1 /* Generic associative array implementation.
3 * See Documentation/core-api/assoc_array.rst for information.
5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6 * Written by David Howells (dhowells@redhat.com)
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public Licence
10 * as published by the Free Software Foundation; either version
11 * 2 of the Licence, or (at your option) any later version.
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
20 * Iterate over an associative array. The caller must hold the RCU read lock
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr
*root
,
24 const struct assoc_array_ptr
*stop
,
25 int (*iterator
)(const void *leaf
,
29 const struct assoc_array_shortcut
*shortcut
;
30 const struct assoc_array_node
*node
;
31 const struct assoc_array_ptr
*cursor
, *ptr
, *parent
;
32 unsigned long has_meta
;
38 if (assoc_array_ptr_is_shortcut(cursor
)) {
39 /* Descend through a shortcut */
40 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
41 cursor
= READ_ONCE(shortcut
->next_node
); /* Address dependency. */
44 node
= assoc_array_ptr_to_node(cursor
);
47 /* We perform two passes of each node.
49 * The first pass does all the leaves in this node. This means we
50 * don't miss any leaves if the node is split up by insertion whilst
51 * we're iterating over the branches rooted here (we may, however, see
55 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
56 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
57 has_meta
|= (unsigned long)ptr
;
58 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
59 /* We need a barrier between the read of the pointer,
60 * which is supplied by the above READ_ONCE().
62 /* Invoke the callback */
63 ret
= iterator(assoc_array_ptr_to_leaf(ptr
),
70 /* The second pass attends to all the metadata pointers. If we follow
71 * one of these we may find that we don't come back here, but rather go
72 * back to a replacement node with the leaves in a different layout.
74 * We are guaranteed to make progress, however, as the slot number for
75 * a particular portion of the key space cannot change - and we
76 * continue at the back pointer + 1.
78 if (!(has_meta
& ASSOC_ARRAY_PTR_META_TYPE
))
83 node
= assoc_array_ptr_to_node(cursor
);
84 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
85 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
86 if (assoc_array_ptr_is_meta(ptr
)) {
93 /* Move up to the parent (may need to skip back over a shortcut) */
94 parent
= READ_ONCE(node
->back_pointer
); /* Address dependency. */
95 slot
= node
->parent_slot
;
99 if (assoc_array_ptr_is_shortcut(parent
)) {
100 shortcut
= assoc_array_ptr_to_shortcut(parent
);
102 parent
= READ_ONCE(shortcut
->back_pointer
); /* Address dependency. */
103 slot
= shortcut
->parent_slot
;
108 /* Ascend to next slot in parent node */
115 * assoc_array_iterate - Pass all objects in the array to a callback
116 * @array: The array to iterate over.
117 * @iterator: The callback function.
118 * @iterator_data: Private data for the callback function.
120 * Iterate over all the objects in an associative array. Each one will be
121 * presented to the iterator function.
123 * If the array is being modified concurrently with the iteration then it is
124 * possible that some objects in the array will be passed to the iterator
125 * callback more than once - though every object should be passed at least
126 * once. If this is undesirable then the caller must lock against modification
127 * for the duration of this function.
129 * The function will return 0 if no objects were in the array or else it will
130 * return the result of the last iterator function called. Iteration stops
131 * immediately if any call to the iteration function results in a non-zero
134 * The caller should hold the RCU read lock or better if concurrent
135 * modification is possible.
137 int assoc_array_iterate(const struct assoc_array
*array
,
138 int (*iterator
)(const void *object
,
139 void *iterator_data
),
142 struct assoc_array_ptr
*root
= READ_ONCE(array
->root
); /* Address dependency. */
146 return assoc_array_subtree_iterate(root
, NULL
, iterator
, iterator_data
);
149 enum assoc_array_walk_status
{
150 assoc_array_walk_tree_empty
,
151 assoc_array_walk_found_terminal_node
,
152 assoc_array_walk_found_wrong_shortcut
,
155 struct assoc_array_walk_result
{
157 struct assoc_array_node
*node
; /* Node in which leaf might be found */
162 struct assoc_array_shortcut
*shortcut
;
165 unsigned long sc_segments
;
166 unsigned long dissimilarity
;
171 * Navigate through the internal tree looking for the closest node to the key.
173 static enum assoc_array_walk_status
174 assoc_array_walk(const struct assoc_array
*array
,
175 const struct assoc_array_ops
*ops
,
176 const void *index_key
,
177 struct assoc_array_walk_result
*result
)
179 struct assoc_array_shortcut
*shortcut
;
180 struct assoc_array_node
*node
;
181 struct assoc_array_ptr
*cursor
, *ptr
;
182 unsigned long sc_segments
, dissimilarity
;
183 unsigned long segments
;
184 int level
, sc_level
, next_sc_level
;
187 pr_devel("-->%s()\n", __func__
);
189 cursor
= READ_ONCE(array
->root
); /* Address dependency. */
191 return assoc_array_walk_tree_empty
;
195 /* Use segments from the key for the new leaf to navigate through the
196 * internal tree, skipping through nodes and shortcuts that are on
197 * route to the destination. Eventually we'll come to a slot that is
198 * either empty or contains a leaf at which point we've found a node in
199 * which the leaf we're looking for might be found or into which it
200 * should be inserted.
203 segments
= ops
->get_key_chunk(index_key
, level
);
204 pr_devel("segments[%d]: %lx\n", level
, segments
);
206 if (assoc_array_ptr_is_shortcut(cursor
))
207 goto follow_shortcut
;
210 node
= assoc_array_ptr_to_node(cursor
);
211 slot
= segments
>> (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
212 slot
&= ASSOC_ARRAY_FAN_MASK
;
213 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
215 pr_devel("consider slot %x [ix=%d type=%lu]\n",
216 slot
, level
, (unsigned long)ptr
& 3);
218 if (!assoc_array_ptr_is_meta(ptr
)) {
219 /* The node doesn't have a node/shortcut pointer in the slot
220 * corresponding to the index key that we have to follow.
222 result
->terminal_node
.node
= node
;
223 result
->terminal_node
.level
= level
;
224 result
->terminal_node
.slot
= slot
;
225 pr_devel("<--%s() = terminal_node\n", __func__
);
226 return assoc_array_walk_found_terminal_node
;
229 if (assoc_array_ptr_is_node(ptr
)) {
230 /* There is a pointer to a node in the slot corresponding to
231 * this index key segment, so we need to follow it.
234 level
+= ASSOC_ARRAY_LEVEL_STEP
;
235 if ((level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0)
240 /* There is a shortcut in the slot corresponding to the index key
241 * segment. We follow the shortcut if its partial index key matches
242 * this leaf's. Otherwise we need to split the shortcut.
246 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
247 pr_devel("shortcut to %d\n", shortcut
->skip_to_level
);
248 sc_level
= level
+ ASSOC_ARRAY_LEVEL_STEP
;
249 BUG_ON(sc_level
> shortcut
->skip_to_level
);
252 /* Check the leaf against the shortcut's index key a word at a
253 * time, trimming the final word (the shortcut stores the index
254 * key completely from the root to the shortcut's target).
