drm/i915/gt: Use the local HWSP offset during submission
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_request.c
blob4df7b2a16999ee5fbf3c5202ee35ee22fff66f1a
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/dma-fence-array.h>
26 #include <linux/dma-fence-chain.h>
27 #include <linux/irq_work.h>
28 #include <linux/prefetch.h>
29 #include <linux/sched.h>
30 #include <linux/sched/clock.h>
31 #include <linux/sched/signal.h>
33 #include "gem/i915_gem_context.h"
34 #include "gt/intel_context.h"
35 #include "gt/intel_ring.h"
36 #include "gt/intel_rps.h"
38 #include "i915_active.h"
39 #include "i915_drv.h"
40 #include "i915_globals.h"
41 #include "i915_trace.h"
42 #include "intel_pm.h"
44 struct execute_cb {
45 struct irq_work work;
46 struct i915_sw_fence *fence;
47 void (*hook)(struct i915_request *rq, struct dma_fence *signal);
48 struct i915_request *signal;
51 static struct i915_global_request {
52 struct i915_global base;
53 struct kmem_cache *slab_requests;
54 struct kmem_cache *slab_execute_cbs;
55 } global;
57 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
59 return dev_name(to_request(fence)->engine->i915->drm.dev);
62 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
64 const struct i915_gem_context *ctx;
67 * The timeline struct (as part of the ppgtt underneath a context)
68 * may be freed when the request is no longer in use by the GPU.
69 * We could extend the life of a context to beyond that of all
70 * fences, possibly keeping the hw resource around indefinitely,
71 * or we just give them a false name. Since
72 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
73 * lie seems justifiable.
75 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
76 return "signaled";
78 ctx = i915_request_gem_context(to_request(fence));
79 if (!ctx)
80 return "[" DRIVER_NAME "]";
82 return ctx->name;
85 static bool i915_fence_signaled(struct dma_fence *fence)
87 return i915_request_completed(to_request(fence));
90 static bool i915_fence_enable_signaling(struct dma_fence *fence)
92 return i915_request_enable_breadcrumb(to_request(fence));
95 static signed long i915_fence_wait(struct dma_fence *fence,
96 bool interruptible,
97 signed long timeout)
99 return i915_request_wait(to_request(fence),
100 interruptible | I915_WAIT_PRIORITY,
101 timeout);
104 struct kmem_cache *i915_request_slab_cache(void)
106 return global.slab_requests;
109 static void i915_fence_release(struct dma_fence *fence)
111 struct i915_request *rq = to_request(fence);
114 * The request is put onto a RCU freelist (i.e. the address
115 * is immediately reused), mark the fences as being freed now.
116 * Otherwise the debugobjects for the fences are only marked as
117 * freed when the slab cache itself is freed, and so we would get
118 * caught trying to reuse dead objects.
120 i915_sw_fence_fini(&rq->submit);
121 i915_sw_fence_fini(&rq->semaphore);
124 * Keep one request on each engine for reserved use under mempressure
126 * We do not hold a reference to the engine here and so have to be
127 * very careful in what rq->engine we poke. The virtual engine is
128 * referenced via the rq->context and we released that ref during
129 * i915_request_retire(), ergo we must not dereference a virtual
130 * engine here. Not that we would want to, as the only consumer of
131 * the reserved engine->request_pool is the power management parking,
132 * which must-not-fail, and that is only run on the physical engines.
134 * Since the request must have been executed to be have completed,
135 * we know that it will have been processed by the HW and will
136 * not be unsubmitted again, so rq->engine and rq->execution_mask
137 * at this point is stable. rq->execution_mask will be a single
138 * bit if the last and _only_ engine it could execution on was a
139 * physical engine, if it's multiple bits then it started on and
140 * could still be on a virtual engine. Thus if the mask is not a
141 * power-of-two we assume that rq->engine may still be a virtual
142 * engine and so a dangling invalid pointer that we cannot dereference
144 * For example, consider the flow of a bonded request through a virtual
145 * engine. The request is created with a wide engine mask (all engines
146 * that we might execute on). On processing the bond, the request mask
147 * is reduced to one or more engines. If the request is subsequently
148 * bound to a single engine, it will then be constrained to only
149 * execute on that engine and never returned to the virtual engine
150 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
151 * know that if the rq->execution_mask is a single bit, rq->engine
152 * can be a physical engine with the exact corresponding mask.
