key;
644 int sp = 0, slot;
646 kenter("{%d},{%s,%s}",
647 keyring->serial,
648 ctx->index_key.type->name,
649 ctx->index_key.description);
651 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
652 BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
653 (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
655 /* Check to see if this top-level keyring is what we are looking for
656 * and whether it is valid or not.
658 if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
659 keyring_compare_object(keyring, &ctx->index_key)) {
660 ctx->skipped_ret = 2;
661 switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
662 case 1:
663 goto found;
664 case 2:
665 return false;
666 default:
667 break;
671 ctx->skipped_ret = 0;
673 /* Start processing a new keyring */
674 descend_to_keyring:
675 kdebug("descend to %d", keyring->serial);
676 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
677 (1 << KEY_FLAG_REVOKED)))
678 goto not_this_keyring;
680 /* Search through the keys in this keyring before its searching its
681 * subtrees.
683 if (search_keyring(keyring, ctx))
684 goto found;
686 /* Then manually iterate through the keyrings nested in this one.
688 * Start from the root node of the index tree. Because of the way the
689 * hash function has been set up, keyrings cluster on the leftmost
690 * branch of the root node (root slot 0) or in the root node itself.
691 * Non-keyrings avoid the leftmost branch of the root entirely (root
692 * slots 1-15).
694 ptr = ACCESS_ONCE(keyring->keys.root);
695 if (!ptr)
696 goto not_this_keyring;
698 if (assoc_array_ptr_is_shortcut(ptr)) {
699 /* If the root is a shortcut, either the keyring only contains
700 * keyring pointers (everything clusters behind root slot 0) or
701 * doesn't contain any keyring pointers.
703 shortcut = assoc_array_ptr_to_shortcut(ptr);
704 smp_read_barrier_depends();
705 if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
706 goto not_this_keyring;
708 ptr = ACCESS_ONCE(shortcut->next_node);
709 node = assoc_array_ptr_to_node(ptr);
710 goto begin_node;
713 node = assoc_array_ptr_to_node(ptr);
714 smp_read_barrier_depends();
716 ptr = node->slots[0];
717 if (!assoc_array_ptr_is_meta(ptr))
718 goto begin_node;
720 descend_to_node:
721 /* Descend to a more distal node in this keyring's content tree and go
722 * through that.
724 kdebug("descend");
725 if (assoc_array_ptr_is_shortcut(ptr)) {
726 shortcut = assoc_array_ptr_to_shortcut(ptr);
727 smp_read_barrier_depends();
728 ptr = ACCESS_ONCE(shortcut->next_node);
729 BUG_ON(!assoc_array_ptr_is_node(ptr));
731 node = assoc_array_ptr_to_node(ptr);
733 begin_node:
734 kdebug("begin_node");
735 smp_read_barrier_depends();
736 slot = 0;
737 ascend_to_node:
738 /* Go through the slots in a node */
739 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
740 ptr = ACCESS_ONCE(node->slots[slot]);
742 if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
743 goto descend_to_node;
745 if (!keyring_ptr_is_keyring(ptr))
746 continue;
748 key = keyring_ptr_to_key(ptr);
750 if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
751 if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
752 ctx->result = ERR_PTR(-ELOOP);
753 return false;
755 goto not_this_keyring;
758 /* Search a nested keyring */
759 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
760 key_task_permission(make_key_ref(key, ctx->possessed),
761 ctx->cred, KEY_NEED_SEARCH) < 0)
762 continue;
764 /* stack the current position */
765 stack[sp].keyring = keyring;
766 stack[sp].node = node;
767 stack[sp].slot = slot;
768 sp++;
770 /* begin again with the new keyring */
771 keyring = key;
772 goto descend_to_keyring;
775 /* We've dealt with all the slots in the current node, so now we need
776 * to ascend to the parent and continue processing there.
778 ptr = ACCESS_ONCE(node->back_pointer);
779 slot = node->parent_slot;
781 if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
782 shortcut = assoc_array_ptr_to_shortcut(ptr);
783 smp_read_barrier_depends();
784 ptr = ACCESS_ONCE(shortcut->back_pointer);
785 slot = shortcut->parent_slot;
787 if (!ptr)
788 goto not_this_keyring;
789 node = assoc_array_ptr_to_node(ptr);
790 smp_read_barrier_depends();
791 slot++;
793 /* If we've ascended to the root (zero backpointer), we must have just
794 * finished processing the leftmost branch rather than the root slots -
795 * so there can't be any more keyrings for us to find.