256 if ((sc_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) == 0)
257 segments
= ops
->get_key_chunk(index_key
, sc_level
);
259 sc_segments
= shortcut
->index_key
[sc_level
>> ASSOC_ARRAY_KEY_CHUNK_SHIFT
];
260 dissimilarity
= segments
^ sc_segments
;
262 if (round_up(sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
) > shortcut
->skip_to_level
) {
263 /* Trim segments that are beyond the shortcut */
264 int shift
= shortcut
->skip_to_level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
265 dissimilarity
&= ~(ULONG_MAX
<< shift
);
266 next_sc_level
= shortcut
->skip_to_level
;
268 next_sc_level
= sc_level
+ ASSOC_ARRAY_KEY_CHUNK_SIZE
;
269 next_sc_level
= round_down(next_sc_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
272 if (dissimilarity
!= 0) {
273 /* This shortcut points elsewhere */
274 result
->wrong_shortcut
.shortcut
= shortcut
;
275 result
->wrong_shortcut
.level
= level
;
276 result
->wrong_shortcut
.sc_level
= sc_level
;
277 result
->wrong_shortcut
.sc_segments
= sc_segments
;
278 result
->wrong_shortcut
.dissimilarity
= dissimilarity
;
279 return assoc_array_walk_found_wrong_shortcut
;
282 sc_level
= next_sc_level
;
283 } while (sc_level
< shortcut
->skip_to_level
);
285 /* The shortcut matches the leaf's index to this point. */
286 cursor
= READ_ONCE(shortcut
->next_node
); /* Address dependency. */
287 if (((level
^ sc_level
) & ~ASSOC_ARRAY_KEY_CHUNK_MASK
) != 0) {
297 * assoc_array_find - Find an object by index key
298 * @array: The associative array to search.
299 * @ops: The operations to use.
300 * @index_key: The key to the object.
302 * Find an object in an associative array by walking through the internal tree
303 * to the node that should contain the object and then searching the leaves
304 * there. NULL is returned if the requested object was not found in the array.
306 * The caller must hold the RCU read lock or better.
308 void *assoc_array_find(const struct assoc_array
*array
,
309 const struct assoc_array_ops
*ops
,
310 const void *index_key
)
312 struct assoc_array_walk_result result
;
313 const struct assoc_array_node
*node
;
314 const struct assoc_array_ptr
*ptr
;
318 if (assoc_array_walk(array
, ops
, index_key
, &result
) !=
319 assoc_array_walk_found_terminal_node
)
322 node
= result
.terminal_node
.node
;
324 /* If the target key is available to us, it's has to be pointed to by
327 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
328 ptr
= READ_ONCE(node
->slots
[slot
]); /* Address dependency. */
329 if (ptr
&& assoc_array_ptr_is_leaf(ptr
)) {
330 /* We need a barrier between the read of the pointer
331 * and dereferencing the pointer - but only if we are
332 * actually going to dereference it.
334 leaf
= assoc_array_ptr_to_leaf(ptr
);
335 if (ops
->compare_object(leaf
, index_key
))
344 * Destructively iterate over an associative array. The caller must prevent
345 * other simultaneous accesses.
347 static void assoc_array_destroy_subtree(struct assoc_array_ptr
*root
,
348 const struct assoc_array_ops
*ops
)
350 struct assoc_array_shortcut
*shortcut
;
351 struct assoc_array_node
*node
;
352 struct assoc_array_ptr
*cursor
, *parent
= NULL
;
355 pr_devel("-->%s()\n", __func__
);
364 if (assoc_array_ptr_is_shortcut(cursor
)) {
365 /* Descend through a shortcut */
366 pr_devel("[%d] shortcut\n", slot
);
367 BUG_ON(!assoc_array_ptr_is_shortcut(cursor
));
368 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
369 BUG_ON(shortcut
->back_pointer
!= parent
);
370 BUG_ON(slot
!= -1 && shortcut
->parent_slot
!= slot
);
372 cursor
= shortcut
->next_node
;
374 BUG_ON(!assoc_array_ptr_is_node(cursor
));
377 pr_devel("[%d] node\n", slot
);
378 node
= assoc_array_ptr_to_node(cursor
);
379 BUG_ON(node
->back_pointer
!= parent
);
380 BUG_ON(slot
!= -1 && node
->parent_slot
!= slot
);
384 pr_devel("Node %p [back=%p]\n", node
, node
->back_pointer
);
385 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
386 struct assoc_array_ptr
*ptr
= node
->slots
[slot
];
389 if (assoc_array_ptr_is_meta(ptr
)) {
396 pr_devel("[%d] free leaf\n", slot
);
397 ops
->free_object(assoc_array_ptr_to_leaf(ptr
));
401 parent
= node
->back_pointer
;
402 slot
= node
->parent_slot
;
403 pr_devel("free node\n");
408 /* Move back up to the parent (may need to free a shortcut on
410 if (assoc_array_ptr_is_shortcut(parent
)) {
411 shortcut
= assoc_array_ptr_to_shortcut(parent
);
412 BUG_ON(shortcut
->next_node
!= cursor
);
414 parent
= shortcut
->back_pointer
;
415 slot
= shortcut
->parent_slot
;
416 pr_devel("free shortcut\n");
421 BUG_ON(!assoc_array_ptr_is_node(parent
));
424 /* Ascend to next slot in parent node */
425 pr_devel("ascend to %p[%d]\n", parent
, slot
);
427 node
= assoc_array_ptr_to_node(cursor
);
433 * assoc_array_destroy - Destroy an associative array
434 * @array: The array to destroy.
435 * @ops: The operations to use.
437 * Discard all metadata and free all objects in an associative array. The
438 * array will be empty and ready to use again upon completion. This function
441 * The caller must prevent all other accesses whilst this takes place as no
442 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
443 * accesses to continue. On the other hand, no memory allocation is required.
445 void assoc_array_destroy(struct assoc_array
*array
,
446 const struct assoc_array_ops
*ops
)
448 assoc_array_destroy_subtree(array
->root
, ops
);
453 * Handle insertion into an empty tree.
455 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit
*edit
)
457 struct assoc_array_node
*new_n0
;
459 pr_devel("-->%s()\n", __func__
);
461 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
465 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
466 edit
->leaf_p
= &new_n0
->slots
[0];
467 edit
->adjust_count_on
= new_n0
;
468 edit
->set
[0].ptr
= &edit
->array
->root
;
469 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
471 pr_devel("<--%s() = ok [no root]\n", __func__
);
476 * Handle insertion into a terminal node.
