xfs: push buffer of flush locked dquot to avoid quotacheck deadlock
[linux/fpc-iii.git] / mm / vmscan.c
blob30a88b945a44f58e812a5eaf824a087b51a5dbec
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
57 #include "internal.h"
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
62 struct scan_control {
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim;
66 /* This context's GFP mask */
67 gfp_t gfp_mask;
69 /* Allocation order */
70 int order;
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
74 * are scanned.
76 nodemask_t *nodemask;
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup *target_mem_cgroup;
84 /* Scan (total_size >> priority) pages at once */
85 int priority;
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx;
90 unsigned int may_writepage:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap:1;
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash:1;
101 unsigned int hibernation_mode:1;
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready:1;
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned;
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed;
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
122 } while (0)
123 #else
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
125 #endif
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
129 do { \
130 if ((_page)->lru.prev != _base) { \
131 struct page *prev; \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
136 } while (0)
137 #else
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
139 #endif
142 * From 0 .. 100. Higher means more swappy.
144 int vm_swappiness = 60;
146 * The total number of pages which are beyond the high watermark within all
147 * zones.
149 unsigned long vm_total_pages;
151 static LIST_HEAD(shrinker_list);
152 static DECLARE_RWSEM(shrinker_rwsem);
154 #ifdef CONFIG_MEMCG
155 static bool global_reclaim(struct scan_control *sc)
157 return !sc->target_mem_cgroup;
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
173 static bool sane_reclaim(struct scan_control *sc)
175 struct mem_cgroup *memcg = sc->target_mem_cgroup;
177 if (!memcg)
178 return true;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
181 return true;
182 #endif
183 return false;
185 #else
186 static bool global_reclaim(struct scan_control *sc)
188 return true;
191 static bool sane_reclaim(struct scan_control *sc)
193 return true;
195 #endif
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
202 unsigned long zone_reclaimable_pages(struct zone *zone)
204 unsigned long nr;
206 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
207 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
208 if (get_nr_swap_pages() > 0)
209 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
210 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
212 return nr;
215 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
217 unsigned long nr;
219 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
220 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
221 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
223 if (get_nr_swap_pages() > 0)
224 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
225 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
226 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
228 return nr;
231 bool pgdat_reclaimable(struct pglist_data *pgdat)
233 return node_page_state_snapshot(pgdat, NR_PAGES_SCANNED) <
234 pgdat_reclaimable_pages(pgdat) * 6;
238 * lruvec_lru_size - Returns the number of pages on the given LRU list.
239 * @lruvec: lru vector
240 * @lru: lru to use
241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
245 unsigned long lru_size;
246 int zid;
248 if (!mem_cgroup_disabled())
249 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
250 else
251 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
253 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
254 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
255 unsigned long size;
257 if (!managed_zone(zone))
258 continue;
260 if (!mem_cgroup_disabled())
261 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
262 else
263 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
264 NR_ZONE_LRU_BASE + lru);
265 lru_size -= min(size, lru_size);
268 return lru_size;
273 * Add a shrinker callback to be called from the vm.
275 int register_shrinker(struct shrinker *shrinker)
277 size_t size = sizeof(*shrinker->nr_deferred);
279 if (shrinker->flags & SHRINKER_NUMA_AWARE)
280 size *= nr_node_ids;
282 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
283 if (!shrinker->nr_deferred)
284 return -ENOMEM;
286 down_write(&shrinker_rwsem);
287 list_add_tail(&shrinker->list, &shrinker_list);
288 up_write(&shrinker_rwsem);
289 return 0;
291 EXPORT_SYMBOL(register_shrinker);
294 * Remove one
296 void unregister_shrinker(struct shrinker *shrinker)
298 down_write(&shrinker_rwsem);
299 list_del(&shrinker->list);
300 up_write(&shrinker_rwsem);
301 kfree(shrinker->nr_deferred);
303 EXPORT_SYMBOL(unregister_shrinker);
305 #define SHRINK_BATCH 128
307 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
308 struct shrinker *shrinker,
309 unsigned long nr_scanned,
310 unsigned long nr_eligible)
312 unsigned long freed = 0;
313 unsigned long long delta;
314 long total_scan;
315 long freeable;
316 long nr;
317 long new_nr;
318 int nid = shrinkctl->nid;
319 long batch_size = shrinker->batch ? shrinker->batch
320 : SHRINK_BATCH;
321 long scanned = 0, next_deferred;
323 freeable = shrinker->count_objects(shrinker, shrinkctl);
324 if (freeable == 0)
325 return 0;
328 * copy the current shrinker scan count into a local variable
329 * and zero it so that other concurrent shrinker invocations
330 * don't also do this scanning work.
332 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
334 total_scan = nr;
335 delta = (4 * nr_scanned) / shrinker->seeks;
336 delta *= freeable;
337 do_div(delta, nr_eligible + 1);
338 total_scan += delta;
339 if (total_scan < 0) {
340 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
341 shrinker->scan_objects, total_scan);
342 total_scan = freeable;
343 next_deferred = nr;
344 } else
345 next_deferred = total_scan;
348 * We need to avoid excessive windup on filesystem shrinkers
349 * due to large numbers of GFP_NOFS allocations causing the
350 * shrinkers to return -1 all the time. This results in a large
351 * nr being built up so when a shrink that can do some work
352 * comes along it empties the entire cache due to nr >>>
353 * freeable. This is bad for sustaining a working set in
354 * memory.
356 * Hence only allow the shrinker to scan the entire cache when
357 * a large delta change is calculated directly.
359 if (delta < freeable / 4)
360 total_scan = min(total_scan, freeable / 2);
363 * Avoid risking looping forever due to too large nr value:
364 * never try to free more than twice the estimate number of
365 * freeable entries.
367 if (total_scan > freeable * 2)
368 total_scan = freeable * 2;
370 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
371 nr_scanned, nr_eligible,
372 freeable, delta, total_scan);
375 * Normally, we should not scan less than batch_size objects in one
376 * pass to avoid too frequent shrinker calls, but if the slab has less
377 * than batch_size objects in total and we are really tight on memory,
378 * we will try to reclaim all available objects, otherwise we can end
379 * up failing allocations although there are plenty of reclaimable
380 * objects spread over several slabs with usage less than the
381 * batch_size.
383 * We detect the "tight on memory" situations by looking at the total
384 * number of objects we want to scan (total_scan). If it is greater
385 * than the total number of objects on slab (freeable), we must be
386 * scanning at high prio and therefore should try to reclaim as much as
387 * possible.
389 while (total_scan >= batch_size ||
390 total_scan >= freeable) {
391 unsigned long ret;
392 unsigned long nr_to_scan = min(batch_size, total_scan);
394 shrinkctl->nr_to_scan = nr_to_scan;
395 ret = shrinker->scan_objects(shrinker, shrinkctl);
396 if (ret == SHRINK_STOP)
397 break;
398 freed += ret;
400 count_vm_events(SLABS_SCANNED, nr_to_scan);
401 total_scan -= nr_to_scan;
402 scanned += nr_to_scan;
404 cond_resched();
407 if (next_deferred >= scanned)
408 next_deferred -= scanned;
409 else
410 next_deferred = 0;
412 * move the unused scan count back into the shrinker in a
413 * manner that handles concurrent updates. If we exhausted the
414 * scan, there is no need to do an update.
416 if (next_deferred > 0)
417 new_nr = atomic_long_add_return(next_deferred,
418 &shrinker->nr_deferred[nid]);
419 else
420 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
422 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
423 return freed;
427 * shrink_slab - shrink slab caches
428 * @gfp_mask: allocation context
429 * @nid: node whose slab caches to target
430 * @memcg: memory cgroup whose slab caches to target
431 * @nr_scanned: pressure numerator
432 * @nr_eligible: pressure denominator
434 * Call the shrink functions to age shrinkable caches.
436 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
437 * unaware shrinkers will receive a node id of 0 instead.
439 * @memcg specifies the memory cgroup to target. If it is not NULL,
440 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
441 * objects from the memory cgroup specified. Otherwise, only unaware
442 * shrinkers are called.
444 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
445 * the available objects should be scanned. Page reclaim for example
446 * passes the number of pages scanned and the number of pages on the
447 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
448 * when it encountered mapped pages. The ratio is further biased by
449 * the ->seeks setting of the shrink function, which indicates the
450 * cost to recreate an object relative to that of an LRU page.
452 * Returns the number of reclaimed slab objects.
454 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
455 struct mem_cgroup *memcg,
456 unsigned long nr_scanned,
457 unsigned long nr_eligible)
459 struct shrinker *shrinker;
460 unsigned long freed = 0;
462 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
463 return 0;
465 if (nr_scanned == 0)
466 nr_scanned = SWAP_CLUSTER_MAX;
468 if (!down_read_trylock(&shrinker_rwsem)) {
470 * If we would return 0, our callers would understand that we
471 * have nothing else to shrink and give up trying. By returning
472 * 1 we keep it going and assume we'll be able to shrink next
473 * time.
475 freed = 1;
476 goto out;
479 list_for_each_entry(shrinker, &shrinker_list, list) {
480 struct shrink_control sc = {
481 .gfp_mask = gfp_mask,
482 .nid = nid,
483 .memcg = memcg,
487 * If kernel memory accounting is disabled, we ignore
488 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
489 * passing NULL for memcg.
491 if (memcg_kmem_enabled() &&
492 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
493 continue;
495 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
496 sc.nid = 0;
498 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
501 up_read(&shrinker_rwsem);
502 out:
503 cond_resched();
504 return freed;
507 void drop_slab_node(int nid)
509 unsigned long freed;
511 do {
512 struct mem_cgroup *memcg = NULL;
514 freed = 0;
515 do {
516 freed += shrink_slab(GFP_KERNEL, nid, memcg,
517 1000, 1000);
518 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
519 } while (freed > 10);
522 void drop_slab(void)
524 int nid;
526 for_each_online_node(nid)
527 drop_slab_node(nid);
530 static inline int is_page_cache_freeable(struct page *page)
533 * A freeable page cache page is referenced only by the caller
534 * that isolated the page, the page cache radix tree and
535 * optional buffer heads at page->private.
537 return page_count(page) - page_has_private(page) == 2;
540 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
542 if (current->flags & PF_SWAPWRITE)
543 return 1;
544 if (!inode_write_congested(inode))
545 return 1;
546 if (inode_to_bdi(inode) == current->backing_dev_info)
547 return 1;
548 return 0;
552 * We detected a synchronous write error writing a page out. Probably
553 * -ENOSPC. We need to propagate that into the address_space for a subsequent
554 * fsync(), msync() or close().
556 * The tricky part is that after writepage we cannot touch the mapping: nothing
557 * prevents it from being freed up. But we have a ref on the page and once
558 * that page is locked, the mapping is pinned.
560 * We're allowed to run sleeping lock_page() here because we know the caller has
561 * __GFP_FS.
563 static void handle_write_error(struct address_space *mapping,
564 struct page *page, int error)
566 lock_page(page);
567 if (page_mapping(page) == mapping)
568 mapping_set_error(mapping, error);
569 unlock_page(page);
572 /* possible outcome of pageout() */
573 typedef enum {
574 /* failed to write page out, page is locked */
575 PAGE_KEEP,
576 /* move page to the active list, page is locked */
577 PAGE_ACTIVATE,
578 /* page has been sent to the disk successfully, page is unlocked */
579 PAGE_SUCCESS,
580 /* page is clean and locked */
581 PAGE_CLEAN,
582 } pageout_t;
585 * pageout is called by shrink_page_list() for each dirty page.
586 * Calls ->writepage().
588 static pageout_t pageout(struct page *page, struct address_space *mapping,
589 struct scan_control *sc)
592 * If the page is dirty, only perform writeback if that write
593 * will be non-blocking. To prevent this allocation from being
594 * stalled by pagecache activity. But note that there may be
595 * stalls if we need to run get_block(). We could test
596 * PagePrivate for that.
598 * If this process is currently in __generic_file_write_iter() against
599 * this page's queue, we can perform writeback even if that
600 * will block.
602 * If the page is swapcache, write it back even if that would
603 * block, for some throttling. This happens by accident, because
604 * swap_backing_dev_info is bust: it doesn't reflect the
605 * congestion state of the swapdevs. Easy to fix, if needed.
607 if (!is_page_cache_freeable(page))
608 return PAGE_KEEP;
609 if (!mapping) {
611 * Some data journaling orphaned pages can have
612 * page->mapping == NULL while being dirty with clean buffers.
614 if (page_has_private(page)) {
615 if (try_to_free_buffers(page)) {
616 ClearPageDirty(page);
617 pr_info("%s: orphaned page\n", __func__);
618 return PAGE_CLEAN;
621 return PAGE_KEEP;
623 if (mapping->a_ops->writepage == NULL)
624 return PAGE_ACTIVATE;
625 if (!may_write_to_inode(mapping->host, sc))
626 return PAGE_KEEP;
628 if (clear_page_dirty_for_io(page)) {
629 int res;
630 struct writeback_control wbc = {
631 .sync_mode = WB_SYNC_NONE,
632 .nr_to_write = SWAP_CLUSTER_MAX,
633 .range_start = 0,
634 .range_end = LLONG_MAX,
635 .for_reclaim = 1,
638 SetPageReclaim(page);
639 res = mapping->a_ops->writepage(page, &wbc);
640 if (res < 0)
641 handle_write_error(mapping, page, res);
642 if (res == AOP_WRITEPAGE_ACTIVATE) {
643 ClearPageReclaim(page);
644 return PAGE_ACTIVATE;
647 if (!PageWriteback(page)) {
648 /* synchronous write or broken a_ops? */
649 ClearPageReclaim(page);
651 trace_mm_vmscan_writepage(page);
652 inc_node_page_state(page, NR_VMSCAN_WRITE);
653 return PAGE_SUCCESS;
656 return PAGE_CLEAN;
660 * Same as remove_mapping, but if the page is removed from the mapping, it
661 * gets returned with a refcount of 0.