154 if (is_power_of_2(rq->execution_mask) &&
155 !cmpxchg(&rq->engine->request_pool, NULL, rq))
156 return;
158 kmem_cache_free(global.slab_requests, rq);
161 const struct dma_fence_ops i915_fence_ops = {
162 .get_driver_name = i915_fence_get_driver_name,
163 .get_timeline_name = i915_fence_get_timeline_name,
164 .enable_signaling = i915_fence_enable_signaling,
165 .signaled = i915_fence_signaled,
166 .wait = i915_fence_wait,
167 .release = i915_fence_release,
170 static void irq_execute_cb(struct irq_work *wrk)
172 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
174 i915_sw_fence_complete(cb->fence);
175 kmem_cache_free(global.slab_execute_cbs, cb);
178 static void irq_execute_cb_hook(struct irq_work *wrk)
180 struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
182 cb->hook(container_of(cb->fence, struct i915_request, submit),
183 &cb->signal->fence);
184 i915_request_put(cb->signal);
186 irq_execute_cb(wrk);
189 static void __notify_execute_cb(struct i915_request *rq)
191 struct execute_cb *cb, *cn;
193 lockdep_assert_held(&rq->lock);
195 GEM_BUG_ON(!i915_request_is_active(rq));
196 if (llist_empty(&rq->execute_cb))
197 return;
199 llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
200 irq_work_queue(&cb->work);
203 * XXX Rollback on __i915_request_unsubmit()
205 * In the future, perhaps when we have an active time-slicing scheduler,
206 * it will be interesting to unsubmit parallel execution and remove
207 * busywaits from the GPU until their master is restarted. This is
208 * quite hairy, we have to carefully rollback the fence and do a
209 * preempt-to-idle cycle on the target engine, all the while the
210 * master execute_cb may refire.
212 init_llist_head(&rq->execute_cb);
215 static inline void
216 remove_from_client(struct i915_request *request)
218 struct drm_i915_file_private *file_priv;
220 if (!READ_ONCE(request->file_priv))
221 return;
223 rcu_read_lock();
224 file_priv = xchg(&request->file_priv, NULL);
225 if (file_priv) {
226 spin_lock(&file_priv->mm.lock);
227 list_del(&request->client_link);
228 spin_unlock(&file_priv->mm.lock);
230 rcu_read_unlock();
233 static void free_capture_list(struct i915_request *request)
235 struct i915_capture_list *capture;
237 capture = fetch_and_zero(&request->capture_list);
238 while (capture) {
239 struct i915_capture_list *next = capture->next;
241 kfree(capture);
242 capture = next;
246 static void __i915_request_fill(struct i915_request *rq, u8 val)
248 void *vaddr = rq->ring->vaddr;
249 u32 head;
251 head = rq->infix;
252 if (rq->postfix < head) {
253 memset(vaddr + head, val, rq->ring->size - head);
254 head = 0;
256 memset(vaddr + head, val, rq->postfix - head);
259 static void remove_from_engine(struct i915_request *rq)
261 struct intel_engine_cs *engine, *locked;
264 * Virtual engines complicate acquiring the engine timeline lock,
265 * as their rq->engine pointer is not stable until under that
266 * engine lock. The simple ploy we use is to take the lock then
267 * check that the rq still belongs to the newly locked engine.