478 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit
*edit
,
479 const struct assoc_array_ops
*ops
,
480 const void *index_key
,
481 struct assoc_array_walk_result
*result
)
483 struct assoc_array_shortcut
*shortcut
, *new_s0
;
484 struct assoc_array_node
*node
, *new_n0
, *new_n1
, *side
;
485 struct assoc_array_ptr
*ptr
;
486 unsigned long dissimilarity
, base_seg
, blank
;
490 int slot
, next_slot
, free_slot
, i
, j
;
492 node
= result
->terminal_node
.node
;
493 level
= result
->terminal_node
.level
;
494 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = result
->terminal_node
.slot
;
496 pr_devel("-->%s()\n", __func__
);
498 /* We arrived at a node which doesn't have an onward node or shortcut
499 * pointer that we have to follow. This means that (a) the leaf we
500 * want must go here (either by insertion or replacement) or (b) we
501 * need to split this node and insert in one of the fragments.
505 /* Firstly, we have to check the leaves in this node to see if there's
506 * a matching one we should replace in place.
508 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
509 ptr
= node
->slots
[i
];
514 if (assoc_array_ptr_is_leaf(ptr
) &&
515 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
517 pr_devel("replace in slot %d\n", i
);
518 edit
->leaf_p
= &node
->slots
[i
];
519 edit
->dead_leaf
= node
->slots
[i
];
520 pr_devel("<--%s() = ok [replace]\n", __func__
);
525 /* If there is a free slot in this node then we can just insert the
528 if (free_slot
>= 0) {
529 pr_devel("insert in free slot %d\n", free_slot
);
530 edit
->leaf_p
= &node
->slots
[free_slot
];
531 edit
->adjust_count_on
= node
;
532 pr_devel("<--%s() = ok [insert]\n", __func__
);
536 /* The node has no spare slots - so we're either going to have to split
537 * it or insert another node before it.
539 * Whatever, we're going to need at least two new nodes - so allocate
540 * those now. We may also need a new shortcut, but we deal with that
543 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
546 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
547 new_n1
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
550 edit
->new_meta
[1] = assoc_array_node_to_ptr(new_n1
);
552 /* We need to find out how similar the leaves are. */
553 pr_devel("no spare slots\n");
555 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
556 ptr
= node
->slots
[i
];
557 if (assoc_array_ptr_is_meta(ptr
)) {
558 edit
->segment_cache
[i
] = 0xff;
562 base_seg
= ops
->get_object_key_chunk(
563 assoc_array_ptr_to_leaf(ptr
), level
);
564 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
565 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
569 pr_devel("have meta\n");
573 /* The node contains only leaves */
575 base_seg
= edit
->segment_cache
[0];
576 for (i
= 1; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
577 dissimilarity
|= edit
->segment_cache
[i
] ^ base_seg
;
579 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity
);
581 if ((dissimilarity
& ASSOC_ARRAY_FAN_MASK
) == 0) {
582 /* The old leaves all cluster in the same slot. We will need
583 * to insert a shortcut if the new node wants to cluster with them.
585 if ((edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] ^ base_seg
) == 0)
586 goto all_leaves_cluster_together
;
588 /* Otherwise all the old leaves cluster in the same slot, but
589 * the new leaf wants to go into a different slot - so we
590 * create a new node (n0) to hold the new leaf and a pointer to
591 * a new node (n1) holding all the old leaves.
593 * This can be done by falling through to the node splitting
596 pr_devel("present leaves cluster but not new leaf\n");
600 pr_devel("split node\n");
602 /* We need to split the current node. The node must contain anything
603 * from a single leaf (in the one leaf case, this leaf will cluster
604 * with the new leaf) and the rest meta-pointers, to all leaves, some
605 * of which may cluster.
607 * It won't contain the case in which all the current leaves plus the
608 * new leaves want to cluster in the same slot.
610 * We need to expel at least two leaves out of a set consisting of the
611 * leaves in the node and the new leaf. The current meta pointers can
612 * just be copied as they shouldn't cluster with any of the leaves.
614 * We need a new node (n0) to replace the current one and a new node to
615 * take the expelled nodes (n1).
617 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
618 new_n0
->back_pointer
= node
->back_pointer
;
619 new_n0
->parent_slot
= node
->parent_slot
;
620 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
621 new_n1
->parent_slot
= -1; /* Need to calculate this */
624 pr_devel("do_split_node\n");
626 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
627 new_n1
->nr_leaves_on_branch
= 0;
629 /* Begin by finding two matching leaves. There have to be at least two
630 * that match - even if there are meta pointers - because any leaf that
631 * would match a slot with a meta pointer in it must be somewhere
632 * behind that meta pointer and cannot be here. Further, given N
633 * remaining leaf slots, we now have N+1 leaves to go in them.
635 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
636 slot
= edit
->segment_cache
[i
];
638 for (j
= i
+ 1; j
< ASSOC_ARRAY_FAN_OUT
+ 1; j
++)
639 if (edit
->segment_cache
[j
] == slot
)
640 goto found_slot_for_multiple_occupancy
;
642 found_slot_for_multiple_occupancy
:
643 pr_devel("same slot: %x %x [%02x]\n", i
, j
, slot
);
644 BUG_ON(i
>= ASSOC_ARRAY_FAN_OUT
);
645 BUG_ON(j
>= ASSOC_ARRAY_FAN_OUT
+ 1);
646 BUG_ON(slot
>= ASSOC_ARRAY_FAN_OUT
);
648 new_n1
->parent_slot
= slot
;
650 /* Metadata pointers cannot change slot */
651 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++)
652 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
653 new_n0
->slots
[i
] = node
->slots
[i
];
655 new_n0
->slots
[i
] = NULL
;
656 BUG_ON(new_n0
->slots
[slot
] != NULL
);
657 new_n0
->slots
[slot
] = assoc_array_node_to_ptr(new_n1
);
659 /* Filter the leaf pointers between the new nodes */
662 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
663 if (assoc_array_ptr_is_meta(node
->slots
[i
]))
665 if (edit
->segment_cache
[i
] == slot
) {
666 new_n1
->slots
[next_slot
++] = node
->slots
[i
];
667 new_n1
->nr_leaves_on_branch
++;
671 } while (new_n0
->slots
[free_slot
] != NULL
);
672 new_n0
->slots
[free_slot
] = node
->slots
[i
];
676 pr_devel("filtered: f=%x n=%x\n", free_slot
, next_slot
);
678 if (edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] != slot
) {
681 } while (new_n0
->slots
[free_slot
] != NULL
);
682 edit
->leaf_p
= &new_n0
->slots
[free_slot
];
683 edit
->adjust_count_on
= new_n0
;
685 edit
->leaf_p
= &new_n1
->slots
[next_slot
++];
686 edit
->adjust_count_on
= new_n1
;
689 BUG_ON(next_slot
<= 1);
691 edit
->set_backpointers_to
= assoc_array_node_to_ptr(new_n0
);
692 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
693 if (edit
->segment_cache
[i
] == 0xff) {
694 ptr
= node
->slots
[i
];
695 BUG_ON(assoc_array_ptr_is_leaf(ptr
));
696 if (assoc_array_ptr_is_node(ptr
)) {
697 side
= assoc_array_ptr_to_node(ptr
);
698 edit
->set_backpointers
[i
] = &side
->back_pointer
;
700 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
701 edit
->set_backpointers
[i
] = &shortcut
->back_pointer
;
706 ptr
= node
->back_pointer
;
708 edit
->set
[0].ptr
= &edit
->array
->root
;
709 else if (assoc_array_ptr_is_node(ptr
))
710 edit
->set
[0].ptr
= &assoc_array_ptr_to_node(ptr
)->slots
[node
->parent_slot
];
712 edit
->set
[0].ptr
= &assoc_array_ptr_to_shortcut(ptr
)->next_node
;
713 edit
->excised_meta
[0] = assoc_array_node_to_ptr(node
);
714 pr_devel("<--%s() = ok [split node]\n", __func__
);
717 all_leaves_cluster_together
:
718 /* All the leaves, new and old, want to cluster together in this node
719 * in the same slot, so we have to replace this node with a shortcut to
720 * skip over the identical parts of the key and then place a pair of
721 * nodes, one inside the other, at the end of the shortcut and
722 * distribute the keys between them.
