mib: add net to IP_INC_STATS_BH
[linux/fpc-iii.git] / net / ipv4 / tcp_ipv4.c
blob7797d528701bbada00e22879844e583756eb5b15
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
11 * code split from:
12 * linux/ipv4/tcp.c
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
25 * Changes:
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
34 * ACK bit.
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
45 * coma.
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/types.h>
55 #include <linux/fcntl.h>
56 #include <linux/module.h>
57 #include <linux/random.h>
58 #include <linux/cache.h>
59 #include <linux/jhash.h>
60 #include <linux/init.h>
61 #include <linux/times.h>
63 #include <net/net_namespace.h>
64 #include <net/icmp.h>
65 #include <net/inet_hashtables.h>
66 #include <net/tcp.h>
67 #include <net/transp_v6.h>
68 #include <net/ipv6.h>
69 #include <net/inet_common.h>
70 #include <net/timewait_sock.h>
71 #include <net/xfrm.h>
72 #include <net/netdma.h>
74 #include <linux/inet.h>
75 #include <linux/ipv6.h>
76 #include <linux/stddef.h>
77 #include <linux/proc_fs.h>
78 #include <linux/seq_file.h>
80 #include <linux/crypto.h>
81 #include <linux/scatterlist.h>
83 int sysctl_tcp_tw_reuse __read_mostly;
84 int sysctl_tcp_low_latency __read_mostly;
87 #ifdef CONFIG_TCP_MD5SIG
88 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
89 __be32 addr);
90 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
91 __be32 saddr, __be32 daddr,
92 struct tcphdr *th, unsigned int tcplen);
93 #else
94 static inline
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
97 return NULL;
99 #endif
101 struct inet_hashinfo __cacheline_aligned tcp_hashinfo = {
102 .lhash_lock = __RW_LOCK_UNLOCKED(tcp_hashinfo.lhash_lock),
103 .lhash_users = ATOMIC_INIT(0),
104 .lhash_wait = __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo.lhash_wait),
107 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
109 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
110 ip_hdr(skb)->saddr,
111 tcp_hdr(skb)->dest,
112 tcp_hdr(skb)->source);
115 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
117 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
118 struct tcp_sock *tp = tcp_sk(sk);
120 /* With PAWS, it is safe from the viewpoint
121 of data integrity. Even without PAWS it is safe provided sequence
122 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
124 Actually, the idea is close to VJ's one, only timestamp cache is
125 held not per host, but per port pair and TW bucket is used as state
126 holder.
128 If TW bucket has been already destroyed we fall back to VJ's scheme
129 and use initial timestamp retrieved from peer table.
131 if (tcptw->tw_ts_recent_stamp &&
132 (twp == NULL || (sysctl_tcp_tw_reuse &&
133 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
134 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
135 if (tp->write_seq == 0)
136 tp->write_seq = 1;
137 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
138 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
139 sock_hold(sktw);
140 return 1;
143 return 0;
146 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
148 /* This will initiate an outgoing connection. */
149 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
151 struct inet_sock *inet = inet_sk(sk);
152 struct tcp_sock *tp = tcp_sk(sk);
153 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
154 struct rtable *rt;
155 __be32 daddr, nexthop;
156 int tmp;
157 int err;
159 if (addr_len < sizeof(struct sockaddr_in))
160 return -EINVAL;
162 if (usin->sin_family != AF_INET)
163 return -EAFNOSUPPORT;
165 nexthop = daddr = usin->sin_addr.s_addr;
166 if (inet->opt && inet->opt->srr) {
167 if (!daddr)
168 return -EINVAL;
169 nexthop = inet->opt->faddr;
172 tmp = ip_route_connect(&rt, nexthop, inet->saddr,
173 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
174 IPPROTO_TCP,
175 inet->sport, usin->sin_port, sk, 1);
176 if (tmp < 0) {
177 if (tmp == -ENETUNREACH)
178 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
179 return tmp;
182 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 ip_rt_put(rt);
184 return -ENETUNREACH;
187 if (!inet->opt || !inet->opt->srr)
188 daddr = rt->rt_dst;
190 if (!inet->saddr)
191 inet->saddr = rt->rt_src;
192 inet->rcv_saddr = inet->saddr;
194 if (tp->rx_opt.ts_recent_stamp && inet->daddr != daddr) {
195 /* Reset inherited state */
196 tp->rx_opt.ts_recent = 0;
197 tp->rx_opt.ts_recent_stamp = 0;
198 tp->write_seq = 0;
201 if (tcp_death_row.sysctl_tw_recycle &&
202 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
203 struct inet_peer *peer = rt_get_peer(rt);
205 * VJ's idea. We save last timestamp seen from
206 * the destination in peer table, when entering state
207 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
208 * when trying new connection.
210 if (peer != NULL &&
211 peer->tcp_ts_stamp + TCP_PAWS_MSL >= get_seconds()) {
212 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
213 tp->rx_opt.ts_recent = peer->tcp_ts;
217 inet->dport = usin->sin_port;
218 inet->daddr = daddr;
220 inet_csk(sk)->icsk_ext_hdr_len = 0;
221 if (inet->opt)
222 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
224 tp->rx_opt.mss_clamp = 536;
226 /* Socket identity is still unknown (sport may be zero).
227 * However we set state to SYN-SENT and not releasing socket
228 * lock select source port, enter ourselves into the hash tables and
229 * complete initialization after this.
231 tcp_set_state(sk, TCP_SYN_SENT);
232 err = inet_hash_connect(&tcp_death_row, sk);
233 if (err)
234 goto failure;
236 err = ip_route_newports(&rt, IPPROTO_TCP,
237 inet->sport, inet->dport, sk);
238 if (err)
239 goto failure;
241 /* OK, now commit destination to socket. */
242 sk->sk_gso_type = SKB_GSO_TCPV4;
243 sk_setup_caps(sk, &rt->u.dst);
245 if (!tp->write_seq)
246 tp->write_seq = secure_tcp_sequence_number(inet->saddr,
247 inet->daddr,
248 inet->sport,
249 usin->sin_port);
251 inet->id = tp->write_seq ^ jiffies;
253 err = tcp_connect(sk);
254 rt = NULL;
255 if (err)
256 goto failure;
258 return 0;
260 failure:
262 * This unhashes the socket and releases the local port,
263 * if necessary.
265 tcp_set_state(sk, TCP_CLOSE);
266 ip_rt_put(rt);
267 sk->sk_route_caps = 0;
268 inet->dport = 0;
269 return err;
273 * This routine does path mtu discovery as defined in RFC1191.
275 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
277 struct dst_entry *dst;
278 struct inet_sock *inet = inet_sk(sk);
280 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
281 * send out by Linux are always <576bytes so they should go through
282 * unfragmented).
284 if (sk->sk_state == TCP_LISTEN)
285 return;
287 /* We don't check in the destentry if pmtu discovery is forbidden
288 * on this route. We just assume that no packet_to_big packets
289 * are send back when pmtu discovery is not active.
290 * There is a small race when the user changes this flag in the
291 * route, but I think that's acceptable.
293 if ((dst = __sk_dst_check(sk, 0)) == NULL)
294 return;
296 dst->ops->update_pmtu(dst, mtu);
298 /* Something is about to be wrong... Remember soft error
299 * for the case, if this connection will not able to recover.
301 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
302 sk->sk_err_soft = EMSGSIZE;
304 mtu = dst_mtu(dst);
306 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
307 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
308 tcp_sync_mss(sk, mtu);
310 /* Resend the TCP packet because it's
311 * clear that the old packet has been
312 * dropped. This is the new "fast" path mtu
313 * discovery.
315 tcp_simple_retransmit(sk);
316 } /* else let the usual retransmit timer handle it */
320 * This routine is called by the ICMP module when it gets some
321 * sort of error condition. If err < 0 then the socket should
322 * be closed and the error returned to the user. If err > 0
323 * it's just the icmp type << 8 | icmp code. After adjustment
324 * header points to the first 8 bytes of the tcp header. We need
325 * to find the appropriate port.
327 * The locking strategy used here is very "optimistic". When
328 * someone else accesses the socket the ICMP is just dropped
329 * and for some paths there is no check at all.
330 * A more general error queue to queue errors for later handling
331 * is probably better.