663 static int __remove_mapping(struct address_space *mapping, struct page *page,
664 bool reclaimed)
666 unsigned long flags;
668 BUG_ON(!PageLocked(page));
669 BUG_ON(mapping != page_mapping(page));
671 spin_lock_irqsave(&mapping->tree_lock, flags);
673 * The non racy check for a busy page.
675 * Must be careful with the order of the tests. When someone has
676 * a ref to the page, it may be possible that they dirty it then
677 * drop the reference. So if PageDirty is tested before page_count
678 * here, then the following race may occur:
680 * get_user_pages(&page);
681 * [user mapping goes away]
682 * write_to(page);
683 * !PageDirty(page) [good]
684 * SetPageDirty(page);
685 * put_page(page);
686 * !page_count(page) [good, discard it]
688 * [oops, our write_to data is lost]
690 * Reversing the order of the tests ensures such a situation cannot
691 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
692 * load is not satisfied before that of page->_refcount.
694 * Note that if SetPageDirty is always performed via set_page_dirty,
695 * and thus under tree_lock, then this ordering is not required.
697 if (!page_ref_freeze(page, 2))
698 goto cannot_free;
699 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
700 if (unlikely(PageDirty(page))) {
701 page_ref_unfreeze(page, 2);
702 goto cannot_free;
705 if (PageSwapCache(page)) {
706 swp_entry_t swap = { .val = page_private(page) };
707 mem_cgroup_swapout(page, swap);
708 __delete_from_swap_cache(page);
709 spin_unlock_irqrestore(&mapping->tree_lock, flags);
710 swapcache_free(swap);
711 } else {
712 void (*freepage)(struct page *);
713 void *shadow = NULL;
715 freepage = mapping->a_ops->freepage;
717 * Remember a shadow entry for reclaimed file cache in
718 * order to detect refaults, thus thrashing, later on.
720 * But don't store shadows in an address space that is
721 * already exiting. This is not just an optizimation,
722 * inode reclaim needs to empty out the radix tree or
723 * the nodes are lost. Don't plant shadows behind its
724 * back.
726 * We also don't store shadows for DAX mappings because the
727 * only page cache pages found in these are zero pages
728 * covering holes, and because we don't want to mix DAX
729 * exceptional entries and shadow exceptional entries in the
730 * same page_tree.
732 if (reclaimed && page_is_file_cache(page) &&
733 !mapping_exiting(mapping) && !dax_mapping(mapping))
734 shadow = workingset_eviction(mapping, page);
735 __delete_from_page_cache(page, shadow);
736 spin_unlock_irqrestore(&mapping->tree_lock, flags);
738 if (freepage != NULL)
739 freepage(page);
742 return 1;
744 cannot_free:
745 spin_unlock_irqrestore(&mapping->tree_lock, flags);
746 return 0;
750 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
751 * someone else has a ref on the page, abort and return 0. If it was
752 * successfully detached, return 1. Assumes the caller has a single ref on
753 * this page.
755 int remove_mapping(struct address_space *mapping, struct page *page)
757 if (__remove_mapping(mapping, page, false)) {
759 * Unfreezing the refcount with 1 rather than 2 effectively
760 * drops the pagecache ref for us without requiring another
761 * atomic operation.
763 page_ref_unfreeze(page, 1);
764 return 1;
766 return 0;
770 * putback_lru_page - put previously isolated page onto appropriate LRU list
771 * @page: page to be put back to appropriate lru list
773 * Add previously isolated @page to appropriate LRU list.
774 * Page may still be unevictable for other reasons.
776 * lru_lock must not be held, interrupts must be enabled.
778 void putback_lru_page(struct page *page)
780 bool is_unevictable;
781 int was_unevictable = PageUnevictable(page);
783 VM_BUG_ON_PAGE(PageLRU(page), page);
785 redo:
786 ClearPageUnevictable(page);
788 if (page_evictable(page)) {
790 * For evictable pages, we can use the cache.
791 * In event of a race, worst case is we end up with an
792 * unevictable page on [in]active list.
793 * We know how to handle that.
795 is_unevictable = false;
796 lru_cache_add(page);
797 } else {
799 * Put unevictable pages directly on zone's unevictable
800 * list.
802 is_unevictable = true;
803 add_page_to_unevictable_list(page);
805 * When racing with an mlock or AS_UNEVICTABLE clearing
806 * (page is unlocked) make sure that if the other thread
807 * does not observe our setting of PG_lru and fails
808 * isolation/check_move_unevictable_pages,
809 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
810 * the page back to the evictable list.
812 * The other side is TestClearPageMlocked() or shmem_lock().
814 smp_mb();
818 * page's status can change while we move it among lru. If an evictable
819 * page is on unevictable list, it never be freed. To avoid that,
820 * check after we added it to the list, again.
822 if (is_unevictable && page_evictable(page)) {
823 if (!isolate_lru_page(page)) {
824 put_page(page);
825 goto redo;
827 /* This means someone else dropped this page from LRU
828 * So, it will be freed or putback to LRU again. There is
829 * nothing to do here.
833 if (was_unevictable && !is_unevictable)
834 count_vm_event(UNEVICTABLE_PGRESCUED);
835 else if (!was_unevictable && is_unevictable)
836 count_vm_event(UNEVICTABLE_PGCULLED);
838 put_page(page); /* drop ref from isolate */
841 enum page_references {
842 PAGEREF_RECLAIM,
843 PAGEREF_RECLAIM_CLEAN,
844 PAGEREF_KEEP,
845 PAGEREF_ACTIVATE,
848 static enum page_references page_check_references(struct page *page,
849 struct scan_control *sc)
851 int referenced_ptes, referenced_page;
852 unsigned long vm_flags;
854 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
855 &vm_flags);
856 referenced_page = TestClearPageReferenced(page);
859 * Mlock lost the isolation race with us. Let try_to_unmap()
860 * move the page to the unevictable list.
862 if (vm_flags & VM_LOCKED)
863 return PAGEREF_RECLAIM;
865 if (referenced_ptes) {
866 if (PageSwapBacked(page))
867 return PAGEREF_ACTIVATE;
869 * All mapped pages start out with page table
870 * references from the instantiating fault, so we need
871 * to look twice if a mapped file page is used more
872 * than once.
874 * Mark it and spare it for another trip around the
875 * inactive list. Another page table reference will
876 * lead to its activation.
878 * Note: the mark is set for activated pages as well
879 * so that recently deactivated but used pages are
880 * quickly recovered.
882 SetPageReferenced(page);
884 if (referenced_page || referenced_ptes > 1)
885 return PAGEREF_ACTIVATE;
888 * Activate file-backed executable pages after first usage.
890 if (vm_flags & VM_EXEC)
891 return PAGEREF_ACTIVATE;
893 return PAGEREF_KEEP;
896 /* Reclaim if clean, defer dirty pages to writeback */
897 if (referenced_page && !PageSwapBacked(page))
898 return PAGEREF_RECLAIM_CLEAN;
900 return PAGEREF_RECLAIM;
903 /* Check if a page is dirty or under writeback */
904 static void page_check_dirty_writeback(struct page *page,
905 bool *dirty, bool *writeback)
907 struct address_space *mapping;
910 * Anonymous pages are not handled by flushers and must be written
911 * from reclaim context. Do not stall reclaim based on them
913 if (!page_is_file_cache(page)) {
914 *dirty = false;
915 *writeback = false;
916 return;
919 /* By default assume that the page flags are accurate */
920 *dirty = PageDirty(page);
921 *writeback = PageWriteback(page);
923 /* Verify dirty/writeback state if the filesystem supports it */
924 if (!page_has_private(page))
925 return;
927 mapping = page_mapping(page);
928 if (mapping && mapping->a_ops->is_dirty_writeback)
929 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
933 * shrink_page_list() returns the number of reclaimed pages
935 static unsigned long shrink_page_list(struct list_head *page_list,
936 struct pglist_data *pgdat,
937 struct scan_control *sc,
938 enum ttu_flags ttu_flags,
939 unsigned long *ret_nr_dirty,
940 unsigned long *ret_nr_unqueued_dirty,
941 unsigned long *ret_nr_congested,
942 unsigned long *ret_nr_writeback,
943 unsigned long *ret_nr_immediate,
944 bool force_reclaim)
946 LIST_HEAD(ret_pages);
947 LIST_HEAD(free_pages);
948 int pgactivate = 0;
949 unsigned long nr_unqueued_dirty = 0;
950 unsigned long nr_dirty = 0;
951 unsigned long nr_congested = 0;
952 unsigned long nr_reclaimed = 0;
953 unsigned long nr_writeback = 0;
954 unsigned long nr_immediate = 0;
956 cond_resched();
958 while (!list_empty(page_list)) {
959 struct address_space *mapping;
960 struct page *page;
961 int may_enter_fs;
962 enum page_references references = PAGEREF_RECLAIM_CLEAN;
963 bool dirty, writeback;
964 bool lazyfree = false;
965 int ret = SWAP_SUCCESS;
967 cond_resched();
969 page = lru_to_page(page_list);
970 list_del(&page->lru);
972 if (!trylock_page(page))
973 goto keep;
975 VM_BUG_ON_PAGE(PageActive(page), page);
977 sc->nr_scanned++;
979 if (unlikely(!page_evictable(page)))
980 goto cull_mlocked;
982 if (!sc->may_unmap && page_mapped(page))
983 goto keep_locked;
985 /* Double the slab pressure for mapped and swapcache pages */
986 if (page_mapped(page) || PageSwapCache(page))
987 sc->nr_scanned++;
989 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
990 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
993 * The number of dirty pages determines if a zone is marked
994 * reclaim_congested which affects wait_iff_congested. kswapd
995 * will stall and start writing pages if the tail of the LRU
996 * is all dirty unqueued pages.
998 page_check_dirty_writeback(page, &dirty, &writeback);
999 if (dirty || writeback)
1000 nr_dirty++;
1002 if (dirty && !writeback)
1003 nr_unqueued_dirty++;
1006 * Treat this page as congested if the underlying BDI is or if
1007 * pages are cycling through the LRU so quickly that the
1008 * pages marked for immediate reclaim are making it to the
1009 * end of the LRU a second time.
1011 mapping = page_mapping(page);
1012 if (((dirty || writeback) && mapping &&
1013 inode_write_congested(mapping->host)) ||
1014 (writeback && PageReclaim(page)))
1015 nr_congested++;
1018 * If a page at the tail of the LRU is under writeback, there
1019 * are three cases to consider.
1021 * 1) If reclaim is encountering an excessive number of pages
1022 * under writeback and this page is both under writeback and
1023 * PageReclaim then it indicates that pages are being queued
1024 * for IO but are being recycled through the LRU before the
1025 * IO can complete. Waiting on the page itself risks an
1026 * indefinite stall if it is impossible to writeback the
1027 * page due to IO error or disconnected storage so instead
1028 * note that the LRU is being scanned too quickly and the
1029 * caller can stall after page list has been processed.
1031 * 2) Global or new memcg reclaim encounters a page that is
1032 * not marked for immediate reclaim, or the caller does not
1033 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1034 * not to fs). In this case mark the page for immediate
1035 * reclaim and continue scanning.
1037 * Require may_enter_fs because we would wait on fs, which
1038 * may not have submitted IO yet. And the loop driver might
1039 * enter reclaim, and deadlock if it waits on a page for
1040 * which it is needed to do the write (loop masks off
1041 * __GFP_IO|__GFP_FS for this reason); but more thought
1042 * would probably show more reasons.
1044 * 3) Legacy memcg encounters a page that is already marked
1045 * PageReclaim. memcg does not have any dirty pages
1046 * throttling so we could easily OOM just because too many
1047 * pages are in writeback and there is nothing else to
1048 * reclaim. Wait for the writeback to complete.
1050 if (PageWriteback(page)) {
1051 /* Case 1 above */
1052 if (current_is_kswapd() &&
1053 PageReclaim(page) &&
1054 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1055 nr_immediate++;
1056 goto keep_locked;
1058 /* Case 2 above */
1059 } else if (sane_reclaim(sc) ||
1060 !PageReclaim(page) || !may_enter_fs) {
1062 * This is slightly racy - end_page_writeback()
1063 * might have just cleared PageReclaim, then
1064 * setting PageReclaim here end up interpreted
1065 * as PageReadahead - but that does not matter
1066 * enough to care. What we do want is for this
1067 * page to have PageReclaim set next time memcg
1068 * reclaim reaches the tests above, so it will
1069 * then wait_on_page_writeback() to avoid OOM;
1070 * and it's also appropriate in global reclaim.