724 * Firstly we need to work out where the leaves start diverging as a
725 * bit position into their keys so that we know how big the shortcut
728 * We only need to make a single pass of N of the N+1 leaves because if
729 * any keys differ between themselves at bit X then at least one of
730 * them must also differ with the base key at bit X or before.
732 pr_devel("all leaves cluster together\n");
734 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
735 int x
= ops
->diff_objects(assoc_array_ptr_to_leaf(node
->slots
[i
]),
742 BUG_ON(diff
== INT_MAX
);
743 BUG_ON(diff
< level
+ ASSOC_ARRAY_LEVEL_STEP
);
745 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
746 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
748 new_s0
= kzalloc(sizeof(struct assoc_array_shortcut
) +
749 keylen
* sizeof(unsigned long), GFP_KERNEL
);
752 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s0
);
754 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
755 new_s0
->back_pointer
= node
->back_pointer
;
756 new_s0
->parent_slot
= node
->parent_slot
;
757 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
758 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
759 new_n0
->parent_slot
= 0;
760 new_n1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
761 new_n1
->parent_slot
= -1; /* Need to calculate this */
763 new_s0
->skip_to_level
= level
= diff
& ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
764 pr_devel("skip_to_level = %d [diff %d]\n", level
, diff
);
767 for (i
= 0; i
< keylen
; i
++)
768 new_s0
->index_key
[i
] =
769 ops
->get_key_chunk(index_key
, i
* ASSOC_ARRAY_KEY_CHUNK_SIZE
);
771 if (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
) {
772 blank
= ULONG_MAX
<< (level
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
773 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, level
, blank
);
774 new_s0
->index_key
[keylen
- 1] &= ~blank
;
777 /* This now reduces to a node splitting exercise for which we'll need
778 * to regenerate the disparity table.
780 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
781 ptr
= node
->slots
[i
];
782 base_seg
= ops
->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr
),
784 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
785 edit
->segment_cache
[i
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
788 base_seg
= ops
->get_key_chunk(index_key
, level
);
789 base_seg
>>= level
& ASSOC_ARRAY_KEY_CHUNK_MASK
;
790 edit
->segment_cache
[ASSOC_ARRAY_FAN_OUT
] = base_seg
& ASSOC_ARRAY_FAN_MASK
;
795 * Handle insertion into the middle of a shortcut.
797 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit
*edit
,
798 const struct assoc_array_ops
*ops
,
799 struct assoc_array_walk_result
*result
)
801 struct assoc_array_shortcut
*shortcut
, *new_s0
, *new_s1
;
802 struct assoc_array_node
*node
, *new_n0
, *side
;
803 unsigned long sc_segments
, dissimilarity
, blank
;
805 int level
, sc_level
, diff
;
808 shortcut
= result
->wrong_shortcut
.shortcut
;
809 level
= result
->wrong_shortcut
.level
;
810 sc_level
= result
->wrong_shortcut
.sc_level
;
811 sc_segments
= result
->wrong_shortcut
.sc_segments
;
812 dissimilarity
= result
->wrong_shortcut
.dissimilarity
;
814 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
815 __func__
, level
, dissimilarity
, sc_level
);
817 /* We need to split a shortcut and insert a node between the two
818 * pieces. Zero-length pieces will be dispensed with entirely.
820 * First of all, we need to find out in which level the first
823 diff
= __ffs(dissimilarity
);
824 diff
&= ~ASSOC_ARRAY_LEVEL_STEP_MASK
;
825 diff
+= sc_level
& ~ASSOC_ARRAY_KEY_CHUNK_MASK
;
826 pr_devel("diff=%d\n", diff
);
828 if (!shortcut
->back_pointer
) {
829 edit
->set
[0].ptr
= &edit
->array
->root
;
830 } else if (assoc_array_ptr_is_node(shortcut
->back_pointer
)) {
831 node
= assoc_array_ptr_to_node(shortcut
->back_pointer
);
832 edit
->set
[0].ptr
= &node
->slots
[shortcut
->parent_slot
];
837 edit
->excised_meta
[0] = assoc_array_shortcut_to_ptr(shortcut
);
839 /* Create a new node now since we're going to need it anyway */
840 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
843 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
844 edit
->adjust_count_on
= new_n0
;
846 /* Insert a new shortcut before the new node if this segment isn't of
847 * zero length - otherwise we just connect the new node directly to the
850 level
+= ASSOC_ARRAY_LEVEL_STEP
;
852 pr_devel("pre-shortcut %d...%d\n", level
, diff
);
853 keylen
= round_up(diff
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
854 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
856 new_s0
= kzalloc(sizeof(struct assoc_array_shortcut
) +
857 keylen
* sizeof(unsigned long), GFP_KERNEL
);
860 edit
->new_meta
[1] = assoc_array_shortcut_to_ptr(new_s0
);
861 edit
->set
[0].to
= assoc_array_shortcut_to_ptr(new_s0
);
862 new_s0
->back_pointer
= shortcut
->back_pointer
;
863 new_s0
->parent_slot
= shortcut
->parent_slot
;
864 new_s0
->next_node
= assoc_array_node_to_ptr(new_n0
);
865 new_s0
->skip_to_level
= diff
;
867 new_n0
->back_pointer
= assoc_array_shortcut_to_ptr(new_s0
);
868 new_n0
->parent_slot
= 0;
870 memcpy(new_s0
->index_key
, shortcut
->index_key
,
871 keylen
* sizeof(unsigned long));
873 blank
= ULONG_MAX
<< (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
874 pr_devel("blank off [%zu] %d: %lx\n", keylen
- 1, diff
, blank
);
875 new_s0
->index_key
[keylen
- 1] &= ~blank
;
877 pr_devel("no pre-shortcut\n");
878 edit
->set
[0].to
= assoc_array_node_to_ptr(new_n0
);
879 new_n0
->back_pointer
= shortcut
->back_pointer
;
880 new_n0
->parent_slot
= shortcut
->parent_slot
;
883 side
= assoc_array_ptr_to_node(shortcut
->next_node
);
884 new_n0
->nr_leaves_on_branch
= side
->nr_leaves_on_branch
;
886 /* We need to know which slot in the new node is going to take a
889 sc_slot
= sc_segments
>> (diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
);
890 sc_slot
&= ASSOC_ARRAY_FAN_MASK
;
892 pr_devel("new slot %lx >> %d -> %d\n",
893 sc_segments
, diff
& ASSOC_ARRAY_KEY_CHUNK_MASK
, sc_slot
);
895 /* Determine whether we need to follow the new node with a replacement
896 * for the current shortcut. We could in theory reuse the current
897 * shortcut if its parent slot number doesn't change - but that's a
898 * 1-in-16 chance so not worth expending the code upon.