335 void tcp_v4_err(struct sk_buff *skb, u32 info)
337 struct iphdr *iph = (struct iphdr *)skb->data;
338 struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2));
339 struct tcp_sock *tp;
340 struct inet_sock *inet;
341 const int type = icmp_hdr(skb)->type;
342 const int code = icmp_hdr(skb)->code;
343 struct sock *sk;
344 __u32 seq;
345 int err;
346 struct net *net = dev_net(skb->dev);
348 if (skb->len < (iph->ihl << 2) + 8) {
349 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
350 return;
353 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
354 iph->saddr, th->source, inet_iif(skb));
355 if (!sk) {
356 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
357 return;
359 if (sk->sk_state == TCP_TIME_WAIT) {
360 inet_twsk_put(inet_twsk(sk));
361 return;
364 bh_lock_sock(sk);
365 /* If too many ICMPs get dropped on busy
366 * servers this needs to be solved differently.
368 if (sock_owned_by_user(sk))
369 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS);
371 if (sk->sk_state == TCP_CLOSE)
372 goto out;
374 tp = tcp_sk(sk);
375 seq = ntohl(th->seq);
376 if (sk->sk_state != TCP_LISTEN &&
377 !between(seq, tp->snd_una, tp->snd_nxt)) {
378 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
379 goto out;
382 switch (type) {
383 case ICMP_SOURCE_QUENCH:
384 /* Just silently ignore these. */
385 goto out;
386 case ICMP_PARAMETERPROB:
387 err = EPROTO;
388 break;
389 case ICMP_DEST_UNREACH:
390 if (code > NR_ICMP_UNREACH)
391 goto out;
393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
394 if (!sock_owned_by_user(sk))
395 do_pmtu_discovery(sk, iph, info);
396 goto out;
399 err = icmp_err_convert[code].errno;
400 break;
401 case ICMP_TIME_EXCEEDED:
402 err = EHOSTUNREACH;
403 break;
404 default:
405 goto out;
408 switch (sk->sk_state) {
409 struct request_sock *req, **prev;
410 case TCP_LISTEN:
411 if (sock_owned_by_user(sk))
412 goto out;
414 req = inet_csk_search_req(sk, &prev, th->dest,
415 iph->daddr, iph->saddr);
416 if (!req)
417 goto out;
419 /* ICMPs are not backlogged, hence we cannot get
420 an established socket here.
422 BUG_TRAP(!req->sk);
424 if (seq != tcp_rsk(req)->snt_isn) {
425 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS);
426 goto out;
430 * Still in SYN_RECV, just remove it silently.
431 * There is no good way to pass the error to the newly
432 * created socket, and POSIX does not want network
433 * errors returned from accept().
435 inet_csk_reqsk_queue_drop(sk, req, prev);
436 goto out;
438 case TCP_SYN_SENT:
439 case TCP_SYN_RECV: /* Cannot happen.
440 It can f.e. if SYNs crossed.
442 if (!sock_owned_by_user(sk)) {
443 sk->sk_err = err;
445 sk->sk_error_report(sk);
447 tcp_done(sk);
448 } else {
449 sk->sk_err_soft = err;
451 goto out;
454 /* If we've already connected we will keep trying
455 * until we time out, or the user gives up.
457 * rfc1122 4.2.3.9 allows to consider as hard errors
458 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
459 * but it is obsoleted by pmtu discovery).
461 * Note, that in modern internet, where routing is unreliable
462 * and in each dark corner broken firewalls sit, sending random
463 * errors ordered by their masters even this two messages finally lose
464 * their original sense (even Linux sends invalid PORT_UNREACHs)
466 * Now we are in compliance with RFCs.
467 * --ANK (980905)
470 inet = inet_sk(sk);
471 if (!sock_owned_by_user(sk) && inet->recverr) {
472 sk->sk_err = err;
473 sk->sk_error_report(sk);
474 } else { /* Only an error on timeout */
475 sk->sk_err_soft = err;
478 out:
479 bh_unlock_sock(sk);
480 sock_put(sk);
483 /* This routine computes an IPv4 TCP checksum. */
484 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
486 struct inet_sock *inet = inet_sk(sk);
487 struct tcphdr *th = tcp_hdr(skb);
489 if (skb->ip_summed == CHECKSUM_PARTIAL) {
490 th->check = ~tcp_v4_check(len, inet->saddr,
491 inet->daddr, 0);
492 skb->csum_start = skb_transport_header(skb) - skb->head;
493 skb->csum_offset = offsetof(struct tcphdr, check);
494 } else {
495 th->check = tcp_v4_check(len, inet->saddr, inet->daddr,
496 csum_partial((char *)th,
497 th->doff << 2,
498 skb->csum));
502 int tcp_v4_gso_send_check(struct sk_buff *skb)
504 const struct iphdr *iph;
505 struct tcphdr *th;
507 if (!pskb_may_pull(skb, sizeof(*th)))
508 return -EINVAL;
510 iph = ip_hdr(skb);
511 th = tcp_hdr(skb);
513 th->check = 0;
514 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
515 skb->csum_start = skb_transport_header(skb) - skb->head;
516 skb->csum_offset = offsetof(struct tcphdr, check);
517 skb->ip_summed = CHECKSUM_PARTIAL;
518 return 0;
522 * This routine will send an RST to the other tcp.
524 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
525 * for reset.
526 * Answer: if a packet caused RST, it is not for a socket
527 * existing in our system, if it is matched to a socket,
528 * it is just duplicate segment or bug in other side's TCP.
529 * So that we build reply only basing on parameters
530 * arrived with segment.
531 * Exception: precedence violation. We do not implement it in any case.
534 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
536 struct tcphdr *th = tcp_hdr(skb);
537 struct {
538 struct tcphdr th;
539 #ifdef CONFIG_TCP_MD5SIG
540 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
541 #endif
542 } rep;
543 struct ip_reply_arg arg;
544 #ifdef CONFIG_TCP_MD5SIG
545 struct tcp_md5sig_key *key;
546 #endif
548 /* Never send a reset in response to a reset. */
549 if (th->rst)
550 return;
552 if (skb->rtable->rt_type != RTN_LOCAL)
553 return;
555 /* Swap the send and the receive. */
556 memset(&rep, 0, sizeof(rep));
557 rep.th.dest = th->source;
558 rep.th.source = th->dest;
559 rep.th.doff = sizeof(struct tcphdr) / 4;
560 rep.th.rst = 1;
562 if (th->ack) {
563 rep.th.seq = th->ack_seq;
564 } else {
565 rep.th.ack = 1;
566 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
567 skb->len - (th->doff << 2));
570 memset(&arg, 0, sizeof(arg));
571 arg.iov[0].iov_base = (unsigned char *)&rep;
572 arg.iov[0].iov_len = sizeof(rep.th);
574 #ifdef CONFIG_TCP_MD5SIG
575 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
576 if (key) {
577 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
578 (TCPOPT_NOP << 16) |
579 (TCPOPT_MD5SIG << 8) |
580 TCPOLEN_MD5SIG);
581 /* Update length and the length the header thinks exists */
582 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
583 rep.th.doff = arg.iov[0].iov_len / 4;
585 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[1],
586 key,
587 ip_hdr(skb)->daddr,
588 ip_hdr(skb)->saddr,
589 &rep.th, arg.iov[0].iov_len);
591 #endif
592 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
593 ip_hdr(skb)->saddr, /* XXX */
594 sizeof(struct tcphdr), IPPROTO_TCP, 0);
595 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
597 ip_send_reply(dev_net(skb->dst->dev)->ipv4.tcp_sock, skb,
598 &arg, arg.iov[0].iov_len);
600 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
601 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS);
604 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
605 outside socket context is ugly, certainly. What can I do?