797 if (node->back_pointer) {
798 kdebug("ascend %d", slot);
799 goto ascend_to_node;
802 /* The keyring we're looking at was disqualified or didn't contain a
803 * matching key.
805 not_this_keyring:
806 kdebug("not_this_keyring %d", sp);
807 if (sp <= 0) {
808 kleave(" = false");
809 return false;
812 /* Resume the processing of a keyring higher up in the tree */
813 sp--;
814 keyring = stack[sp].keyring;
815 node = stack[sp].node;
816 slot = stack[sp].slot + 1;
817 kdebug("ascend to %d [%d]", keyring->serial, slot);
818 goto ascend_to_node;
820 /* We found a viable match */
821 found:
822 key = key_ref_to_ptr(ctx->result);
823 key_check(key);
824 if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
825 key->last_used_at = ctx->now.tv_sec;
826 keyring->last_used_at = ctx->now.tv_sec;
827 while (sp > 0)
828 stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
830 kleave(" = true");
831 return true;
835 * keyring_search_aux - Search a keyring tree for a key matching some criteria
836 * @keyring_ref: A pointer to the keyring with possession indicator.
837 * @ctx: The keyring search context.
839 * Search the supplied keyring tree for a key that matches the criteria given.
840 * The root keyring and any linked keyrings must grant Search permission to the
841 * caller to be searchable and keys can only be found if they too grant Search
842 * to the caller. The possession flag on the root keyring pointer controls use
843 * of the possessor bits in permissions checking of the entire tree. In
844 * addition, the LSM gets to forbid keyring searches and key matches.
846 * The search is performed as a breadth-then-depth search up to the prescribed
847 * limit (KEYRING_SEARCH_MAX_DEPTH).
849 * Keys are matched to the type provided and are then filtered by the match
850 * function, which is given the description to use in any way it sees fit. The
851 * match function may use any attributes of a key that it wishes to to
852 * determine the match. Normally the match function from the key type would be
853 * used.
855 * RCU can be used to prevent the keyring key lists from disappearing without
856 * the need to take lots of locks.
858 * Returns a pointer to the found key and increments the key usage count if
859 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
860 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
861 * specified keyring wasn't a keyring.
863 * In the case of a successful return, the possession attribute from
864 * @keyring_ref is propagated to the returned key reference.
866 key_ref_t keyring_search_aux(key_ref_t keyring_ref,
867 struct keyring_search_context *ctx)
869 struct key *keyring;
870 long err;
872 ctx->iterator = keyring_search_iterator;
873 ctx->possessed = is_key_possessed(keyring_ref);
874 ctx->result = ERR_PTR(-EAGAIN);
876 keyring = key_ref_to_ptr(keyring_ref);
877 key_check(keyring);
879 if (keyring->type != &key_type_keyring)
880 return ERR_PTR(-ENOTDIR);
882 if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
883 err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
884 if (err < 0)
885 return ERR_PTR(err);
888 rcu_read_lock();
889 ctx->now = current_kernel_time();
890 if (search_nested_keyrings(keyring, ctx))
891 __key_get(key_ref_to_ptr(ctx->result));
892 rcu_read_unlock();
893 return ctx->result;
897 * keyring_search - Search the supplied keyring tree for a matching key
898 * @keyring: The root of the keyring tree to be searched.
899 * @type: The type of keyring we want to find.
900 * @description: The name of the keyring we want to find.
902 * As keyring_search_aux() above, but using the current task's credentials and
903 * type's default matching function and preferred search method.
905 key_ref_t keyring_search(key_ref_t keyring,
906 struct key_type *type,
907 const char *description)
909 struct keyring_search_context ctx = {
910 .index_key.type = type,
911 .index_key.description = description,
912 .index_key.desc_len = strlen(description),
913 .cred = current_cred(),
914 .match_data.cmp = key_default_cmp,
915 .match_data.raw_data = description,
916 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
917 .flags = KEYRING_SEARCH_DO_STATE_CHECK,
919 key_ref_t key;
920 int ret;
922 if (type->match_preparse) {
923 ret = type->match_preparse(&ctx.match_data);
924 if (ret < 0)
925 return ERR_PTR(ret);
928 key = keyring_search_aux(keyring, &ctx);
930 if (type->match_free)
931 type->match_free(&ctx.match_data);
932 return key;
934 EXPORT_SYMBOL(keyring_search);
937 * Search the given keyring for a key that might be updated.
939 * The caller must guarantee that the keyring is a keyring and that the
940 * permission is granted to modify the keyring as no check is made here. The
941 * caller must also hold a lock on the keyring semaphore.