900 level
= diff
+ ASSOC_ARRAY_LEVEL_STEP
;
901 if (level
< shortcut
->skip_to_level
) {
902 pr_devel("post-shortcut %d...%d\n", level
, shortcut
->skip_to_level
);
903 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
904 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
906 new_s1
= kzalloc(sizeof(struct assoc_array_shortcut
) +
907 keylen
* sizeof(unsigned long), GFP_KERNEL
);
910 edit
->new_meta
[2] = assoc_array_shortcut_to_ptr(new_s1
);
912 new_s1
->back_pointer
= assoc_array_node_to_ptr(new_n0
);
913 new_s1
->parent_slot
= sc_slot
;
914 new_s1
->next_node
= shortcut
->next_node
;
915 new_s1
->skip_to_level
= shortcut
->skip_to_level
;
917 new_n0
->slots
[sc_slot
] = assoc_array_shortcut_to_ptr(new_s1
);
919 memcpy(new_s1
->index_key
, shortcut
->index_key
,
920 keylen
* sizeof(unsigned long));
922 edit
->set
[1].ptr
= &side
->back_pointer
;
923 edit
->set
[1].to
= assoc_array_shortcut_to_ptr(new_s1
);
925 pr_devel("no post-shortcut\n");
927 /* We don't have to replace the pointed-to node as long as we
928 * use memory barriers to make sure the parent slot number is
929 * changed before the back pointer (the parent slot number is
930 * irrelevant to the old parent shortcut).
932 new_n0
->slots
[sc_slot
] = shortcut
->next_node
;
933 edit
->set_parent_slot
[0].p
= &side
->parent_slot
;
934 edit
->set_parent_slot
[0].to
= sc_slot
;
935 edit
->set
[1].ptr
= &side
->back_pointer
;
936 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
939 /* Install the new leaf in a spare slot in the new node. */
941 edit
->leaf_p
= &new_n0
->slots
[1];
943 edit
->leaf_p
= &new_n0
->slots
[0];
945 pr_devel("<--%s() = ok [split shortcut]\n", __func__
);
950 * assoc_array_insert - Script insertion of an object into an associative array
951 * @array: The array to insert into.
952 * @ops: The operations to use.
953 * @index_key: The key to insert at.
954 * @object: The object to insert.
956 * Precalculate and preallocate a script for the insertion or replacement of an
957 * object in an associative array. This results in an edit script that can
958 * either be applied or cancelled.
960 * The function returns a pointer to an edit script or -ENOMEM.
962 * The caller should lock against other modifications and must continue to hold
963 * the lock until assoc_array_apply_edit() has been called.
965 * Accesses to the tree may take place concurrently with this function,
966 * provided they hold the RCU read lock.
968 struct assoc_array_edit
*assoc_array_insert(struct assoc_array
*array
,
969 const struct assoc_array_ops
*ops
,
970 const void *index_key
,
973 struct assoc_array_walk_result result
;
974 struct assoc_array_edit
*edit
;
976 pr_devel("-->%s()\n", __func__
);
978 /* The leaf pointer we're given must not have the bottom bit set as we
979 * use those for type-marking the pointer. NULL pointers are also not
980 * allowed as they indicate an empty slot but we have to allow them
981 * here as they can be updated later.
983 BUG_ON(assoc_array_ptr_is_meta(object
));
985 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
987 return ERR_PTR(-ENOMEM
);
990 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
991 edit
->adjust_count_by
= 1;
993 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
994 case assoc_array_walk_tree_empty
:
995 /* Allocate a root node if there isn't one yet */
996 if (!assoc_array_insert_in_empty_tree(edit
))
1000 case assoc_array_walk_found_terminal_node
:
1001 /* We found a node that doesn't have a node/shortcut pointer in
1002 * the slot corresponding to the index key that we have to
1005 if (!assoc_array_insert_into_terminal_node(edit
, ops
, index_key
,
1010 case assoc_array_walk_found_wrong_shortcut
:
1011 /* We found a shortcut that didn't match our key in a slot we
1014 if (!assoc_array_insert_mid_shortcut(edit
, ops
, &result
))
1020 /* Clean up after an out of memory error */
1021 pr_devel("enomem\n");
1022 assoc_array_cancel_edit(edit
);
1023 return ERR_PTR(-ENOMEM
);
1027 * assoc_array_insert_set_object - Set the new object pointer in an edit script
1028 * @edit: The edit script to modify.
1029 * @object: The object pointer to set.
1031 * Change the object to be inserted in an edit script. The object pointed to
1032 * by the old object is not freed. This must be done prior to applying the
1035 void assoc_array_insert_set_object(struct assoc_array_edit
*edit
, void *object
)
1038 edit
->leaf
= assoc_array_leaf_to_ptr(object
);
1041 struct assoc_array_delete_collapse_context
{
1042 struct assoc_array_node
*node
;
1043 const void *skip_leaf
;
1048 * Subtree collapse to node iterator.
1050 static int assoc_array_delete_collapse_iterator(const void *leaf
,
1051 void *iterator_data
)
1053 struct assoc_array_delete_collapse_context
*collapse
= iterator_data
;
1055 if (leaf
== collapse
->skip_leaf
)
1058 BUG_ON(collapse
->slot
>= ASSOC_ARRAY_FAN_OUT
);
1060 collapse
->node
->slots
[collapse
->slot
++] = assoc_array_leaf_to_ptr(leaf
);
1065 * assoc_array_delete - Script deletion of an object from an associative array
1066 * @array: The array to search.
1067 * @ops: The operations to use.
1068 * @index_key: The key to the object.
1070 * Precalculate and preallocate a script for the deletion of an object from an
1071 * associative array. This results in an edit script that can either be
1072 * applied or cancelled.
1074 * The function returns a pointer to an edit script if the object was found,
1075 * NULL if the object was not found or -ENOMEM.
1077 * The caller should lock against other modifications and must continue to hold
1078 * the lock until assoc_array_apply_edit() has been called.
1080 * Accesses to the tree may take place concurrently with this function,
1081 * provided they hold the RCU read lock.
1083 struct assoc_array_edit
*assoc_array_delete(struct assoc_array
*array
,
1084 const struct assoc_array_ops
*ops
,
1085 const void *index_key
)
1087 struct assoc_array_delete_collapse_context collapse
;
1088 struct assoc_array_walk_result result
;
1089 struct assoc_array_node
*node
, *new_n0
;
1090 struct assoc_array_edit
*edit
;
1091 struct assoc_array_ptr
*ptr
;
1095 pr_devel("-->%s()\n", __func__
);
1097 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1099 return ERR_PTR(-ENOMEM
);
1100 edit
->array
= array
;
1102 edit
->adjust_count_by
= -1;
1104 switch (assoc_array_walk(array
, ops
, index_key
, &result
)) {
1105 case assoc_array_walk_found_terminal_node
:
1106 /* We found a node that should contain the leaf we've been
1107 * asked to remove - *if* it's in the tree.