269 locked = READ_ONCE(rq->engine);
270 spin_lock_irq(&locked->active.lock);
271 while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
272 spin_unlock(&locked->active.lock);
273 spin_lock(&engine->active.lock);
274 locked = engine;
276 list_del_init(&rq->sched.link);
277 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
278 clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
279 spin_unlock_irq(&locked->active.lock);
282 bool i915_request_retire(struct i915_request *rq)
284 if (!i915_request_completed(rq))
285 return false;
287 RQ_TRACE(rq, "\n");
289 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
290 trace_i915_request_retire(rq);
293 * We know the GPU must have read the request to have
294 * sent us the seqno + interrupt, so use the position
295 * of tail of the request to update the last known position
296 * of the GPU head.
298 * Note this requires that we are always called in request
299 * completion order.
301 GEM_BUG_ON(!list_is_first(&rq->link,
302 &i915_request_timeline(rq)->requests));
303 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
304 /* Poison before we release our space in the ring */
305 __i915_request_fill(rq, POISON_FREE);
306 rq->ring->head = rq->postfix;
309 * We only loosely track inflight requests across preemption,
310 * and so we may find ourselves attempting to retire a _completed_
311 * request that we have removed from the HW and put back on a run
312 * queue.
314 remove_from_engine(rq);
316 spin_lock_irq(&rq->lock);
317 i915_request_mark_complete(rq);
318 if (!i915_request_signaled(rq))
319 dma_fence_signal_locked(&rq->fence);
320 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
321 i915_request_cancel_breadcrumb(rq);
322 if (i915_request_has_waitboost(rq)) {
323 GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
324 atomic_dec(&rq->engine->gt->rps.num_waiters);
326 if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
327 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
328 __notify_execute_cb(rq);
330 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
331 spin_unlock_irq(&rq->lock);
333 remove_from_client(rq);
334 __list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
336 intel_context_exit(rq->context);
337 intel_context_unpin(rq->context);
339 free_capture_list(rq);
340 i915_sched_node_fini(&rq->sched);
341 i915_request_put(rq);
343 return true;
346 void i915_request_retire_upto(struct i915_request *rq)
348 struct intel_timeline * const tl = i915_request_timeline(rq);
349 struct i915_request *tmp;
351 RQ_TRACE(rq, "\n");
353 GEM_BUG_ON(!i915_request_completed(rq));
355 do {
356 tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
357 } while (i915_request_retire(tmp) && tmp != rq);
360 static void __llist_add(struct llist_node *node, struct llist_head *head)
362 node->next = head->first;
363 head->first = node;
366 static struct i915_request * const *
367 __engine_active(struct intel_engine_cs *engine)
369 return READ_ONCE(engine->execlists.active);
372 static bool __request_in_flight(const struct i915_request *signal)
374 struct i915_request * const *port, *rq;
375 bool inflight = false;
377 if (!i915_request_is_ready(signal))
378 return false;
381 * Even if we have unwound the request, it may still be on
382 * the GPU (preempt-to-busy). If that request is inside an
383 * unpreemptible critical section, it will not be removed. Some
384 * GPU functions may even be stuck waiting for the paired request
385 * (__await_execution) to be submitted and cannot be preempted
386 * until the bond is executing.
388 * As we know that there are always preemption points between
389 * requests, we know that only the currently executing request
390 * may be still active even though we have cleared the flag.
391 * However, we can't rely on our tracking of ELSP[0] to know
392 * which request is currently active and so maybe stuck, as
393 * the tracking maybe an event behind. Instead assume that
394 * if the context is still inflight, then it is still active
395 * even if the active flag has been cleared.
397 * To further complicate matters, if there a pending promotion, the HW
398 * may either perform a context switch to the second inflight execlists,
399 * or it may switch to the pending set of execlists. In the case of the
400 * latter, it may send the ACK and we process the event copying the
401 * pending[] over top of inflight[], _overwriting_ our *active. Since
402 * this implies the HW is arbitrating and not struck in *active, we do
403 * not worry about complete accuracy, but we do require no read/write
404 * tearing of the pointer [the read of the pointer must be valid, even
405 * as the array is being overwritten, for which we require the writes
406 * to avoid tearing.]
