ext4: clean up some wait_on_page_writeback calls
[linux/fpc-iii.git] / fs / namei.c
blobe6cd6113872ccd4db1dadfa5deff08f90a45c8a0
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <asm/uaccess.h>
37 #include "internal.h"
39 /* [Feb-1997 T. Schoebel-Theuer]
40 * Fundamental changes in the pathname lookup mechanisms (namei)
41 * were necessary because of omirr. The reason is that omirr needs
42 * to know the _real_ pathname, not the user-supplied one, in case
43 * of symlinks (and also when transname replacements occur).
45 * The new code replaces the old recursive symlink resolution with
46 * an iterative one (in case of non-nested symlink chains). It does
47 * this with calls to <fs>_follow_link().
48 * As a side effect, dir_namei(), _namei() and follow_link() are now
49 * replaced with a single function lookup_dentry() that can handle all
50 * the special cases of the former code.
52 * With the new dcache, the pathname is stored at each inode, at least as
53 * long as the refcount of the inode is positive. As a side effect, the
54 * size of the dcache depends on the inode cache and thus is dynamic.
56 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
57 * resolution to correspond with current state of the code.
59 * Note that the symlink resolution is not *completely* iterative.
60 * There is still a significant amount of tail- and mid- recursion in
61 * the algorithm. Also, note that <fs>_readlink() is not used in
62 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
63 * may return different results than <fs>_follow_link(). Many virtual
64 * filesystems (including /proc) exhibit this behavior.
67 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
68 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
69 * and the name already exists in form of a symlink, try to create the new
70 * name indicated by the symlink. The old code always complained that the
71 * name already exists, due to not following the symlink even if its target
72 * is nonexistent. The new semantics affects also mknod() and link() when
73 * the name is a symlink pointing to a non-existent name.
75 * I don't know which semantics is the right one, since I have no access
76 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
77 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
78 * "old" one. Personally, I think the new semantics is much more logical.
79 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
80 * file does succeed in both HP-UX and SunOs, but not in Solaris
81 * and in the old Linux semantics.
84 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
85 * semantics. See the comments in "open_namei" and "do_link" below.
87 * [10-Sep-98 Alan Modra] Another symlink change.
90 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
91 * inside the path - always follow.
92 * in the last component in creation/removal/renaming - never follow.
93 * if LOOKUP_FOLLOW passed - follow.
94 * if the pathname has trailing slashes - follow.
95 * otherwise - don't follow.
96 * (applied in that order).
98 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
99 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
100 * During the 2.4 we need to fix the userland stuff depending on it -
101 * hopefully we will be able to get rid of that wart in 2.5. So far only
102 * XEmacs seems to be relying on it...
105 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
106 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
107 * any extra contention...
110 /* In order to reduce some races, while at the same time doing additional
111 * checking and hopefully speeding things up, we copy filenames to the
112 * kernel data space before using them..
114 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
115 * PATH_MAX includes the nul terminator --RR.
117 static int do_getname(const char __user *filename, char *page)
119 int retval;
120 unsigned long len = PATH_MAX;
122 if (!segment_eq(get_fs(), KERNEL_DS)) {
123 if ((unsigned long) filename >= TASK_SIZE)
124 return -EFAULT;
125 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
126 len = TASK_SIZE - (unsigned long) filename;
129 retval = strncpy_from_user(page, filename, len);
130 if (retval > 0) {
131 if (retval < len)
132 return 0;
133 return -ENAMETOOLONG;
134 } else if (!retval)
135 retval = -ENOENT;
136 return retval;
139 static char *getname_flags(const char __user * filename, int flags)
141 char *tmp, *result;
143 result = ERR_PTR(-ENOMEM);
144 tmp = __getname();
145 if (tmp) {
146 int retval = do_getname(filename, tmp);
148 result = tmp;
149 if (retval < 0) {
150 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
151 __putname(tmp);
152 result = ERR_PTR(retval);
156 audit_getname(result);
157 return result;
160 char *getname(const char __user * filename)
162 return getname_flags(filename, 0);
165 #ifdef CONFIG_AUDITSYSCALL
166 void putname(const char *name)
168 if (unlikely(!audit_dummy_context()))
169 audit_putname(name);
170 else
171 __putname(name);
173 EXPORT_SYMBOL(putname);
174 #endif
177 * This does basic POSIX ACL permission checking
179 static int acl_permission_check(struct inode *inode, int mask, unsigned int flags,
180 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
182 umode_t mode = inode->i_mode;
184 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
186 if (current_user_ns() != inode_userns(inode))
187 goto other_perms;
189 if (current_fsuid() == inode->i_uid)
190 mode >>= 6;
191 else {
192 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
193 int error = check_acl(inode, mask, flags);
194 if (error != -EAGAIN)
195 return error;
198 if (in_group_p(inode->i_gid))
199 mode >>= 3;
202 other_perms:
204 * If the DACs are ok we don't need any capability check.
206 if ((mask & ~mode) == 0)
207 return 0;
208 return -EACCES;
212 * generic_permission - check for access rights on a Posix-like filesystem
213 * @inode: inode to check access rights for
214 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
215 * @check_acl: optional callback to check for Posix ACLs
216 * @flags: IPERM_FLAG_ flags.
218 * Used to check for read/write/execute permissions on a file.
219 * We use "fsuid" for this, letting us set arbitrary permissions
220 * for filesystem access without changing the "normal" uids which
221 * are used for other things.
223 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
224 * request cannot be satisfied (eg. requires blocking or too much complexity).
225 * It would then be called again in ref-walk mode.
227 int generic_permission(struct inode *inode, int mask, unsigned int flags,
228 int (*check_acl)(struct inode *inode, int mask, unsigned int flags))
230 int ret;
233 * Do the basic POSIX ACL permission checks.
235 ret = acl_permission_check(inode, mask, flags, check_acl);
236 if (ret != -EACCES)
237 return ret;
240 * Read/write DACs are always overridable.
241 * Executable DACs are overridable if at least one exec bit is set.
243 if (!(mask & MAY_EXEC) || execute_ok(inode))
244 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
245 return 0;
248 * Searching includes executable on directories, else just read.
250 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
251 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
252 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
253 return 0;
255 return -EACCES;
259 * inode_permission - check for access rights to a given inode
260 * @inode: inode to check permission on
261 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
263 * Used to check for read/write/execute permissions on an inode.
264 * We use "fsuid" for this, letting us set arbitrary permissions
265 * for filesystem access without changing the "normal" uids which
266 * are used for other things.
268 int inode_permission(struct inode *inode, int mask)
270 int retval;
272 if (mask & MAY_WRITE) {
273 umode_t mode = inode->i_mode;
276 * Nobody gets write access to a read-only fs.
278 if (IS_RDONLY(inode) &&
279 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
280 return -EROFS;
283 * Nobody gets write access to an immutable file.
285 if (IS_IMMUTABLE(inode))
286 return -EACCES;
289 if (inode->i_op->permission)
290 retval = inode->i_op->permission(inode, mask, 0);
291 else
292 retval = generic_permission(inode, mask, 0,
293 inode->i_op->check_acl);
295 if (retval)
296 return retval;
298 retval = devcgroup_inode_permission(inode, mask);
299 if (retval)
300 return retval;
302 return security_inode_permission(inode, mask);
306 * file_permission - check for additional access rights to a given file
307 * @file: file to check access rights for
308 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
310 * Used to check for read/write/execute permissions on an already opened
311 * file.
313 * Note:
314 * Do not use this function in new code. All access checks should
315 * be done using inode_permission().
317 int file_permission(struct file *file, int mask)
319 return inode_permission(file->f_path.dentry->d_inode, mask);
323 * get_write_access() gets write permission for a file.
324 * put_write_access() releases this write permission.
325 * This is used for regular files.
326 * We cannot support write (and maybe mmap read-write shared) accesses and
327 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
328 * can have the following values:
329 * 0: no writers, no VM_DENYWRITE mappings
330 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
331 * > 0: (i_writecount) users are writing to the file.
333 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
334 * except for the cases where we don't hold i_writecount yet. Then we need to
335 * use {get,deny}_write_access() - these functions check the sign and refuse
336 * to do the change if sign is wrong. Exclusion between them is provided by
337 * the inode->i_lock spinlock.
340 int get_write_access(struct inode * inode)
342 spin_lock(&inode->i_lock);
343 if (atomic_read(&inode->i_writecount) < 0) {
344 spin_unlock(&inode->i_lock);
345 return -ETXTBSY;
347 atomic_inc(&inode->i_writecount);
348 spin_unlock(&inode->i_lock);
350 return 0;
353 int deny_write_access(struct file * file)
355 struct inode *inode = file->f_path.dentry->d_inode;
357 spin_lock(&inode->i_lock);
358 if (atomic_read(&inode->i_writecount) > 0) {
359 spin_unlock(&inode->i_lock);
360 return -ETXTBSY;
362 atomic_dec(&inode->i_writecount);
363 spin_unlock(&inode->i_lock);
365 return 0;
369 * path_get - get a reference to a path
370 * @path: path to get the reference to
372 * Given a path increment the reference count to the dentry and the vfsmount.
374 void path_get(struct path *path)
376 mntget(path->mnt);
377 dget(path->dentry);
379 EXPORT_SYMBOL(path_get);
382 * path_put - put a reference to a path
383 * @path: path to put the reference to
385 * Given a path decrement the reference count to the dentry and the vfsmount.
387 void path_put(struct path *path)
389 dput(path->dentry);
390 mntput(path->mnt);
392 EXPORT_SYMBOL(path_put);
395 * nameidata_drop_rcu - drop this nameidata out of rcu-walk
396 * @nd: nameidata pathwalk data to drop
397 * Returns: 0 on success, -ECHILD on failure
399 * Path walking has 2 modes, rcu-walk and ref-walk (see
400 * Documentation/filesystems/path-lookup.txt). __drop_rcu* functions attempt
401 * to drop out of rcu-walk mode and take normal reference counts on dentries
402 * and vfsmounts to transition to rcu-walk mode. __drop_rcu* functions take
403 * refcounts at the last known good point before rcu-walk got stuck, so
404 * ref-walk may continue from there. If this is not successful (eg. a seqcount
405 * has changed), then failure is returned and path walk restarts from the
406 * beginning in ref-walk mode.
408 * nameidata_drop_rcu attempts to drop the current nd->path and nd->root into
409 * ref-walk. Must be called from rcu-walk context.
411 static int nameidata_drop_rcu(struct nameidata *nd)
413 struct fs_struct *fs = current->fs;
414 struct dentry *dentry = nd->path.dentry;
415 int want_root = 0;
417 BUG_ON(!(nd->flags & LOOKUP_RCU));
418 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
419 want_root = 1;
420 spin_lock(&fs->lock);
421 if (nd->root.mnt != fs->root.mnt ||
422 nd->root.dentry != fs->root.dentry)
423 goto err_root;
425 spin_lock(&dentry->d_lock);
426 if (!__d_rcu_to_refcount(dentry, nd->seq))
427 goto err;
428 BUG_ON(nd->inode != dentry->d_inode);
429 spin_unlock(&dentry->d_lock);
430 if (want_root) {
431 path_get(&nd->root);
432 spin_unlock(&fs->lock);
434 mntget(nd->path.mnt);
436 rcu_read_unlock();
437 br_read_unlock(vfsmount_lock);
438 nd->flags &= ~LOOKUP_RCU;
439 return 0;
440 err:
441 spin_unlock(&dentry->d_lock);
442 err_root:
443 if (want_root)
444 spin_unlock(&fs->lock);
445 return -ECHILD;
448 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
449 static inline int nameidata_drop_rcu_maybe(struct nameidata *nd)
451 if (nd->flags & LOOKUP_RCU)
452 return nameidata_drop_rcu(nd);
453 return 0;
457 * nameidata_dentry_drop_rcu - drop nameidata and dentry out of rcu-walk
458 * @nd: nameidata pathwalk data to drop
459 * @dentry: dentry to drop
460 * Returns: 0 on success, -ECHILD on failure
462 * nameidata_dentry_drop_rcu attempts to drop the current nd->path and nd->root,
463 * and dentry into ref-walk. @dentry must be a path found by a do_lookup call on
464 * @nd. Must be called from rcu-walk context.