1072 SetPageReclaim(page);
1073 nr_writeback++;
1074 goto keep_locked;
1076 /* Case 3 above */
1077 } else {
1078 unlock_page(page);
1079 wait_on_page_writeback(page);
1080 /* then go back and try same page again */
1081 list_add_tail(&page->lru, page_list);
1082 continue;
1086 if (!force_reclaim)
1087 references = page_check_references(page, sc);
1089 switch (references) {
1090 case PAGEREF_ACTIVATE:
1091 goto activate_locked;
1092 case PAGEREF_KEEP:
1093 goto keep_locked;
1094 case PAGEREF_RECLAIM:
1095 case PAGEREF_RECLAIM_CLEAN:
1096 ; /* try to reclaim the page below */
1100 * Anonymous process memory has backing store?
1101 * Try to allocate it some swap space here.
1103 if (PageAnon(page) && !PageSwapCache(page)) {
1104 if (!(sc->gfp_mask & __GFP_IO))
1105 goto keep_locked;
1106 if (!add_to_swap(page, page_list))
1107 goto activate_locked;
1108 lazyfree = true;
1109 may_enter_fs = 1;
1111 /* Adding to swap updated mapping */
1112 mapping = page_mapping(page);
1113 } else if (unlikely(PageTransHuge(page))) {
1114 /* Split file THP */
1115 if (split_huge_page_to_list(page, page_list))
1116 goto keep_locked;
1119 VM_BUG_ON_PAGE(PageTransHuge(page), page);
1122 * The page is mapped into the page tables of one or more
1123 * processes. Try to unmap it here.
1125 if (page_mapped(page) && mapping) {
1126 switch (ret = try_to_unmap(page, lazyfree ?
1127 (ttu_flags | TTU_BATCH_FLUSH | TTU_LZFREE) :
1128 (ttu_flags | TTU_BATCH_FLUSH))) {
1129 case SWAP_FAIL:
1130 goto activate_locked;
1131 case SWAP_AGAIN:
1132 goto keep_locked;
1133 case SWAP_MLOCK:
1134 goto cull_mlocked;
1135 case SWAP_LZFREE:
1136 goto lazyfree;
1137 case SWAP_SUCCESS:
1138 ; /* try to free the page below */
1142 if (PageDirty(page)) {
1144 * Only kswapd can writeback filesystem pages to
1145 * avoid risk of stack overflow but only writeback
1146 * if many dirty pages have been encountered.
1148 if (page_is_file_cache(page) &&
1149 (!current_is_kswapd() ||
1150 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1152 * Immediately reclaim when written back.
1153 * Similar in principal to deactivate_page()
1154 * except we already have the page isolated
1155 * and know it's dirty
1157 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1158 SetPageReclaim(page);
1160 goto keep_locked;
1163 if (references == PAGEREF_RECLAIM_CLEAN)
1164 goto keep_locked;
1165 if (!may_enter_fs)
1166 goto keep_locked;
1167 if (!sc->may_writepage)
1168 goto keep_locked;
1171 * Page is dirty. Flush the TLB if a writable entry
1172 * potentially exists to avoid CPU writes after IO
1173 * starts and then write it out here.
1175 try_to_unmap_flush_dirty();
1176 switch (pageout(page, mapping, sc)) {
1177 case PAGE_KEEP:
1178 goto keep_locked;
1179 case PAGE_ACTIVATE:
1180 goto activate_locked;
1181 case PAGE_SUCCESS:
1182 if (PageWriteback(page))
1183 goto keep;
1184 if (PageDirty(page))
1185 goto keep;
1188 * A synchronous write - probably a ramdisk. Go
1189 * ahead and try to reclaim the page.
1191 if (!trylock_page(page))
1192 goto keep;
1193 if (PageDirty(page) || PageWriteback(page))
1194 goto keep_locked;
1195 mapping = page_mapping(page);
1196 case PAGE_CLEAN:
1197 ; /* try to free the page below */
1202 * If the page has buffers, try to free the buffer mappings
1203 * associated with this page. If we succeed we try to free
1204 * the page as well.
1206 * We do this even if the page is PageDirty().
1207 * try_to_release_page() does not perform I/O, but it is
1208 * possible for a page to have PageDirty set, but it is actually
1209 * clean (all its buffers are clean). This happens if the
1210 * buffers were written out directly, with submit_bh(). ext3
1211 * will do this, as well as the blockdev mapping.
1212 * try_to_release_page() will discover that cleanness and will
1213 * drop the buffers and mark the page clean - it can be freed.
1215 * Rarely, pages can have buffers and no ->mapping. These are
1216 * the pages which were not successfully invalidated in
1217 * truncate_complete_page(). We try to drop those buffers here
1218 * and if that worked, and the page is no longer mapped into
1219 * process address space (page_count == 1) it can be freed.
1220 * Otherwise, leave the page on the LRU so it is swappable.
1222 if (page_has_private(page)) {
1223 if (!try_to_release_page(page, sc->gfp_mask))
1224 goto activate_locked;
1225 if (!mapping && page_count(page) == 1) {
1226 unlock_page(page);
1227 if (put_page_testzero(page))
1228 goto free_it;
1229 else {
1231 * rare race with speculative reference.
1232 * the speculative reference will free
1233 * this page shortly, so we may
1234 * increment nr_reclaimed here (and
1235 * leave it off the LRU).
1237 nr_reclaimed++;
1238 continue;
1243 lazyfree:
1244 if (!mapping || !__remove_mapping(mapping, page, true))
1245 goto keep_locked;
1248 * At this point, we have no other references and there is
1249 * no way to pick any more up (removed from LRU, removed
1250 * from pagecache). Can use non-atomic bitops now (and
1251 * we obviously don't have to worry about waking up a process
1252 * waiting on the page lock, because there are no references.
1254 __ClearPageLocked(page);
1255 free_it:
1256 if (ret == SWAP_LZFREE)
1257 count_vm_event(PGLAZYFREED);
1259 nr_reclaimed++;
1262 * Is there need to periodically free_page_list? It would
1263 * appear not as the counts should be low
1265 list_add(&page->lru, &free_pages);
1266 continue;
1268 cull_mlocked:
1269 if (PageSwapCache(page))
1270 try_to_free_swap(page);
1271 unlock_page(page);
1272 list_add(&page->lru, &ret_pages);
1273 continue;
1275 activate_locked:
1276 /* Not a candidate for swapping, so reclaim swap space. */
1277 if (PageSwapCache(page) && mem_cgroup_swap_full(page))
1278 try_to_free_swap(page);
1279 VM_BUG_ON_PAGE(PageActive(page), page);
1280 SetPageActive(page);
1281 pgactivate++;
1282 keep_locked:
1283 unlock_page(page);
1284 keep:
1285 list_add(&page->lru, &ret_pages);
1286 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1289 mem_cgroup_uncharge_list(&free_pages);
1290 try_to_unmap_flush();
1291 free_hot_cold_page_list(&free_pages, true);
1293 list_splice(&ret_pages, page_list);
1294 count_vm_events(PGACTIVATE, pgactivate);
1296 *ret_nr_dirty += nr_dirty;
1297 *ret_nr_congested += nr_congested;
1298 *ret_nr_unqueued_dirty += nr_unqueued_dirty;
1299 *ret_nr_writeback += nr_writeback;
1300 *ret_nr_immediate += nr_immediate;
1301 return nr_reclaimed;
1304 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1305 struct list_head *page_list)
1307 struct scan_control sc = {
1308 .gfp_mask = GFP_KERNEL,
1309 .priority = DEF_PRIORITY,
1310 .may_unmap = 1,
1312 unsigned long ret, dummy1, dummy2, dummy3, dummy4, dummy5;
1313 struct page *page, *next;
1314 LIST_HEAD(clean_pages);
1316 list_for_each_entry_safe(page, next, page_list, lru) {
1317 if (page_is_file_cache(page) && !PageDirty(page) &&
1318 !__PageMovable(page)) {
1319 ClearPageActive(page);
1320 list_move(&page->lru, &clean_pages);
1324 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1325 TTU_UNMAP|TTU_IGNORE_ACCESS,
1326 &dummy1, &dummy2, &dummy3, &dummy4, &dummy5, true);
1327 list_splice(&clean_pages, page_list);
1328 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1329 return ret;
1333 * Attempt to remove the specified page from its LRU. Only take this page
1334 * if it is of the appropriate PageActive status. Pages which are being
1335 * freed elsewhere are also ignored.
1337 * page: page to consider
1338 * mode: one of the LRU isolation modes defined above
1340 * returns 0 on success, -ve errno on failure.
1342 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1344 int ret = -EINVAL;
1346 /* Only take pages on the LRU. */
1347 if (!PageLRU(page))
1348 return ret;
1350 /* Compaction should not handle unevictable pages but CMA can do so */
1351 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1352 return ret;
1354 ret = -EBUSY;
1357 * To minimise LRU disruption, the caller can indicate that it only
1358 * wants to isolate pages it will be able to operate on without
1359 * blocking - clean pages for the most part.
1361 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1362 * is used by reclaim when it is cannot write to backing storage
1364 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1365 * that it is possible to migrate without blocking
1367 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1368 /* All the caller can do on PageWriteback is block */
1369 if (PageWriteback(page))
1370 return ret;
1372 if (PageDirty(page)) {
1373 struct address_space *mapping;
1375 /* ISOLATE_CLEAN means only clean pages */
1376 if (mode & ISOLATE_CLEAN)
1377 return ret;
1380 * Only pages without mappings or that have a
1381 * ->migratepage callback are possible to migrate
1382 * without blocking
1384 mapping = page_mapping(page);
1385 if (mapping && !mapping->a_ops->migratepage)
1386 return ret;
1390 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1391 return ret;
1393 if (likely(get_page_unless_zero(page))) {
1395 * Be careful not to clear PageLRU until after we're
1396 * sure the page is not being freed elsewhere -- the
1397 * page release code relies on it.
1399 ClearPageLRU(page);
1400 ret = 0;
1403 return ret;
1408 * Update LRU sizes after isolating pages. The LRU size updates must
1409 * be complete before mem_cgroup_update_lru_size due to a santity check.
1411 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1412 enum lru_list lru, unsigned long *nr_zone_taken)
1414 int zid;
1416 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1417 if (!nr_zone_taken[zid])
1418 continue;
1420 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1421 #ifdef CONFIG_MEMCG
1422 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1423 #endif
1429 * zone_lru_lock is heavily contended. Some of the functions that
1430 * shrink the lists perform better by taking out a batch of pages
1431 * and working on them outside the LRU lock.
1433 * For pagecache intensive workloads, this function is the hottest
1434 * spot in the kernel (apart from copy_*_user functions).
1436 * Appropriate locks must be held before calling this function.
1438 * @nr_to_scan: The number of pages to look through on the list.
1439 * @lruvec: The LRU vector to pull pages from.
1440 * @dst: The temp list to put pages on to.
1441 * @nr_scanned: The number of pages that were scanned.
1442 * @sc: The scan_control struct for this reclaim session
1443 * @mode: One of the LRU isolation modes
1444 * @lru: LRU list id for isolating
1446 * returns how many pages were moved onto *@dst.
1448 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1449 struct lruvec *lruvec, struct list_head *dst,
1450 unsigned long *nr_scanned, struct scan_control *sc,
1451 isolate_mode_t mode, enum lru_list lru)
1453 struct list_head *src = &lruvec->lists[lru];
1454 unsigned long nr_taken = 0;
1455 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1456 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1457 unsigned long scan, nr_pages;
1458 LIST_HEAD(pages_skipped);
1460 for (scan = 0; scan < nr_to_scan && nr_taken < nr_to_scan &&
1461 !list_empty(src);) {
1462 struct page *page;
1464 page = lru_to_page(src);
1465 prefetchw_prev_lru_page(page, src, flags);
1467 VM_BUG_ON_PAGE(!PageLRU(page), page);
1469 if (page_zonenum(page) > sc->reclaim_idx) {
1470 list_move(&page->lru, &pages_skipped);
1471 nr_skipped[page_zonenum(page)]++;
1472 continue;
1476 * Account for scanned and skipped separetly to avoid the pgdat
1477 * being prematurely marked unreclaimable by pgdat_reclaimable.
1479 scan++;
1481 switch (__isolate_lru_page(page, mode)) {
1482 case 0:
1483 nr_pages = hpage_nr_pages(page);
1484 nr_taken += nr_pages;
1485 nr_zone_taken[page_zonenum(page)] += nr_pages;
1486 list_move(&page->lru, dst);
1487 break;
1489 case -EBUSY:
1490 /* else it is being freed elsewhere */
1491 list_move(&page->lru, src);
1492 continue;
1494 default:
1495 BUG();
1500 * Splice any skipped pages to the start of the LRU list. Note that
1501 * this disrupts the LRU order when reclaiming for lower zones but
1502 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1503 * scanning would soon rescan the same pages to skip and put the
1504 * system at risk of premature OOM.
1506 if (!list_empty(&pages_skipped)) {
1507 int zid;
1508 unsigned long total_skipped = 0;
1510 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1511 if (!nr_skipped[zid])
1512 continue;
1514 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1515 total_skipped += nr_skipped[zid];
1519 * Account skipped pages as a partial scan as the pgdat may be
1520 * close to unreclaimable. If the LRU list is empty, account
1521 * skipped pages as a full scan.