408 * Note that the read of *execlists->active may race with the promotion
409 * of execlists->pending[] to execlists->inflight[], overwritting
410 * the value at *execlists->active. This is fine. The promotion implies
411 * that we received an ACK from the HW, and so the context is not
412 * stuck -- if we do not see ourselves in *active, the inflight status
413 * is valid. If instead we see ourselves being copied into *active,
414 * we are inflight and may signal the callback.
416 if (!intel_context_inflight(signal->context))
417 return false;
419 rcu_read_lock();
420 for (port = __engine_active(signal->engine);
421 (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
422 port++) {
423 if (rq->context == signal->context) {
424 inflight = i915_seqno_passed(rq->fence.seqno,
425 signal->fence.seqno);
426 break;
429 rcu_read_unlock();
431 return inflight;
434 static int
435 __await_execution(struct i915_request *rq,
436 struct i915_request *signal,
437 void (*hook)(struct i915_request *rq,
438 struct dma_fence *signal),
439 gfp_t gfp)
441 struct execute_cb *cb;
443 if (i915_request_is_active(signal)) {
444 if (hook)
445 hook(rq, &signal->fence);
446 return 0;
449 cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
450 if (!cb)
451 return -ENOMEM;
453 cb->fence = &rq->submit;
454 i915_sw_fence_await(cb->fence);
455 init_irq_work(&cb->work, irq_execute_cb);
457 if (hook) {
458 cb->hook = hook;
459 cb->signal = i915_request_get(signal);
460 cb->work.func = irq_execute_cb_hook;
463 spin_lock_irq(&signal->lock);
464 if (i915_request_is_active(signal) || __request_in_flight(signal)) {
465 if (hook) {
466 hook(rq, &signal->fence);
467 i915_request_put(signal);
469 i915_sw_fence_complete(cb->fence);
470 kmem_cache_free(global.slab_execute_cbs, cb);
471 } else {
472 __llist_add(&cb->work.llnode, &signal->execute_cb);
474 spin_unlock_irq(&signal->lock);
476 return 0;
479 static bool fatal_error(int error)
481 switch (error) {
482 case 0: /* not an error! */
483 case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
484 case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
485 return false;
486 default:
487 return true;
491 void __i915_request_skip(struct i915_request *rq)
493 GEM_BUG_ON(!fatal_error(rq->fence.error));
495 if (rq->infix == rq->postfix)
496 return;
499 * As this request likely depends on state from the lost
500 * context, clear out all the user operations leaving the
501 * breadcrumb at the end (so we get the fence notifications).
503 __i915_request_fill(rq, 0);
504 rq->infix = rq->postfix;
507 void i915_request_set_error_once(struct i915_request *rq, int error)
509 int old;
511 GEM_BUG_ON(!IS_ERR_VALUE((long)error));
513 if (i915_request_signaled(rq))
514 return;
516 old = READ_ONCE(rq->fence.error);
517 do {
518 if (fatal_error(old))
519 return;
520 } while (!try_cmpxchg(&rq->fence.error, &old, error));
523 bool __i915_request_submit(struct i915_request *request)
525 struct intel_engine_cs *engine = request->engine;
526 bool result = false;
528 RQ_TRACE(request, "\n");
530 GEM_BUG_ON(!irqs_disabled());
531 lockdep_assert_held(&engine->active.lock);
534 * With the advent of preempt-to-busy, we frequently encounter
535 * requests that we have unsubmitted from HW, but left running
536 * until the next ack and so have completed in the meantime. On
537 * resubmission of that completed request, we can skip
538 * updating the payload, and execlists can even skip submitting
539 * the request.
541 * We must remove the request from the caller's priority queue,
542 * and the caller must only call us when the request is in their
543 * priority queue, under the active.lock. This ensures that the
544 * request has *not* yet been retired and we can safely move
545 * the request into the engine->active.list where it will be
546 * dropped upon retiring. (Otherwise if resubmit a *retired*
547 * request, this would be a horrible use-after-free.)