1109 pr_devel("terminal_node\n");
1110 node
= result
.terminal_node
.node
;
1112 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1113 ptr
= node
->slots
[slot
];
1115 assoc_array_ptr_is_leaf(ptr
) &&
1116 ops
->compare_object(assoc_array_ptr_to_leaf(ptr
),
1121 case assoc_array_walk_tree_empty
:
1122 case assoc_array_walk_found_wrong_shortcut
:
1124 assoc_array_cancel_edit(edit
);
1125 pr_devel("not found\n");
1130 BUG_ON(array
->nr_leaves_on_tree
<= 0);
1132 /* In the simplest form of deletion we just clear the slot and release
1133 * the leaf after a suitable interval.
1135 edit
->dead_leaf
= node
->slots
[slot
];
1136 edit
->set
[0].ptr
= &node
->slots
[slot
];
1137 edit
->set
[0].to
= NULL
;
1138 edit
->adjust_count_on
= node
;
1140 /* If that concludes erasure of the last leaf, then delete the entire
1143 if (array
->nr_leaves_on_tree
== 1) {
1144 edit
->set
[1].ptr
= &array
->root
;
1145 edit
->set
[1].to
= NULL
;
1146 edit
->adjust_count_on
= NULL
;
1147 edit
->excised_subtree
= array
->root
;
1148 pr_devel("all gone\n");
1152 /* However, we'd also like to clear up some metadata blocks if we
1155 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1156 * leaves in it, then attempt to collapse it - and attempt to
1157 * recursively collapse up the tree.
1159 * We could also try and collapse in partially filled subtrees to take
1160 * up space in this node.
1162 if (node
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1163 struct assoc_array_node
*parent
, *grandparent
;
1164 struct assoc_array_ptr
*ptr
;
1166 /* First of all, we need to know if this node has metadata so
1167 * that we don't try collapsing if all the leaves are already
1171 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1172 ptr
= node
->slots
[i
];
1173 if (assoc_array_ptr_is_meta(ptr
)) {
1179 pr_devel("leaves: %ld [m=%d]\n",
1180 node
->nr_leaves_on_branch
- 1, has_meta
);
1182 /* Look further up the tree to see if we can collapse this node
1183 * into a more proximal node too.
1187 pr_devel("collapse subtree: %ld\n", parent
->nr_leaves_on_branch
);
1189 ptr
= parent
->back_pointer
;
1192 if (assoc_array_ptr_is_shortcut(ptr
)) {
1193 struct assoc_array_shortcut
*s
= assoc_array_ptr_to_shortcut(ptr
);
1194 ptr
= s
->back_pointer
;
1199 grandparent
= assoc_array_ptr_to_node(ptr
);
1200 if (grandparent
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
+ 1) {
1201 parent
= grandparent
;
1206 /* There's no point collapsing if the original node has no meta
1207 * pointers to discard and if we didn't merge into one of that
1210 if (has_meta
|| parent
!= node
) {
1213 /* Create a new node to collapse into */
1214 new_n0
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1217 edit
->new_meta
[0] = assoc_array_node_to_ptr(new_n0
);
1219 new_n0
->back_pointer
= node
->back_pointer
;
1220 new_n0
->parent_slot
= node
->parent_slot
;
1221 new_n0
->nr_leaves_on_branch
= node
->nr_leaves_on_branch
;
1222 edit
->adjust_count_on
= new_n0
;
1224 collapse
.node
= new_n0
;
1225 collapse
.skip_leaf
= assoc_array_ptr_to_leaf(edit
->dead_leaf
);
1227 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node
),
1229 assoc_array_delete_collapse_iterator
,
1231 pr_devel("collapsed %d,%lu\n", collapse
.slot
, new_n0
->nr_leaves_on_branch
);
1232 BUG_ON(collapse
.slot
!= new_n0
->nr_leaves_on_branch
- 1);
1234 if (!node
->back_pointer
) {
1235 edit
->set
[1].ptr
= &array
->root
;
1236 } else if (assoc_array_ptr_is_leaf(node
->back_pointer
)) {
1238 } else if (assoc_array_ptr_is_node(node
->back_pointer
)) {
1239 struct assoc_array_node
*p
=
1240 assoc_array_ptr_to_node(node
->back_pointer
);
1241 edit
->set
[1].ptr
= &p
->slots
[node
->parent_slot
];
1242 } else if (assoc_array_ptr_is_shortcut(node
->back_pointer
)) {
1243 struct assoc_array_shortcut
*s
=
1244 assoc_array_ptr_to_shortcut(node
->back_pointer
);
1245 edit
->set
[1].ptr
= &s
->next_node
;
1247 edit
->set
[1].to
= assoc_array_node_to_ptr(new_n0
);
1248 edit
->excised_subtree
= assoc_array_node_to_ptr(node
);
1255 /* Clean up after an out of memory error */
1256 pr_devel("enomem\n");
1257 assoc_array_cancel_edit(edit
);
1258 return ERR_PTR(-ENOMEM
);
1262 * assoc_array_clear - Script deletion of all objects from an associative array
1263 * @array: The array to clear.
1264 * @ops: The operations to use.
1266 * Precalculate and preallocate a script for the deletion of all the objects
1267 * from an associative array. This results in an edit script that can either
1268 * be applied or cancelled.
1270 * The function returns a pointer to an edit script if there are objects to be
1271 * deleted, NULL if there are no objects in the array or -ENOMEM.
1273 * The caller should lock against other modifications and must continue to hold
1274 * the lock until assoc_array_apply_edit() has been called.
1276 * Accesses to the tree may take place concurrently with this function,
1277 * provided they hold the RCU read lock.
1279 struct assoc_array_edit
*assoc_array_clear(struct assoc_array
*array
,
1280 const struct assoc_array_ops
*ops
)
1282 struct assoc_array_edit
*edit
;
1284 pr_devel("-->%s()\n", __func__
);
1289 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1291 return ERR_PTR(-ENOMEM
);
1292 edit
->array
= array
;
1294 edit
->set
[1].ptr
= &array
->root
;
1295 edit
->set
[1].to
= NULL
;
1296 edit
->excised_subtree
= array
->root
;
1297 edit
->ops_for_excised_subtree
= ops
;
1298 pr_devel("all gone\n");
1303 * Handle the deferred destruction after an applied edit.