1523 scan += list_empty(src) ? total_skipped : total_skipped >> 2;
1525 list_splice(&pages_skipped, src);
1527 *nr_scanned = scan;
1528 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan, scan,
1529 nr_taken, mode, is_file_lru(lru));
1530 update_lru_sizes(lruvec, lru, nr_zone_taken);
1531 return nr_taken;
1535 * isolate_lru_page - tries to isolate a page from its LRU list
1536 * @page: page to isolate from its LRU list
1538 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1539 * vmstat statistic corresponding to whatever LRU list the page was on.
1541 * Returns 0 if the page was removed from an LRU list.
1542 * Returns -EBUSY if the page was not on an LRU list.
1544 * The returned page will have PageLRU() cleared. If it was found on
1545 * the active list, it will have PageActive set. If it was found on
1546 * the unevictable list, it will have the PageUnevictable bit set. That flag
1547 * may need to be cleared by the caller before letting the page go.
1549 * The vmstat statistic corresponding to the list on which the page was
1550 * found will be decremented.
1552 * Restrictions:
1553 * (1) Must be called with an elevated refcount on the page. This is a
1554 * fundamentnal difference from isolate_lru_pages (which is called
1555 * without a stable reference).
1556 * (2) the lru_lock must not be held.
1557 * (3) interrupts must be enabled.
1559 int isolate_lru_page(struct page *page)
1561 int ret = -EBUSY;
1563 VM_BUG_ON_PAGE(!page_count(page), page);
1564 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1566 if (PageLRU(page)) {
1567 struct zone *zone = page_zone(page);
1568 struct lruvec *lruvec;
1570 spin_lock_irq(zone_lru_lock(zone));
1571 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1572 if (PageLRU(page)) {
1573 int lru = page_lru(page);
1574 get_page(page);
1575 ClearPageLRU(page);
1576 del_page_from_lru_list(page, lruvec, lru);
1577 ret = 0;
1579 spin_unlock_irq(zone_lru_lock(zone));
1581 return ret;
1585 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1586 * then get resheduled. When there are massive number of tasks doing page
1587 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1588 * the LRU list will go small and be scanned faster than necessary, leading to
1589 * unnecessary swapping, thrashing and OOM.
1591 static int too_many_isolated(struct pglist_data *pgdat, int file,
1592 struct scan_control *sc)
1594 unsigned long inactive, isolated;
1596 if (current_is_kswapd())
1597 return 0;
1599 if (!sane_reclaim(sc))
1600 return 0;
1602 if (file) {
1603 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1604 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1605 } else {
1606 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1607 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1611 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1612 * won't get blocked by normal direct-reclaimers, forming a circular
1613 * deadlock.
1615 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1616 inactive >>= 3;
1618 return isolated > inactive;
1621 static noinline_for_stack void
1622 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1624 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1625 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1626 LIST_HEAD(pages_to_free);
1629 * Put back any unfreeable pages.
1631 while (!list_empty(page_list)) {
1632 struct page *page = lru_to_page(page_list);
1633 int lru;
1635 VM_BUG_ON_PAGE(PageLRU(page), page);
1636 list_del(&page->lru);
1637 if (unlikely(!page_evictable(page))) {
1638 spin_unlock_irq(&pgdat->lru_lock);
1639 putback_lru_page(page);
1640 spin_lock_irq(&pgdat->lru_lock);
1641 continue;
1644 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1646 SetPageLRU(page);
1647 lru = page_lru(page);
1648 add_page_to_lru_list(page, lruvec, lru);
1650 if (is_active_lru(lru)) {
1651 int file = is_file_lru(lru);
1652 int numpages = hpage_nr_pages(page);
1653 reclaim_stat->recent_rotated[file] += numpages;
1655 if (put_page_testzero(page)) {
1656 __ClearPageLRU(page);
1657 __ClearPageActive(page);
1658 del_page_from_lru_list(page, lruvec, lru);
1660 if (unlikely(PageCompound(page))) {
1661 spin_unlock_irq(&pgdat->lru_lock);
1662 mem_cgroup_uncharge(page);
1663 (*get_compound_page_dtor(page))(page);
1664 spin_lock_irq(&pgdat->lru_lock);
1665 } else
1666 list_add(&page->lru, &pages_to_free);
1671 * To save our caller's stack, now use input list for pages to free.
1673 list_splice(&pages_to_free, page_list);
1677 * If a kernel thread (such as nfsd for loop-back mounts) services
1678 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1679 * In that case we should only throttle if the backing device it is
1680 * writing to is congested. In other cases it is safe to throttle.
1682 static int current_may_throttle(void)
1684 return !(current->flags & PF_LESS_THROTTLE) ||
1685 current->backing_dev_info == NULL ||
1686 bdi_write_congested(current->backing_dev_info);
1689 static bool inactive_reclaimable_pages(struct lruvec *lruvec,
1690 struct scan_control *sc, enum lru_list lru)
1692 int zid;
1693 struct zone *zone;
1694 int file = is_file_lru(lru);
1695 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1697 if (!global_reclaim(sc))
1698 return true;
1700 for (zid = sc->reclaim_idx; zid >= 0; zid--) {
1701 zone = &pgdat->node_zones[zid];
1702 if (!managed_zone(zone))
1703 continue;
1705 if (zone_page_state_snapshot(zone, NR_ZONE_LRU_BASE +
1706 LRU_FILE * file) >= SWAP_CLUSTER_MAX)
1707 return true;
1710 return false;
1714 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1715 * of reclaimed pages
1717 static noinline_for_stack unsigned long
1718 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1719 struct scan_control *sc, enum lru_list lru)
1721 LIST_HEAD(page_list);
1722 unsigned long nr_scanned;
1723 unsigned long nr_reclaimed = 0;
1724 unsigned long nr_taken;
1725 unsigned long nr_dirty = 0;
1726 unsigned long nr_congested = 0;
1727 unsigned long nr_unqueued_dirty = 0;
1728 unsigned long nr_writeback = 0;
1729 unsigned long nr_immediate = 0;
1730 isolate_mode_t isolate_mode = 0;
1731 int file = is_file_lru(lru);
1732 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1733 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1735 if (!inactive_reclaimable_pages(lruvec, sc, lru))
1736 return 0;
1738 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1739 congestion_wait(BLK_RW_ASYNC, HZ/10);
1741 /* We are about to die and free our memory. Return now. */
1742 if (fatal_signal_pending(current))
1743 return SWAP_CLUSTER_MAX;
1746 lru_add_drain();
1748 if (!sc->may_unmap)
1749 isolate_mode |= ISOLATE_UNMAPPED;
1750 if (!sc->may_writepage)
1751 isolate_mode |= ISOLATE_CLEAN;
1753 spin_lock_irq(&pgdat->lru_lock);
1755 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1756 &nr_scanned, sc, isolate_mode, lru);
1758 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1759 reclaim_stat->recent_scanned[file] += nr_taken;
1761 if (global_reclaim(sc)) {
1762 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1763 if (current_is_kswapd())
1764 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1765 else
1766 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1768 spin_unlock_irq(&pgdat->lru_lock);
1770 if (nr_taken == 0)
1771 return 0;
1773 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, TTU_UNMAP,
1774 &nr_dirty, &nr_unqueued_dirty, &nr_congested,
1775 &nr_writeback, &nr_immediate,
1776 false);
1778 spin_lock_irq(&pgdat->lru_lock);
1780 if (global_reclaim(sc)) {
1781 if (current_is_kswapd())
1782 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1783 else
1784 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1787 putback_inactive_pages(lruvec, &page_list);
1789 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1791 spin_unlock_irq(&pgdat->lru_lock);
1793 mem_cgroup_uncharge_list(&page_list);
1794 free_hot_cold_page_list(&page_list, true);
1797 * If reclaim is isolating dirty pages under writeback, it implies
1798 * that the long-lived page allocation rate is exceeding the page
1799 * laundering rate. Either the global limits are not being effective
1800 * at throttling processes due to the page distribution throughout
1801 * zones or there is heavy usage of a slow backing device. The
1802 * only option is to throttle from reclaim context which is not ideal
1803 * as there is no guarantee the dirtying process is throttled in the
1804 * same way balance_dirty_pages() manages.
1806 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1807 * of pages under pages flagged for immediate reclaim and stall if any
1808 * are encountered in the nr_immediate check below.
1810 if (nr_writeback && nr_writeback == nr_taken)
1811 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1814 * Legacy memcg will stall in page writeback so avoid forcibly
1815 * stalling here.
1817 if (sane_reclaim(sc)) {
1819 * Tag a zone as congested if all the dirty pages scanned were
1820 * backed by a congested BDI and wait_iff_congested will stall.
1822 if (nr_dirty && nr_dirty == nr_congested)
1823 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1826 * If dirty pages are scanned that are not queued for IO, it
1827 * implies that flushers are not keeping up. In this case, flag
1828 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1829 * reclaim context.
1831 if (nr_unqueued_dirty == nr_taken)
1832 set_bit(PGDAT_DIRTY, &pgdat->flags);
1835 * If kswapd scans pages marked marked for immediate
1836 * reclaim and under writeback (nr_immediate), it implies
1837 * that pages are cycling through the LRU faster than
1838 * they are written so also forcibly stall.
1840 if (nr_immediate && current_may_throttle())
1841 congestion_wait(BLK_RW_ASYNC, HZ/10);
1845 * Stall direct reclaim for IO completions if underlying BDIs or zone
1846 * is congested. Allow kswapd to continue until it starts encountering
1847 * unqueued dirty pages or cycling through the LRU too quickly.
1849 if (!sc->hibernation_mode && !current_is_kswapd() &&
1850 current_may_throttle())
1851 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1853 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1854 nr_scanned, nr_reclaimed,
1855 sc->priority, file);
1856 return nr_reclaimed;
1860 * This moves pages from the active list to the inactive list.
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation. But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page. It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1877 static void move_active_pages_to_lru(struct lruvec *lruvec,
1878 struct list_head *list,
1879 struct list_head *pages_to_free,
1880 enum lru_list lru)
1882 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883 unsigned long pgmoved = 0;
1884 struct page *page;
1885 int nr_pages;
1887 while (!list_empty(list)) {
1888 page = lru_to_page(list);
1889 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1891 VM_BUG_ON_PAGE(PageLRU(page), page);
1892 SetPageLRU(page);
1894 nr_pages = hpage_nr_pages(page);
1895 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1896 list_move(&page->lru, &lruvec->lists[lru]);
1897 pgmoved += nr_pages;
1899 if (put_page_testzero(page)) {
1900 __ClearPageLRU(page);
1901 __ClearPageActive(page);
1902 del_page_from_lru_list(page, lruvec, lru);
1904 if (unlikely(PageCompound(page))) {
1905 spin_unlock_irq(&pgdat->lru_lock);
1906 mem_cgroup_uncharge(page);
1907 (*get_compound_page_dtor(page))(page);
1908 spin_lock_irq(&pgdat->lru_lock);
1909 } else
1910 list_add(&page->lru, pages_to_free);
1914 if (!is_active_lru(lru))
1915 __count_vm_events(PGDEACTIVATE, pgmoved);
1918 static void shrink_active_list(unsigned long nr_to_scan,
1919 struct lruvec *lruvec,
1920 struct scan_control *sc,
1921 enum lru_list lru)
1923 unsigned long nr_taken;
1924 unsigned long nr_scanned;
1925 unsigned long vm_flags;
1926 LIST_HEAD(l_hold); /* The pages which were snipped off */
1927 LIST_HEAD(l_active);
1928 LIST_HEAD(l_inactive);
1929 struct page *page;
1930 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1931 unsigned long nr_rotated = 0;
1932 isolate_mode_t isolate_mode = 0;
1933 int file = is_file_lru(lru);
1934 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1936 lru_add_drain();
1938 if (!sc->may_unmap)
1939 isolate_mode |= ISOLATE_UNMAPPED;
1940 if (!sc->may_writepage)
1941 isolate_mode |= ISOLATE_CLEAN;
1943 spin_lock_irq(&pgdat->lru_lock);
1945 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
1946 &nr_scanned, sc, isolate_mode, lru);
1948 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1949 reclaim_stat->recent_scanned[file] += nr_taken;
1951 if (global_reclaim(sc))
1952 __mod_node_page_state(pgdat, NR_PAGES_SCANNED, nr_scanned);
1953 __count_vm_events(PGREFILL, nr_scanned);
1955 spin_unlock_irq(&pgdat->lru_lock);
1957 while (!list_empty(&l_hold)) {
1958 cond_resched();
1959 page = lru_to_page(&l_hold);
1960 list_del(&page->lru);
1962 if (unlikely(!page_evictable(page))) {
1963 putback_lru_page(page);
1964 continue;
1967 if (unlikely(buffer_heads_over_limit)) {
1968 if (page_has_private(page) && trylock_page(page)) {
1969 if (page_has_private(page))
1970 try_to_release_page(page, 0);
1971 unlock_page(page);
1975 if (page_referenced(page, 0, sc->target_mem_cgroup,
1976 &vm_flags)) {
1977 nr_rotated += hpage_nr_pages(page);
1979 * Identify referenced, file-backed active pages and
1980 * give them one more trip around the active list. So
1981 * that executable code get better chances to stay in
1982 * memory under moderate memory pressure. Anon pages
1983 * are not likely to be evicted by use-once streaming
1984 * IO, plus JVM can create lots of anon VM_EXEC pages,
1985 * so we ignore them here.