549 if (i915_request_completed(request))
550 goto xfer;
552 if (unlikely(intel_context_is_closed(request->context) &&
553 !intel_engine_has_heartbeat(engine)))
554 intel_context_set_banned(request->context);
556 if (unlikely(intel_context_is_banned(request->context)))
557 i915_request_set_error_once(request, -EIO);
559 if (unlikely(fatal_error(request->fence.error)))
560 __i915_request_skip(request);
563 * Are we using semaphores when the gpu is already saturated?
565 * Using semaphores incurs a cost in having the GPU poll a
566 * memory location, busywaiting for it to change. The continual
567 * memory reads can have a noticeable impact on the rest of the
568 * system with the extra bus traffic, stalling the cpu as it too
569 * tries to access memory across the bus (perf stat -e bus-cycles).
571 * If we installed a semaphore on this request and we only submit
572 * the request after the signaler completed, that indicates the
573 * system is overloaded and using semaphores at this time only
574 * increases the amount of work we are doing. If so, we disable
575 * further use of semaphores until we are idle again, whence we
576 * optimistically try again.
578 if (request->sched.semaphores &&
579 i915_sw_fence_signaled(&request->semaphore))
580 engine->saturated |= request->sched.semaphores;
582 engine->emit_fini_breadcrumb(request,
583 request->ring->vaddr + request->postfix);
585 trace_i915_request_execute(request);
586 engine->serial++;
587 result = true;
589 xfer:
590 if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
591 list_move_tail(&request->sched.link, &engine->active.requests);
592 clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
595 /* We may be recursing from the signal callback of another i915 fence */
596 if (!i915_request_signaled(request)) {
597 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
599 __notify_execute_cb(request);
600 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
601 &request->fence.flags) &&
602 !i915_request_enable_breadcrumb(request))
603 intel_engine_signal_breadcrumbs(engine);
605 spin_unlock(&request->lock);
606 GEM_BUG_ON(!llist_empty(&request->execute_cb));
609 return result;
612 void i915_request_submit(struct i915_request *request)
614 struct intel_engine_cs *engine = request->engine;
615 unsigned long flags;
617 /* Will be called from irq-context when using foreign fences. */
618 spin_lock_irqsave(&engine->active.lock, flags);
620 __i915_request_submit(request);
622 spin_unlock_irqrestore(&engine->active.lock, flags);
625 void __i915_request_unsubmit(struct i915_request *request)
627 struct intel_engine_cs *engine = request->engine;
629 RQ_TRACE(request, "\n");
631 GEM_BUG_ON(!irqs_disabled());
632 lockdep_assert_held(&engine->active.lock);
635 * Only unwind in reverse order, required so that the per-context list
636 * is kept in seqno/ring order.
639 /* We may be recursing from the signal callback of another i915 fence */
640 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
642 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
643 i915_request_cancel_breadcrumb(request);
645 GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
646 clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
648 spin_unlock(&request->lock);
650 /* We've already spun, don't charge on resubmitting. */
651 if (request->sched.semaphores && i915_request_started(request))
652 request->sched.semaphores = 0;
655 * We don't need to wake_up any waiters on request->execute, they
656 * will get woken by any other event or us re-adding this request
657 * to the engine timeline (__i915_request_submit()). The waiters
658 * should be quite adapt at finding that the request now has a new
659 * global_seqno to the one they went to sleep on.
663 void i915_request_unsubmit(struct i915_request *request)
665 struct intel_engine_cs *engine = request->engine;
666 unsigned long flags;
668 /* Will be called from irq-context when using foreign fences. */
669 spin_lock_irqsave(&engine->active.lock, flags);
671 __i915_request_unsubmit(request);
673 spin_unlock_irqrestore(&engine->active.lock, flags);
676 static int __i915_sw_fence_call
677 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
679 struct i915_request *request =
680 container_of(fence, typeof(*request), submit);
682 switch (state) {
683 case FENCE_COMPLETE:
684 trace_i915_request_submit(request);
686 if (unlikely(fence->error))
687 i915_request_set_error_once(request, fence->error);
690 * We need to serialize use of the submit_request() callback
691 * with its hotplugging performed during an emergency
692 * i915_gem_set_wedged(). We use the RCU mechanism to mark the
693 * critical section in order to force i915_gem_set_wedged() to
694 * wait until the submit_request() is completed before
695 * proceeding.