466 static int nameidata_dentry_drop_rcu(struct nameidata *nd, struct dentry *dentry)
468 struct fs_struct *fs = current->fs;
469 struct dentry *parent = nd->path.dentry;
470 int want_root = 0;
472 BUG_ON(!(nd->flags & LOOKUP_RCU));
473 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
474 want_root = 1;
475 spin_lock(&fs->lock);
476 if (nd->root.mnt != fs->root.mnt ||
477 nd->root.dentry != fs->root.dentry)
478 goto err_root;
480 spin_lock(&parent->d_lock);
481 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
482 if (!__d_rcu_to_refcount(dentry, nd->seq))
483 goto err;
485 * If the sequence check on the child dentry passed, then the child has
486 * not been removed from its parent. This means the parent dentry must
487 * be valid and able to take a reference at this point.
489 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
490 BUG_ON(!parent->d_count);
491 parent->d_count++;
492 spin_unlock(&dentry->d_lock);
493 spin_unlock(&parent->d_lock);
494 if (want_root) {
495 path_get(&nd->root);
496 spin_unlock(&fs->lock);
498 mntget(nd->path.mnt);
500 rcu_read_unlock();
501 br_read_unlock(vfsmount_lock);
502 nd->flags &= ~LOOKUP_RCU;
503 return 0;
504 err:
505 spin_unlock(&dentry->d_lock);
506 spin_unlock(&parent->d_lock);
507 err_root:
508 if (want_root)
509 spin_unlock(&fs->lock);
510 return -ECHILD;
513 /* Try to drop out of rcu-walk mode if we were in it, otherwise do nothing. */
514 static inline int nameidata_dentry_drop_rcu_maybe(struct nameidata *nd, struct dentry *dentry)
516 if (nd->flags & LOOKUP_RCU) {
517 if (unlikely(nameidata_dentry_drop_rcu(nd, dentry))) {
518 nd->flags &= ~LOOKUP_RCU;
519 if (!(nd->flags & LOOKUP_ROOT))
520 nd->root.mnt = NULL;
521 rcu_read_unlock();
522 br_read_unlock(vfsmount_lock);
523 return -ECHILD;
526 return 0;
530 * nameidata_drop_rcu_last - drop nameidata ending path walk out of rcu-walk
531 * @nd: nameidata pathwalk data to drop
532 * Returns: 0 on success, -ECHILD on failure
534 * nameidata_drop_rcu_last attempts to drop the current nd->path into ref-walk.
535 * nd->path should be the final element of the lookup, so nd->root is discarded.
536 * Must be called from rcu-walk context.
538 static int nameidata_drop_rcu_last(struct nameidata *nd)
540 struct dentry *dentry = nd->path.dentry;
542 BUG_ON(!(nd->flags & LOOKUP_RCU));
543 nd->flags &= ~LOOKUP_RCU;
544 if (!(nd->flags & LOOKUP_ROOT))
545 nd->root.mnt = NULL;
546 spin_lock(&dentry->d_lock);
547 if (!__d_rcu_to_refcount(dentry, nd->seq))
548 goto err_unlock;
549 BUG_ON(nd->inode != dentry->d_inode);
550 spin_unlock(&dentry->d_lock);
552 mntget(nd->path.mnt);
554 rcu_read_unlock();
555 br_read_unlock(vfsmount_lock);
557 return 0;
559 err_unlock:
560 spin_unlock(&dentry->d_lock);
561 rcu_read_unlock();
562 br_read_unlock(vfsmount_lock);
563 return -ECHILD;
567 * release_open_intent - free up open intent resources
568 * @nd: pointer to nameidata
570 void release_open_intent(struct nameidata *nd)
572 struct file *file = nd->intent.open.file;
574 if (file && !IS_ERR(file)) {
575 if (file->f_path.dentry == NULL)
576 put_filp(file);
577 else
578 fput(file);
582 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
584 return dentry->d_op->d_revalidate(dentry, nd);
587 static struct dentry *
588 do_revalidate(struct dentry *dentry, struct nameidata *nd)
590 int status = d_revalidate(dentry, nd);
591 if (unlikely(status <= 0)) {
593 * The dentry failed validation.
594 * If d_revalidate returned 0 attempt to invalidate
595 * the dentry otherwise d_revalidate is asking us
596 * to return a fail status.
598 if (status < 0) {
599 dput(dentry);
600 dentry = ERR_PTR(status);
601 } else if (!d_invalidate(dentry)) {
602 dput(dentry);
603 dentry = NULL;
606 return dentry;
610 * handle_reval_path - force revalidation of a dentry
612 * In some situations the path walking code will trust dentries without
613 * revalidating them. This causes problems for filesystems that depend on
614 * d_revalidate to handle file opens (e.g. NFSv4). When FS_REVAL_DOT is set
615 * (which indicates that it's possible for the dentry to go stale), force
616 * a d_revalidate call before proceeding.
618 * Returns 0 if the revalidation was successful. If the revalidation fails,
619 * either return the error returned by d_revalidate or -ESTALE if the
620 * revalidation it just returned 0. If d_revalidate returns 0, we attempt to
621 * invalidate the dentry. It's up to the caller to handle putting references
622 * to the path if necessary.
624 static inline int handle_reval_path(struct nameidata *nd)
626 struct dentry *dentry = nd->path.dentry;
627 int status;
629 if (likely(!(nd->flags & LOOKUP_JUMPED)))
630 return 0;
632 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
633 return 0;
635 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
636 return 0;
638 /* Note: we do not d_invalidate() */
639 status = d_revalidate(dentry, nd);
640 if (status > 0)
641 return 0;
643 if (!status)
644 status = -ESTALE;
646 return status;
650 * Short-cut version of permission(), for calling on directories
651 * during pathname resolution. Combines parts of permission()
652 * and generic_permission(), and tests ONLY for MAY_EXEC permission.
654 * If appropriate, check DAC only. If not appropriate, or
655 * short-cut DAC fails, then call ->permission() to do more
656 * complete permission check.
658 static inline int exec_permission(struct inode *inode, unsigned int flags)
660 int ret;
661 struct user_namespace *ns = inode_userns(inode);
663 if (inode->i_op->permission) {
664 ret = inode->i_op->permission(inode, MAY_EXEC, flags);
665 } else {
666 ret = acl_permission_check(inode, MAY_EXEC, flags,
667 inode->i_op->check_acl);
669 if (likely(!ret))
670 goto ok;
671 if (ret == -ECHILD)
672 return ret;
674 if (ns_capable(ns, CAP_DAC_OVERRIDE) ||
675 ns_capable(ns, CAP_DAC_READ_SEARCH))
676 goto ok;
678 return ret;
680 return security_inode_exec_permission(inode, flags);
683 static __always_inline void set_root(struct nameidata *nd)
685 if (!nd->root.mnt)
686 get_fs_root(current->fs, &nd->root);
689 static int link_path_walk(const char *, struct nameidata *);
691 static __always_inline void set_root_rcu(struct nameidata *nd)
693 if (!nd->root.mnt) {
694 struct fs_struct *fs = current->fs;
695 unsigned seq;
697 do {
698 seq = read_seqcount_begin(&fs->seq);
699 nd->root = fs->root;
700 } while (read_seqcount_retry(&fs->seq, seq));
704 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
706 int ret;
708 if (IS_ERR(link))
709 goto fail;
711 if (*link == '/') {
712 set_root(nd);
713 path_put(&nd->path);
714 nd->path = nd->root;
715 path_get(&nd->root);
716 nd->flags |= LOOKUP_JUMPED;
718 nd->inode = nd->path.dentry->d_inode;
720 ret = link_path_walk(link, nd);
721 return ret;
722 fail:
723 path_put(&nd->path);
724 return PTR_ERR(link);
727 static void path_put_conditional(struct path *path, struct nameidata *nd)
729 dput(path->dentry);
730 if (path->mnt != nd->path.mnt)
731 mntput(path->mnt);
734 static inline void path_to_nameidata(const struct path *path,
735 struct nameidata *nd)
737 if (!(nd->flags & LOOKUP_RCU)) {
738 dput(nd->path.dentry);
739 if (nd->path.mnt != path->mnt)
740 mntput(nd->path.mnt);
742 nd->path.mnt = path->mnt;
743 nd->path.dentry = path->dentry;
746 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
748 struct inode *inode = link->dentry->d_inode;
749 if (!IS_ERR(cookie) && inode->i_op->put_link)
750 inode->i_op->put_link(link->dentry, nd, cookie);
751 path_put(link);
754 static __always_inline int
755 follow_link(struct path *link, struct nameidata *nd, void **p)
757 int error;
758 struct dentry *dentry = link->dentry;
760 BUG_ON(nd->flags & LOOKUP_RCU);
762 if (link->mnt == nd->path.mnt)
763 mntget(link->mnt);
765 if (unlikely(current->total_link_count >= 40)) {
766 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
767 path_put(&nd->path);
768 return -ELOOP;
770 cond_resched();
771 current->total_link_count++;
773 touch_atime(link->mnt, dentry);
774 nd_set_link(nd, NULL);
776 error = security_inode_follow_link(link->dentry, nd);
777 if (error) {
778 *p = ERR_PTR(error); /* no ->put_link(), please */
779 path_put(&nd->path);
780 return error;
783 nd->last_type = LAST_BIND;
784 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
785 error = PTR_ERR(*p);
786 if (!IS_ERR(*p)) {
787 char *s = nd_get_link(nd);
788 error = 0;
789 if (s)
790 error = __vfs_follow_link(nd, s);
791 else if (nd->last_type == LAST_BIND) {
792 nd->flags |= LOOKUP_JUMPED;
793 nd->inode = nd->path.dentry->d_inode;
794 if (nd->inode->i_op->follow_link) {
795 /* stepped on a _really_ weird one */
796 path_put(&nd->path);
797 error = -ELOOP;
801 return error;
804 static int follow_up_rcu(struct path *path)
806 struct vfsmount *parent;
807 struct dentry *mountpoint;
809 parent = path->mnt->mnt_parent;
810 if (parent == path->mnt)
811 return 0;
812 mountpoint = path->mnt->mnt_mountpoint;
813 path->dentry = mountpoint;
814 path->mnt = parent;
815 return 1;
818 int follow_up(struct path *path)
820 struct vfsmount *parent;
821 struct dentry *mountpoint;
823 br_read_lock(vfsmount_lock);
824 parent = path->mnt->mnt_parent;
825 if (parent == path->mnt) {
826 br_read_unlock(vfsmount_lock);
827 return 0;
829 mntget(parent);
830 mountpoint = dget(path->mnt->mnt_mountpoint);
831 br_read_unlock(vfsmount_lock);
832 dput(path->dentry);
833 path->dentry = mountpoint;
834 mntput(path->mnt);
835 path->mnt = parent;
836 return 1;
840 * Perform an automount
841 * - return -EISDIR to tell follow_managed() to stop and return the path we
842 * were called with.
844 static int follow_automount(struct path *path, unsigned flags,
845 bool *need_mntput)
847 struct vfsmount *mnt;
848 int err;
850 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
851 return -EREMOTE;
853 /* We don't want to mount if someone supplied AT_NO_AUTOMOUNT
854 * and this is the terminal part of the path.
856 if ((flags & LOOKUP_NO_AUTOMOUNT) && !(flags & LOOKUP_CONTINUE))
857 return -EISDIR; /* we actually want to stop here */
859 /* We want to mount if someone is trying to open/create a file of any
860 * type under the mountpoint, wants to traverse through the mountpoint
861 * or wants to open the mounted directory.