943 * Returns a pointer to the found key with usage count incremented if
944 * successful and returns NULL if not found. Revoked and invalidated keys are
945 * skipped over.
947 * If successful, the possession indicator is propagated from the keyring ref
948 * to the returned key reference.
950 key_ref_t find_key_to_update(key_ref_t keyring_ref,
951 const struct keyring_index_key *index_key)
953 struct key *keyring, *key;
954 const void *object;
956 keyring = key_ref_to_ptr(keyring_ref);
958 kenter("{%d},{%s,%s}",
959 keyring->serial, index_key->type->name, index_key->description);
961 object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
962 index_key);
964 if (object)
965 goto found;
967 kleave(" = NULL");
968 return NULL;
970 found:
971 key = keyring_ptr_to_key(object);
972 if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
973 (1 << KEY_FLAG_REVOKED))) {
974 kleave(" = NULL [x]");
975 return NULL;
977 __key_get(key);
978 kleave(" = {%d}", key->serial);
979 return make_key_ref(key, is_key_possessed(keyring_ref));
983 * Find a keyring with the specified name.
985 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
986 * user in the current user namespace are considered. If @uid_keyring is %true,
987 * the keyring additionally must have been allocated as a user or user session
988 * keyring; otherwise, it must grant Search permission directly to the caller.
990 * Returns a pointer to the keyring with the keyring's refcount having being
991 * incremented on success. -ENOKEY is returned if a key could not be found.
993 struct key *find_keyring_by_name(const char *name, bool uid_keyring)
995 struct key *keyring;
996 int bucket;
998 if (!name)
999 return ERR_PTR(-EINVAL);
1001 bucket = keyring_hash(name);
1003 read_lock(&keyring_name_lock);
1005 if (keyring_name_hash[bucket].next) {
1006 /* search this hash bucket for a keyring with a matching name
1007 * that's readable and that hasn't been revoked */
1008 list_for_each_entry(keyring,
1009 &keyring_name_hash[bucket],
1010 name_link
1012 if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
1013 continue;
1015 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1016 continue;
1018 if (strcmp(keyring->description, name) != 0)
1019 continue;
1021 if (uid_keyring) {
1022 if (!test_bit(KEY_FLAG_UID_KEYRING,
1023 &keyring->flags))
1024 continue;
1025 } else {
1026 if (key_permission(make_key_ref(keyring, 0),
1027 KEY_NEED_SEARCH) < 0)
1028 continue;
1031 /* we've got a match but we might end up racing with
1032 * key_cleanup() if the keyring is currently 'dead'
1033 * (ie. it has a zero usage count) */
1034 if (!atomic_inc_not_zero(&keyring->usage))
1035 continue;
1036 keyring->last_used_at = current_kernel_time().tv_sec;
1037 goto out;
1041 keyring = ERR_PTR(-ENOKEY);
1042 out:
1043 read_unlock(&keyring_name_lock);
1044 return keyring;
1047 static int keyring_detect_cycle_iterator(const void *object,
1048 void *iterator_data)
1050 struct keyring_search_context *ctx = iterator_data;
1051 const struct key *key = keyring_ptr_to_key(object);
1053 kenter("{%d}", key->serial);
1055 /* We might get a keyring with matching index-key that is nonetheless a
1056 * different keyring. */
1057 if (key != ctx->match_data.raw_data)
1058 return 0;
1060 ctx->result = ERR_PTR(-EDEADLK);
1061 return 1;
1065 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1066 * tree A at the topmost level (ie: as a direct child of A).
1068 * Since we are adding B to A at the top level, checking for cycles should just
1069 * be a matter of seeing if node A is somewhere in tree B.
1071 static int keyring_detect_cycle(struct key *A, struct key *B)
1073 struct keyring_search_context ctx = {
1074 .index_key = A->index_key,
1075 .match_data.raw_data = A,
1076 .match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1077 .iterator = keyring_detect_cycle_iterator,
1078 .flags = (KEYRING_SEARCH_NO_STATE_CHECK |
1079 KEYRING_SEARCH_NO_UPDATE_TIME |
1080 KEYRING_SEARCH_NO_CHECK_PERM |
1081 KEYRING_SEARCH_DETECT_TOO_DEEP),
1084 rcu_read_lock();
1085 search_nested_keyrings(B, &ctx);
1086 rcu_read_unlock();
1087 return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1091 * Preallocate memory so that a key can be linked into to a keyring.