697 rcu_read_lock();
698 request->engine->submit_request(request);
699 rcu_read_unlock();
700 break;
702 case FENCE_FREE:
703 i915_request_put(request);
704 break;
707 return NOTIFY_DONE;
710 static int __i915_sw_fence_call
711 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
713 struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
715 switch (state) {
716 case FENCE_COMPLETE:
717 break;
719 case FENCE_FREE:
720 i915_request_put(rq);
721 break;
724 return NOTIFY_DONE;
727 static void retire_requests(struct intel_timeline *tl)
729 struct i915_request *rq, *rn;
731 list_for_each_entry_safe(rq, rn, &tl->requests, link)
732 if (!i915_request_retire(rq))
733 break;
736 static noinline struct i915_request *
737 request_alloc_slow(struct intel_timeline *tl,
738 struct i915_request **rsvd,
739 gfp_t gfp)
741 struct i915_request *rq;
743 /* If we cannot wait, dip into our reserves */
744 if (!gfpflags_allow_blocking(gfp)) {
745 rq = xchg(rsvd, NULL);
746 if (!rq) /* Use the normal failure path for one final WARN */
747 goto out;
749 return rq;
752 if (list_empty(&tl->requests))
753 goto out;
755 /* Move our oldest request to the slab-cache (if not in use!) */
756 rq = list_first_entry(&tl->requests, typeof(*rq), link);
757 i915_request_retire(rq);
759 rq = kmem_cache_alloc(global.slab_requests,
760 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
761 if (rq)
762 return rq;
764 /* Ratelimit ourselves to prevent oom from malicious clients */
765 rq = list_last_entry(&tl->requests, typeof(*rq), link);
766 cond_synchronize_rcu(rq->rcustate);
768 /* Retire our old requests in the hope that we free some */
769 retire_requests(tl);
771 out:
772 return kmem_cache_alloc(global.slab_requests, gfp);
775 static void __i915_request_ctor(void *arg)
777 struct i915_request *rq = arg;
779 spin_lock_init(&rq->lock);
780 i915_sched_node_init(&rq->sched);
781 i915_sw_fence_init(&rq->submit, submit_notify);
782 i915_sw_fence_init(&rq->semaphore, semaphore_notify);
784 dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
786 rq->file_priv = NULL;
787 rq->capture_list = NULL;
789 init_llist_head(&rq->execute_cb);
792 struct i915_request *
793 __i915_request_create(struct intel_context *ce, gfp_t gfp)
795 struct intel_timeline *tl = ce->timeline;
796 struct i915_request *rq;
797 u32 seqno;
798 int ret;
800 might_sleep_if(gfpflags_allow_blocking(gfp));
802 /* Check that the caller provided an already pinned context */
803 __intel_context_pin(ce);
806 * Beware: Dragons be flying overhead.
808 * We use RCU to look up requests in flight. The lookups may
809 * race with the request being allocated from the slab freelist.
810 * That is the request we are writing to here, may be in the process
811 * of being read by __i915_active_request_get_rcu(). As such,
812 * we have to be very careful when overwriting the contents. During
813 * the RCU lookup, we change chase the request->engine pointer,
814 * read the request->global_seqno and increment the reference count.
816 * The reference count is incremented atomically. If it is zero,
817 * the lookup knows the request is unallocated and complete. Otherwise,
818 * it is either still in use, or has been reallocated and reset
819 * with dma_fence_init(). This increment is safe for release as we
820 * check that the request we have a reference to and matches the active
821 * request.
823 * Before we increment the refcount, we chase the request->engine
824 * pointer. We must not call kmem_cache_zalloc() or else we set
825 * that pointer to NULL and cause a crash during the lookup. If
826 * we see the request is completed (based on the value of the
827 * old engine and seqno), the lookup is complete and reports NULL.