863 * We don't want to mount if someone's just doing a stat and they've
864 * set AT_SYMLINK_NOFOLLOW - unless they're stat'ing a directory and
865 * appended a '/' to the name.
867 if (!(flags & LOOKUP_FOLLOW) &&
868 !(flags & (LOOKUP_CONTINUE | LOOKUP_DIRECTORY |
869 LOOKUP_OPEN | LOOKUP_CREATE)))
870 return -EISDIR;
872 current->total_link_count++;
873 if (current->total_link_count >= 40)
874 return -ELOOP;
876 mnt = path->dentry->d_op->d_automount(path);
877 if (IS_ERR(mnt)) {
879 * The filesystem is allowed to return -EISDIR here to indicate
880 * it doesn't want to automount. For instance, autofs would do
881 * this so that its userspace daemon can mount on this dentry.
883 * However, we can only permit this if it's a terminal point in
884 * the path being looked up; if it wasn't then the remainder of
885 * the path is inaccessible and we should say so.
887 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_CONTINUE))
888 return -EREMOTE;
889 return PTR_ERR(mnt);
892 if (!mnt) /* mount collision */
893 return 0;
895 err = finish_automount(mnt, path);
897 switch (err) {
898 case -EBUSY:
899 /* Someone else made a mount here whilst we were busy */
900 return 0;
901 case 0:
902 dput(path->dentry);
903 if (*need_mntput)
904 mntput(path->mnt);
905 path->mnt = mnt;
906 path->dentry = dget(mnt->mnt_root);
907 *need_mntput = true;
908 return 0;
909 default:
910 return err;
916 * Handle a dentry that is managed in some way.
917 * - Flagged for transit management (autofs)
918 * - Flagged as mountpoint
919 * - Flagged as automount point
921 * This may only be called in refwalk mode.
923 * Serialization is taken care of in namespace.c
925 static int follow_managed(struct path *path, unsigned flags)
927 unsigned managed;
928 bool need_mntput = false;
929 int ret;
931 /* Given that we're not holding a lock here, we retain the value in a
932 * local variable for each dentry as we look at it so that we don't see
933 * the components of that value change under us */
934 while (managed = ACCESS_ONCE(path->dentry->d_flags),
935 managed &= DCACHE_MANAGED_DENTRY,
936 unlikely(managed != 0)) {
937 /* Allow the filesystem to manage the transit without i_mutex
938 * being held. */
939 if (managed & DCACHE_MANAGE_TRANSIT) {
940 BUG_ON(!path->dentry->d_op);
941 BUG_ON(!path->dentry->d_op->d_manage);
942 ret = path->dentry->d_op->d_manage(path->dentry, false);
943 if (ret < 0)
944 return ret == -EISDIR ? 0 : ret;
947 /* Transit to a mounted filesystem. */
948 if (managed & DCACHE_MOUNTED) {
949 struct vfsmount *mounted = lookup_mnt(path);
950 if (mounted) {
951 dput(path->dentry);
952 if (need_mntput)
953 mntput(path->mnt);
954 path->mnt = mounted;
955 path->dentry = dget(mounted->mnt_root);
956 need_mntput = true;
957 continue;
960 /* Something is mounted on this dentry in another
961 * namespace and/or whatever was mounted there in this
962 * namespace got unmounted before we managed to get the
963 * vfsmount_lock */
966 /* Handle an automount point */
967 if (managed & DCACHE_NEED_AUTOMOUNT) {
968 ret = follow_automount(path, flags, &need_mntput);
969 if (ret < 0)
970 return ret == -EISDIR ? 0 : ret;
971 continue;
974 /* We didn't change the current path point */
975 break;
977 return 0;
980 int follow_down_one(struct path *path)
982 struct vfsmount *mounted;
984 mounted = lookup_mnt(path);
985 if (mounted) {
986 dput(path->dentry);
987 mntput(path->mnt);
988 path->mnt = mounted;
989 path->dentry = dget(mounted->mnt_root);
990 return 1;
992 return 0;
995 static inline bool managed_dentry_might_block(struct dentry *dentry)
997 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
998 dentry->d_op->d_manage(dentry, true) < 0);
1002 * Skip to top of mountpoint pile in rcuwalk mode. We abort the rcu-walk if we
1003 * meet a managed dentry and we're not walking to "..". True is returned to
1004 * continue, false to abort.
1006 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1007 struct inode **inode, bool reverse_transit)
1009 for (;;) {
1010 struct vfsmount *mounted;
1012 * Don't forget we might have a non-mountpoint managed dentry
1013 * that wants to block transit.
1015 *inode = path->dentry->d_inode;
1016 if (!reverse_transit &&
1017 unlikely(managed_dentry_might_block(path->dentry)))
1018 return false;
1020 if (!d_mountpoint(path->dentry))
1021 break;
1023 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
1024 if (!mounted)
1025 break;
1026 path->mnt = mounted;
1027 path->dentry = mounted->mnt_root;
1028 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1031 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1032 return reverse_transit;
1033 return true;
1036 static int follow_dotdot_rcu(struct nameidata *nd)
1038 struct inode *inode = nd->inode;
1040 set_root_rcu(nd);
1042 while (1) {
1043 if (nd->path.dentry == nd->root.dentry &&
1044 nd->path.mnt == nd->root.mnt) {
1045 break;
1047 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1048 struct dentry *old = nd->path.dentry;
1049 struct dentry *parent = old->d_parent;
1050 unsigned seq;
1052 seq = read_seqcount_begin(&parent->d_seq);
1053 if (read_seqcount_retry(&old->d_seq, nd->seq))
1054 goto failed;
1055 inode = parent->d_inode;
1056 nd->path.dentry = parent;
1057 nd->seq = seq;
1058 break;
1060 if (!follow_up_rcu(&nd->path))
1061 break;
1062 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1063 inode = nd->path.dentry->d_inode;
1065 __follow_mount_rcu(nd, &nd->path, &inode, true);
1066 nd->inode = inode;
1067 return 0;
1069 failed:
1070 nd->flags &= ~LOOKUP_RCU;
1071 if (!(nd->flags & LOOKUP_ROOT))
1072 nd->root.mnt = NULL;
1073 rcu_read_unlock();
1074 br_read_unlock(vfsmount_lock);
1075 return -ECHILD;
1079 * Follow down to the covering mount currently visible to userspace. At each
1080 * point, the filesystem owning that dentry may be queried as to whether the
1081 * caller is permitted to proceed or not.
1083 * Care must be taken as namespace_sem may be held (indicated by mounting_here
1084 * being true).
1086 int follow_down(struct path *path)
1088 unsigned managed;
1089 int ret;
1091 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1092 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1093 /* Allow the filesystem to manage the transit without i_mutex
1094 * being held.
1096 * We indicate to the filesystem if someone is trying to mount
1097 * something here. This gives autofs the chance to deny anyone
1098 * other than its daemon the right to mount on its
1099 * superstructure.
1101 * The filesystem may sleep at this point.
1103 if (managed & DCACHE_MANAGE_TRANSIT) {
1104 BUG_ON(!path->dentry->d_op);
1105 BUG_ON(!path->dentry->d_op->d_manage);
1106 ret = path->dentry->d_op->d_manage(
1107 path->dentry, false);
1108 if (ret < 0)
1109 return ret == -EISDIR ? 0 : ret;
1112 /* Transit to a mounted filesystem. */
1113 if (managed & DCACHE_MOUNTED) {
1114 struct vfsmount *mounted = lookup_mnt(path);
1115 if (!mounted)
1116 break;
1117 dput(path->dentry);
1118 mntput(path->mnt);
1119 path->mnt = mounted;
1120 path->dentry = dget(mounted->mnt_root);
1121 continue;
1124 /* Don't handle automount points here */
1125 break;
1127 return 0;
1131 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1133 static void follow_mount(struct path *path)
1135 while (d_mountpoint(path->dentry)) {
1136 struct vfsmount *mounted = lookup_mnt(path);
1137 if (!mounted)
1138 break;
1139 dput(path->dentry);
1140 mntput(path->mnt);
1141 path->mnt = mounted;
1142 path->dentry = dget(mounted->mnt_root);
1146 static void follow_dotdot(struct nameidata *nd)
1148 set_root(nd);
1150 while(1) {
1151 struct dentry *old = nd->path.dentry;
1153 if (nd->path.dentry == nd->root.dentry &&
1154 nd->path.mnt == nd->root.mnt) {
1155 break;
1157 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1158 /* rare case of legitimate dget_parent()... */
1159 nd->path.dentry = dget_parent(nd->path.dentry);
1160 dput(old);
1161 break;
1163 if (!follow_up(&nd->path))
1164 break;
1166 follow_mount(&nd->path);
1167 nd->inode = nd->path.dentry->d_inode;
1171 * Allocate a dentry with name and parent, and perform a parent
1172 * directory ->lookup on it. Returns the new dentry, or ERR_PTR
1173 * on error. parent->d_inode->i_mutex must be held. d_lookup must
1174 * have verified that no child exists while under i_mutex.
1176 static struct dentry *d_alloc_and_lookup(struct dentry *parent,
1177 struct qstr *name, struct nameidata *nd)
1179 struct inode *inode = parent->d_inode;
1180 struct dentry *dentry;
1181 struct dentry *old;
1183 /* Don't create child dentry for a dead directory. */
1184 if (unlikely(IS_DEADDIR(inode)))
1185 return ERR_PTR(-ENOENT);
1187 dentry = d_alloc(parent, name);
1188 if (unlikely(!dentry))
1189 return ERR_PTR(-ENOMEM);
1191 old = inode->i_op->lookup(inode, dentry, nd);
1192 if (unlikely(old)) {
1193 dput(dentry);
1194 dentry = old;
1196 return dentry;
1200 * It's more convoluted than I'd like it to be, but... it's still fairly
1201 * small and for now I'd prefer to have fast path as straight as possible.
1202 * It _is_ time-critical.
1204 static int do_lookup(struct nameidata *nd, struct qstr *name,
1205 struct path *path, struct inode **inode)
1207 struct vfsmount *mnt = nd->path.mnt;
1208 struct dentry *dentry, *parent = nd->path.dentry;
1209 int need_reval = 1;
1210 int status = 1;
1211 int err;
1214 * Rename seqlock is not required here because in the off chance
1215 * of a false negative due to a concurrent rename, we're going to
1216 * do the non-racy lookup, below.