608 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
609 u32 win, u32 ts, int oif,
610 struct tcp_md5sig_key *key)
612 struct tcphdr *th = tcp_hdr(skb);
613 struct {
614 struct tcphdr th;
615 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
616 #ifdef CONFIG_TCP_MD5SIG
617 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
618 #endif
620 } rep;
621 struct ip_reply_arg arg;
623 memset(&rep.th, 0, sizeof(struct tcphdr));
624 memset(&arg, 0, sizeof(arg));
626 arg.iov[0].iov_base = (unsigned char *)&rep;
627 arg.iov[0].iov_len = sizeof(rep.th);
628 if (ts) {
629 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
630 (TCPOPT_TIMESTAMP << 8) |
631 TCPOLEN_TIMESTAMP);
632 rep.opt[1] = htonl(tcp_time_stamp);
633 rep.opt[2] = htonl(ts);
634 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
637 /* Swap the send and the receive. */
638 rep.th.dest = th->source;
639 rep.th.source = th->dest;
640 rep.th.doff = arg.iov[0].iov_len / 4;
641 rep.th.seq = htonl(seq);
642 rep.th.ack_seq = htonl(ack);
643 rep.th.ack = 1;
644 rep.th.window = htons(win);
646 #ifdef CONFIG_TCP_MD5SIG
647 if (key) {
648 int offset = (ts) ? 3 : 0;
650 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
651 (TCPOPT_NOP << 16) |
652 (TCPOPT_MD5SIG << 8) |
653 TCPOLEN_MD5SIG);
654 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
655 rep.th.doff = arg.iov[0].iov_len/4;
657 tcp_v4_do_calc_md5_hash((__u8 *)&rep.opt[offset],
658 key,
659 ip_hdr(skb)->daddr,
660 ip_hdr(skb)->saddr,
661 &rep.th, arg.iov[0].iov_len);
663 #endif
664 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
665 ip_hdr(skb)->saddr, /* XXX */
666 arg.iov[0].iov_len, IPPROTO_TCP, 0);
667 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
668 if (oif)
669 arg.bound_dev_if = oif;
671 ip_send_reply(dev_net(skb->dev)->ipv4.tcp_sock, skb,
672 &arg, arg.iov[0].iov_len);
674 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS);
677 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
679 struct inet_timewait_sock *tw = inet_twsk(sk);
680 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
682 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
683 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
684 tcptw->tw_ts_recent,
685 tw->tw_bound_dev_if,
686 tcp_twsk_md5_key(tcptw)
689 inet_twsk_put(tw);
692 static void tcp_v4_reqsk_send_ack(struct sk_buff *skb,
693 struct request_sock *req)
695 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
696 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
697 req->ts_recent,
699 tcp_v4_md5_do_lookup(skb->sk, ip_hdr(skb)->daddr));
703 * Send a SYN-ACK after having received a SYN.
704 * This still operates on a request_sock only, not on a big
705 * socket.
707 static int __tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
708 struct dst_entry *dst)
710 const struct inet_request_sock *ireq = inet_rsk(req);
711 int err = -1;
712 struct sk_buff * skb;
714 /* First, grab a route. */
715 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
716 return -1;
718 skb = tcp_make_synack(sk, dst, req);
720 if (skb) {
721 struct tcphdr *th = tcp_hdr(skb);
723 th->check = tcp_v4_check(skb->len,
724 ireq->loc_addr,
725 ireq->rmt_addr,
726 csum_partial((char *)th, skb->len,
727 skb->csum));
729 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
730 ireq->rmt_addr,
731 ireq->opt);
732 err = net_xmit_eval(err);
735 dst_release(dst);
736 return err;
739 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req)
741 return __tcp_v4_send_synack(sk, req, NULL);
745 * IPv4 request_sock destructor.
747 static void tcp_v4_reqsk_destructor(struct request_sock *req)
749 kfree(inet_rsk(req)->opt);
752 #ifdef CONFIG_SYN_COOKIES
753 static void syn_flood_warning(struct sk_buff *skb)
755 static unsigned long warntime;
757 if (time_after(jiffies, (warntime + HZ * 60))) {
758 warntime = jiffies;
759 printk(KERN_INFO
760 "possible SYN flooding on port %d. Sending cookies.\n",
761 ntohs(tcp_hdr(skb)->dest));
764 #endif
767 * Save and compile IPv4 options into the request_sock if needed.
769 static struct ip_options *tcp_v4_save_options(struct sock *sk,
770 struct sk_buff *skb)
772 struct ip_options *opt = &(IPCB(skb)->opt);
773 struct ip_options *dopt = NULL;
775 if (opt && opt->optlen) {
776 int opt_size = optlength(opt);
777 dopt = kmalloc(opt_size, GFP_ATOMIC);
778 if (dopt) {
779 if (ip_options_echo(dopt, skb)) {
780 kfree(dopt);
781 dopt = NULL;
785 return dopt;
788 #ifdef CONFIG_TCP_MD5SIG
790 * RFC2385 MD5 checksumming requires a mapping of
791 * IP address->MD5 Key.
792 * We need to maintain these in the sk structure.
795 /* Find the Key structure for an address. */
796 static struct tcp_md5sig_key *
797 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
799 struct tcp_sock *tp = tcp_sk(sk);
800 int i;
802 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
803 return NULL;
804 for (i = 0; i < tp->md5sig_info->entries4; i++) {
805 if (tp->md5sig_info->keys4[i].addr == addr)
806 return &tp->md5sig_info->keys4[i].base;
808 return NULL;
811 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
812 struct sock *addr_sk)
814 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->daddr);
817 EXPORT_SYMBOL(tcp_v4_md5_lookup);
819 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
820 struct request_sock *req)
822 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
825 /* This can be called on a newly created socket, from other files */
826 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
827 u8 *newkey, u8 newkeylen)
829 /* Add Key to the list */
830 struct tcp_md5sig_key *key;
831 struct tcp_sock *tp = tcp_sk(sk);
832 struct tcp4_md5sig_key *keys;
834 key = tcp_v4_md5_do_lookup(sk, addr);
835 if (key) {
836 /* Pre-existing entry - just update that one. */
837 kfree(key->key);
838 key->key = newkey;
839 key->keylen = newkeylen;
840 } else {
841 struct tcp_md5sig_info *md5sig;
843 if (!tp->md5sig_info) {
844 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
845 GFP_ATOMIC);
846 if (!tp->md5sig_info) {
847 kfree(newkey);
848 return -ENOMEM;
850 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
852 if (tcp_alloc_md5sig_pool() == NULL) {
853 kfree(newkey);
854 return -ENOMEM;
856 md5sig = tp->md5sig_info;
858 if (md5sig->alloced4 == md5sig->entries4) {
859 keys = kmalloc((sizeof(*keys) *
860 (md5sig->entries4 + 1)), GFP_ATOMIC);
861 if (!keys) {
862 kfree(newkey);
863 tcp_free_md5sig_pool();
864 return -ENOMEM;
867 if (md5sig->entries4)
868 memcpy(keys, md5sig->keys4,
869 sizeof(*keys) * md5sig->entries4);
871 /* Free old key list, and reference new one */
872 kfree(md5sig->keys4);
873 md5sig->keys4 = keys;
874 md5sig->alloced4++;
876 md5sig->entries4++;
877 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
878 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
879 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
881 return 0;
884 EXPORT_SYMBOL(tcp_v4_md5_do_add);
886 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
887 u8 *newkey, u8 newkeylen)
889 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->daddr,
890 newkey, newkeylen);
893 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
895 struct tcp_sock *tp = tcp_sk(sk);
896 int i;
898 for (i = 0; i < tp->md5sig_info->entries4; i++) {
899 if (tp->md5sig_info->keys4[i].addr == addr) {
900 /* Free the key */
901 kfree(tp->md5sig_info->keys4[i].base.key);
902 tp->md5sig_info->entries4--;
904 if (tp->md5sig_info->entries4 == 0) {
905 kfree(tp->md5sig_info->keys4);
906 tp->md5sig_info->keys4 = NULL;
907 tp->md5sig_info->alloced4 = 0;
908 } else if (tp->md5sig_info->entries4 != i) {
909 /* Need to do some manipulation */
910 memmove(&tp->md5sig_info->keys4[i],
911 &tp->md5sig_info->keys4[i+1],
912 (tp->md5sig_info->entries4 - i) *
913 sizeof(struct tcp4_md5sig_key));
915 tcp_free_md5sig_pool();
916 return 0;
919 return -ENOENT;
922 EXPORT_SYMBOL(tcp_v4_md5_do_del);
924 static void tcp_v4_clear_md5_list(struct sock *sk)
926 struct tcp_sock *tp = tcp_sk(sk);
928 /* Free each key, then the set of key keys,
929 * the crypto element, and then decrement our
930 * hold on the last resort crypto.