828 * If we decide the request is not completed (new engine or seqno),
829 * then we grab a reference and double check that it is still the
830 * active request - which it won't be and restart the lookup.
832 * Do not use kmem_cache_zalloc() here!
834 rq = kmem_cache_alloc(global.slab_requests,
835 gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
836 if (unlikely(!rq)) {
837 rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
838 if (!rq) {
839 ret = -ENOMEM;
840 goto err_unreserve;
844 rq->context = ce;
845 rq->engine = ce->engine;
846 rq->ring = ce->ring;
847 rq->execution_mask = ce->engine->mask;
849 kref_init(&rq->fence.refcount);
850 rq->fence.flags = 0;
851 rq->fence.error = 0;
852 INIT_LIST_HEAD(&rq->fence.cb_list);
854 ret = intel_timeline_get_seqno(tl, rq, &seqno);
855 if (ret)
856 goto err_free;
858 rq->fence.context = tl->fence_context;
859 rq->fence.seqno = seqno;
861 RCU_INIT_POINTER(rq->timeline, tl);
862 RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
863 rq->hwsp_seqno = tl->hwsp_seqno;
864 GEM_BUG_ON(i915_request_completed(rq));
866 rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
868 /* We bump the ref for the fence chain */
869 i915_sw_fence_reinit(&i915_request_get(rq)->submit);
870 i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
872 i915_sched_node_reinit(&rq->sched);
874 /* No zalloc, everything must be cleared after use */
875 rq->batch = NULL;
876 GEM_BUG_ON(rq->file_priv);
877 GEM_BUG_ON(rq->capture_list);
878 GEM_BUG_ON(!llist_empty(&rq->execute_cb));
881 * Reserve space in the ring buffer for all the commands required to
882 * eventually emit this request. This is to guarantee that the
883 * i915_request_add() call can't fail. Note that the reserve may need
884 * to be redone if the request is not actually submitted straight
885 * away, e.g. because a GPU scheduler has deferred it.
887 * Note that due to how we add reserved_space to intel_ring_begin()
888 * we need to double our request to ensure that if we need to wrap
889 * around inside i915_request_add() there is sufficient space at
890 * the beginning of the ring as well.
892 rq->reserved_space =
893 2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
896 * Record the position of the start of the request so that
897 * should we detect the updated seqno part-way through the
898 * GPU processing the request, we never over-estimate the
899 * position of the head.
901 rq->head = rq->ring->emit;
903 ret = rq->engine->request_alloc(rq);
904 if (ret)
905 goto err_unwind;
907 rq->infix = rq->ring->emit; /* end of header; start of user payload */
909 intel_context_mark_active(ce);
910 list_add_tail_rcu(&rq->link, &tl->requests);
912 return rq;
914 err_unwind:
915 ce->ring->emit = rq->head;
917 /* Make sure we didn't add ourselves to external state before freeing */
918 GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
919 GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
921 err_free:
922 kmem_cache_free(global.slab_requests, rq);
923 err_unreserve:
924 intel_context_unpin(ce);
925 return ERR_PTR(ret);
928 struct i915_request *
929 i915_request_create(struct intel_context *ce)
931 struct i915_request *rq;
932 struct intel_timeline *tl;
934 tl = intel_context_timeline_lock(ce);
935 if (IS_ERR(tl))
936 return ERR_CAST(tl);
938 /* Move our oldest request to the slab-cache (if not in use!) */
939 rq = list_first_entry(&tl->requests, typeof(*rq), link);
940 if (!list_is_last(&rq->link, &tl->requests))
941 i915_request_retire(rq);
943 intel_context_enter(ce);
944 rq = __i915_request_create(ce, GFP_KERNEL);
945 intel_context_exit(ce); /* active reference transferred to request */
946 if (IS_ERR(rq))
947 goto err_unlock;
949 /* Check that we do not interrupt ourselves with a new request */
950 rq->cookie = lockdep_pin_lock(&tl->mutex);
952 return rq;
954 err_unlock:
955 intel_context_timeline_unlock(tl);
956 return rq;
959 static int
960 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
962 struct dma_fence *fence;
963 int err;
965 if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
966 return 0;
968 if (i915_request_started(signal))
969 return 0;
971 fence = NULL;
972 rcu_read_lock();
973 spin_lock_irq(&signal->lock);
974 do {
975 struct list_head *pos = READ_ONCE(signal->link.prev);
976 struct i915_request *prev;
978 /* Confirm signal has not been retired, the link is valid */
979 if (unlikely(i915_request_started(signal)))
980 break;
982 /* Is signal the earliest request on its timeline? */
983 if (pos == &rcu_dereference(signal->timeline)->requests)
984 break;
987 * Peek at the request before us in the timeline. That
988 * request will only be valid before it is retired, so
989 * after acquiring a reference to it, confirm that it is
990 * still part of the signaler's timeline.