1305 static void assoc_array_rcu_cleanup(struct rcu_head
*head
)
1307 struct assoc_array_edit
*edit
=
1308 container_of(head
, struct assoc_array_edit
, rcu
);
1311 pr_devel("-->%s()\n", __func__
);
1313 if (edit
->dead_leaf
)
1314 edit
->ops
->free_object(assoc_array_ptr_to_leaf(edit
->dead_leaf
));
1315 for (i
= 0; i
< ARRAY_SIZE(edit
->excised_meta
); i
++)
1316 if (edit
->excised_meta
[i
])
1317 kfree(assoc_array_ptr_to_node(edit
->excised_meta
[i
]));
1319 if (edit
->excised_subtree
) {
1320 BUG_ON(assoc_array_ptr_is_leaf(edit
->excised_subtree
));
1321 if (assoc_array_ptr_is_node(edit
->excised_subtree
)) {
1322 struct assoc_array_node
*n
=
1323 assoc_array_ptr_to_node(edit
->excised_subtree
);
1324 n
->back_pointer
= NULL
;
1326 struct assoc_array_shortcut
*s
=
1327 assoc_array_ptr_to_shortcut(edit
->excised_subtree
);
1328 s
->back_pointer
= NULL
;
1330 assoc_array_destroy_subtree(edit
->excised_subtree
,
1331 edit
->ops_for_excised_subtree
);
1338 * assoc_array_apply_edit - Apply an edit script to an associative array
1339 * @edit: The script to apply.
1341 * Apply an edit script to an associative array to effect an insertion,
1342 * deletion or clearance. As the edit script includes preallocated memory,
1343 * this is guaranteed not to fail.
1345 * The edit script, dead objects and dead metadata will be scheduled for
1346 * destruction after an RCU grace period to permit those doing read-only
1347 * accesses on the array to continue to do so under the RCU read lock whilst
1348 * the edit is taking place.
1350 void assoc_array_apply_edit(struct assoc_array_edit
*edit
)
1352 struct assoc_array_shortcut
*shortcut
;
1353 struct assoc_array_node
*node
;
1354 struct assoc_array_ptr
*ptr
;
1357 pr_devel("-->%s()\n", __func__
);
1361 *edit
->leaf_p
= edit
->leaf
;
1364 for (i
= 0; i
< ARRAY_SIZE(edit
->set_parent_slot
); i
++)
1365 if (edit
->set_parent_slot
[i
].p
)
1366 *edit
->set_parent_slot
[i
].p
= edit
->set_parent_slot
[i
].to
;
1369 for (i
= 0; i
< ARRAY_SIZE(edit
->set_backpointers
); i
++)
1370 if (edit
->set_backpointers
[i
])
1371 *edit
->set_backpointers
[i
] = edit
->set_backpointers_to
;
1374 for (i
= 0; i
< ARRAY_SIZE(edit
->set
); i
++)
1375 if (edit
->set
[i
].ptr
)
1376 *edit
->set
[i
].ptr
= edit
->set
[i
].to
;
1378 if (edit
->array
->root
== NULL
) {
1379 edit
->array
->nr_leaves_on_tree
= 0;
1380 } else if (edit
->adjust_count_on
) {
1381 node
= edit
->adjust_count_on
;
1383 node
->nr_leaves_on_branch
+= edit
->adjust_count_by
;
1385 ptr
= node
->back_pointer
;
1388 if (assoc_array_ptr_is_shortcut(ptr
)) {
1389 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1390 ptr
= shortcut
->back_pointer
;
1394 BUG_ON(!assoc_array_ptr_is_node(ptr
));
1395 node
= assoc_array_ptr_to_node(ptr
);
1398 edit
->array
->nr_leaves_on_tree
+= edit
->adjust_count_by
;
1401 call_rcu(&edit
->rcu
, assoc_array_rcu_cleanup
);
1405 * assoc_array_cancel_edit - Discard an edit script.
1406 * @edit: The script to discard.
1408 * Free an edit script and all the preallocated data it holds without making
1409 * any changes to the associative array it was intended for.
1411 * NOTE! In the case of an insertion script, this does _not_ release the leaf
1412 * that was to be inserted. That is left to the caller.
1414 void assoc_array_cancel_edit(struct assoc_array_edit
*edit
)
1416 struct assoc_array_ptr
*ptr
;
1419 pr_devel("-->%s()\n", __func__
);
1421 /* Clean up after an out of memory error */
1422 for (i
= 0; i
< ARRAY_SIZE(edit
->new_meta
); i
++) {
1423 ptr
= edit
->new_meta
[i
];
1425 if (assoc_array_ptr_is_node(ptr
))
1426 kfree(assoc_array_ptr_to_node(ptr
));
1428 kfree(assoc_array_ptr_to_shortcut(ptr
));
1435 * assoc_array_gc - Garbage collect an associative array.
1436 * @array: The array to clean.
1437 * @ops: The operations to use.
1438 * @iterator: A callback function to pass judgement on each object.
1439 * @iterator_data: Private data for the callback function.
1441 * Collect garbage from an associative array and pack down the internal tree to
1444 * The iterator function is asked to pass judgement upon each object in the
1445 * array. If it returns false, the object is discard and if it returns true,
1446 * the object is kept. If it returns true, it must increment the object's
1447 * usage count (or whatever it needs to do to retain it) before returning.
1449 * This function returns 0 if successful or -ENOMEM if out of memory. In the
1450 * latter case, the array is not changed.
1452 * The caller should lock against other modifications and must continue to hold
1453 * the lock until assoc_array_apply_edit() has been called.
1455 * Accesses to the tree may take place concurrently with this function,
1456 * provided they hold the RCU read lock.
1458 int assoc_array_gc(struct assoc_array
*array
,
1459 const struct assoc_array_ops
*ops
,
1460 bool (*iterator
)(void *object
, void *iterator_data
),
1461 void *iterator_data
)
1463 struct assoc_array_shortcut
*shortcut
, *new_s
;
1464 struct assoc_array_node
*node
, *new_n
;
1465 struct assoc_array_edit
*edit
;
1466 struct assoc_array_ptr
*cursor
, *ptr
;
1467 struct assoc_array_ptr
*new_root
, *new_parent
, **new_ptr_pp
;
1468 unsigned long nr_leaves_on_tree
;
1469 int keylen
, slot
, nr_free
, next_slot
, i
;
1471 pr_devel("-->%s()\n", __func__
);
1476 edit
= kzalloc(sizeof(struct assoc_array_edit
), GFP_KERNEL
);
1479 edit
->array
= array
;
1481 edit
->ops_for_excised_subtree
= ops
;
1482 edit
->set
[0].ptr
= &array
->root
;
1483 edit
->excised_subtree
= array
->root
;
1485 new_root
= new_parent
= NULL
;
1486 new_ptr_pp
= &new_root
;
1487 cursor
= array
->root
;
1490 /* If this point is a shortcut, then we need to duplicate it and
1491 * advance the target cursor.