932 if (tp->md5sig_info->entries4) {
933 int i;
934 for (i = 0; i < tp->md5sig_info->entries4; i++)
935 kfree(tp->md5sig_info->keys4[i].base.key);
936 tp->md5sig_info->entries4 = 0;
937 tcp_free_md5sig_pool();
939 if (tp->md5sig_info->keys4) {
940 kfree(tp->md5sig_info->keys4);
941 tp->md5sig_info->keys4 = NULL;
942 tp->md5sig_info->alloced4 = 0;
946 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
947 int optlen)
949 struct tcp_md5sig cmd;
950 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
951 u8 *newkey;
953 if (optlen < sizeof(cmd))
954 return -EINVAL;
956 if (copy_from_user(&cmd, optval, sizeof(cmd)))
957 return -EFAULT;
959 if (sin->sin_family != AF_INET)
960 return -EINVAL;
962 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
963 if (!tcp_sk(sk)->md5sig_info)
964 return -ENOENT;
965 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
968 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
969 return -EINVAL;
971 if (!tcp_sk(sk)->md5sig_info) {
972 struct tcp_sock *tp = tcp_sk(sk);
973 struct tcp_md5sig_info *p = kzalloc(sizeof(*p), GFP_KERNEL);
975 if (!p)
976 return -EINVAL;
978 tp->md5sig_info = p;
979 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
982 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL);
983 if (!newkey)
984 return -ENOMEM;
985 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
986 newkey, cmd.tcpm_keylen);
989 static int tcp_v4_do_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
990 __be32 saddr, __be32 daddr,
991 struct tcphdr *th,
992 unsigned int tcplen)
994 struct tcp_md5sig_pool *hp;
995 struct tcp4_pseudohdr *bp;
996 int err;
999 * Okay, so RFC2385 is turned on for this connection,
1000 * so we need to generate the MD5 hash for the packet now.
1003 hp = tcp_get_md5sig_pool();
1004 if (!hp)
1005 goto clear_hash_noput;
1007 bp = &hp->md5_blk.ip4;
1010 * The TCP pseudo-header (in the order: source IP address,
1011 * destination IP address, zero-padded protocol number, and
1012 * segment length)
1014 bp->saddr = saddr;
1015 bp->daddr = daddr;
1016 bp->pad = 0;
1017 bp->protocol = IPPROTO_TCP;
1018 bp->len = htons(tcplen);
1020 err = tcp_calc_md5_hash(md5_hash, key, sizeof(*bp),
1021 th, tcplen, hp);
1022 if (err)
1023 goto clear_hash;
1025 /* Free up the crypto pool */
1026 tcp_put_md5sig_pool();
1027 out:
1028 return 0;
1029 clear_hash:
1030 tcp_put_md5sig_pool();
1031 clear_hash_noput:
1032 memset(md5_hash, 0, 16);
1033 goto out;
1036 int tcp_v4_calc_md5_hash(char *md5_hash, struct tcp_md5sig_key *key,
1037 struct sock *sk,
1038 struct dst_entry *dst,
1039 struct request_sock *req,
1040 struct tcphdr *th,
1041 unsigned int tcplen)
1043 __be32 saddr, daddr;
1045 if (sk) {
1046 saddr = inet_sk(sk)->saddr;
1047 daddr = inet_sk(sk)->daddr;
1048 } else {
1049 struct rtable *rt = (struct rtable *)dst;
1050 BUG_ON(!rt);
1051 saddr = rt->rt_src;
1052 daddr = rt->rt_dst;
1054 return tcp_v4_do_calc_md5_hash(md5_hash, key,
1055 saddr, daddr,
1056 th, tcplen);
1059 EXPORT_SYMBOL(tcp_v4_calc_md5_hash);
1061 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1064 * This gets called for each TCP segment that arrives
1065 * so we want to be efficient.
1066 * We have 3 drop cases:
1067 * o No MD5 hash and one expected.
1068 * o MD5 hash and we're not expecting one.
1069 * o MD5 hash and its wrong.
1071 __u8 *hash_location = NULL;
1072 struct tcp_md5sig_key *hash_expected;
1073 const struct iphdr *iph = ip_hdr(skb);
1074 struct tcphdr *th = tcp_hdr(skb);
1075 int genhash;
1076 unsigned char newhash[16];
1078 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1079 hash_location = tcp_parse_md5sig_option(th);
1081 /* We've parsed the options - do we have a hash? */
1082 if (!hash_expected && !hash_location)
1083 return 0;
1085 if (hash_expected && !hash_location) {
1086 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash expected but NOT found "
1087 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1088 NIPQUAD(iph->saddr), ntohs(th->source),
1089 NIPQUAD(iph->daddr), ntohs(th->dest));
1090 return 1;
1093 if (!hash_expected && hash_location) {
1094 LIMIT_NETDEBUG(KERN_INFO "MD5 Hash NOT expected but found "
1095 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)\n",
1096 NIPQUAD(iph->saddr), ntohs(th->source),
1097 NIPQUAD(iph->daddr), ntohs(th->dest));
1098 return 1;
1101 /* Okay, so this is hash_expected and hash_location -
1102 * so we need to calculate the checksum.
1104 genhash = tcp_v4_do_calc_md5_hash(newhash,
1105 hash_expected,
1106 iph->saddr, iph->daddr,
1107 th, skb->len);
1109 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1110 if (net_ratelimit()) {
1111 printk(KERN_INFO "MD5 Hash failed for "
1112 "(" NIPQUAD_FMT ", %d)->(" NIPQUAD_FMT ", %d)%s\n",
1113 NIPQUAD(iph->saddr), ntohs(th->source),
1114 NIPQUAD(iph->daddr), ntohs(th->dest),
1115 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1117 return 1;
1119 return 0;
1122 #endif
1124 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1125 .family = PF_INET,
1126 .obj_size = sizeof(struct tcp_request_sock),
1127 .rtx_syn_ack = tcp_v4_send_synack,
1128 .send_ack = tcp_v4_reqsk_send_ack,
1129 .destructor = tcp_v4_reqsk_destructor,
1130 .send_reset = tcp_v4_send_reset,
1133 #ifdef CONFIG_TCP_MD5SIG
1134 static struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1135 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1137 #endif
1139 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1140 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1141 .twsk_unique = tcp_twsk_unique,
1142 .twsk_destructor= tcp_twsk_destructor,
1145 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1147 struct inet_request_sock *ireq;
1148 struct tcp_options_received tmp_opt;
1149 struct request_sock *req;
1150 __be32 saddr = ip_hdr(skb)->saddr;
1151 __be32 daddr = ip_hdr(skb)->daddr;
1152 __u32 isn = TCP_SKB_CB(skb)->when;
1153 struct dst_entry *dst = NULL;
1154 #ifdef CONFIG_SYN_COOKIES
1155 int want_cookie = 0;
1156 #else
1157 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1158 #endif
1160 /* Never answer to SYNs send to broadcast or multicast */
1161 if (skb->rtable->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1162 goto drop;
1164 /* TW buckets are converted to open requests without
1165 * limitations, they conserve resources and peer is
1166 * evidently real one.
1168 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1169 #ifdef CONFIG_SYN_COOKIES
1170 if (sysctl_tcp_syncookies) {
1171 want_cookie = 1;
1172 } else
1173 #endif
1174 goto drop;
1177 /* Accept backlog is full. If we have already queued enough
1178 * of warm entries in syn queue, drop request. It is better than
1179 * clogging syn queue with openreqs with exponentially increasing
1180 * timeout.
1182 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1183 goto drop;
1185 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1186 if (!req)
1187 goto drop;
1189 #ifdef CONFIG_TCP_MD5SIG
1190 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1191 #endif
1193 tcp_clear_options(&tmp_opt);
1194 tmp_opt.mss_clamp = 536;
1195 tmp_opt.user_mss = tcp_sk(sk)->rx_opt.user_mss;
1197 tcp_parse_options(skb, &tmp_opt, 0);
1199 if (want_cookie && !tmp_opt.saw_tstamp)
1200 tcp_clear_options(&tmp_opt);
1202 if (tmp_opt.saw_tstamp && !tmp_opt.rcv_tsval) {
1203 /* Some OSes (unknown ones, but I see them on web server, which
1204 * contains information interesting only for windows'
1205 * users) do not send their stamp in SYN. It is easy case.
1206 * We simply do not advertise TS support.
1208 tmp_opt.saw_tstamp = 0;
1209 tmp_opt.tstamp_ok = 0;
1211 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1213 tcp_openreq_init(req, &tmp_opt, skb);
1215 if (security_inet_conn_request(sk, skb, req))
1216 goto drop_and_free;
1218 ireq = inet_rsk(req);
1219 ireq->loc_addr = daddr;
1220 ireq->rmt_addr = saddr;
1221 ireq->opt = tcp_v4_save_options(sk, skb);
1222 if (!want_cookie)
1223 TCP_ECN_create_request(req, tcp_hdr(skb));
1225 if (want_cookie) {
1226 #ifdef CONFIG_SYN_COOKIES
1227 syn_flood_warning(skb);
1228 req->cookie_ts = tmp_opt.tstamp_ok;
1229 #endif
1230 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1231 } else if (!isn) {
1232 struct inet_peer *peer = NULL;
1234 /* VJ's idea. We save last timestamp seen
1235 * from the destination in peer table, when entering
1236 * state TIME-WAIT, and check against it before
1237 * accepting new connection request.