1218 if (nd->flags & LOOKUP_RCU) {
1219 unsigned seq;
1220 *inode = nd->inode;
1221 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1222 if (!dentry)
1223 goto unlazy;
1225 /* Memory barrier in read_seqcount_begin of child is enough */
1226 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1227 return -ECHILD;
1228 nd->seq = seq;
1230 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1231 status = d_revalidate(dentry, nd);
1232 if (unlikely(status <= 0)) {
1233 if (status != -ECHILD)
1234 need_reval = 0;
1235 goto unlazy;
1238 path->mnt = mnt;
1239 path->dentry = dentry;
1240 if (likely(__follow_mount_rcu(nd, path, inode, false)))
1241 return 0;
1242 unlazy:
1243 if (dentry) {
1244 if (nameidata_dentry_drop_rcu(nd, dentry))
1245 return -ECHILD;
1246 } else {
1247 if (nameidata_drop_rcu(nd))
1248 return -ECHILD;
1250 } else {
1251 dentry = __d_lookup(parent, name);
1254 retry:
1255 if (unlikely(!dentry)) {
1256 struct inode *dir = parent->d_inode;
1257 BUG_ON(nd->inode != dir);
1259 mutex_lock(&dir->i_mutex);
1260 dentry = d_lookup(parent, name);
1261 if (likely(!dentry)) {
1262 dentry = d_alloc_and_lookup(parent, name, nd);
1263 if (IS_ERR(dentry)) {
1264 mutex_unlock(&dir->i_mutex);
1265 return PTR_ERR(dentry);
1267 /* known good */
1268 need_reval = 0;
1269 status = 1;
1271 mutex_unlock(&dir->i_mutex);
1273 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1274 status = d_revalidate(dentry, nd);
1275 if (unlikely(status <= 0)) {
1276 if (status < 0) {
1277 dput(dentry);
1278 return status;
1280 if (!d_invalidate(dentry)) {
1281 dput(dentry);
1282 dentry = NULL;
1283 need_reval = 1;
1284 goto retry;
1288 path->mnt = mnt;
1289 path->dentry = dentry;
1290 err = follow_managed(path, nd->flags);
1291 if (unlikely(err < 0)) {
1292 path_put_conditional(path, nd);
1293 return err;
1295 *inode = path->dentry->d_inode;
1296 return 0;
1299 static inline int may_lookup(struct nameidata *nd)
1301 if (nd->flags & LOOKUP_RCU) {
1302 int err = exec_permission(nd->inode, IPERM_FLAG_RCU);
1303 if (err != -ECHILD)
1304 return err;
1305 if (nameidata_drop_rcu(nd))
1306 return -ECHILD;
1308 return exec_permission(nd->inode, 0);
1311 static inline int handle_dots(struct nameidata *nd, int type)
1313 if (type == LAST_DOTDOT) {
1314 if (nd->flags & LOOKUP_RCU) {
1315 if (follow_dotdot_rcu(nd))
1316 return -ECHILD;
1317 } else
1318 follow_dotdot(nd);
1320 return 0;
1323 static void terminate_walk(struct nameidata *nd)
1325 if (!(nd->flags & LOOKUP_RCU)) {
1326 path_put(&nd->path);
1327 } else {
1328 nd->flags &= ~LOOKUP_RCU;
1329 if (!(nd->flags & LOOKUP_ROOT))
1330 nd->root.mnt = NULL;
1331 rcu_read_unlock();
1332 br_read_unlock(vfsmount_lock);
1336 static inline int walk_component(struct nameidata *nd, struct path *path,
1337 struct qstr *name, int type, int follow)
1339 struct inode *inode;
1340 int err;
1342 * "." and ".." are special - ".." especially so because it has
1343 * to be able to know about the current root directory and
1344 * parent relationships.
1346 if (unlikely(type != LAST_NORM))
1347 return handle_dots(nd, type);
1348 err = do_lookup(nd, name, path, &inode);
1349 if (unlikely(err)) {
1350 terminate_walk(nd);
1351 return err;
1353 if (!inode) {
1354 path_to_nameidata(path, nd);
1355 terminate_walk(nd);
1356 return -ENOENT;
1358 if (unlikely(inode->i_op->follow_link) && follow) {
1359 if (nameidata_dentry_drop_rcu_maybe(nd, path->dentry))
1360 return -ECHILD;
1361 BUG_ON(inode != path->dentry->d_inode);
1362 return 1;
1364 path_to_nameidata(path, nd);
1365 nd->inode = inode;
1366 return 0;
1370 * This limits recursive symlink follows to 8, while
1371 * limiting consecutive symlinks to 40.
1373 * Without that kind of total limit, nasty chains of consecutive
1374 * symlinks can cause almost arbitrarily long lookups.
1376 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1378 int res;
1380 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1381 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1382 path_put_conditional(path, nd);
1383 path_put(&nd->path);
1384 return -ELOOP;
1387 nd->depth++;
1388 current->link_count++;
1390 do {
1391 struct path link = *path;
1392 void *cookie;
1394 res = follow_link(&link, nd, &cookie);
1395 if (!res)
1396 res = walk_component(nd, path, &nd->last,
1397 nd->last_type, LOOKUP_FOLLOW);
1398 put_link(nd, &link, cookie);
1399 } while (res > 0);
1401 current->link_count--;
1402 nd->depth--;
1403 return res;
1407 * Name resolution.
1408 * This is the basic name resolution function, turning a pathname into
1409 * the final dentry. We expect 'base' to be positive and a directory.
1411 * Returns 0 and nd will have valid dentry and mnt on success.
1412 * Returns error and drops reference to input namei data on failure.
1414 static int link_path_walk(const char *name, struct nameidata *nd)
1416 struct path next;
1417 int err;
1418 unsigned int lookup_flags = nd->flags;
1420 while (*name=='/')
1421 name++;
1422 if (!*name)
1423 return 0;
1425 /* At this point we know we have a real path component. */
1426 for(;;) {
1427 unsigned long hash;
1428 struct qstr this;
1429 unsigned int c;
1430 int type;
1432 nd->flags |= LOOKUP_CONTINUE;
1434 err = may_lookup(nd);
1435 if (err)
1436 break;
1438 this.name = name;
1439 c = *(const unsigned char *)name;
1441 hash = init_name_hash();
1442 do {
1443 name++;
1444 hash = partial_name_hash(c, hash);
1445 c = *(const unsigned char *)name;
1446 } while (c && (c != '/'));
1447 this.len = name - (const char *) this.name;
1448 this.hash = end_name_hash(hash);
1450 type = LAST_NORM;
1451 if (this.name[0] == '.') switch (this.len) {
1452 case 2:
1453 if (this.name[1] == '.') {
1454 type = LAST_DOTDOT;
1455 nd->flags |= LOOKUP_JUMPED;
1457 break;
1458 case 1:
1459 type = LAST_DOT;
1461 if (likely(type == LAST_NORM)) {
1462 struct dentry *parent = nd->path.dentry;
1463 nd->flags &= ~LOOKUP_JUMPED;
1464 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1465 err = parent->d_op->d_hash(parent, nd->inode,
1466 &this);
1467 if (err < 0)
1468 break;
1472 /* remove trailing slashes? */
1473 if (!c)
1474 goto last_component;
1475 while (*++name == '/');
1476 if (!*name)
1477 goto last_component;
1479 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1480 if (err < 0)
1481 return err;
1483 if (err) {
1484 err = nested_symlink(&next, nd);
1485 if (err)
1486 return err;
1488 err = -ENOTDIR;
1489 if (!nd->inode->i_op->lookup)
1490 break;
1491 continue;
1492 /* here ends the main loop */
1494 last_component:
1495 /* Clear LOOKUP_CONTINUE iff it was previously unset */
1496 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
1497 nd->last = this;
1498 nd->last_type = type;
1499 return 0;
1501 terminate_walk(nd);
1502 return err;
1505 static int path_init(int dfd, const char *name, unsigned int flags,
1506 struct nameidata *nd, struct file **fp)
1508 int retval = 0;
1509 int fput_needed;
1510 struct file *file;
1512 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1513 nd->flags = flags | LOOKUP_JUMPED;
1514 nd->depth = 0;
1515 if (flags & LOOKUP_ROOT) {
1516 struct inode *inode = nd->root.dentry->d_inode;
1517 if (*name) {
1518 if (!inode->i_op->lookup)
1519 return -ENOTDIR;
1520 retval = inode_permission(inode, MAY_EXEC);
1521 if (retval)
1522 return retval;
1524 nd->path = nd->root;
1525 nd->inode = inode;
1526 if (flags & LOOKUP_RCU) {
1527 br_read_lock(vfsmount_lock);
1528 rcu_read_lock();
1529 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1530 } else {
1531 path_get(&nd->path);
1533 return 0;
1536 nd->root.mnt = NULL;
1538 if (*name=='/') {
1539 if (flags & LOOKUP_RCU) {
1540 br_read_lock(vfsmount_lock);
1541 rcu_read_lock();
1542 set_root_rcu(nd);
1543 } else {
1544 set_root(nd);
1545 path_get(&nd->root);
1547 nd->path = nd->root;
1548 } else if (dfd == AT_FDCWD) {
1549 if (flags & LOOKUP_RCU) {
1550 struct fs_struct *fs = current->fs;
1551 unsigned seq;
1553 br_read_lock(vfsmount_lock);
1554 rcu_read_lock();
1556 do {
1557 seq = read_seqcount_begin(&fs->seq);
1558 nd->path = fs->pwd;
1559 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1560 } while (read_seqcount_retry(&fs->seq, seq));
1561 } else {
1562 get_fs_pwd(current->fs, &nd->path);
1564 } else {
1565 struct dentry *dentry;
1567 file = fget_raw_light(dfd, &fput_needed);
1568 retval = -EBADF;
1569 if (!file)
1570 goto out_fail;
1572 dentry = file->f_path.dentry;
1574 if (*name) {
1575 retval = -ENOTDIR;
1576 if (!S_ISDIR(dentry->d_inode->i_mode))
1577 goto fput_fail;
1579 retval = file_permission(file, MAY_EXEC);
1580 if (retval)
1581 goto fput_fail;
1584 nd->path = file->f_path;
1585 if (flags & LOOKUP_RCU) {
1586 if (fput_needed)
1587 *fp = file;
1588 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1589 br_read_lock(vfsmount_lock);
1590 rcu_read_lock();
1591 } else {
1592 path_get(&file->f_path);
1593 fput_light(file, fput_needed);
1597 nd->inode = nd->path.dentry->d_inode;
1598 return 0;
1600 fput_fail:
1601 fput_light(file, fput_needed);
1602 out_fail:
1603 return retval;
1606 static inline int lookup_last(struct nameidata *nd, struct path *path)
1608 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1609 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1611 nd->flags &= ~LOOKUP_PARENT;
1612 return walk_component(nd, path, &nd->last, nd->last_type,
1613 nd->flags & LOOKUP_FOLLOW);
1616 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1617 static int path_lookupat(int dfd, const char *name,
1618 unsigned int flags, struct nameidata *nd)
1620 struct file *base = NULL;
1621 struct path path;
1622 int err;
1625 * Path walking is largely split up into 2 different synchronisation
1626 * schemes, rcu-walk and ref-walk (explained in
1627 * Documentation/filesystems/path-lookup.txt). These share much of the
1628 * path walk code, but some things particularly setup, cleanup, and
1629 * following mounts are sufficiently divergent that functions are
1630 * duplicated. Typically there is a function foo(), and its RCU
1631 * analogue, foo_rcu().
1633 * -ECHILD is the error number of choice (just to avoid clashes) that
1634 * is returned if some aspect of an rcu-walk fails. Such an error must
1635 * be handled by restarting a traditional ref-walk (which will always
1636 * be able to complete).