1987 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1988 list_add(&page->lru, &l_active);
1989 continue;
1993 ClearPageActive(page); /* we are de-activating */
1994 list_add(&page->lru, &l_inactive);
1998 * Move pages back to the lru list.
2000 spin_lock_irq(&pgdat->lru_lock);
2002 * Count referenced pages from currently used mappings as rotated,
2003 * even though only some of them are actually re-activated. This
2004 * helps balance scan pressure between file and anonymous pages in
2005 * get_scan_count.
2007 reclaim_stat->recent_rotated[file] += nr_rotated;
2009 move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2010 move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2011 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2012 spin_unlock_irq(&pgdat->lru_lock);
2014 mem_cgroup_uncharge_list(&l_hold);
2015 free_hot_cold_page_list(&l_hold, true);
2019 * The inactive anon list should be small enough that the VM never has
2020 * to do too much work.
2022 * The inactive file list should be small enough to leave most memory
2023 * to the established workingset on the scan-resistant active list,
2024 * but large enough to avoid thrashing the aggregate readahead window.
2026 * Both inactive lists should also be large enough that each inactive
2027 * page has a chance to be referenced again before it is reclaimed.
2029 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2030 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2031 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2033 * total target max
2034 * memory ratio inactive
2035 * -------------------------------------
2036 * 10MB 1 5MB
2037 * 100MB 1 50MB
2038 * 1GB 3 250MB
2039 * 10GB 10 0.9GB
2040 * 100GB 31 3GB
2041 * 1TB 101 10GB
2042 * 10TB 320 32GB
2044 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2045 struct scan_control *sc)
2047 unsigned long inactive_ratio;
2048 unsigned long inactive, active;
2049 enum lru_list inactive_lru = file * LRU_FILE;
2050 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2051 unsigned long gb;
2054 * If we don't have swap space, anonymous page deactivation
2055 * is pointless.
2057 if (!file && !total_swap_pages)
2058 return false;
2060 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2061 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2063 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2064 if (gb)
2065 inactive_ratio = int_sqrt(10 * gb);
2066 else
2067 inactive_ratio = 1;
2069 return inactive * inactive_ratio < active;
2072 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2073 struct lruvec *lruvec, struct scan_control *sc)
2075 if (is_active_lru(lru)) {
2076 if (inactive_list_is_low(lruvec, is_file_lru(lru), sc))
2077 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2078 return 0;
2081 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2084 enum scan_balance {
2085 SCAN_EQUAL,
2086 SCAN_FRACT,
2087 SCAN_ANON,
2088 SCAN_FILE,
2092 * Determine how aggressively the anon and file LRU lists should be
2093 * scanned. The relative value of each set of LRU lists is determined
2094 * by looking at the fraction of the pages scanned we did rotate back
2095 * onto the active list instead of evict.
2097 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2098 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2100 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2101 struct scan_control *sc, unsigned long *nr,
2102 unsigned long *lru_pages)
2104 int swappiness = mem_cgroup_swappiness(memcg);
2105 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2106 u64 fraction[2];
2107 u64 denominator = 0; /* gcc */
2108 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2109 unsigned long anon_prio, file_prio;
2110 enum scan_balance scan_balance;
2111 unsigned long anon, file;
2112 bool force_scan = false;
2113 unsigned long ap, fp;
2114 enum lru_list lru;
2115 bool some_scanned;
2116 int pass;
2119 * If the zone or memcg is small, nr[l] can be 0. This
2120 * results in no scanning on this priority and a potential
2121 * priority drop. Global direct reclaim can go to the next
2122 * zone and tends to have no problems. Global kswapd is for
2123 * zone balancing and it needs to scan a minimum amount. When
2124 * reclaiming for a memcg, a priority drop can cause high
2125 * latencies, so it's better to scan a minimum amount there as
2126 * well.
2128 if (current_is_kswapd()) {
2129 if (!pgdat_reclaimable(pgdat))
2130 force_scan = true;
2131 if (!mem_cgroup_online(memcg))
2132 force_scan = true;
2134 if (!global_reclaim(sc))
2135 force_scan = true;
2137 /* If we have no swap space, do not bother scanning anon pages. */
2138 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2139 scan_balance = SCAN_FILE;
2140 goto out;
2144 * Global reclaim will swap to prevent OOM even with no
2145 * swappiness, but memcg users want to use this knob to
2146 * disable swapping for individual groups completely when
2147 * using the memory controller's swap limit feature would be
2148 * too expensive.
2150 if (!global_reclaim(sc) && !swappiness) {
2151 scan_balance = SCAN_FILE;
2152 goto out;
2156 * Do not apply any pressure balancing cleverness when the
2157 * system is close to OOM, scan both anon and file equally
2158 * (unless the swappiness setting disagrees with swapping).
2160 if (!sc->priority && swappiness) {
2161 scan_balance = SCAN_EQUAL;
2162 goto out;
2166 * Prevent the reclaimer from falling into the cache trap: as
2167 * cache pages start out inactive, every cache fault will tip
2168 * the scan balance towards the file LRU. And as the file LRU
2169 * shrinks, so does the window for rotation from references.
2170 * This means we have a runaway feedback loop where a tiny
2171 * thrashing file LRU becomes infinitely more attractive than
2172 * anon pages. Try to detect this based on file LRU size.
2174 if (global_reclaim(sc)) {
2175 unsigned long pgdatfile;
2176 unsigned long pgdatfree;
2177 int z;
2178 unsigned long total_high_wmark = 0;
2180 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2181 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2182 node_page_state(pgdat, NR_INACTIVE_FILE);
2184 for (z = 0; z < MAX_NR_ZONES; z++) {
2185 struct zone *zone = &pgdat->node_zones[z];
2186 if (!managed_zone(zone))
2187 continue;
2189 total_high_wmark += high_wmark_pages(zone);
2192 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2193 scan_balance = SCAN_ANON;
2194 goto out;
2199 * If there is enough inactive page cache, i.e. if the size of the
2200 * inactive list is greater than that of the active list *and* the
2201 * inactive list actually has some pages to scan on this priority, we
2202 * do not reclaim anything from the anonymous working set right now.
2203 * Without the second condition we could end up never scanning an
2204 * lruvec even if it has plenty of old anonymous pages unless the
2205 * system is under heavy pressure.
2207 if (!inactive_list_is_low(lruvec, true, sc) &&
2208 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2209 scan_balance = SCAN_FILE;
2210 goto out;
2213 scan_balance = SCAN_FRACT;
2216 * With swappiness at 100, anonymous and file have the same priority.
2217 * This scanning priority is essentially the inverse of IO cost.
2219 anon_prio = swappiness;
2220 file_prio = 200 - anon_prio;
2223 * OK, so we have swap space and a fair amount of page cache
2224 * pages. We use the recently rotated / recently scanned
2225 * ratios to determine how valuable each cache is.
2227 * Because workloads change over time (and to avoid overflow)
2228 * we keep these statistics as a floating average, which ends
2229 * up weighing recent references more than old ones.
2231 * anon in [0], file in [1]
2234 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2235 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2236 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2237 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2239 spin_lock_irq(&pgdat->lru_lock);
2240 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2241 reclaim_stat->recent_scanned[0] /= 2;
2242 reclaim_stat->recent_rotated[0] /= 2;
2245 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2246 reclaim_stat->recent_scanned[1] /= 2;
2247 reclaim_stat->recent_rotated[1] /= 2;
2251 * The amount of pressure on anon vs file pages is inversely
2252 * proportional to the fraction of recently scanned pages on
2253 * each list that were recently referenced and in active use.
2255 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2256 ap /= reclaim_stat->recent_rotated[0] + 1;
2258 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2259 fp /= reclaim_stat->recent_rotated[1] + 1;
2260 spin_unlock_irq(&pgdat->lru_lock);
2262 fraction[0] = ap;
2263 fraction[1] = fp;
2264 denominator = ap + fp + 1;
2265 out:
2266 some_scanned = false;
2267 /* Only use force_scan on second pass. */
2268 for (pass = 0; !some_scanned && pass < 2; pass++) {
2269 *lru_pages = 0;
2270 for_each_evictable_lru(lru) {
2271 int file = is_file_lru(lru);
2272 unsigned long size;
2273 unsigned long scan;
2275 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2276 scan = size >> sc->priority;
2278 if (!scan && pass && force_scan)
2279 scan = min(size, SWAP_CLUSTER_MAX);
2281 switch (scan_balance) {
2282 case SCAN_EQUAL:
2283 /* Scan lists relative to size */
2284 break;
2285 case SCAN_FRACT:
2287 * Scan types proportional to swappiness and
2288 * their relative recent reclaim efficiency.
2290 scan = div64_u64(scan * fraction[file],
2291 denominator);
2292 break;
2293 case SCAN_FILE:
2294 case SCAN_ANON:
2295 /* Scan one type exclusively */
2296 if ((scan_balance == SCAN_FILE) != file) {
2297 size = 0;
2298 scan = 0;
2300 break;
2301 default:
2302 /* Look ma, no brain */
2303 BUG();
2306 *lru_pages += size;
2307 nr[lru] = scan;
2310 * Skip the second pass and don't force_scan,
2311 * if we found something to scan.
2313 some_scanned |= !!scan;
2319 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2321 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2322 struct scan_control *sc, unsigned long *lru_pages)
2324 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2325 unsigned long nr[NR_LRU_LISTS];
2326 unsigned long targets[NR_LRU_LISTS];
2327 unsigned long nr_to_scan;
2328 enum lru_list lru;
2329 unsigned long nr_reclaimed = 0;
2330 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2331 struct blk_plug plug;
2332 bool scan_adjusted;
2334 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2336 /* Record the original scan target for proportional adjustments later */
2337 memcpy(targets, nr, sizeof(nr));
2340 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2341 * event that can occur when there is little memory pressure e.g.
2342 * multiple streaming readers/writers. Hence, we do not abort scanning
2343 * when the requested number of pages are reclaimed when scanning at
2344 * DEF_PRIORITY on the assumption that the fact we are direct
2345 * reclaiming implies that kswapd is not keeping up and it is best to
2346 * do a batch of work at once. For memcg reclaim one check is made to
2347 * abort proportional reclaim if either the file or anon lru has already
2348 * dropped to zero at the first pass.
2350 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2351 sc->priority == DEF_PRIORITY);
2353 blk_start_plug(&plug);
2354 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2355 nr[LRU_INACTIVE_FILE]) {
2356 unsigned long nr_anon, nr_file, percentage;
2357 unsigned long nr_scanned;
2359 for_each_evictable_lru(lru) {
2360 if (nr[lru]) {
2361 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2362 nr[lru] -= nr_to_scan;
2364 nr_reclaimed += shrink_list(lru, nr_to_scan,
2365 lruvec, sc);
2369 cond_resched();
2371 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2372 continue;
2375 * For kswapd and memcg, reclaim at least the number of pages
2376 * requested. Ensure that the anon and file LRUs are scanned
2377 * proportionally what was requested by get_scan_count(). We
2378 * stop reclaiming one LRU and reduce the amount scanning
2379 * proportional to the original scan target.
2381 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2382 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2385 * It's just vindictive to attack the larger once the smaller
2386 * has gone to zero. And given the way we stop scanning the
2387 * smaller below, this makes sure that we only make one nudge
2388 * towards proportionality once we've got nr_to_reclaim.
2390 if (!nr_file || !nr_anon)
2391 break;
2393 if (nr_file > nr_anon) {
2394 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2395 targets[LRU_ACTIVE_ANON] + 1;
2396 lru = LRU_BASE;
2397 percentage = nr_anon * 100 / scan_target;
2398 } else {
2399 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2400 targets[LRU_ACTIVE_FILE] + 1;
2401 lru = LRU_FILE;
2402 percentage = nr_file * 100 / scan_target;
2405 /* Stop scanning the smaller of the LRU */
2406 nr[lru] = 0;
2407 nr[lru + LRU_ACTIVE] = 0;
2410 * Recalculate the other LRU scan count based on its original
2411 * scan target and the percentage scanning already complete
2413 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2414 nr_scanned = targets[lru] - nr[lru];
2415 nr[lru] = targets[lru] * (100 - percentage) / 100;
2416 nr[lru] -= min(nr[lru], nr_scanned);
2418 lru += LRU_ACTIVE;
2419 nr_scanned = targets[lru] - nr[lru];
2420 nr[lru] = targets[lru] * (100 - percentage) / 100;
2421 nr[lru] -= min(nr[lru], nr_scanned);
2423 scan_adjusted = true;
2425 blk_finish_plug(&plug);
2426 sc->nr_reclaimed += nr_reclaimed;
2429 * Even if we did not try to evict anon pages at all, we want to
2430 * rebalance the anon lru active/inactive ratio.
2432 if (inactive_list_is_low(lruvec, false, sc))
2433 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2434 sc, LRU_ACTIVE_ANON);
2437 /* Use reclaim/compaction for costly allocs or under memory pressure */
2438 static bool in_reclaim_compaction(struct scan_control *sc)
2440 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2441 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2442 sc->priority < DEF_PRIORITY - 2))
2443 return true;
2445 return false;
2449 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2450 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2451 * true if more pages should be reclaimed such that when the page allocator
2452 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2453 * It will give up earlier than that if there is difficulty reclaiming pages.