1239 * If "isn" is not zero, this request hit alive
1240 * timewait bucket, so that all the necessary checks
1241 * are made in the function processing timewait state.
1243 if (tmp_opt.saw_tstamp &&
1244 tcp_death_row.sysctl_tw_recycle &&
1245 (dst = inet_csk_route_req(sk, req)) != NULL &&
1246 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1247 peer->v4daddr == saddr) {
1248 if (get_seconds() < peer->tcp_ts_stamp + TCP_PAWS_MSL &&
1249 (s32)(peer->tcp_ts - req->ts_recent) >
1250 TCP_PAWS_WINDOW) {
1251 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED);
1252 goto drop_and_release;
1255 /* Kill the following clause, if you dislike this way. */
1256 else if (!sysctl_tcp_syncookies &&
1257 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1258 (sysctl_max_syn_backlog >> 2)) &&
1259 (!peer || !peer->tcp_ts_stamp) &&
1260 (!dst || !dst_metric(dst, RTAX_RTT))) {
1261 /* Without syncookies last quarter of
1262 * backlog is filled with destinations,
1263 * proven to be alive.
1264 * It means that we continue to communicate
1265 * to destinations, already remembered
1266 * to the moment of synflood.
1268 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open "
1269 "request from " NIPQUAD_FMT "/%u\n",
1270 NIPQUAD(saddr),
1271 ntohs(tcp_hdr(skb)->source));
1272 goto drop_and_release;
1275 isn = tcp_v4_init_sequence(skb);
1277 tcp_rsk(req)->snt_isn = isn;
1279 if (__tcp_v4_send_synack(sk, req, dst) || want_cookie)
1280 goto drop_and_free;
1282 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1283 return 0;
1285 drop_and_release:
1286 dst_release(dst);
1287 drop_and_free:
1288 reqsk_free(req);
1289 drop:
1290 return 0;
1295 * The three way handshake has completed - we got a valid synack -
1296 * now create the new socket.
1298 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1299 struct request_sock *req,
1300 struct dst_entry *dst)
1302 struct inet_request_sock *ireq;
1303 struct inet_sock *newinet;
1304 struct tcp_sock *newtp;
1305 struct sock *newsk;
1306 #ifdef CONFIG_TCP_MD5SIG
1307 struct tcp_md5sig_key *key;
1308 #endif
1310 if (sk_acceptq_is_full(sk))
1311 goto exit_overflow;
1313 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1314 goto exit;
1316 newsk = tcp_create_openreq_child(sk, req, skb);
1317 if (!newsk)
1318 goto exit;
1320 newsk->sk_gso_type = SKB_GSO_TCPV4;
1321 sk_setup_caps(newsk, dst);
1323 newtp = tcp_sk(newsk);
1324 newinet = inet_sk(newsk);
1325 ireq = inet_rsk(req);
1326 newinet->daddr = ireq->rmt_addr;
1327 newinet->rcv_saddr = ireq->loc_addr;
1328 newinet->saddr = ireq->loc_addr;
1329 newinet->opt = ireq->opt;
1330 ireq->opt = NULL;
1331 newinet->mc_index = inet_iif(skb);
1332 newinet->mc_ttl = ip_hdr(skb)->ttl;
1333 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1334 if (newinet->opt)
1335 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1336 newinet->id = newtp->write_seq ^ jiffies;
1338 tcp_mtup_init(newsk);
1339 tcp_sync_mss(newsk, dst_mtu(dst));
1340 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1341 tcp_initialize_rcv_mss(newsk);
1343 #ifdef CONFIG_TCP_MD5SIG
1344 /* Copy over the MD5 key from the original socket */
1345 if ((key = tcp_v4_md5_do_lookup(sk, newinet->daddr)) != NULL) {
1347 * We're using one, so create a matching key
1348 * on the newsk structure. If we fail to get
1349 * memory, then we end up not copying the key
1350 * across. Shucks.
1352 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1353 if (newkey != NULL)
1354 tcp_v4_md5_do_add(newsk, inet_sk(sk)->daddr,
1355 newkey, key->keylen);
1357 #endif
1359 __inet_hash_nolisten(newsk);
1360 __inet_inherit_port(sk, newsk);
1362 return newsk;
1364 exit_overflow:
1365 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS);
1366 exit:
1367 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS);
1368 dst_release(dst);
1369 return NULL;
1372 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1374 struct tcphdr *th = tcp_hdr(skb);
1375 const struct iphdr *iph = ip_hdr(skb);
1376 struct sock *nsk;
1377 struct request_sock **prev;
1378 /* Find possible connection requests. */
1379 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1380 iph->saddr, iph->daddr);
1381 if (req)
1382 return tcp_check_req(sk, skb, req, prev);
1384 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1385 th->source, iph->daddr, th->dest, inet_iif(skb));
1387 if (nsk) {
1388 if (nsk->sk_state != TCP_TIME_WAIT) {
1389 bh_lock_sock(nsk);
1390 return nsk;
1392 inet_twsk_put(inet_twsk(nsk));
1393 return NULL;
1396 #ifdef CONFIG_SYN_COOKIES
1397 if (!th->rst && !th->syn && th->ack)
1398 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1399 #endif
1400 return sk;
1403 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1405 const struct iphdr *iph = ip_hdr(skb);
1407 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1408 if (!tcp_v4_check(skb->len, iph->saddr,
1409 iph->daddr, skb->csum)) {
1410 skb->ip_summed = CHECKSUM_UNNECESSARY;
1411 return 0;
1415 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1416 skb->len, IPPROTO_TCP, 0);
1418 if (skb->len <= 76) {
1419 return __skb_checksum_complete(skb);
1421 return 0;
1425 /* The socket must have it's spinlock held when we get
1426 * here.
1428 * We have a potential double-lock case here, so even when
1429 * doing backlog processing we use the BH locking scheme.
1430 * This is because we cannot sleep with the original spinlock
1431 * held.
1433 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1435 struct sock *rsk;
1436 #ifdef CONFIG_TCP_MD5SIG
1438 * We really want to reject the packet as early as possible
1439 * if:
1440 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1441 * o There is an MD5 option and we're not expecting one
1443 if (tcp_v4_inbound_md5_hash(sk, skb))
1444 goto discard;
1445 #endif
1447 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1448 TCP_CHECK_TIMER(sk);
1449 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1450 rsk = sk;
1451 goto reset;
1453 TCP_CHECK_TIMER(sk);
1454 return 0;
1457 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1458 goto csum_err;
1460 if (sk->sk_state == TCP_LISTEN) {
1461 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1462 if (!nsk)
1463 goto discard;
1465 if (nsk != sk) {
1466 if (tcp_child_process(sk, nsk, skb)) {
1467 rsk = nsk;
1468 goto reset;
1470 return 0;
1474 TCP_CHECK_TIMER(sk);
1475 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1476 rsk = sk;
1477 goto reset;
1479 TCP_CHECK_TIMER(sk);
1480 return 0;
1482 reset:
1483 tcp_v4_send_reset(rsk, skb);
1484 discard:
1485 kfree_skb(skb);
1486 /* Be careful here. If this function gets more complicated and
1487 * gcc suffers from register pressure on the x86, sk (in %ebx)
1488 * might be destroyed here. This current version compiles correctly,
1489 * but you have been warned.
1491 return 0;
1493 csum_err:
1494 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1495 goto discard;
1499 * From tcp_input.c
1502 int tcp_v4_rcv(struct sk_buff *skb)
1504 const struct iphdr *iph;
1505 struct tcphdr *th;
1506 struct sock *sk;
1507 int ret;
1509 if (skb->pkt_type != PACKET_HOST)
1510 goto discard_it;
1512 /* Count it even if it's bad */
1513 TCP_INC_STATS_BH(TCP_MIB_INSEGS);
1515 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1516 goto discard_it;
1518 th = tcp_hdr(skb);
1520 if (th->doff < sizeof(struct tcphdr) / 4)
1521 goto bad_packet;
1522 if (!pskb_may_pull(skb, th->doff * 4))
1523 goto discard_it;
1525 /* An explanation is required here, I think.
1526 * Packet length and doff are validated by header prediction,
1527 * provided case of th->doff==0 is eliminated.