1493 if (assoc_array_ptr_is_shortcut(cursor
)) {
1494 shortcut
= assoc_array_ptr_to_shortcut(cursor
);
1495 keylen
= round_up(shortcut
->skip_to_level
, ASSOC_ARRAY_KEY_CHUNK_SIZE
);
1496 keylen
>>= ASSOC_ARRAY_KEY_CHUNK_SHIFT
;
1497 new_s
= kmalloc(sizeof(struct assoc_array_shortcut
) +
1498 keylen
* sizeof(unsigned long), GFP_KERNEL
);
1501 pr_devel("dup shortcut %p -> %p\n", shortcut
, new_s
);
1502 memcpy(new_s
, shortcut
, (sizeof(struct assoc_array_shortcut
) +
1503 keylen
* sizeof(unsigned long)));
1504 new_s
->back_pointer
= new_parent
;
1505 new_s
->parent_slot
= shortcut
->parent_slot
;
1506 *new_ptr_pp
= new_parent
= assoc_array_shortcut_to_ptr(new_s
);
1507 new_ptr_pp
= &new_s
->next_node
;
1508 cursor
= shortcut
->next_node
;
1511 /* Duplicate the node at this position */
1512 node
= assoc_array_ptr_to_node(cursor
);
1513 new_n
= kzalloc(sizeof(struct assoc_array_node
), GFP_KERNEL
);
1516 pr_devel("dup node %p -> %p\n", node
, new_n
);
1517 new_n
->back_pointer
= new_parent
;
1518 new_n
->parent_slot
= node
->parent_slot
;
1519 *new_ptr_pp
= new_parent
= assoc_array_node_to_ptr(new_n
);
1524 /* Filter across any leaves and gc any subtrees */
1525 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1526 ptr
= node
->slots
[slot
];
1530 if (assoc_array_ptr_is_leaf(ptr
)) {
1531 if (iterator(assoc_array_ptr_to_leaf(ptr
),
1533 /* The iterator will have done any reference
1534 * counting on the object for us.
1536 new_n
->slots
[slot
] = ptr
;
1540 new_ptr_pp
= &new_n
->slots
[slot
];
1545 pr_devel("-- compress node %p --\n", new_n
);
1547 /* Count up the number of empty slots in this node and work out the
1548 * subtree leaf count.
1550 new_n
->nr_leaves_on_branch
= 0;
1552 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1553 ptr
= new_n
->slots
[slot
];
1556 else if (assoc_array_ptr_is_leaf(ptr
))
1557 new_n
->nr_leaves_on_branch
++;
1559 pr_devel("free=%d, leaves=%lu\n", nr_free
, new_n
->nr_leaves_on_branch
);
1561 /* See what we can fold in */
1563 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
1564 struct assoc_array_shortcut
*s
;
1565 struct assoc_array_node
*child
;
1567 ptr
= new_n
->slots
[slot
];
1568 if (!ptr
|| assoc_array_ptr_is_leaf(ptr
))
1572 if (assoc_array_ptr_is_shortcut(ptr
)) {
1573 s
= assoc_array_ptr_to_shortcut(ptr
);
1577 child
= assoc_array_ptr_to_node(ptr
);
1578 new_n
->nr_leaves_on_branch
+= child
->nr_leaves_on_branch
;
1580 if (child
->nr_leaves_on_branch
<= nr_free
+ 1) {
1581 /* Fold the child node into this one */
1582 pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1583 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1586 /* We would already have reaped an intervening shortcut
1587 * on the way back up the tree.
1591 new_n
->slots
[slot
] = NULL
;
1593 if (slot
< next_slot
)
1595 for (i
= 0; i
< ASSOC_ARRAY_FAN_OUT
; i
++) {
1596 struct assoc_array_ptr
*p
= child
->slots
[i
];
1599 BUG_ON(assoc_array_ptr_is_meta(p
));
1600 while (new_n
->slots
[next_slot
])
1602 BUG_ON(next_slot
>= ASSOC_ARRAY_FAN_OUT
);
1603 new_n
->slots
[next_slot
++] = p
;
1608 pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1609 slot
, child
->nr_leaves_on_branch
, nr_free
+ 1,
1614 pr_devel("after: %lu\n", new_n
->nr_leaves_on_branch
);
1616 nr_leaves_on_tree
= new_n
->nr_leaves_on_branch
;
1618 /* Excise this node if it is singly occupied by a shortcut */
1619 if (nr_free
== ASSOC_ARRAY_FAN_OUT
- 1) {
1620 for (slot
= 0; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++)
1621 if ((ptr
= new_n
->slots
[slot
]))
1624 if (assoc_array_ptr_is_meta(ptr
) &&
1625 assoc_array_ptr_is_shortcut(ptr
)) {
1626 pr_devel("excise node %p with 1 shortcut\n", new_n
);
1627 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1628 new_parent
= new_n
->back_pointer
;
1629 slot
= new_n
->parent_slot
;
1632 new_s
->back_pointer
= NULL
;
1633 new_s
->parent_slot
= 0;
1638 if (assoc_array_ptr_is_shortcut(new_parent
)) {
1639 /* We can discard any preceding shortcut also */
1640 struct assoc_array_shortcut
*s
=
1641 assoc_array_ptr_to_shortcut(new_parent
);
1643 pr_devel("excise preceding shortcut\n");
1645 new_parent
= new_s
->back_pointer
= s
->back_pointer
;
1646 slot
= new_s
->parent_slot
= s
->parent_slot
;
1649 new_s
->back_pointer
= NULL
;
1650 new_s
->parent_slot
= 0;
1656 new_s
->back_pointer
= new_parent
;
1657 new_s
->parent_slot
= slot
;
1658 new_n
= assoc_array_ptr_to_node(new_parent
);
1659 new_n
->slots
[slot
] = ptr
;
1660 goto ascend_old_tree
;
1664 /* Excise any shortcuts we might encounter that point to nodes that
1665 * only contain leaves.
1667 ptr
= new_n
->back_pointer
;
1671 if (assoc_array_ptr_is_shortcut(ptr
)) {
1672 new_s
= assoc_array_ptr_to_shortcut(ptr
);
1673 new_parent
= new_s
->back_pointer
;
1674 slot
= new_s
->parent_slot
;
1676 if (new_n
->nr_leaves_on_branch
<= ASSOC_ARRAY_FAN_OUT
) {
1677 struct assoc_array_node
*n
;
1679 pr_devel("excise shortcut\n");
1680 new_n
->back_pointer
= new_parent
;
1681 new_n
->parent_slot
= slot
;
1684 new_root
= assoc_array_node_to_ptr(new_n
);
1688 n
= assoc_array_ptr_to_node(new_parent
);
1689 n
->slots
[slot
] = assoc_array_node_to_ptr(new_n
);
1694 new_n
= assoc_array_ptr_to_node(new_parent
);
1697 ptr
= node
->back_pointer
;
1698 if (assoc_array_ptr_is_shortcut(ptr
)) {
1699 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
1700 slot
= shortcut
->parent_slot
;
1701 cursor
= shortcut
->back_pointer
;
1705 slot
= node
->parent_slot
;
1709 node
= assoc_array_ptr_to_node(cursor
);
1714 edit
->set
[0].to
= new_root
;
1715 assoc_array_apply_edit(edit
);
1716 array
->nr_leaves_on_tree
= nr_leaves_on_tree
;
1720 pr_devel("enomem\n");
1721 assoc_array_destroy_subtree(new_root
, edit
->ops
);