2455 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2456 unsigned long nr_reclaimed,
2457 unsigned long nr_scanned,
2458 struct scan_control *sc)
2460 unsigned long pages_for_compaction;
2461 unsigned long inactive_lru_pages;
2462 int z;
2464 /* If not in reclaim/compaction mode, stop */
2465 if (!in_reclaim_compaction(sc))
2466 return false;
2468 /* Consider stopping depending on scan and reclaim activity */
2469 if (sc->gfp_mask & __GFP_REPEAT) {
2471 * For __GFP_REPEAT allocations, stop reclaiming if the
2472 * full LRU list has been scanned and we are still failing
2473 * to reclaim pages. This full LRU scan is potentially
2474 * expensive but a __GFP_REPEAT caller really wants to succeed
2476 if (!nr_reclaimed && !nr_scanned)
2477 return false;
2478 } else {
2480 * For non-__GFP_REPEAT allocations which can presumably
2481 * fail without consequence, stop if we failed to reclaim
2482 * any pages from the last SWAP_CLUSTER_MAX number of
2483 * pages that were scanned. This will return to the
2484 * caller faster at the risk reclaim/compaction and
2485 * the resulting allocation attempt fails
2487 if (!nr_reclaimed)
2488 return false;
2492 * If we have not reclaimed enough pages for compaction and the
2493 * inactive lists are large enough, continue reclaiming
2495 pages_for_compaction = compact_gap(sc->order);
2496 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2497 if (get_nr_swap_pages() > 0)
2498 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2499 if (sc->nr_reclaimed < pages_for_compaction &&
2500 inactive_lru_pages > pages_for_compaction)
2501 return true;
2503 /* If compaction would go ahead or the allocation would succeed, stop */
2504 for (z = 0; z <= sc->reclaim_idx; z++) {
2505 struct zone *zone = &pgdat->node_zones[z];
2506 if (!managed_zone(zone))
2507 continue;
2509 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2510 case COMPACT_SUCCESS:
2511 case COMPACT_CONTINUE:
2512 return false;
2513 default:
2514 /* check next zone */
2518 return true;
2521 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2523 struct reclaim_state *reclaim_state = current->reclaim_state;
2524 unsigned long nr_reclaimed, nr_scanned;
2525 bool reclaimable = false;
2527 do {
2528 struct mem_cgroup *root = sc->target_mem_cgroup;
2529 struct mem_cgroup_reclaim_cookie reclaim = {
2530 .pgdat = pgdat,
2531 .priority = sc->priority,
2533 unsigned long node_lru_pages = 0;
2534 struct mem_cgroup *memcg;
2536 nr_reclaimed = sc->nr_reclaimed;
2537 nr_scanned = sc->nr_scanned;
2539 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2540 do {
2541 unsigned long lru_pages;
2542 unsigned long reclaimed;
2543 unsigned long scanned;
2545 if (mem_cgroup_low(root, memcg)) {
2546 if (!sc->may_thrash)
2547 continue;
2548 mem_cgroup_events(memcg, MEMCG_LOW, 1);
2551 reclaimed = sc->nr_reclaimed;
2552 scanned = sc->nr_scanned;
2554 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2555 node_lru_pages += lru_pages;
2557 if (memcg)
2558 shrink_slab(sc->gfp_mask, pgdat->node_id,
2559 memcg, sc->nr_scanned - scanned,
2560 lru_pages);
2562 /* Record the group's reclaim efficiency */
2563 vmpressure(sc->gfp_mask, memcg, false,
2564 sc->nr_scanned - scanned,
2565 sc->nr_reclaimed - reclaimed);
2568 * Direct reclaim and kswapd have to scan all memory
2569 * cgroups to fulfill the overall scan target for the
2570 * node.
2572 * Limit reclaim, on the other hand, only cares about
2573 * nr_to_reclaim pages to be reclaimed and it will
2574 * retry with decreasing priority if one round over the
2575 * whole hierarchy is not sufficient.
2577 if (!global_reclaim(sc) &&
2578 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2579 mem_cgroup_iter_break(root, memcg);
2580 break;
2582 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2585 * Shrink the slab caches in the same proportion that
2586 * the eligible LRU pages were scanned.
2588 if (global_reclaim(sc))
2589 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2590 sc->nr_scanned - nr_scanned,
2591 node_lru_pages);
2593 if (reclaim_state) {
2594 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2595 reclaim_state->reclaimed_slab = 0;
2598 /* Record the subtree's reclaim efficiency */
2599 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2600 sc->nr_scanned - nr_scanned,
2601 sc->nr_reclaimed - nr_reclaimed);
2603 if (sc->nr_reclaimed - nr_reclaimed)
2604 reclaimable = true;
2606 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2607 sc->nr_scanned - nr_scanned, sc));
2609 return reclaimable;
2613 * Returns true if compaction should go ahead for a costly-order request, or
2614 * the allocation would already succeed without compaction. Return false if we
2615 * should reclaim first.
2617 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2619 unsigned long watermark;
2620 enum compact_result suitable;
2622 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2623 if (suitable == COMPACT_SUCCESS)
2624 /* Allocation should succeed already. Don't reclaim. */
2625 return true;
2626 if (suitable == COMPACT_SKIPPED)
2627 /* Compaction cannot yet proceed. Do reclaim. */
2628 return false;
2631 * Compaction is already possible, but it takes time to run and there
2632 * are potentially other callers using the pages just freed. So proceed
2633 * with reclaim to make a buffer of free pages available to give
2634 * compaction a reasonable chance of completing and allocating the page.
2635 * Note that we won't actually reclaim the whole buffer in one attempt
2636 * as the target watermark in should_continue_reclaim() is lower. But if
2637 * we are already above the high+gap watermark, don't reclaim at all.
2639 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2641 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2645 * This is the direct reclaim path, for page-allocating processes. We only
2646 * try to reclaim pages from zones which will satisfy the caller's allocation
2647 * request.
2649 * If a zone is deemed to be full of pinned pages then just give it a light
2650 * scan then give up on it.
2652 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2654 struct zoneref *z;
2655 struct zone *zone;
2656 unsigned long nr_soft_reclaimed;
2657 unsigned long nr_soft_scanned;
2658 gfp_t orig_mask;
2659 pg_data_t *last_pgdat = NULL;
2662 * If the number of buffer_heads in the machine exceeds the maximum
2663 * allowed level, force direct reclaim to scan the highmem zone as
2664 * highmem pages could be pinning lowmem pages storing buffer_heads
2666 orig_mask = sc->gfp_mask;
2667 if (buffer_heads_over_limit) {
2668 sc->gfp_mask |= __GFP_HIGHMEM;
2669 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2672 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2673 sc->reclaim_idx, sc->nodemask) {
2675 * Take care memory controller reclaiming has small influence
2676 * to global LRU.
2678 if (global_reclaim(sc)) {
2679 if (!cpuset_zone_allowed(zone,
2680 GFP_KERNEL | __GFP_HARDWALL))
2681 continue;
2683 if (sc->priority != DEF_PRIORITY &&
2684 !pgdat_reclaimable(zone->zone_pgdat))
2685 continue; /* Let kswapd poll it */
2688 * If we already have plenty of memory free for
2689 * compaction in this zone, don't free any more.
2690 * Even though compaction is invoked for any
2691 * non-zero order, only frequent costly order
2692 * reclamation is disruptive enough to become a
2693 * noticeable problem, like transparent huge
2694 * page allocations.
2696 if (IS_ENABLED(CONFIG_COMPACTION) &&
2697 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2698 compaction_ready(zone, sc)) {
2699 sc->compaction_ready = true;
2700 continue;
2704 * Shrink each node in the zonelist once. If the
2705 * zonelist is ordered by zone (not the default) then a
2706 * node may be shrunk multiple times but in that case
2707 * the user prefers lower zones being preserved.
2709 if (zone->zone_pgdat == last_pgdat)
2710 continue;
2713 * This steals pages from memory cgroups over softlimit
2714 * and returns the number of reclaimed pages and
2715 * scanned pages. This works for global memory pressure
2716 * and balancing, not for a memcg's limit.
2718 nr_soft_scanned = 0;
2719 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2720 sc->order, sc->gfp_mask,
2721 &nr_soft_scanned);
2722 sc->nr_reclaimed += nr_soft_reclaimed;
2723 sc->nr_scanned += nr_soft_scanned;
2724 /* need some check for avoid more shrink_zone() */
2727 /* See comment about same check for global reclaim above */
2728 if (zone->zone_pgdat == last_pgdat)
2729 continue;
2730 last_pgdat = zone->zone_pgdat;
2731 shrink_node(zone->zone_pgdat, sc);
2735 * Restore to original mask to avoid the impact on the caller if we
2736 * promoted it to __GFP_HIGHMEM.
2738 sc->gfp_mask = orig_mask;
2742 * This is the main entry point to direct page reclaim.
2744 * If a full scan of the inactive list fails to free enough memory then we
2745 * are "out of memory" and something needs to be killed.
2747 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2748 * high - the zone may be full of dirty or under-writeback pages, which this
2749 * caller can't do much about. We kick the writeback threads and take explicit
2750 * naps in the hope that some of these pages can be written. But if the
2751 * allocating task holds filesystem locks which prevent writeout this might not
2752 * work, and the allocation attempt will fail.
2754 * returns: 0, if no pages reclaimed
2755 * else, the number of pages reclaimed
2757 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2758 struct scan_control *sc)
2760 int initial_priority = sc->priority;
2761 unsigned long total_scanned = 0;
2762 unsigned long writeback_threshold;
2763 retry:
2764 delayacct_freepages_start();
2766 if (global_reclaim(sc))
2767 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2769 do {
2770 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2771 sc->priority);
2772 sc->nr_scanned = 0;
2773 shrink_zones(zonelist, sc);
2775 total_scanned += sc->nr_scanned;
2776 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2777 break;
2779 if (sc->compaction_ready)
2780 break;
2783 * If we're getting trouble reclaiming, start doing
2784 * writepage even in laptop mode.
2786 if (sc->priority < DEF_PRIORITY - 2)
2787 sc->may_writepage = 1;
2790 * Try to write back as many pages as we just scanned. This
2791 * tends to cause slow streaming writers to write data to the
2792 * disk smoothly, at the dirtying rate, which is nice. But
2793 * that's undesirable in laptop mode, where we *want* lumpy
2794 * writeout. So in laptop mode, write out the whole world.
2796 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2797 if (total_scanned > writeback_threshold) {
2798 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2799 WB_REASON_TRY_TO_FREE_PAGES);
2800 sc->may_writepage = 1;
2802 } while (--sc->priority >= 0);
2804 delayacct_freepages_end();
2806 if (sc->nr_reclaimed)
2807 return sc->nr_reclaimed;
2809 /* Aborted reclaim to try compaction? don't OOM, then */
2810 if (sc->compaction_ready)
2811 return 1;
2813 /* Untapped cgroup reserves? Don't OOM, retry. */
2814 if (!sc->may_thrash) {
2815 sc->priority = initial_priority;
2816 sc->may_thrash = 1;
2817 goto retry;
2820 return 0;
2823 static bool pfmemalloc_watermark_ok(pg_data_t *pgdat)
2825 struct zone *zone;
2826 unsigned long pfmemalloc_reserve = 0;
2827 unsigned long free_pages = 0;
2828 int i;
2829 bool wmark_ok;
2831 for (i = 0; i <= ZONE_NORMAL; i++) {
2832 zone = &pgdat->node_zones[i];
2833 if (!managed_zone(zone) ||
2834 pgdat_reclaimable_pages(pgdat) == 0)
2835 continue;
2837 pfmemalloc_reserve += min_wmark_pages(zone);
2838 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2841 /* If there are no reserves (unexpected config) then do not throttle */
2842 if (!pfmemalloc_reserve)
2843 return true;
2845 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2847 /* kswapd must be awake if processes are being throttled */
2848 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
2849 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
2850 (enum zone_type)ZONE_NORMAL);
2851 wake_up_interruptible(&pgdat->kswapd_wait);
2854 return wmark_ok;
2858 * Throttle direct reclaimers if backing storage is backed by the network
2859 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2860 * depleted. kswapd will continue to make progress and wake the processes
2861 * when the low watermark is reached.
2863 * Returns true if a fatal signal was delivered during throttling. If this
2864 * happens, the page allocator should not consider triggering the OOM killer.
2866 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
2867 nodemask_t *nodemask)
2869 struct zoneref *z;
2870 struct zone *zone;
2871 pg_data_t *pgdat = NULL;
2874 * Kernel threads should not be throttled as they may be indirectly
2875 * responsible for cleaning pages necessary for reclaim to make forward
2876 * progress. kjournald for example may enter direct reclaim while
2877 * committing a transaction where throttling it could forcing other
2878 * processes to block on log_wait_commit().
2880 if (current->flags & PF_KTHREAD)
2881 goto out;
2884 * If a fatal signal is pending, this process should not throttle.
2885 * It should return quickly so it can exit and free its memory
2887 if (fatal_signal_pending(current))
2888 goto out;
2891 * Check if the pfmemalloc reserves are ok by finding the first node
2892 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2893 * GFP_KERNEL will be required for allocating network buffers when
2894 * swapping over the network so ZONE_HIGHMEM is unusable.
2896 * Throttling is based on the first usable node and throttled processes
2897 * wait on a queue until kswapd makes progress and wakes them. There
2898 * is an affinity then between processes waking up and where reclaim
2899 * progress has been made assuming the process wakes on the same node.