1528 * So, we defer the checks. */
1529 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1530 goto bad_packet;
1532 th = tcp_hdr(skb);
1533 iph = ip_hdr(skb);
1534 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1535 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1536 skb->len - th->doff * 4);
1537 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1538 TCP_SKB_CB(skb)->when = 0;
1539 TCP_SKB_CB(skb)->flags = iph->tos;
1540 TCP_SKB_CB(skb)->sacked = 0;
1542 sk = __inet_lookup(dev_net(skb->dev), &tcp_hashinfo, iph->saddr,
1543 th->source, iph->daddr, th->dest, inet_iif(skb));
1544 if (!sk)
1545 goto no_tcp_socket;
1547 process:
1548 if (sk->sk_state == TCP_TIME_WAIT)
1549 goto do_time_wait;
1551 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1552 goto discard_and_relse;
1553 nf_reset(skb);
1555 if (sk_filter(sk, skb))
1556 goto discard_and_relse;
1558 skb->dev = NULL;
1560 bh_lock_sock_nested(sk);
1561 ret = 0;
1562 if (!sock_owned_by_user(sk)) {
1563 #ifdef CONFIG_NET_DMA
1564 struct tcp_sock *tp = tcp_sk(sk);
1565 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1566 tp->ucopy.dma_chan = get_softnet_dma();
1567 if (tp->ucopy.dma_chan)
1568 ret = tcp_v4_do_rcv(sk, skb);
1569 else
1570 #endif
1572 if (!tcp_prequeue(sk, skb))
1573 ret = tcp_v4_do_rcv(sk, skb);
1575 } else
1576 sk_add_backlog(sk, skb);
1577 bh_unlock_sock(sk);
1579 sock_put(sk);
1581 return ret;
1583 no_tcp_socket:
1584 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1585 goto discard_it;
1587 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1588 bad_packet:
1589 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1590 } else {
1591 tcp_v4_send_reset(NULL, skb);
1594 discard_it:
1595 /* Discard frame. */
1596 kfree_skb(skb);
1597 return 0;
1599 discard_and_relse:
1600 sock_put(sk);
1601 goto discard_it;
1603 do_time_wait:
1604 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1605 inet_twsk_put(inet_twsk(sk));
1606 goto discard_it;
1609 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1610 TCP_INC_STATS_BH(TCP_MIB_INERRS);
1611 inet_twsk_put(inet_twsk(sk));
1612 goto discard_it;
1614 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1615 case TCP_TW_SYN: {
1616 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1617 &tcp_hashinfo,
1618 iph->daddr, th->dest,
1619 inet_iif(skb));
1620 if (sk2) {
1621 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1622 inet_twsk_put(inet_twsk(sk));
1623 sk = sk2;
1624 goto process;
1626 /* Fall through to ACK */
1628 case TCP_TW_ACK:
1629 tcp_v4_timewait_ack(sk, skb);
1630 break;
1631 case TCP_TW_RST:
1632 goto no_tcp_socket;
1633 case TCP_TW_SUCCESS:;
1635 goto discard_it;
1638 /* VJ's idea. Save last timestamp seen from this destination
1639 * and hold it at least for normal timewait interval to use for duplicate
1640 * segment detection in subsequent connections, before they enter synchronized
1641 * state.
1644 int tcp_v4_remember_stamp(struct sock *sk)
1646 struct inet_sock *inet = inet_sk(sk);
1647 struct tcp_sock *tp = tcp_sk(sk);
1648 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1649 struct inet_peer *peer = NULL;
1650 int release_it = 0;
1652 if (!rt || rt->rt_dst != inet->daddr) {
1653 peer = inet_getpeer(inet->daddr, 1);
1654 release_it = 1;
1655 } else {
1656 if (!rt->peer)
1657 rt_bind_peer(rt, 1);
1658 peer = rt->peer;
1661 if (peer) {
1662 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1663 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1664 peer->tcp_ts_stamp <= tp->rx_opt.ts_recent_stamp)) {
1665 peer->tcp_ts_stamp = tp->rx_opt.ts_recent_stamp;
1666 peer->tcp_ts = tp->rx_opt.ts_recent;
1668 if (release_it)
1669 inet_putpeer(peer);
1670 return 1;
1673 return 0;
1676 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1678 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1680 if (peer) {
1681 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1683 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1684 (peer->tcp_ts_stamp + TCP_PAWS_MSL < get_seconds() &&
1685 peer->tcp_ts_stamp <= tcptw->tw_ts_recent_stamp)) {
1686 peer->tcp_ts_stamp = tcptw->tw_ts_recent_stamp;
1687 peer->tcp_ts = tcptw->tw_ts_recent;
1689 inet_putpeer(peer);
1690 return 1;
1693 return 0;
1696 struct inet_connection_sock_af_ops ipv4_specific = {
1697 .queue_xmit = ip_queue_xmit,
1698 .send_check = tcp_v4_send_check,
1699 .rebuild_header = inet_sk_rebuild_header,
1700 .conn_request = tcp_v4_conn_request,
1701 .syn_recv_sock = tcp_v4_syn_recv_sock,
1702 .remember_stamp = tcp_v4_remember_stamp,
1703 .net_header_len = sizeof(struct iphdr),
1704 .setsockopt = ip_setsockopt,
1705 .getsockopt = ip_getsockopt,
1706 .addr2sockaddr = inet_csk_addr2sockaddr,
1707 .sockaddr_len = sizeof(struct sockaddr_in),
1708 .bind_conflict = inet_csk_bind_conflict,
1709 #ifdef CONFIG_COMPAT
1710 .compat_setsockopt = compat_ip_setsockopt,
1711 .compat_getsockopt = compat_ip_getsockopt,
1712 #endif
1715 #ifdef CONFIG_TCP_MD5SIG
1716 static struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1717 .md5_lookup = tcp_v4_md5_lookup,
1718 .calc_md5_hash = tcp_v4_calc_md5_hash,
1719 .md5_add = tcp_v4_md5_add_func,
1720 .md5_parse = tcp_v4_parse_md5_keys,
1722 #endif
1724 /* NOTE: A lot of things set to zero explicitly by call to
1725 * sk_alloc() so need not be done here.
1727 static int tcp_v4_init_sock(struct sock *sk)
1729 struct inet_connection_sock *icsk = inet_csk(sk);
1730 struct tcp_sock *tp = tcp_sk(sk);
1732 skb_queue_head_init(&tp->out_of_order_queue);
1733 tcp_init_xmit_timers(sk);
1734 tcp_prequeue_init(tp);
1736 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1737 tp->mdev = TCP_TIMEOUT_INIT;
1739 /* So many TCP implementations out there (incorrectly) count the
1740 * initial SYN frame in their delayed-ACK and congestion control
1741 * algorithms that we must have the following bandaid to talk
1742 * efficiently to them. -DaveM
1744 tp->snd_cwnd = 2;
1746 /* See draft-stevens-tcpca-spec-01 for discussion of the
1747 * initialization of these values.
1749 tp->snd_ssthresh = 0x7fffffff; /* Infinity */
1750 tp->snd_cwnd_clamp = ~0;
1751 tp->mss_cache = 536;
1753 tp->reordering = sysctl_tcp_reordering;
1754 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1756 sk->sk_state = TCP_CLOSE;
1758 sk->sk_write_space = sk_stream_write_space;
1759 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1761 icsk->icsk_af_ops = &ipv4_specific;
1762 icsk->icsk_sync_mss = tcp_sync_mss;
1763 #ifdef CONFIG_TCP_MD5SIG
1764 tp->af_specific = &tcp_sock_ipv4_specific;
1765 #endif
1767 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1768 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1770 atomic_inc(&tcp_sockets_allocated);
1772 return 0;
1775 void tcp_v4_destroy_sock(struct sock *sk)
1777 struct tcp_sock *tp = tcp_sk(sk);
1779 tcp_clear_xmit_timers(sk);
1781 tcp_cleanup_congestion_control(sk);
1783 /* Cleanup up the write buffer. */
1784 tcp_write_queue_purge(sk);
1786 /* Cleans up our, hopefully empty, out_of_order_queue. */
1787 __skb_queue_purge(&tp->out_of_order_queue);
1789 #ifdef CONFIG_TCP_MD5SIG
1790 /* Clean up the MD5 key list, if any */
1791 if (tp->md5sig_info) {
1792 tcp_v4_clear_md5_list(sk);
1793 kfree(tp->md5sig_info);
1794 tp->md5sig_info = NULL;
1796 #endif
1798 #ifdef CONFIG_NET_DMA
1799 /* Cleans up our sk_async_wait_queue */
1800 __skb_queue_purge(&sk->sk_async_wait_queue);
1801 #endif
1803 /* Clean prequeue, it must be empty really */
1804 __skb_queue_purge(&tp->ucopy.prequeue);
1806 /* Clean up a referenced TCP bind bucket. */
1807 if (inet_csk(sk)->icsk_bind_hash)
1808 inet_put_port(sk);
1811 * If sendmsg cached page exists, toss it.