1093 int __key_link_begin(struct key *keyring,
1094 const struct keyring_index_key *index_key,
1095 struct assoc_array_edit **_edit)
1096 __acquires(&keyring->sem)
1097 __acquires(&keyring_serialise_link_sem)
1099 struct assoc_array_edit *edit;
1100 int ret;
1102 kenter("%d,%s,%s,",
1103 keyring->serial, index_key->type->name, index_key->description);
1105 BUG_ON(index_key->desc_len == 0);
1107 if (keyring->type != &key_type_keyring)
1108 return -ENOTDIR;
1110 down_write(&keyring->sem);
1112 ret = -EKEYREVOKED;
1113 if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1114 goto error_krsem;
1116 /* serialise link/link calls to prevent parallel calls causing a cycle
1117 * when linking two keyring in opposite orders */
1118 if (index_key->type == &key_type_keyring)
1119 down_write(&keyring_serialise_link_sem);
1121 /* Create an edit script that will insert/replace the key in the
1122 * keyring tree.
1124 edit = assoc_array_insert(&keyring->keys,
1125 &keyring_assoc_array_ops,
1126 index_key,
1127 NULL);
1128 if (IS_ERR(edit)) {
1129 ret = PTR_ERR(edit);
1130 goto error_sem;
1133 /* If we're not replacing a link in-place then we're going to need some
1134 * extra quota.
1136 if (!edit->dead_leaf) {
1137 ret = key_payload_reserve(keyring,
1138 keyring->datalen + KEYQUOTA_LINK_BYTES);
1139 if (ret < 0)
1140 goto error_cancel;
1143 *_edit = edit;
1144 kleave(" = 0");
1145 return 0;
1147 error_cancel:
1148 assoc_array_cancel_edit(edit);
1149 error_sem:
1150 if (index_key->type == &key_type_keyring)
1151 up_write(&keyring_serialise_link_sem);
1152 error_krsem:
1153 up_write(&keyring->sem);
1154 kleave(" = %d", ret);
1155 return ret;
1159 * Check already instantiated keys aren't going to be a problem.
1161 * The caller must have called __key_link_begin(). Don't need to call this for
1162 * keys that were created since __key_link_begin() was called.
1164 int __key_link_check_live_key(struct key *keyring, struct key *key)
1166 if (key->type == &key_type_keyring)
1167 /* check that we aren't going to create a cycle by linking one
1168 * keyring to another */
1169 return keyring_detect_cycle(keyring, key);
1170 return 0;
1174 * Link a key into to a keyring.
1176 * Must be called with __key_link_begin() having being called. Discards any
1177 * already extant link to matching key if there is one, so that each keyring
1178 * holds at most one link to any given key of a particular type+description
1179 * combination.
1181 void __key_link(struct key *key, struct assoc_array_edit **_edit)
1183 __key_get(key);
1184 assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1185 assoc_array_apply_edit(*_edit);
1186 *_edit = NULL;
1190 * Finish linking a key into to a keyring.
1192 * Must be called with __key_link_begin() having being called.
1194 void __key_link_end(struct key *keyring,
1195 const struct keyring_index_key *index_key,
1196 struct assoc_array_edit *edit)
1197 __releases(&keyring->sem)
1198 __releases(&keyring_serialise_link_sem)
1200 BUG_ON(index_key->type == NULL);
1201 kenter("%d,%s,", keyring->serial, index_key->type->name);
1203 if (index_key->type == &key_type_keyring)
1204 up_write(&keyring_serialise_link_sem);
1206 if (edit) {
1207 if (!edit->dead_leaf) {
1208 key_payload_reserve(keyring,
1209 keyring->datalen - KEYQUOTA_LINK_BYTES);
1211 assoc_array_cancel_edit(edit);
1213 up_write(&keyring->sem);
1217 * Check addition of keys to restricted keyrings.
1219 static int __key_link_check_restriction(struct key *keyring, struct key *key)
1221 if (!keyring->restrict_link)
1222 return 0;
1223 return keyring->restrict_link(keyring, key->type, &key->payload);
1227 * key_link - Link a key to a keyring
1228 * @keyring: The keyring to make the link in.
1229 * @key: The key to link to.
1231 * Make a link in a keyring to a key, such that the keyring holds a reference
1232 * on that key and the key can potentially be found by searching that keyring.
1234 * This function will write-lock the keyring's semaphore and will consume some
1235 * of the user's key data quota to hold the link.
1237 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1238 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1239 * full, -EDQUOT if there is insufficient key data quota remaining to add
1240 * another link or -ENOMEM if there's insufficient memory.