1638 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1640 if (unlikely(err))
1641 return err;
1643 current->total_link_count = 0;
1644 err = link_path_walk(name, nd);
1646 if (!err && !(flags & LOOKUP_PARENT)) {
1647 err = lookup_last(nd, &path);
1648 while (err > 0) {
1649 void *cookie;
1650 struct path link = path;
1651 nd->flags |= LOOKUP_PARENT;
1652 err = follow_link(&link, nd, &cookie);
1653 if (!err)
1654 err = lookup_last(nd, &path);
1655 put_link(nd, &link, cookie);
1659 if (nd->flags & LOOKUP_RCU) {
1660 /* went all way through without dropping RCU */
1661 BUG_ON(err);
1662 if (nameidata_drop_rcu_last(nd))
1663 err = -ECHILD;
1666 if (!err) {
1667 err = handle_reval_path(nd);
1668 if (err)
1669 path_put(&nd->path);
1672 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1673 if (!nd->inode->i_op->lookup) {
1674 path_put(&nd->path);
1675 err = -ENOTDIR;
1679 if (base)
1680 fput(base);
1682 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1683 path_put(&nd->root);
1684 nd->root.mnt = NULL;
1686 return err;
1689 static int do_path_lookup(int dfd, const char *name,
1690 unsigned int flags, struct nameidata *nd)
1692 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1693 if (unlikely(retval == -ECHILD))
1694 retval = path_lookupat(dfd, name, flags, nd);
1695 if (unlikely(retval == -ESTALE))
1696 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1698 if (likely(!retval)) {
1699 if (unlikely(!audit_dummy_context())) {
1700 if (nd->path.dentry && nd->inode)
1701 audit_inode(name, nd->path.dentry);
1704 return retval;
1707 int kern_path_parent(const char *name, struct nameidata *nd)
1709 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1712 int kern_path(const char *name, unsigned int flags, struct path *path)
1714 struct nameidata nd;
1715 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1716 if (!res)
1717 *path = nd.path;
1718 return res;
1722 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1723 * @dentry: pointer to dentry of the base directory
1724 * @mnt: pointer to vfs mount of the base directory
1725 * @name: pointer to file name
1726 * @flags: lookup flags
1727 * @nd: pointer to nameidata
1729 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1730 const char *name, unsigned int flags,
1731 struct nameidata *nd)
1733 nd->root.dentry = dentry;
1734 nd->root.mnt = mnt;
1735 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1736 return do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, nd);
1739 static struct dentry *__lookup_hash(struct qstr *name,
1740 struct dentry *base, struct nameidata *nd)
1742 struct inode *inode = base->d_inode;
1743 struct dentry *dentry;
1744 int err;
1746 err = exec_permission(inode, 0);
1747 if (err)
1748 return ERR_PTR(err);
1751 * Don't bother with __d_lookup: callers are for creat as
1752 * well as unlink, so a lot of the time it would cost
1753 * a double lookup.
1755 dentry = d_lookup(base, name);
1757 if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE))
1758 dentry = do_revalidate(dentry, nd);
1760 if (!dentry)
1761 dentry = d_alloc_and_lookup(base, name, nd);
1763 return dentry;
1767 * Restricted form of lookup. Doesn't follow links, single-component only,
1768 * needs parent already locked. Doesn't follow mounts.
1769 * SMP-safe.
1771 static struct dentry *lookup_hash(struct nameidata *nd)
1773 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1777 * lookup_one_len - filesystem helper to lookup single pathname component
1778 * @name: pathname component to lookup
1779 * @base: base directory to lookup from
1780 * @len: maximum length @len should be interpreted to
1782 * Note that this routine is purely a helper for filesystem usage and should
1783 * not be called by generic code. Also note that by using this function the
1784 * nameidata argument is passed to the filesystem methods and a filesystem
1785 * using this helper needs to be prepared for that.
1787 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1789 struct qstr this;
1790 unsigned long hash;
1791 unsigned int c;
1793 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1795 this.name = name;
1796 this.len = len;
1797 if (!len)
1798 return ERR_PTR(-EACCES);
1800 hash = init_name_hash();
1801 while (len--) {
1802 c = *(const unsigned char *)name++;
1803 if (c == '/' || c == '\0')
1804 return ERR_PTR(-EACCES);
1805 hash = partial_name_hash(c, hash);
1807 this.hash = end_name_hash(hash);
1809 * See if the low-level filesystem might want
1810 * to use its own hash..
1812 if (base->d_flags & DCACHE_OP_HASH) {
1813 int err = base->d_op->d_hash(base, base->d_inode, &this);
1814 if (err < 0)
1815 return ERR_PTR(err);
1818 return __lookup_hash(&this, base, NULL);
1821 int user_path_at(int dfd, const char __user *name, unsigned flags,
1822 struct path *path)
1824 struct nameidata nd;
1825 char *tmp = getname_flags(name, flags);
1826 int err = PTR_ERR(tmp);
1827 if (!IS_ERR(tmp)) {
1829 BUG_ON(flags & LOOKUP_PARENT);
1831 err = do_path_lookup(dfd, tmp, flags, &nd);
1832 putname(tmp);
1833 if (!err)
1834 *path = nd.path;
1836 return err;
1839 static int user_path_parent(int dfd, const char __user *path,
1840 struct nameidata *nd, char **name)
1842 char *s = getname(path);
1843 int error;
1845 if (IS_ERR(s))
1846 return PTR_ERR(s);
1848 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1849 if (error)
1850 putname(s);
1851 else
1852 *name = s;
1854 return error;
1858 * It's inline, so penalty for filesystems that don't use sticky bit is
1859 * minimal.
1861 static inline int check_sticky(struct inode *dir, struct inode *inode)
1863 uid_t fsuid = current_fsuid();
1865 if (!(dir->i_mode & S_ISVTX))
1866 return 0;
1867 if (current_user_ns() != inode_userns(inode))
1868 goto other_userns;
1869 if (inode->i_uid == fsuid)
1870 return 0;
1871 if (dir->i_uid == fsuid)
1872 return 0;
1874 other_userns:
1875 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1879 * Check whether we can remove a link victim from directory dir, check
1880 * whether the type of victim is right.
1881 * 1. We can't do it if dir is read-only (done in permission())
1882 * 2. We should have write and exec permissions on dir
1883 * 3. We can't remove anything from append-only dir
1884 * 4. We can't do anything with immutable dir (done in permission())
1885 * 5. If the sticky bit on dir is set we should either
1886 * a. be owner of dir, or
1887 * b. be owner of victim, or
1888 * c. have CAP_FOWNER capability
1889 * 6. If the victim is append-only or immutable we can't do antyhing with
1890 * links pointing to it.
1891 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1892 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1893 * 9. We can't remove a root or mountpoint.
1894 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1895 * nfs_async_unlink().
1897 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1899 int error;
1901 if (!victim->d_inode)
1902 return -ENOENT;
1904 BUG_ON(victim->d_parent->d_inode != dir);
1905 audit_inode_child(victim, dir);
1907 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1908 if (error)
1909 return error;
1910 if (IS_APPEND(dir))
1911 return -EPERM;
1912 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1913 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1914 return -EPERM;
1915 if (isdir) {
1916 if (!S_ISDIR(victim->d_inode->i_mode))
1917 return -ENOTDIR;
1918 if (IS_ROOT(victim))
1919 return -EBUSY;
1920 } else if (S_ISDIR(victim->d_inode->i_mode))
1921 return -EISDIR;
1922 if (IS_DEADDIR(dir))
1923 return -ENOENT;
1924 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1925 return -EBUSY;
1926 return 0;
1929 /* Check whether we can create an object with dentry child in directory
1930 * dir.
1931 * 1. We can't do it if child already exists (open has special treatment for
1932 * this case, but since we are inlined it's OK)
1933 * 2. We can't do it if dir is read-only (done in permission())
1934 * 3. We should have write and exec permissions on dir
1935 * 4. We can't do it if dir is immutable (done in permission())
1937 static inline int may_create(struct inode *dir, struct dentry *child)
1939 if (child->d_inode)
1940 return -EEXIST;
1941 if (IS_DEADDIR(dir))
1942 return -ENOENT;
1943 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1947 * p1 and p2 should be directories on the same fs.
1949 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1951 struct dentry *p;
1953 if (p1 == p2) {
1954 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1955 return NULL;
1958 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1960 p = d_ancestor(p2, p1);
1961 if (p) {
1962 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1963 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1964 return p;
1967 p = d_ancestor(p1, p2);
1968 if (p) {
1969 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1970 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1971 return p;
1974 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1975 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1976 return NULL;
1979 void unlock_rename(struct dentry *p1, struct dentry *p2)
1981 mutex_unlock(&p1->d_inode->i_mutex);
1982 if (p1 != p2) {
1983 mutex_unlock(&p2->d_inode->i_mutex);
1984 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1988 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1989 struct nameidata *nd)
1991 int error = may_create(dir, dentry);
1993 if (error)
1994 return error;
1996 if (!dir->i_op->create)
1997 return -EACCES; /* shouldn't it be ENOSYS? */
1998 mode &= S_IALLUGO;
1999 mode |= S_IFREG;
2000 error = security_inode_create(dir, dentry, mode);
2001 if (error)
2002 return error;
2003 error = dir->i_op->create(dir, dentry, mode, nd);
2004 if (!error)
2005 fsnotify_create(dir, dentry);
2006 return error;
2009 static int may_open(struct path *path, int acc_mode, int flag)
2011 struct dentry *dentry = path->dentry;
2012 struct inode *inode = dentry->d_inode;
2013 int error;
2015 /* O_PATH? */
2016 if (!acc_mode)
2017 return 0;
2019 if (!inode)
2020 return -ENOENT;
2022 switch (inode->i_mode & S_IFMT) {
2023 case S_IFLNK:
2024 return -ELOOP;
2025 case S_IFDIR:
2026 if (acc_mode & MAY_WRITE)
2027 return -EISDIR;
2028 break;
2029 case S_IFBLK:
2030 case S_IFCHR:
2031 if (path->mnt->mnt_flags & MNT_NODEV)
2032 return -EACCES;
2033 /*FALLTHRU*/
2034 case S_IFIFO:
2035 case S_IFSOCK:
2036 flag &= ~O_TRUNC;
2037 break;
2040 error = inode_permission(inode, acc_mode);
2041 if (error)
2042 return error;
2045 * An append-only file must be opened in append mode for writing.
2047 if (IS_APPEND(inode)) {
2048 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2049 return -EPERM;
2050 if (flag & O_TRUNC)
2051 return -EPERM;
2054 /* O_NOATIME can only be set by the owner or superuser */
2055 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2056 return -EPERM;
2059 * Ensure there are no outstanding leases on the file.
2061 return break_lease(inode, flag);
2064 static int handle_truncate(struct file *filp)
2066 struct path *path = &filp->f_path;
2067 struct inode *inode = path->dentry->d_inode;
2068 int error = get_write_access(inode);
2069 if (error)
2070 return error;
2072 * Refuse to truncate files with mandatory locks held on them.
2074 error = locks_verify_locked(inode);
2075 if (!error)
2076 error = security_path_truncate(path);
2077 if (!error) {
2078 error = do_truncate(path->dentry, 0,
2079 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2080 filp);
2082 put_write_access(inode);
2083 return error;
2087 * Note that while the flag value (low two bits) for sys_open means:
2088 * 00 - read-only
2089 * 01 - write-only
2090 * 10 - read-write
2091 * 11 - special
2092 * it is changed into
2093 * 00 - no permissions needed
2094 * 01 - read-permission
2095 * 10 - write-permission
2096 * 11 - read-write
2097 * for the internal routines (ie open_namei()/follow_link() etc)
2098 * This is more logical, and also allows the 00 "no perm needed"
2099 * to be used for symlinks (where the permissions are checked
2100 * later).