1813 if (sk->sk_sndmsg_page) {
1814 __free_page(sk->sk_sndmsg_page);
1815 sk->sk_sndmsg_page = NULL;
1818 atomic_dec(&tcp_sockets_allocated);
1821 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1823 #ifdef CONFIG_PROC_FS
1824 /* Proc filesystem TCP sock list dumping. */
1826 static inline struct inet_timewait_sock *tw_head(struct hlist_head *head)
1828 return hlist_empty(head) ? NULL :
1829 list_entry(head->first, struct inet_timewait_sock, tw_node);
1832 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1834 return tw->tw_node.next ?
1835 hlist_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1838 static void *listening_get_next(struct seq_file *seq, void *cur)
1840 struct inet_connection_sock *icsk;
1841 struct hlist_node *node;
1842 struct sock *sk = cur;
1843 struct tcp_iter_state* st = seq->private;
1844 struct net *net = seq_file_net(seq);
1846 if (!sk) {
1847 st->bucket = 0;
1848 sk = sk_head(&tcp_hashinfo.listening_hash[0]);
1849 goto get_sk;
1852 ++st->num;
1854 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1855 struct request_sock *req = cur;
1857 icsk = inet_csk(st->syn_wait_sk);
1858 req = req->dl_next;
1859 while (1) {
1860 while (req) {
1861 if (req->rsk_ops->family == st->family &&
1862 net_eq(sock_net(req->sk), net)) {
1863 cur = req;
1864 goto out;
1866 req = req->dl_next;
1868 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
1869 break;
1870 get_req:
1871 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
1873 sk = sk_next(st->syn_wait_sk);
1874 st->state = TCP_SEQ_STATE_LISTENING;
1875 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1876 } else {
1877 icsk = inet_csk(sk);
1878 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1879 if (reqsk_queue_len(&icsk->icsk_accept_queue))
1880 goto start_req;
1881 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1882 sk = sk_next(sk);
1884 get_sk:
1885 sk_for_each_from(sk, node) {
1886 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
1887 cur = sk;
1888 goto out;
1890 icsk = inet_csk(sk);
1891 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1892 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
1893 start_req:
1894 st->uid = sock_i_uid(sk);
1895 st->syn_wait_sk = sk;
1896 st->state = TCP_SEQ_STATE_OPENREQ;
1897 st->sbucket = 0;
1898 goto get_req;
1900 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
1902 if (++st->bucket < INET_LHTABLE_SIZE) {
1903 sk = sk_head(&tcp_hashinfo.listening_hash[st->bucket]);
1904 goto get_sk;
1906 cur = NULL;
1907 out:
1908 return cur;
1911 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
1913 void *rc = listening_get_next(seq, NULL);
1915 while (rc && *pos) {
1916 rc = listening_get_next(seq, rc);
1917 --*pos;
1919 return rc;
1922 static void *established_get_first(struct seq_file *seq)
1924 struct tcp_iter_state* st = seq->private;
1925 struct net *net = seq_file_net(seq);
1926 void *rc = NULL;
1928 for (st->bucket = 0; st->bucket < tcp_hashinfo.ehash_size; ++st->bucket) {
1929 struct sock *sk;
1930 struct hlist_node *node;
1931 struct inet_timewait_sock *tw;
1932 rwlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
1934 read_lock_bh(lock);
1935 sk_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
1936 if (sk->sk_family != st->family ||
1937 !net_eq(sock_net(sk), net)) {
1938 continue;
1940 rc = sk;
1941 goto out;
1943 st->state = TCP_SEQ_STATE_TIME_WAIT;
1944 inet_twsk_for_each(tw, node,
1945 &tcp_hashinfo.ehash[st->bucket].twchain) {
1946 if (tw->tw_family != st->family ||
1947 !net_eq(twsk_net(tw), net)) {
1948 continue;
1950 rc = tw;
1951 goto out;
1953 read_unlock_bh(lock);
1954 st->state = TCP_SEQ_STATE_ESTABLISHED;
1956 out:
1957 return rc;
1960 static void *established_get_next(struct seq_file *seq, void *cur)
1962 struct sock *sk = cur;
1963 struct inet_timewait_sock *tw;
1964 struct hlist_node *node;
1965 struct tcp_iter_state* st = seq->private;
1966 struct net *net = seq_file_net(seq);
1968 ++st->num;
1970 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
1971 tw = cur;
1972 tw = tw_next(tw);
1973 get_tw:
1974 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
1975 tw = tw_next(tw);
1977 if (tw) {
1978 cur = tw;
1979 goto out;
1981 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1982 st->state = TCP_SEQ_STATE_ESTABLISHED;
1984 if (++st->bucket < tcp_hashinfo.ehash_size) {
1985 read_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
1986 sk = sk_head(&tcp_hashinfo.ehash[st->bucket].chain);
1987 } else {
1988 cur = NULL;
1989 goto out;
1991 } else
1992 sk = sk_next(sk);
1994 sk_for_each_from(sk, node) {
1995 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
1996 goto found;
1999 st->state = TCP_SEQ_STATE_TIME_WAIT;
2000 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2001 goto get_tw;
2002 found:
2003 cur = sk;
2004 out:
2005 return cur;
2008 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2010 void *rc = established_get_first(seq);
2012 while (rc && pos) {
2013 rc = established_get_next(seq, rc);
2014 --pos;
2016 return rc;
2019 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2021 void *rc;
2022 struct tcp_iter_state* st = seq->private;
2024 inet_listen_lock(&tcp_hashinfo);
2025 st->state = TCP_SEQ_STATE_LISTENING;
2026 rc = listening_get_idx(seq, &pos);
2028 if (!rc) {
2029 inet_listen_unlock(&tcp_hashinfo);
2030 st->state = TCP_SEQ_STATE_ESTABLISHED;
2031 rc = established_get_idx(seq, pos);
2034 return rc;
2037 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2039 struct tcp_iter_state* st = seq->private;
2040 st->state = TCP_SEQ_STATE_LISTENING;
2041 st->num = 0;
2042 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2045 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2047 void *rc = NULL;
2048 struct tcp_iter_state* st;
2050 if (v == SEQ_START_TOKEN) {
2051 rc = tcp_get_idx(seq, 0);
2052 goto out;
2054 st = seq->private;
2056 switch (st->state) {
2057 case TCP_SEQ_STATE_OPENREQ:
2058 case TCP_SEQ_STATE_LISTENING:
2059 rc = listening_get_next(seq, v);
2060 if (!rc) {
2061 inet_listen_unlock(&tcp_hashinfo);
2062 st->state = TCP_SEQ_STATE_ESTABLISHED;
2063 rc = established_get_first(seq);
2065 break;
2066 case TCP_SEQ_STATE_ESTABLISHED:
2067 case TCP_SEQ_STATE_TIME_WAIT:
2068 rc = established_get_next(seq, v);
2069 break;
2071 out:
2072 ++*pos;
2073 return rc;
2076 static void tcp_seq_stop(struct seq_file *seq, void *v)
2078 struct tcp_iter_state* st = seq->private;
2080 switch (st->state) {
2081 case TCP_SEQ_STATE_OPENREQ:
2082 if (v) {
2083 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2084 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2086 case TCP_SEQ_STATE_LISTENING:
2087 if (v != SEQ_START_TOKEN)
2088 inet_listen_unlock(&tcp_hashinfo);
2089 break;
2090 case TCP_SEQ_STATE_TIME_WAIT:
2091 case TCP_SEQ_STATE_ESTABLISHED:
2092 if (v)
2093 read_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2094 break;
2098 static int tcp_seq_open(struct inode *inode, struct file *file)
2100 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2101 struct tcp_iter_state *s;
2102 int err;
2104 err = seq_open_net(inode, file, &afinfo->seq_ops,
2105 sizeof(struct tcp_iter_state));
2106 if (err < 0)
2107 return err;
2109 s = ((struct seq_file *)file->private_data)->private;
2110 s->family = afinfo->family;
2111 return 0;
2114 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2116 int rc = 0;