1242 * It is assumed that the caller has checked that it is permitted for a link to
1243 * be made (the keyring should have Write permission and the key Link
1244 * permission).
1246 int key_link(struct key *keyring, struct key *key)
1248 struct assoc_array_edit *edit;
1249 int ret;
1251 kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1253 key_check(keyring);
1254 key_check(key);
1256 ret = __key_link_begin(keyring, &key->index_key, &edit);
1257 if (ret == 0) {
1258 kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1259 ret = __key_link_check_restriction(keyring, key);
1260 if (ret == 0)
1261 ret = __key_link_check_live_key(keyring, key);
1262 if (ret == 0)
1263 __key_link(key, &edit);
1264 __key_link_end(keyring, &key->index_key, edit);
1267 kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
1268 return ret;
1270 EXPORT_SYMBOL(key_link);
1273 * key_unlink - Unlink the first link to a key from a keyring.
1274 * @keyring: The keyring to remove the link from.
1275 * @key: The key the link is to.
1277 * Remove a link from a keyring to a key.
1279 * This function will write-lock the keyring's semaphore.
1281 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1282 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1283 * memory.
1285 * It is assumed that the caller has checked that it is permitted for a link to
1286 * be removed (the keyring should have Write permission; no permissions are
1287 * required on the key).
1289 int key_unlink(struct key *keyring, struct key *key)
1291 struct assoc_array_edit *edit;
1292 int ret;
1294 key_check(keyring);
1295 key_check(key);
1297 if (keyring->type != &key_type_keyring)
1298 return -ENOTDIR;
1300 down_write(&keyring->sem);
1302 edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1303 &key->index_key);
1304 if (IS_ERR(edit)) {
1305 ret = PTR_ERR(edit);
1306 goto error;
1308 ret = -ENOENT;
1309 if (edit == NULL)
1310 goto error;
1312 assoc_array_apply_edit(edit);
1313 key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1314 ret = 0;
1316 error:
1317 up_write(&keyring->sem);
1318 return ret;
1320 EXPORT_SYMBOL(key_unlink);
1323 * keyring_clear - Clear a keyring
1324 * @keyring: The keyring to clear.
1326 * Clear the contents of the specified keyring.
1328 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1330 int keyring_clear(struct key *keyring)
1332 struct assoc_array_edit *edit;
1333 int ret;
1335 if (keyring->type != &key_type_keyring)
1336 return -ENOTDIR;
1338 down_write(&keyring->sem);
1340 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1341 if (IS_ERR(edit)) {
1342 ret = PTR_ERR(edit);
1343 } else {
1344 if (edit)
1345 assoc_array_apply_edit(edit);
1346 key_payload_reserve(keyring, 0);
1347 ret = 0;
1350 up_write(&keyring->sem);
1351 return ret;
1353 EXPORT_SYMBOL(keyring_clear);
1356 * Dispose of the links from a revoked keyring.
1358 * This is called with the key sem write-locked.
1360 static void keyring_revoke(struct key *keyring)
1362 struct assoc_array_edit *edit;
1364 edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1365 if (!IS_ERR(edit)) {
1366 if (edit)
1367 assoc_array_apply_edit(edit);
1368 key_payload_reserve(keyring, 0);
1372 static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1374 struct key *key = keyring_ptr_to_key(object);
1375 time_t *limit = iterator_data;
1377 if (key_is_dead(key, *limit))
1378 return false;
1379 key_get(key);
1380 return true;
1383 static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1385 const struct key *key = keyring_ptr_to_key(object);
1386 time_t *limit = iterator_data;
1388 key_check(key);
1389 return key_is_dead(key, *limit);
1393 * Garbage collect pointers from a keyring.
1395 * Not called with any locks held. The keyring's key struct will not be
1396 * deallocated under us as only our caller may deallocate it.
1398 void keyring_gc(struct key *keyring, time_t limit)
1400 int result;
1402 kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1404 if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1405 (1 << KEY_FLAG_REVOKED)))
1406 goto dont_gc;
1408 /* scan the keyring looking for dead keys */
1409 rcu_read_lock();
1410 result = assoc_array_iterate(&keyring->keys,
1411 keyring_gc_check_iterator, &limit);
1412 rcu_read_unlock();
1413 if (result == true)
1414 goto do_gc;
1416 dont_gc:
1417 kleave(" [no gc]");
1418 return;
1420 do_gc:
1421 down_write(&keyring->sem);
1422 assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1423 keyring_gc_select_iterator, &limit);
1424 up_write(&keyring->sem);
1425 kleave(" [gc]");