2103 static inline int open_to_namei_flags(int flag)
2105 if ((flag+1) & O_ACCMODE)
2106 flag++;
2107 return flag;
2111 * Handle the last step of open()
2113 static struct file *do_last(struct nameidata *nd, struct path *path,
2114 const struct open_flags *op, const char *pathname)
2116 struct dentry *dir = nd->path.dentry;
2117 struct dentry *dentry;
2118 int open_flag = op->open_flag;
2119 int will_truncate = open_flag & O_TRUNC;
2120 int want_write = 0;
2121 int acc_mode = op->acc_mode;
2122 struct file *filp;
2123 int error;
2125 nd->flags &= ~LOOKUP_PARENT;
2126 nd->flags |= op->intent;
2128 switch (nd->last_type) {
2129 case LAST_DOTDOT:
2130 case LAST_DOT:
2131 error = handle_dots(nd, nd->last_type);
2132 if (error)
2133 return ERR_PTR(error);
2134 /* fallthrough */
2135 case LAST_ROOT:
2136 if (nd->flags & LOOKUP_RCU) {
2137 if (nameidata_drop_rcu_last(nd))
2138 return ERR_PTR(-ECHILD);
2140 error = handle_reval_path(nd);
2141 if (error)
2142 goto exit;
2143 audit_inode(pathname, nd->path.dentry);
2144 if (open_flag & O_CREAT) {
2145 error = -EISDIR;
2146 goto exit;
2148 goto ok;
2149 case LAST_BIND:
2150 /* can't be RCU mode here */
2151 error = handle_reval_path(nd);
2152 if (error)
2153 goto exit;
2154 audit_inode(pathname, dir);
2155 goto ok;
2158 if (!(open_flag & O_CREAT)) {
2159 int symlink_ok = 0;
2160 if (nd->last.name[nd->last.len])
2161 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2162 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2163 symlink_ok = 1;
2164 /* we _can_ be in RCU mode here */
2165 error = walk_component(nd, path, &nd->last, LAST_NORM,
2166 !symlink_ok);
2167 if (error < 0)
2168 return ERR_PTR(error);
2169 if (error) /* symlink */
2170 return NULL;
2171 /* sayonara */
2172 if (nd->flags & LOOKUP_RCU) {
2173 if (nameidata_drop_rcu_last(nd))
2174 return ERR_PTR(-ECHILD);
2177 error = -ENOTDIR;
2178 if (nd->flags & LOOKUP_DIRECTORY) {
2179 if (!nd->inode->i_op->lookup)
2180 goto exit;
2182 audit_inode(pathname, nd->path.dentry);
2183 goto ok;
2186 /* create side of things */
2188 if (nd->flags & LOOKUP_RCU) {
2189 if (nameidata_drop_rcu_last(nd))
2190 return ERR_PTR(-ECHILD);
2193 audit_inode(pathname, dir);
2194 error = -EISDIR;
2195 /* trailing slashes? */
2196 if (nd->last.name[nd->last.len])
2197 goto exit;
2199 mutex_lock(&dir->d_inode->i_mutex);
2201 dentry = lookup_hash(nd);
2202 error = PTR_ERR(dentry);
2203 if (IS_ERR(dentry)) {
2204 mutex_unlock(&dir->d_inode->i_mutex);
2205 goto exit;
2208 path->dentry = dentry;
2209 path->mnt = nd->path.mnt;
2211 /* Negative dentry, just create the file */
2212 if (!dentry->d_inode) {
2213 int mode = op->mode;
2214 if (!IS_POSIXACL(dir->d_inode))
2215 mode &= ~current_umask();
2217 * This write is needed to ensure that a
2218 * rw->ro transition does not occur between
2219 * the time when the file is created and when
2220 * a permanent write count is taken through
2221 * the 'struct file' in nameidata_to_filp().
2223 error = mnt_want_write(nd->path.mnt);
2224 if (error)
2225 goto exit_mutex_unlock;
2226 want_write = 1;
2227 /* Don't check for write permission, don't truncate */
2228 open_flag &= ~O_TRUNC;
2229 will_truncate = 0;
2230 acc_mode = MAY_OPEN;
2231 error = security_path_mknod(&nd->path, dentry, mode, 0);
2232 if (error)
2233 goto exit_mutex_unlock;
2234 error = vfs_create(dir->d_inode, dentry, mode, nd);
2235 if (error)
2236 goto exit_mutex_unlock;
2237 mutex_unlock(&dir->d_inode->i_mutex);
2238 dput(nd->path.dentry);
2239 nd->path.dentry = dentry;
2240 goto common;
2244 * It already exists.
2246 mutex_unlock(&dir->d_inode->i_mutex);
2247 audit_inode(pathname, path->dentry);
2249 error = -EEXIST;
2250 if (open_flag & O_EXCL)
2251 goto exit_dput;
2253 error = follow_managed(path, nd->flags);
2254 if (error < 0)
2255 goto exit_dput;
2257 error = -ENOENT;
2258 if (!path->dentry->d_inode)
2259 goto exit_dput;
2261 if (path->dentry->d_inode->i_op->follow_link)
2262 return NULL;
2264 path_to_nameidata(path, nd);
2265 nd->inode = path->dentry->d_inode;
2266 error = -EISDIR;
2267 if (S_ISDIR(nd->inode->i_mode))
2268 goto exit;
2270 if (!S_ISREG(nd->inode->i_mode))
2271 will_truncate = 0;
2273 if (will_truncate) {
2274 error = mnt_want_write(nd->path.mnt);
2275 if (error)
2276 goto exit;
2277 want_write = 1;
2279 common:
2280 error = may_open(&nd->path, acc_mode, open_flag);
2281 if (error)
2282 goto exit;
2283 filp = nameidata_to_filp(nd);
2284 if (!IS_ERR(filp)) {
2285 error = ima_file_check(filp, op->acc_mode);
2286 if (error) {
2287 fput(filp);
2288 filp = ERR_PTR(error);
2291 if (!IS_ERR(filp)) {
2292 if (will_truncate) {
2293 error = handle_truncate(filp);
2294 if (error) {
2295 fput(filp);
2296 filp = ERR_PTR(error);
2300 out:
2301 if (want_write)
2302 mnt_drop_write(nd->path.mnt);
2303 path_put(&nd->path);
2304 return filp;
2306 exit_mutex_unlock:
2307 mutex_unlock(&dir->d_inode->i_mutex);
2308 exit_dput:
2309 path_put_conditional(path, nd);
2310 exit:
2311 filp = ERR_PTR(error);
2312 goto out;
2315 static struct file *path_openat(int dfd, const char *pathname,
2316 struct nameidata *nd, const struct open_flags *op, int flags)
2318 struct file *base = NULL;
2319 struct file *filp;
2320 struct path path;
2321 int error;
2323 filp = get_empty_filp();
2324 if (!filp)
2325 return ERR_PTR(-ENFILE);
2327 filp->f_flags = op->open_flag;
2328 nd->intent.open.file = filp;
2329 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2330 nd->intent.open.create_mode = op->mode;
2332 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2333 if (unlikely(error))
2334 goto out_filp;
2336 current->total_link_count = 0;
2337 error = link_path_walk(pathname, nd);
2338 if (unlikely(error))
2339 goto out_filp;
2341 filp = do_last(nd, &path, op, pathname);
2342 while (unlikely(!filp)) { /* trailing symlink */
2343 struct path link = path;
2344 void *cookie;
2345 if (!(nd->flags & LOOKUP_FOLLOW)) {
2346 path_put_conditional(&path, nd);
2347 path_put(&nd->path);
2348 filp = ERR_PTR(-ELOOP);
2349 break;
2351 nd->flags |= LOOKUP_PARENT;
2352 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2353 error = follow_link(&link, nd, &cookie);
2354 if (unlikely(error))
2355 filp = ERR_PTR(error);
2356 else
2357 filp = do_last(nd, &path, op, pathname);
2358 put_link(nd, &link, cookie);
2360 out:
2361 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2362 path_put(&nd->root);
2363 if (base)
2364 fput(base);
2365 release_open_intent(nd);
2366 return filp;
2368 out_filp:
2369 filp = ERR_PTR(error);
2370 goto out;
2373 struct file *do_filp_open(int dfd, const char *pathname,
2374 const struct open_flags *op, int flags)
2376 struct nameidata nd;
2377 struct file *filp;
2379 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2380 if (unlikely(filp == ERR_PTR(-ECHILD)))
2381 filp = path_openat(dfd, pathname, &nd, op, flags);
2382 if (unlikely(filp == ERR_PTR(-ESTALE)))
2383 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2384 return filp;
2387 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2388 const char *name, const struct open_flags *op, int flags)
2390 struct nameidata nd;
2391 struct file *file;
2393 nd.root.mnt = mnt;
2394 nd.root.dentry = dentry;
2396 flags |= LOOKUP_ROOT;
2398 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2399 return ERR_PTR(-ELOOP);
2401 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2402 if (unlikely(file == ERR_PTR(-ECHILD)))
2403 file = path_openat(-1, name, &nd, op, flags);
2404 if (unlikely(file == ERR_PTR(-ESTALE)))
2405 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2406 return file;
2410 * lookup_create - lookup a dentry, creating it if it doesn't exist
2411 * @nd: nameidata info
2412 * @is_dir: directory flag
2414 * Simple function to lookup and return a dentry and create it
2415 * if it doesn't exist. Is SMP-safe.
2417 * Returns with nd->path.dentry->d_inode->i_mutex locked.
2419 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
2421 struct dentry *dentry = ERR_PTR(-EEXIST);
2423 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2425 * Yucky last component or no last component at all?
2426 * (foo/., foo/.., /////)
2428 if (nd->last_type != LAST_NORM)
2429 goto fail;
2430 nd->flags &= ~LOOKUP_PARENT;
2431 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2432 nd->intent.open.flags = O_EXCL;
2435 * Do the final lookup.
2437 dentry = lookup_hash(nd);
2438 if (IS_ERR(dentry))
2439 goto fail;
2441 if (dentry->d_inode)
2442 goto eexist;
2444 * Special case - lookup gave negative, but... we had foo/bar/
2445 * From the vfs_mknod() POV we just have a negative dentry -
2446 * all is fine. Let's be bastards - you had / on the end, you've
2447 * been asking for (non-existent) directory. -ENOENT for you.
2449 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
2450 dput(dentry);
2451 dentry = ERR_PTR(-ENOENT);
2453 return dentry;
2454 eexist:
2455 dput(dentry);
2456 dentry = ERR_PTR(-EEXIST);
2457 fail:
2458 return dentry;
2460 EXPORT_SYMBOL_GPL(lookup_create);
2462 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2464 int error = may_create(dir, dentry);
2466 if (error)
2467 return error;
2469 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2470 !ns_capable(inode_userns(dir), CAP_MKNOD))
2471 return -EPERM;
2473 if (!dir->i_op->mknod)
2474 return -EPERM;
2476 error = devcgroup_inode_mknod(mode, dev);
2477 if (error)
2478 return error;
2480 error = security_inode_mknod(dir, dentry, mode, dev);
2481 if (error)
2482 return error;
2484 error = dir->i_op->mknod(dir, dentry, mode, dev);
2485 if (!error)
2486 fsnotify_create(dir, dentry);
2487 return error;
2490 static int may_mknod(mode_t mode)
2492 switch (mode & S_IFMT) {
2493 case S_IFREG:
2494 case S_IFCHR:
2495 case S_IFBLK:
2496 case S_IFIFO:
2497 case S_IFSOCK:
2498 case 0: /* zero mode translates to S_IFREG */
2499 return 0;
2500 case S_IFDIR:
2501 return -EPERM;
2502 default:
2503 return -EINVAL;
2507 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2508 unsigned, dev)
2510 int error;
2511 char *tmp;
2512 struct dentry *dentry;
2513 struct nameidata nd;
2515 if (S_ISDIR(mode))
2516 return -EPERM;
2518 error = user_path_parent(dfd, filename, &nd, &tmp);
2519 if (error)
2520 return error;
2522 dentry = lookup_create(&nd, 0);
2523 if (IS_ERR(dentry)) {
2524 error = PTR_ERR(dentry);
2525 goto out_unlock;
2527 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2528 mode &= ~current_umask();
2529 error = may_mknod(mode);
2530 if (error)
2531 goto out_dput;
2532 error = mnt_want_write(nd.path.mnt);
2533 if (error)
2534 goto out_dput;
2535 error = security_path_mknod(&nd.path, dentry, mode, dev);
2536 if (error)
2537 goto out_drop_write;
2538 switch (mode & S_IFMT) {
2539 case 0: case S_IFREG:
2540 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2541 break;
2542 case S_IFCHR: case S_IFBLK:
2543 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2544 new_decode_dev(dev));
2545 break;
2546 case S_IFIFO: case S_IFSOCK:
2547 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2548 break;
2550 out_drop_write:
2551 mnt_drop_write(nd.path.mnt);
2552 out_dput:
2553 dput(dentry);
2554 out_unlock:
2555 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2556 path_put(&nd.path);
2557 putname(tmp);
2559 return error;
2562 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2564 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2567 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2569 int error = may_create(dir, dentry);
2571 if (error)
2572 return error;
2574 if (!dir->i_op->mkdir)
2575 return -EPERM;
2577 mode &= (S_IRWXUGO|S_ISVTX);
2578 error = security_inode_mkdir(dir, dentry, mode);
2579 if (error)
2580 return error;
2582 error = dir->i_op->mkdir(dir, dentry, mode);
2583 if (!error)
2584 fsnotify_mkdir(dir, dentry);
2585 return error;
2588 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2590 int error = 0;
2591 char * tmp;
2592 struct dentry *dentry;
2593 struct nameidata nd;
2595 error = user_path_parent(dfd, pathname, &nd, &tmp);
2596 if (error)
2597 goto out_err;
2599 dentry = lookup_create(&nd, 1);
2600 error = PTR_ERR(dentry);
2601 if (IS_ERR(dentry))
2602 goto out_unlock;
2604 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2605 mode &= ~current_umask();
2606 error = mnt_want_write(nd.path.mnt);
2607 if (error)
2608 goto out_dput;
2609 error = security_path_mkdir(&nd.path, dentry, mode);
2610 if (error)
2611 goto out_drop_write;
2612 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2613 out_drop_write:
2614 mnt_drop_write(nd.path.mnt);
2615 out_dput:
2616 dput(dentry);
2617 out_unlock:
2618 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2619 path_put(&nd.path);
2620 putname(tmp);
2621 out_err:
2622 return error;
2625 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2627 return sys_mkdirat(AT_FDCWD, pathname, mode);
2631 * We try to drop the dentry early: we should have
2632 * a usage count of 2 if we're the only user of this
2633 * dentry, and if that is true (possibly after pruning
2634 * the dcache), then we drop the dentry now.