2117 struct proc_dir_entry *p;
2119 afinfo->seq_fops.open = tcp_seq_open;
2120 afinfo->seq_fops.read = seq_read;
2121 afinfo->seq_fops.llseek = seq_lseek;
2122 afinfo->seq_fops.release = seq_release_net;
2124 afinfo->seq_ops.start = tcp_seq_start;
2125 afinfo->seq_ops.next = tcp_seq_next;
2126 afinfo->seq_ops.stop = tcp_seq_stop;
2128 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2129 &afinfo->seq_fops, afinfo);
2130 if (!p)
2131 rc = -ENOMEM;
2132 return rc;
2135 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2137 proc_net_remove(net, afinfo->name);
2140 static void get_openreq4(struct sock *sk, struct request_sock *req,
2141 struct seq_file *f, int i, int uid, int *len)
2143 const struct inet_request_sock *ireq = inet_rsk(req);
2144 int ttd = req->expires - jiffies;
2146 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2147 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2149 ireq->loc_addr,
2150 ntohs(inet_sk(sk)->sport),
2151 ireq->rmt_addr,
2152 ntohs(ireq->rmt_port),
2153 TCP_SYN_RECV,
2154 0, 0, /* could print option size, but that is af dependent. */
2155 1, /* timers active (only the expire timer) */
2156 jiffies_to_clock_t(ttd),
2157 req->retrans,
2158 uid,
2159 0, /* non standard timer */
2160 0, /* open_requests have no inode */
2161 atomic_read(&sk->sk_refcnt),
2162 req,
2163 len);
2166 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2168 int timer_active;
2169 unsigned long timer_expires;
2170 struct tcp_sock *tp = tcp_sk(sk);
2171 const struct inet_connection_sock *icsk = inet_csk(sk);
2172 struct inet_sock *inet = inet_sk(sk);
2173 __be32 dest = inet->daddr;
2174 __be32 src = inet->rcv_saddr;
2175 __u16 destp = ntohs(inet->dport);
2176 __u16 srcp = ntohs(inet->sport);
2178 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2179 timer_active = 1;
2180 timer_expires = icsk->icsk_timeout;
2181 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2182 timer_active = 4;
2183 timer_expires = icsk->icsk_timeout;
2184 } else if (timer_pending(&sk->sk_timer)) {
2185 timer_active = 2;
2186 timer_expires = sk->sk_timer.expires;
2187 } else {
2188 timer_active = 0;
2189 timer_expires = jiffies;
2192 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2193 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2194 i, src, srcp, dest, destp, sk->sk_state,
2195 tp->write_seq - tp->snd_una,
2196 sk->sk_state == TCP_LISTEN ? sk->sk_ack_backlog :
2197 (tp->rcv_nxt - tp->copied_seq),
2198 timer_active,
2199 jiffies_to_clock_t(timer_expires - jiffies),
2200 icsk->icsk_retransmits,
2201 sock_i_uid(sk),
2202 icsk->icsk_probes_out,
2203 sock_i_ino(sk),
2204 atomic_read(&sk->sk_refcnt), sk,
2205 jiffies_to_clock_t(icsk->icsk_rto),
2206 jiffies_to_clock_t(icsk->icsk_ack.ato),
2207 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2208 tp->snd_cwnd,
2209 tp->snd_ssthresh >= 0xFFFF ? -1 : tp->snd_ssthresh,
2210 len);
2213 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2214 struct seq_file *f, int i, int *len)
2216 __be32 dest, src;
2217 __u16 destp, srcp;
2218 int ttd = tw->tw_ttd - jiffies;
2220 if (ttd < 0)
2221 ttd = 0;
2223 dest = tw->tw_daddr;
2224 src = tw->tw_rcv_saddr;
2225 destp = ntohs(tw->tw_dport);
2226 srcp = ntohs(tw->tw_sport);
2228 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2229 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2230 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2231 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2232 atomic_read(&tw->tw_refcnt), tw, len);
2235 #define TMPSZ 150
2237 static int tcp4_seq_show(struct seq_file *seq, void *v)
2239 struct tcp_iter_state* st;
2240 int len;
2242 if (v == SEQ_START_TOKEN) {
2243 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2244 " sl local_address rem_address st tx_queue "
2245 "rx_queue tr tm->when retrnsmt uid timeout "
2246 "inode");
2247 goto out;
2249 st = seq->private;
2251 switch (st->state) {
2252 case TCP_SEQ_STATE_LISTENING:
2253 case TCP_SEQ_STATE_ESTABLISHED:
2254 get_tcp4_sock(v, seq, st->num, &len);
2255 break;
2256 case TCP_SEQ_STATE_OPENREQ:
2257 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2258 break;
2259 case TCP_SEQ_STATE_TIME_WAIT:
2260 get_timewait4_sock(v, seq, st->num, &len);
2261 break;
2263 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2264 out:
2265 return 0;
2268 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2269 .name = "tcp",
2270 .family = AF_INET,
2271 .seq_fops = {
2272 .owner = THIS_MODULE,
2274 .seq_ops = {
2275 .show = tcp4_seq_show,
2279 static int tcp4_proc_init_net(struct net *net)
2281 return tcp_proc_register(net, &tcp4_seq_afinfo);
2284 static void tcp4_proc_exit_net(struct net *net)
2286 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2289 static struct pernet_operations tcp4_net_ops = {
2290 .init = tcp4_proc_init_net,
2291 .exit = tcp4_proc_exit_net,
2294 int __init tcp4_proc_init(void)
2296 return register_pernet_subsys(&tcp4_net_ops);
2299 void tcp4_proc_exit(void)
2301 unregister_pernet_subsys(&tcp4_net_ops);
2303 #endif /* CONFIG_PROC_FS */
2305 struct proto tcp_prot = {
2306 .name = "TCP",
2307 .owner = THIS_MODULE,
2308 .close = tcp_close,
2309 .connect = tcp_v4_connect,
2310 .disconnect = tcp_disconnect,
2311 .accept = inet_csk_accept,
2312 .ioctl = tcp_ioctl,
2313 .init = tcp_v4_init_sock,
2314 .destroy = tcp_v4_destroy_sock,
2315 .shutdown = tcp_shutdown,
2316 .setsockopt = tcp_setsockopt,
2317 .getsockopt = tcp_getsockopt,
2318 .recvmsg = tcp_recvmsg,
2319 .backlog_rcv = tcp_v4_do_rcv,
2320 .hash = inet_hash,
2321 .unhash = inet_unhash,
2322 .get_port = inet_csk_get_port,
2323 .enter_memory_pressure = tcp_enter_memory_pressure,
2324 .sockets_allocated = &tcp_sockets_allocated,
2325 .orphan_count = &tcp_orphan_count,
2326 .memory_allocated = &tcp_memory_allocated,
2327 .memory_pressure = &tcp_memory_pressure,
2328 .sysctl_mem = sysctl_tcp_mem,
2329 .sysctl_wmem = sysctl_tcp_wmem,
2330 .sysctl_rmem = sysctl_tcp_rmem,
2331 .max_header = MAX_TCP_HEADER,
2332 .obj_size = sizeof(struct tcp_sock),
2333 .twsk_prot = &tcp_timewait_sock_ops,
2334 .rsk_prot = &tcp_request_sock_ops,
2335 .h.hashinfo = &tcp_hashinfo,
2336 #ifdef CONFIG_COMPAT
2337 .compat_setsockopt = compat_tcp_setsockopt,
2338 .compat_getsockopt = compat_tcp_getsockopt,
2339 #endif
2343 static int __net_init tcp_sk_init(struct net *net)
2345 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2346 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2349 static void __net_exit tcp_sk_exit(struct net *net)
2351 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2354 static struct pernet_operations __net_initdata tcp_sk_ops = {
2355 .init = tcp_sk_init,
2356 .exit = tcp_sk_exit,
2359 void __init tcp_v4_init(void)
2361 if (register_pernet_device(&tcp_sk_ops))
2362 panic("Failed to create the TCP control socket.\n");
2365 EXPORT_SYMBOL(ipv4_specific);
2366 EXPORT_SYMBOL(tcp_hashinfo);
2367 EXPORT_SYMBOL(tcp_prot);
2368 EXPORT_SYMBOL(tcp_v4_conn_request);
2369 EXPORT_SYMBOL(tcp_v4_connect);
2370 EXPORT_SYMBOL(tcp_v4_do_rcv);
2371 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2372 EXPORT_SYMBOL(tcp_v4_send_check);
2373 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2375 #ifdef CONFIG_PROC_FS
2376 EXPORT_SYMBOL(tcp_proc_register);
2377 EXPORT_SYMBOL(tcp_proc_unregister);
2378 #endif
2379 EXPORT_SYMBOL(sysctl_tcp_low_latency);