2900 * More importantly, processes running on remote nodes will not compete
2901 * for remote pfmemalloc reserves and processes on different nodes
2902 * should make reasonable progress.
2904 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2905 gfp_zone(gfp_mask), nodemask) {
2906 if (zone_idx(zone) > ZONE_NORMAL)
2907 continue;
2909 /* Throttle based on the first usable node */
2910 pgdat = zone->zone_pgdat;
2911 if (pfmemalloc_watermark_ok(pgdat))
2912 goto out;
2913 break;
2916 /* If no zone was usable by the allocation flags then do not throttle */
2917 if (!pgdat)
2918 goto out;
2920 /* Account for the throttling */
2921 count_vm_event(PGSCAN_DIRECT_THROTTLE);
2924 * If the caller cannot enter the filesystem, it's possible that it
2925 * is due to the caller holding an FS lock or performing a journal
2926 * transaction in the case of a filesystem like ext[3|4]. In this case,
2927 * it is not safe to block on pfmemalloc_wait as kswapd could be
2928 * blocked waiting on the same lock. Instead, throttle for up to a
2929 * second before continuing.
2931 if (!(gfp_mask & __GFP_FS)) {
2932 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
2933 pfmemalloc_watermark_ok(pgdat), HZ);
2935 goto check_pending;
2938 /* Throttle until kswapd wakes the process */
2939 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
2940 pfmemalloc_watermark_ok(pgdat));
2942 check_pending:
2943 if (fatal_signal_pending(current))
2944 return true;
2946 out:
2947 return false;
2950 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2951 gfp_t gfp_mask, nodemask_t *nodemask)
2953 unsigned long nr_reclaimed;
2954 struct scan_control sc = {
2955 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2956 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
2957 .reclaim_idx = gfp_zone(gfp_mask),
2958 .order = order,
2959 .nodemask = nodemask,
2960 .priority = DEF_PRIORITY,
2961 .may_writepage = !laptop_mode,
2962 .may_unmap = 1,
2963 .may_swap = 1,
2967 * Do not enter reclaim if fatal signal was delivered while throttled.
2968 * 1 is returned so that the page allocator does not OOM kill at this
2969 * point.
2971 if (throttle_direct_reclaim(gfp_mask, zonelist, nodemask))
2972 return 1;
2974 trace_mm_vmscan_direct_reclaim_begin(order,
2975 sc.may_writepage,
2976 gfp_mask,
2977 sc.reclaim_idx);
2979 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2981 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2983 return nr_reclaimed;
2986 #ifdef CONFIG_MEMCG
2988 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
2989 gfp_t gfp_mask, bool noswap,
2990 pg_data_t *pgdat,
2991 unsigned long *nr_scanned)
2993 struct scan_control sc = {
2994 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2995 .target_mem_cgroup = memcg,
2996 .may_writepage = !laptop_mode,
2997 .may_unmap = 1,
2998 .reclaim_idx = MAX_NR_ZONES - 1,
2999 .may_swap = !noswap,
3001 unsigned long lru_pages;
3003 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3004 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3006 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3007 sc.may_writepage,
3008 sc.gfp_mask,
3009 sc.reclaim_idx);
3012 * NOTE: Although we can get the priority field, using it
3013 * here is not a good idea, since it limits the pages we can scan.
3014 * if we don't reclaim here, the shrink_node from balance_pgdat
3015 * will pick up pages from other mem cgroup's as well. We hack
3016 * the priority and make it zero.
3018 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3020 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3022 *nr_scanned = sc.nr_scanned;
3023 return sc.nr_reclaimed;
3026 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3027 unsigned long nr_pages,
3028 gfp_t gfp_mask,
3029 bool may_swap)
3031 struct zonelist *zonelist;
3032 unsigned long nr_reclaimed;
3033 int nid;
3034 struct scan_control sc = {
3035 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3036 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3037 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3038 .reclaim_idx = MAX_NR_ZONES - 1,
3039 .target_mem_cgroup = memcg,
3040 .priority = DEF_PRIORITY,
3041 .may_writepage = !laptop_mode,
3042 .may_unmap = 1,
3043 .may_swap = may_swap,
3047 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3048 * take care of from where we get pages. So the node where we start the
3049 * scan does not need to be the current node.
3051 nid = mem_cgroup_select_victim_node(memcg);
3053 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3055 trace_mm_vmscan_memcg_reclaim_begin(0,
3056 sc.may_writepage,
3057 sc.gfp_mask,
3058 sc.reclaim_idx);
3060 current->flags |= PF_MEMALLOC;
3061 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3062 current->flags &= ~PF_MEMALLOC;
3064 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3066 return nr_reclaimed;
3068 #endif
3070 static void age_active_anon(struct pglist_data *pgdat,
3071 struct scan_control *sc)
3073 struct mem_cgroup *memcg;
3075 if (!total_swap_pages)
3076 return;
3078 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3079 do {
3080 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3082 if (inactive_list_is_low(lruvec, false, sc))
3083 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3084 sc, LRU_ACTIVE_ANON);
3086 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3087 } while (memcg);
3090 static bool zone_balanced(struct zone *zone, int order, int classzone_idx)
3092 unsigned long mark = high_wmark_pages(zone);
3094 if (!zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3095 return false;
3098 * If any eligible zone is balanced then the node is not considered
3099 * to be congested or dirty
3101 clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
3102 clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
3104 return true;
3108 * Prepare kswapd for sleeping. This verifies that there are no processes
3109 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3111 * Returns true if kswapd is ready to sleep
3113 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3115 int i;
3118 * The throttled processes are normally woken up in balance_pgdat() as
3119 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3120 * race between when kswapd checks the watermarks and a process gets
3121 * throttled. There is also a potential race if processes get
3122 * throttled, kswapd wakes, a large process exits thereby balancing the
3123 * zones, which causes kswapd to exit balance_pgdat() before reaching
3124 * the wake up checks. If kswapd is going to sleep, no process should
3125 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3126 * the wake up is premature, processes will wake kswapd and get
3127 * throttled again. The difference from wake ups in balance_pgdat() is
3128 * that here we are under prepare_to_wait().
3130 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3131 wake_up_all(&pgdat->pfmemalloc_wait);
3133 for (i = 0; i <= classzone_idx; i++) {
3134 struct zone *zone = pgdat->node_zones + i;
3136 if (!managed_zone(zone))
3137 continue;
3139 if (!zone_balanced(zone, order, classzone_idx))
3140 return false;
3143 return true;
3147 * kswapd shrinks a node of pages that are at or below the highest usable
3148 * zone that is currently unbalanced.
3150 * Returns true if kswapd scanned at least the requested number of pages to
3151 * reclaim or if the lack of progress was due to pages under writeback.
3152 * This is used to determine if the scanning priority needs to be raised.
3154 static bool kswapd_shrink_node(pg_data_t *pgdat,
3155 struct scan_control *sc)
3157 struct zone *zone;
3158 int z;
3160 /* Reclaim a number of pages proportional to the number of zones */
3161 sc->nr_to_reclaim = 0;
3162 for (z = 0; z <= sc->reclaim_idx; z++) {
3163 zone = pgdat->node_zones + z;
3164 if (!managed_zone(zone))
3165 continue;
3167 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3171 * Historically care was taken to put equal pressure on all zones but
3172 * now pressure is applied based on node LRU order.
3174 shrink_node(pgdat, sc);
3177 * Fragmentation may mean that the system cannot be rebalanced for
3178 * high-order allocations. If twice the allocation size has been
3179 * reclaimed then recheck watermarks only at order-0 to prevent
3180 * excessive reclaim. Assume that a process requested a high-order
3181 * can direct reclaim/compact.
3183 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3184 sc->order = 0;
3186 return sc->nr_scanned >= sc->nr_to_reclaim;
3190 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3191 * that are eligible for use by the caller until at least one zone is
3192 * balanced.
3194 * Returns the order kswapd finished reclaiming at.
3196 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3197 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3198 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3199 * or lower is eligible for reclaim until at least one usable zone is
3200 * balanced.
3202 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3204 int i;
3205 unsigned long nr_soft_reclaimed;
3206 unsigned long nr_soft_scanned;
3207 struct zone *zone;
3208 struct scan_control sc = {
3209 .gfp_mask = GFP_KERNEL,
3210 .order = order,
3211 .priority = DEF_PRIORITY,
3212 .may_writepage = !laptop_mode,
3213 .may_unmap = 1,
3214 .may_swap = 1,
3216 count_vm_event(PAGEOUTRUN);
3218 do {
3219 bool raise_priority = true;
3221 sc.nr_reclaimed = 0;
3222 sc.reclaim_idx = classzone_idx;
3225 * If the number of buffer_heads exceeds the maximum allowed
3226 * then consider reclaiming from all zones. This has a dual
3227 * purpose -- on 64-bit systems it is expected that
3228 * buffer_heads are stripped during active rotation. On 32-bit
3229 * systems, highmem pages can pin lowmem memory and shrinking
3230 * buffers can relieve lowmem pressure. Reclaim may still not
3231 * go ahead if all eligible zones for the original allocation
3232 * request are balanced to avoid excessive reclaim from kswapd.
3234 if (buffer_heads_over_limit) {
3235 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3236 zone = pgdat->node_zones + i;
3237 if (!managed_zone(zone))
3238 continue;
3240 sc.reclaim_idx = i;
3241 break;
3246 * Only reclaim if there are no eligible zones. Check from
3247 * high to low zone as allocations prefer higher zones.
3248 * Scanning from low to high zone would allow congestion to be
3249 * cleared during a very small window when a small low
3250 * zone was balanced even under extreme pressure when the
3251 * overall node may be congested. Note that sc.reclaim_idx
3252 * is not used as buffer_heads_over_limit may have adjusted
3253 * it.
3255 for (i = classzone_idx; i >= 0; i--) {
3256 zone = pgdat->node_zones + i;
3257 if (!managed_zone(zone))
3258 continue;
3260 if (zone_balanced(zone, sc.order, classzone_idx))
3261 goto out;
3265 * Do some background aging of the anon list, to give
3266 * pages a chance to be referenced before reclaiming. All
3267 * pages are rotated regardless of classzone as this is
3268 * about consistent aging.
3270 age_active_anon(pgdat, &sc);
3273 * If we're getting trouble reclaiming, start doing writepage
3274 * even in laptop mode.
3276 if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
3277 sc.may_writepage = 1;
3279 /* Call soft limit reclaim before calling shrink_node. */
3280 sc.nr_scanned = 0;
3281 nr_soft_scanned = 0;
3282 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3283 sc.gfp_mask, &nr_soft_scanned);
3284 sc.nr_reclaimed += nr_soft_reclaimed;
3287 * There should be no need to raise the scanning priority if
3288 * enough pages are already being scanned that that high
3289 * watermark would be met at 100% efficiency.
3291 if (kswapd_shrink_node(pgdat, &sc))
3292 raise_priority = false;
3295 * If the low watermark is met there is no need for processes
3296 * to be throttled on pfmemalloc_wait as they should not be
3297 * able to safely make forward progress. Wake them
3299 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3300 pfmemalloc_watermark_ok(pgdat))
3301 wake_up_all(&pgdat->pfmemalloc_wait);
3303 /* Check if kswapd should be suspending */
3304 if (try_to_freeze() || kthread_should_stop())
3305 break;
3308 * Raise priority if scanning rate is too low or there was no
3309 * progress in reclaiming pages
3311 if (raise_priority || !sc.nr_reclaimed)
3312 sc.priority--;
3313 } while (sc.priority >= 1);
3315 out:
3317 * Return the order kswapd stopped reclaiming at as
3318 * prepare_kswapd_sleep() takes it into account. If another caller
3319 * entered the allocator slow path while kswapd was awake, order will
3320 * remain at the higher level.
3322 return sc.order;
3325 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3326 unsigned int classzone_idx)
3328 long remaining = 0;
3329 DEFINE_WAIT(wait);
3331 if (freezing(current) || kthread_should_stop())
3332 return;
3334 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3336 /* Try to sleep for a short interval */
3337 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3339 * Compaction records what page blocks it recently failed to
3340 * isolate pages from and skips them in the future scanning.
3341 * When kswapd is going to sleep, it is reasonable to assume
3342 * that pages and compaction may succeed so reset the cache.
3344 reset_isolation_suitable(pgdat);
3347 * We have freed the memory, now we should compact it to make
3348 * allocation of the requested order possible.
3350 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3352 remaining = schedule_timeout(HZ/10);
3355 * If woken prematurely then reset kswapd_classzone_idx and
3356 * order. The values will either be from a wakeup request or
3357 * the previous request that slept prematurely.
3359 if (remaining) {
3360 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3361 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3364 finish_wait(&pgdat->kswapd_wait, &wait);
3365 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3369 * After a short sleep, check if it was a premature sleep. If not, then
3370 * go fully to sleep until explicitly woken up.
3372 if (!remaining &&
3373 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3374 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3377 * vmstat counters are not perfectly accurate and the estimated
3378 * value for counters such as NR_FREE_PAGES can deviate from the
3379 * true value by nr_online_cpus * threshold. To avoid the zone
3380 * watermarks being breached while under pressure, we reduce the
3381 * per-cpu vmstat threshold while kswapd is awake and restore
3382 * them before going back to sleep.