2636 * A low-level filesystem can, if it choses, legally
2637 * do a
2639 * if (!d_unhashed(dentry))
2640 * return -EBUSY;
2642 * if it cannot handle the case of removing a directory
2643 * that is still in use by something else..
2645 void dentry_unhash(struct dentry *dentry)
2647 dget(dentry);
2648 shrink_dcache_parent(dentry);
2649 spin_lock(&dentry->d_lock);
2650 if (dentry->d_count == 2)
2651 __d_drop(dentry);
2652 spin_unlock(&dentry->d_lock);
2655 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2657 int error = may_delete(dir, dentry, 1);
2659 if (error)
2660 return error;
2662 if (!dir->i_op->rmdir)
2663 return -EPERM;
2665 mutex_lock(&dentry->d_inode->i_mutex);
2666 dentry_unhash(dentry);
2667 if (d_mountpoint(dentry))
2668 error = -EBUSY;
2669 else {
2670 error = security_inode_rmdir(dir, dentry);
2671 if (!error) {
2672 error = dir->i_op->rmdir(dir, dentry);
2673 if (!error) {
2674 dentry->d_inode->i_flags |= S_DEAD;
2675 dont_mount(dentry);
2679 mutex_unlock(&dentry->d_inode->i_mutex);
2680 if (!error) {
2681 d_delete(dentry);
2683 dput(dentry);
2685 return error;
2688 static long do_rmdir(int dfd, const char __user *pathname)
2690 int error = 0;
2691 char * name;
2692 struct dentry *dentry;
2693 struct nameidata nd;
2695 error = user_path_parent(dfd, pathname, &nd, &name);
2696 if (error)
2697 return error;
2699 switch(nd.last_type) {
2700 case LAST_DOTDOT:
2701 error = -ENOTEMPTY;
2702 goto exit1;
2703 case LAST_DOT:
2704 error = -EINVAL;
2705 goto exit1;
2706 case LAST_ROOT:
2707 error = -EBUSY;
2708 goto exit1;
2711 nd.flags &= ~LOOKUP_PARENT;
2713 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2714 dentry = lookup_hash(&nd);
2715 error = PTR_ERR(dentry);
2716 if (IS_ERR(dentry))
2717 goto exit2;
2718 error = mnt_want_write(nd.path.mnt);
2719 if (error)
2720 goto exit3;
2721 error = security_path_rmdir(&nd.path, dentry);
2722 if (error)
2723 goto exit4;
2724 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2725 exit4:
2726 mnt_drop_write(nd.path.mnt);
2727 exit3:
2728 dput(dentry);
2729 exit2:
2730 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2731 exit1:
2732 path_put(&nd.path);
2733 putname(name);
2734 return error;
2737 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2739 return do_rmdir(AT_FDCWD, pathname);
2742 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2744 int error = may_delete(dir, dentry, 0);
2746 if (error)
2747 return error;
2749 if (!dir->i_op->unlink)
2750 return -EPERM;
2752 mutex_lock(&dentry->d_inode->i_mutex);
2753 if (d_mountpoint(dentry))
2754 error = -EBUSY;
2755 else {
2756 error = security_inode_unlink(dir, dentry);
2757 if (!error) {
2758 error = dir->i_op->unlink(dir, dentry);
2759 if (!error)
2760 dont_mount(dentry);
2763 mutex_unlock(&dentry->d_inode->i_mutex);
2765 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2766 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2767 fsnotify_link_count(dentry->d_inode);
2768 d_delete(dentry);
2771 return error;
2775 * Make sure that the actual truncation of the file will occur outside its
2776 * directory's i_mutex. Truncate can take a long time if there is a lot of
2777 * writeout happening, and we don't want to prevent access to the directory
2778 * while waiting on the I/O.
2780 static long do_unlinkat(int dfd, const char __user *pathname)
2782 int error;
2783 char *name;
2784 struct dentry *dentry;
2785 struct nameidata nd;
2786 struct inode *inode = NULL;
2788 error = user_path_parent(dfd, pathname, &nd, &name);
2789 if (error)
2790 return error;
2792 error = -EISDIR;
2793 if (nd.last_type != LAST_NORM)
2794 goto exit1;
2796 nd.flags &= ~LOOKUP_PARENT;
2798 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2799 dentry = lookup_hash(&nd);
2800 error = PTR_ERR(dentry);
2801 if (!IS_ERR(dentry)) {
2802 /* Why not before? Because we want correct error value */
2803 if (nd.last.name[nd.last.len])
2804 goto slashes;
2805 inode = dentry->d_inode;
2806 if (inode)
2807 ihold(inode);
2808 error = mnt_want_write(nd.path.mnt);
2809 if (error)
2810 goto exit2;
2811 error = security_path_unlink(&nd.path, dentry);
2812 if (error)
2813 goto exit3;
2814 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2815 exit3:
2816 mnt_drop_write(nd.path.mnt);
2817 exit2:
2818 dput(dentry);
2820 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2821 if (inode)
2822 iput(inode); /* truncate the inode here */
2823 exit1:
2824 path_put(&nd.path);
2825 putname(name);
2826 return error;
2828 slashes:
2829 error = !dentry->d_inode ? -ENOENT :
2830 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2831 goto exit2;
2834 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2836 if ((flag & ~AT_REMOVEDIR) != 0)
2837 return -EINVAL;
2839 if (flag & AT_REMOVEDIR)
2840 return do_rmdir(dfd, pathname);
2842 return do_unlinkat(dfd, pathname);
2845 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2847 return do_unlinkat(AT_FDCWD, pathname);
2850 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2852 int error = may_create(dir, dentry);
2854 if (error)
2855 return error;
2857 if (!dir->i_op->symlink)
2858 return -EPERM;
2860 error = security_inode_symlink(dir, dentry, oldname);
2861 if (error)
2862 return error;
2864 error = dir->i_op->symlink(dir, dentry, oldname);
2865 if (!error)
2866 fsnotify_create(dir, dentry);
2867 return error;
2870 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2871 int, newdfd, const char __user *, newname)
2873 int error;
2874 char *from;
2875 char *to;
2876 struct dentry *dentry;
2877 struct nameidata nd;
2879 from = getname(oldname);
2880 if (IS_ERR(from))
2881 return PTR_ERR(from);
2883 error = user_path_parent(newdfd, newname, &nd, &to);
2884 if (error)
2885 goto out_putname;
2887 dentry = lookup_create(&nd, 0);
2888 error = PTR_ERR(dentry);
2889 if (IS_ERR(dentry))
2890 goto out_unlock;
2892 error = mnt_want_write(nd.path.mnt);
2893 if (error)
2894 goto out_dput;
2895 error = security_path_symlink(&nd.path, dentry, from);
2896 if (error)
2897 goto out_drop_write;
2898 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2899 out_drop_write:
2900 mnt_drop_write(nd.path.mnt);
2901 out_dput:
2902 dput(dentry);
2903 out_unlock:
2904 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2905 path_put(&nd.path);
2906 putname(to);
2907 out_putname:
2908 putname(from);
2909 return error;
2912 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2914 return sys_symlinkat(oldname, AT_FDCWD, newname);
2917 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2919 struct inode *inode = old_dentry->d_inode;
2920 int error;
2922 if (!inode)
2923 return -ENOENT;
2925 error = may_create(dir, new_dentry);
2926 if (error)
2927 return error;
2929 if (dir->i_sb != inode->i_sb)
2930 return -EXDEV;
2933 * A link to an append-only or immutable file cannot be created.
2935 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2936 return -EPERM;
2937 if (!dir->i_op->link)
2938 return -EPERM;
2939 if (S_ISDIR(inode->i_mode))
2940 return -EPERM;
2942 error = security_inode_link(old_dentry, dir, new_dentry);
2943 if (error)
2944 return error;
2946 mutex_lock(&inode->i_mutex);
2947 /* Make sure we don't allow creating hardlink to an unlinked file */
2948 if (inode->i_nlink == 0)
2949 error = -ENOENT;
2950 else
2951 error = dir->i_op->link(old_dentry, dir, new_dentry);
2952 mutex_unlock(&inode->i_mutex);
2953 if (!error)
2954 fsnotify_link(dir, inode, new_dentry);
2955 return error;
2959 * Hardlinks are often used in delicate situations. We avoid
2960 * security-related surprises by not following symlinks on the
2961 * newname. --KAB
2963 * We don't follow them on the oldname either to be compatible
2964 * with linux 2.0, and to avoid hard-linking to directories
2965 * and other special files. --ADM
2967 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2968 int, newdfd, const char __user *, newname, int, flags)
2970 struct dentry *new_dentry;
2971 struct nameidata nd;
2972 struct path old_path;
2973 int how = 0;
2974 int error;
2975 char *to;
2977 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
2978 return -EINVAL;
2980 * To use null names we require CAP_DAC_READ_SEARCH
2981 * This ensures that not everyone will be able to create
2982 * handlink using the passed filedescriptor.
2984 if (flags & AT_EMPTY_PATH) {
2985 if (!capable(CAP_DAC_READ_SEARCH))
2986 return -ENOENT;
2987 how = LOOKUP_EMPTY;
2990 if (flags & AT_SYMLINK_FOLLOW)
2991 how |= LOOKUP_FOLLOW;
2993 error = user_path_at(olddfd, oldname, how, &old_path);
2994 if (error)
2995 return error;
2997 error = user_path_parent(newdfd, newname, &nd, &to);
2998 if (error)
2999 goto out;
3000 error = -EXDEV;
3001 if (old_path.mnt != nd.path.mnt)
3002 goto out_release;
3003 new_dentry = lookup_create(&nd, 0);
3004 error = PTR_ERR(new_dentry);
3005 if (IS_ERR(new_dentry))
3006 goto out_unlock;
3007 error = mnt_want_write(nd.path.mnt);
3008 if (error)
3009 goto out_dput;
3010 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
3011 if (error)
3012 goto out_drop_write;
3013 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
3014 out_drop_write:
3015 mnt_drop_write(nd.path.mnt);
3016 out_dput:
3017 dput(new_dentry);
3018 out_unlock:
3019 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3020 out_release:
3021 path_put(&nd.path);
3022 putname(to);
3023 out:
3024 path_put(&old_path);
3026 return error;
3029 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3031 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3035 * The worst of all namespace operations - renaming directory. "Perverted"
3036 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3037 * Problems:
3038 * a) we can get into loop creation. Check is done in is_subdir().
3039 * b) race potential - two innocent renames can create a loop together.
3040 * That's where 4.4 screws up. Current fix: serialization on
3041 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3042 * story.
3043 * c) we have to lock _three_ objects - parents and victim (if it exists).
3044 * And that - after we got ->i_mutex on parents (until then we don't know
3045 * whether the target exists). Solution: try to be smart with locking
3046 * order for inodes. We rely on the fact that tree topology may change
3047 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3048 * move will be locked. Thus we can rank directories by the tree
3049 * (ancestors first) and rank all non-directories after them.
3050 * That works since everybody except rename does "lock parent, lookup,
3051 * lock child" and rename is under ->s_vfs_rename_mutex.
3052 * HOWEVER, it relies on the assumption that any object with ->lookup()
3053 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3054 * we'd better make sure that there's no link(2) for them.
3055 * d) some filesystems don't support opened-but-unlinked directories,
3056 * either because of layout or because they are not ready to deal with
3057 * all cases correctly. The latter will be fixed (taking this sort of
3058 * stuff into VFS), but the former is not going away. Solution: the same
3059 * trick as in rmdir().
3060 * e) conversion from fhandle to dentry may come in the wrong moment - when
3061 * we are removing the target. Solution: we will have to grab ->i_mutex
3062 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3063 * ->i_mutex on parents, which works but leads to some truly excessive
3064 * locking].
3066 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3067 struct inode *new_dir, struct dentry *new_dentry)
3069 int error = 0;
3070 struct inode *target;
3073 * If we are going to change the parent - check write permissions,
3074 * we'll need to flip '..'.
3076 if (new_dir != old_dir) {
3077 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3078 if (error)
3079 return error;
3082 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3083 if (error)
3084 return error;
3086 target = new_dentry->d_inode;
3087 if (target)
3088 mutex_lock(&target->i_mutex);
3089 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3090 error = -EBUSY;
3091 else {
3092 if (target)
3093 dentry_unhash(new_dentry);
3094 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3096 if (target) {
3097 if (!error) {
3098 target->i_flags |= S_DEAD;
3099 dont_mount(new_dentry);
3101 mutex_unlock(&target->i_mutex);
3102 if (d_unhashed(new_dentry))
3103 d_rehash(new_dentry);
3104 dput(new_dentry);
3106 if (!error)
3107 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3108 d_move(old_dentry,new_dentry);
3109 return error;
3112 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3113 struct inode *new_dir, struct dentry *new_dentry)
3115 struct inode *target;
3116 int error;
3118 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3119 if (error)
3120 return error;
3122 dget(new_dentry);
3123 target = new_dentry->d_inode;
3124 if (target)
3125 mutex_lock(&target->i_mutex);
3126 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3127 error = -EBUSY;
3128 else
3129 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3130 if (!error) {
3131 if (target)
3132 dont_mount(new_dentry);
3133 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3134 d_move(old_dentry, new_dentry);
3136 if (target)
3137 mutex_unlock(&target->i_mutex);
3138 dput(new_dentry);
3139 return error;
3142 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3143 struct inode *new_dir, struct dentry *new_dentry)
3145 int error;
3146 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3147 const unsigned char *old_name;
3149 if (old_dentry->d_inode == new_dentry->d_inode)
3150 return 0;
3152 error = may_delete(old_dir, old_dentry, is_dir);
3153 if (error)
3154 return error;
3156 if (!new_dentry->d_inode)
3157 error = may_create(new_dir, new_dentry);
3158 else
3159 error = may_delete(new_dir, new_dentry, is_dir);
3160 if (error)
3161 return error;
3163 if (!old_dir->i_op->rename)
3164 return -EPERM;
3166 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3168 if (is_dir)
3169 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3170 else
3171 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3172 if (!error)
3173 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3174 new_dentry->d_inode, old_dentry);
3175 fsnotify_oldname_free(old_name);
3177 return error;
3180 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3181 int, newdfd, const char __user *, newname)
3183 struct dentry *old_dir, *new_dir;
3184 struct dentry *old_dentry, *new_dentry;
3185 struct dentry *trap;
3186 struct nameidata oldnd, newnd;
3187 char *from;
3188 char *to;
3189 int error;
3191 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3192 if (error)
3193 goto exit;
3195 error = user_path_parent(newdfd, newname, &newnd, &to);
3196 if (error)
3197 goto exit1;
3199 error = -EXDEV;
3200 if (oldnd.path.mnt != newnd.path.mnt)
3201 goto exit2;
3203 old_dir = oldnd.path.dentry;
3204 error = -EBUSY;
3205 if (oldnd.last_type != LAST_NORM)
3206 goto exit2;
3208 new_dir = newnd.path.dentry;
3209 if (newnd.last_type != LAST_NORM)
3210 goto exit2;
3212 oldnd.flags &= ~LOOKUP_PARENT;
3213 newnd.flags &= ~LOOKUP_PARENT;
3214 newnd.flags |= LOOKUP_RENAME_TARGET;
3216 trap = lock_rename(new_dir, old_dir);
3218 old_dentry = lookup_hash(&oldnd);
3219 error = PTR_ERR(old_dentry);
3220 if (IS_ERR(old_dentry))
3221 goto exit3;
3222 /* source must exist */
3223 error = -ENOENT;
3224 if (!old_dentry->d_inode)
3225 goto exit4;
3226 /* unless the source is a directory trailing slashes give -ENOTDIR */
3227 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3228 error = -ENOTDIR;
3229 if (oldnd.last.name[oldnd.last.len])
3230 goto exit4;
3231 if (newnd.last.name[newnd.last.len])
3232 goto exit4;
3234 /* source should not be ancestor of target */
3235 error = -EINVAL;
3236 if (old_dentry == trap)
3237 goto exit4;
3238 new_dentry = lookup_hash(&newnd);
3239 error = PTR_ERR(new_dentry);
3240 if (IS_ERR(new_dentry))
3241 goto exit4;
3242 /* target should not be an ancestor of source */
3243 error = -ENOTEMPTY;
3244 if (new_dentry == trap)
3245 goto exit5;
3247 error = mnt_want_write(oldnd.path.mnt);
3248 if (error)
3249 goto exit5;
3250 error = security_path_rename(&oldnd.path, old_dentry,
3251 &newnd.path, new_dentry);
3252 if (error)
3253 goto exit6;
3254 error = vfs_rename(old_dir->d_inode, old_dentry,
3255 new_dir->d_inode, new_dentry);
3256 exit6:
3257 mnt_drop_write(oldnd.path.mnt);
3258 exit5:
3259 dput(new_dentry);
3260 exit4:
3261 dput(old_dentry);
3262 exit3:
3263 unlock_rename(new_dir, old_dir);
3264 exit2:
3265 path_put(&newnd.path);
3266 putname(to);
3267 exit1:
3268 path_put(&oldnd.path);
3269 putname(from);
3270 exit:
3271 return error;
3274 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3276 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3279 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3281 int len;
3283 len = PTR_ERR(link);
3284 if (IS_ERR(link))
3285 goto out;
3287 len = strlen(link);
3288 if (len > (unsigned) buflen)
3289 len = buflen;
3290 if (copy_to_user(buffer, link, len))
3291 len = -EFAULT;
3292 out:
3293 return len;
3297 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3298 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3299 * using) it for any given inode is up to filesystem.
3301 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3303 struct nameidata nd;
3304 void *cookie;
3305 int res;
3307 nd.depth = 0;
3308 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3309 if (IS_ERR(cookie))
3310 return PTR_ERR(cookie);
3312 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3313 if (dentry->d_inode->i_op->put_link)
3314 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3315 return res;
3318 int vfs_follow_link(struct nameidata *nd, const char *link)
3320 return __vfs_follow_link(nd, link);
3323 /* get the link contents into pagecache */
3324 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3326 char *kaddr;
3327 struct page *page;
3328 struct address_space *mapping = dentry->d_inode->i_mapping;
3329 page = read_mapping_page(mapping, 0, NULL);
3330 if (IS_ERR(page))
3331 return (char*)page;
3332 *ppage = page;
3333 kaddr = kmap(page);
3334 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3335 return kaddr;
3338 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3340 struct page *page = NULL;
3341 char *s = page_getlink(dentry, &page);
3342 int res = vfs_readlink(dentry,buffer,buflen,s);
3343 if (page) {
3344 kunmap(page);
3345 page_cache_release(page);
3347 return res;
3350 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3352 struct page *page = NULL;
3353 nd_set_link(nd, page_getlink(dentry, &page));
3354 return page;
3357 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3359 struct page *page = cookie;
3361 if (page) {
3362 kunmap(page);
3363 page_cache_release(page);
3368 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3370 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3372 struct address_space *mapping = inode->i_mapping;
3373 struct page *page;
3374 void *fsdata;
3375 int err;
3376 char *kaddr;
3377 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3378 if (nofs)
3379 flags |= AOP_FLAG_NOFS;
3381 retry:
3382 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3383 flags, &page, &fsdata);
3384 if (err)
3385 goto fail;
3387 kaddr = kmap_atomic(page, KM_USER0);
3388 memcpy(kaddr, symname, len-1);
3389 kunmap_atomic(kaddr, KM_USER0);
3391 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3392 page, fsdata);
3393 if (err < 0)
3394 goto fail;
3395 if (err < len-1)
3396 goto retry;
3398 mark_inode_dirty(inode);
3399 return 0;
3400 fail:
3401 return err;
3404 int page_symlink(struct inode *inode, const char *symname, int len)
3406 return __page_symlink(inode, symname, len,
3407 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3410 const struct inode_operations page_symlink_inode_operations = {
3411 .readlink = generic_readlink,
3412 .follow_link = page_follow_link_light,
3413 .put_link = page_put_link,
3416 EXPORT_SYMBOL(user_path_at);
3417 EXPORT_SYMBOL(follow_down_one);
3418 EXPORT_SYMBOL(follow_down);
3419 EXPORT_SYMBOL(follow_up);
3420 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3421 EXPORT_SYMBOL(getname);
3422 EXPORT_SYMBOL(lock_rename);
3423 EXPORT_SYMBOL(lookup_one_len);
3424 EXPORT_SYMBOL(page_follow_link_light);
3425 EXPORT_SYMBOL(page_put_link);
3426 EXPORT_SYMBOL(page_readlink);
3427 EXPORT_SYMBOL(__page_symlink);
3428 EXPORT_SYMBOL(page_symlink);
3429 EXPORT_SYMBOL(page_symlink_inode_operations);
3430 EXPORT_SYMBOL(kern_path_parent);
3431 EXPORT_SYMBOL(kern_path);
3432 EXPORT_SYMBOL(vfs_path_lookup);
3433 EXPORT_SYMBOL(inode_permission);
3434 EXPORT_SYMBOL(file_permission);
3435 EXPORT_SYMBOL(unlock_rename);
3436 EXPORT_SYMBOL(vfs_create);
3437 EXPORT_SYMBOL(vfs_follow_link);
3438 EXPORT_SYMBOL(vfs_link);
3439 EXPORT_SYMBOL(vfs_mkdir);
3440 EXPORT_SYMBOL(vfs_mknod);
3441 EXPORT_SYMBOL(generic_permission);
3442 EXPORT_SYMBOL(vfs_readlink);
3443 EXPORT_SYMBOL(vfs_rename);
3444 EXPORT_SYMBOL(vfs_rmdir);
3445 EXPORT_SYMBOL(vfs_symlink);
3446 EXPORT_SYMBOL(vfs_unlink);
3447 EXPORT_SYMBOL(dentry_unhash);
3448 EXPORT_SYMBOL(generic_readlink);