3384 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3386 if (!kthread_should_stop())
3387 schedule();
3389 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3390 } else {
3391 if (remaining)
3392 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3393 else
3394 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3396 finish_wait(&pgdat->kswapd_wait, &wait);
3400 * The background pageout daemon, started as a kernel thread
3401 * from the init process.
3403 * This basically trickles out pages so that we have _some_
3404 * free memory available even if there is no other activity
3405 * that frees anything up. This is needed for things like routing
3406 * etc, where we otherwise might have all activity going on in
3407 * asynchronous contexts that cannot page things out.
3409 * If there are applications that are active memory-allocators
3410 * (most normal use), this basically shouldn't matter.
3412 static int kswapd(void *p)
3414 unsigned int alloc_order, reclaim_order, classzone_idx;
3415 pg_data_t *pgdat = (pg_data_t*)p;
3416 struct task_struct *tsk = current;
3418 struct reclaim_state reclaim_state = {
3419 .reclaimed_slab = 0,
3421 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3423 lockdep_set_current_reclaim_state(GFP_KERNEL);
3425 if (!cpumask_empty(cpumask))
3426 set_cpus_allowed_ptr(tsk, cpumask);
3427 current->reclaim_state = &reclaim_state;
3430 * Tell the memory management that we're a "memory allocator",
3431 * and that if we need more memory we should get access to it
3432 * regardless (see "__alloc_pages()"). "kswapd" should
3433 * never get caught in the normal page freeing logic.
3435 * (Kswapd normally doesn't need memory anyway, but sometimes
3436 * you need a small amount of memory in order to be able to
3437 * page out something else, and this flag essentially protects
3438 * us from recursively trying to free more memory as we're
3439 * trying to free the first piece of memory in the first place).
3441 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3442 set_freezable();
3444 pgdat->kswapd_order = alloc_order = reclaim_order = 0;
3445 pgdat->kswapd_classzone_idx = classzone_idx = 0;
3446 for ( ; ; ) {
3447 bool ret;
3449 kswapd_try_sleep:
3450 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3451 classzone_idx);
3453 /* Read the new order and classzone_idx */
3454 alloc_order = reclaim_order = pgdat->kswapd_order;
3455 classzone_idx = pgdat->kswapd_classzone_idx;
3456 pgdat->kswapd_order = 0;
3457 pgdat->kswapd_classzone_idx = 0;
3459 ret = try_to_freeze();
3460 if (kthread_should_stop())
3461 break;
3464 * We can speed up thawing tasks if we don't call balance_pgdat
3465 * after returning from the refrigerator
3467 if (ret)
3468 continue;
3471 * Reclaim begins at the requested order but if a high-order
3472 * reclaim fails then kswapd falls back to reclaiming for
3473 * order-0. If that happens, kswapd will consider sleeping
3474 * for the order it finished reclaiming at (reclaim_order)
3475 * but kcompactd is woken to compact for the original
3476 * request (alloc_order).
3478 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3479 alloc_order);
3480 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3481 if (reclaim_order < alloc_order)
3482 goto kswapd_try_sleep;
3484 alloc_order = reclaim_order = pgdat->kswapd_order;
3485 classzone_idx = pgdat->kswapd_classzone_idx;
3488 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3489 current->reclaim_state = NULL;
3490 lockdep_clear_current_reclaim_state();
3492 return 0;
3496 * A zone is low on free memory, so wake its kswapd task to service it.
3498 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3500 pg_data_t *pgdat;
3501 int z;
3503 if (!managed_zone(zone))
3504 return;
3506 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3507 return;
3508 pgdat = zone->zone_pgdat;
3509 pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx, classzone_idx);
3510 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3511 if (!waitqueue_active(&pgdat->kswapd_wait))
3512 return;
3514 /* Only wake kswapd if all zones are unbalanced */
3515 for (z = 0; z <= classzone_idx; z++) {
3516 zone = pgdat->node_zones + z;
3517 if (!managed_zone(zone))
3518 continue;
3520 if (zone_balanced(zone, order, classzone_idx))
3521 return;
3524 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3525 wake_up_interruptible(&pgdat->kswapd_wait);
3528 #ifdef CONFIG_HIBERNATION
3530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3531 * freed pages.
3533 * Rather than trying to age LRUs the aim is to preserve the overall
3534 * LRU order by reclaiming preferentially
3535 * inactive > active > active referenced > active mapped
3537 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3539 struct reclaim_state reclaim_state;
3540 struct scan_control sc = {
3541 .nr_to_reclaim = nr_to_reclaim,
3542 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3543 .reclaim_idx = MAX_NR_ZONES - 1,
3544 .priority = DEF_PRIORITY,
3545 .may_writepage = 1,
3546 .may_unmap = 1,
3547 .may_swap = 1,
3548 .hibernation_mode = 1,
3550 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3551 struct task_struct *p = current;
3552 unsigned long nr_reclaimed;
3554 p->flags |= PF_MEMALLOC;
3555 lockdep_set_current_reclaim_state(sc.gfp_mask);
3556 reclaim_state.reclaimed_slab = 0;
3557 p->reclaim_state = &reclaim_state;
3559 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3561 p->reclaim_state = NULL;
3562 lockdep_clear_current_reclaim_state();
3563 p->flags &= ~PF_MEMALLOC;
3565 return nr_reclaimed;
3567 #endif /* CONFIG_HIBERNATION */
3569 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3570 not required for correctness. So if the last cpu in a node goes
3571 away, we get changed to run anywhere: as the first one comes back,
3572 restore their cpu bindings. */
3573 static int cpu_callback(struct notifier_block *nfb, unsigned long action,
3574 void *hcpu)
3576 int nid;
3578 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3579 for_each_node_state(nid, N_MEMORY) {
3580 pg_data_t *pgdat = NODE_DATA(nid);
3581 const struct cpumask *mask;
3583 mask = cpumask_of_node(pgdat->node_id);
3585 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3586 /* One of our CPUs online: restore mask */
3587 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3590 return NOTIFY_OK;
3594 * This kswapd start function will be called by init and node-hot-add.
3595 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3597 int kswapd_run(int nid)
3599 pg_data_t *pgdat = NODE_DATA(nid);
3600 int ret = 0;
3602 if (pgdat->kswapd)
3603 return 0;
3605 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3606 if (IS_ERR(pgdat->kswapd)) {
3607 /* failure at boot is fatal */
3608 BUG_ON(system_state == SYSTEM_BOOTING);
3609 pr_err("Failed to start kswapd on node %d\n", nid);
3610 ret = PTR_ERR(pgdat->kswapd);
3611 pgdat->kswapd = NULL;
3613 return ret;
3617 * Called by memory hotplug when all memory in a node is offlined. Caller must
3618 * hold mem_hotplug_begin/end().
3620 void kswapd_stop(int nid)
3622 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3624 if (kswapd) {
3625 kthread_stop(kswapd);
3626 NODE_DATA(nid)->kswapd = NULL;
3630 static int __init kswapd_init(void)
3632 int nid;
3634 swap_setup();
3635 for_each_node_state(nid, N_MEMORY)
3636 kswapd_run(nid);
3637 hotcpu_notifier(cpu_callback, 0);
3638 return 0;
3641 module_init(kswapd_init)
3643 #ifdef CONFIG_NUMA
3645 * Node reclaim mode
3647 * If non-zero call node_reclaim when the number of free pages falls below
3648 * the watermarks.
3650 int node_reclaim_mode __read_mostly;
3652 #define RECLAIM_OFF 0
3653 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3654 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3655 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3658 * Priority for NODE_RECLAIM. This determines the fraction of pages
3659 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3660 * a zone.
3662 #define NODE_RECLAIM_PRIORITY 4
3665 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3666 * occur.
3668 int sysctl_min_unmapped_ratio = 1;
3671 * If the number of slab pages in a zone grows beyond this percentage then
3672 * slab reclaim needs to occur.
3674 int sysctl_min_slab_ratio = 5;
3676 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3678 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3679 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3680 node_page_state(pgdat, NR_ACTIVE_FILE);
3683 * It's possible for there to be more file mapped pages than
3684 * accounted for by the pages on the file LRU lists because
3685 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3687 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3690 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3691 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3693 unsigned long nr_pagecache_reclaimable;
3694 unsigned long delta = 0;
3697 * If RECLAIM_UNMAP is set, then all file pages are considered
3698 * potentially reclaimable. Otherwise, we have to worry about
3699 * pages like swapcache and node_unmapped_file_pages() provides
3700 * a better estimate
3702 if (node_reclaim_mode & RECLAIM_UNMAP)
3703 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3704 else
3705 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3707 /* If we can't clean pages, remove dirty pages from consideration */
3708 if (!(node_reclaim_mode & RECLAIM_WRITE))
3709 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3711 /* Watch for any possible underflows due to delta */
3712 if (unlikely(delta > nr_pagecache_reclaimable))
3713 delta = nr_pagecache_reclaimable;
3715 return nr_pagecache_reclaimable - delta;
3719 * Try to free up some pages from this node through reclaim.
3721 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3723 /* Minimum pages needed in order to stay on node */
3724 const unsigned long nr_pages = 1 << order;
3725 struct task_struct *p = current;
3726 struct reclaim_state reclaim_state;
3727 int classzone_idx = gfp_zone(gfp_mask);
3728 struct scan_control sc = {
3729 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3730 .gfp_mask = (gfp_mask = memalloc_noio_flags(gfp_mask)),
3731 .order = order,
3732 .priority = NODE_RECLAIM_PRIORITY,
3733 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3734 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3735 .may_swap = 1,
3736 .reclaim_idx = classzone_idx,
3739 cond_resched();
3741 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742 * and we also need to be able to write out pages for RECLAIM_WRITE
3743 * and RECLAIM_UNMAP.
3745 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3746 lockdep_set_current_reclaim_state(gfp_mask);
3747 reclaim_state.reclaimed_slab = 0;
3748 p->reclaim_state = &reclaim_state;
3750 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3752 * Free memory by calling shrink zone with increasing
3753 * priorities until we have enough memory freed.
3755 do {
3756 shrink_node(pgdat, &sc);
3757 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3760 p->reclaim_state = NULL;
3761 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3762 lockdep_clear_current_reclaim_state();
3763 return sc.nr_reclaimed >= nr_pages;
3766 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3768 int ret;
3771 * Node reclaim reclaims unmapped file backed pages and
3772 * slab pages if we are over the defined limits.
3774 * A small portion of unmapped file backed pages is needed for
3775 * file I/O otherwise pages read by file I/O will be immediately
3776 * thrown out if the node is overallocated. So we do not reclaim
3777 * if less than a specified percentage of the node is used by
3778 * unmapped file backed pages.
3780 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3781 sum_zone_node_page_state(pgdat->node_id, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3782 return NODE_RECLAIM_FULL;
3784 if (!pgdat_reclaimable(pgdat))
3785 return NODE_RECLAIM_FULL;
3788 * Do not scan if the allocation should not be delayed.
3790 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3791 return NODE_RECLAIM_NOSCAN;
3794 * Only run node reclaim on the local node or on nodes that do not
3795 * have associated processors. This will favor the local processor
3796 * over remote processors and spread off node memory allocations
3797 * as wide as possible.
3799 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3800 return NODE_RECLAIM_NOSCAN;
3802 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3803 return NODE_RECLAIM_NOSCAN;
3805 ret = __node_reclaim(pgdat, gfp_mask, order);
3806 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
3808 if (!ret)
3809 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3811 return ret;
3813 #endif
3816 * page_evictable - test whether a page is evictable
3817 * @page: the page to test
3819 * Test whether page is evictable--i.e., should be placed on active/inactive
3820 * lists vs unevictable list.
3822 * Reasons page might not be evictable:
3823 * (1) page's mapping marked unevictable
3824 * (2) page is part of an mlocked VMA
3827 int page_evictable(struct page *page)
3829 return !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3832 #ifdef CONFIG_SHMEM
3834 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3835 * @pages: array of pages to check
3836 * @nr_pages: number of pages to check
3838 * Checks pages for evictability and moves them to the appropriate lru list.
3840 * This function is only used for SysV IPC SHM_UNLOCK.
3842 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3844 struct lruvec *lruvec;
3845 struct pglist_data *pgdat = NULL;
3846 int pgscanned = 0;
3847 int pgrescued = 0;
3848 int i;
3850 for (i = 0; i < nr_pages; i++) {
3851 struct page *page = pages[i];
3852 struct pglist_data *pagepgdat = page_pgdat(page);
3854 pgscanned++;
3855 if (pagepgdat != pgdat) {
3856 if (pgdat)
3857 spin_unlock_irq(&pgdat->lru_lock);
3858 pgdat = pagepgdat;
3859 spin_lock_irq(&pgdat->lru_lock);
3861 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3863 if (!PageLRU(page) || !PageUnevictable(page))
3864 continue;
3866 if (page_evictable(page)) {
3867 enum lru_list lru = page_lru_base_type(page);
3869 VM_BUG_ON_PAGE(PageActive(page), page);
3870 ClearPageUnevictable(page);
3871 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
3872 add_page_to_lru_list(page, lruvec, lru);
3873 pgrescued++;
3877 if (pgdat) {
3878 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3879 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3880 spin_unlock_irq(&pgdat->lru_lock);
3883 #endif /* CONFIG_SHMEM */