992 prev = list_entry(pos, typeof(*prev), link);
993 if (!i915_request_get_rcu(prev))
994 break;
996 /* After the strong barrier, confirm prev is still attached */
997 if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
998 i915_request_put(prev);
999 break;
1002 fence = &prev->fence;
1003 } while (0);
1004 spin_unlock_irq(&signal->lock);
1005 rcu_read_unlock();
1006 if (!fence)
1007 return 0;
1009 err = 0;
1010 if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1011 err = i915_sw_fence_await_dma_fence(&rq->submit,
1012 fence, 0,
1013 I915_FENCE_GFP);
1014 dma_fence_put(fence);
1016 return err;
1019 static intel_engine_mask_t
1020 already_busywaiting(struct i915_request *rq)
1023 * Polling a semaphore causes bus traffic, delaying other users of
1024 * both the GPU and CPU. We want to limit the impact on others,
1025 * while taking advantage of early submission to reduce GPU
1026 * latency. Therefore we restrict ourselves to not using more
1027 * than one semaphore from each source, and not using a semaphore
1028 * if we have detected the engine is saturated (i.e. would not be
1029 * submitted early and cause bus traffic reading an already passed
1030 * semaphore).
1032 * See the are-we-too-late? check in __i915_request_submit().
1034 return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1037 static int
1038 __emit_semaphore_wait(struct i915_request *to,
1039 struct i915_request *from,
1040 u32 seqno)
1042 const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1043 u32 hwsp_offset;
1044 int len, err;
1045 u32 *cs;
1047 GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1048 GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1050 /* We need to pin the signaler's HWSP until we are finished reading. */
1051 err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1052 if (err)
1053 return err;
1055 len = 4;
1056 if (has_token)
1057 len += 2;
1059 cs = intel_ring_begin(to, len);
1060 if (IS_ERR(cs))
1061 return PTR_ERR(cs);
1064 * Using greater-than-or-equal here means we have to worry
1065 * about seqno wraparound. To side step that issue, we swap
1066 * the timeline HWSP upon wrapping, so that everyone listening
1067 * for the old (pre-wrap) values do not see the much smaller
1068 * (post-wrap) values than they were expecting (and so wait
1069 * forever).
1071 *cs++ = (MI_SEMAPHORE_WAIT |
1072 MI_SEMAPHORE_GLOBAL_GTT |
1073 MI_SEMAPHORE_POLL |
1074 MI_SEMAPHORE_SAD_GTE_SDD) +
1075 has_token;
1076 *cs++ = seqno;
1077 *cs++ = hwsp_offset;
1078 *cs++ = 0;
1079 if (has_token) {
1080 *cs++ = 0;
1081 *cs++ = MI_NOOP;
1084 intel_ring_advance(to, cs);
1085 return 0;
1088 static int
1089 emit_semaphore_wait(struct i915_request *to,
1090 struct i915_request *from,
1091 gfp_t gfp)
1093 const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1094 struct i915_sw_fence *wait = &to->submit;
1096 if (!intel_context_use_semaphores(to->context))
1097 goto await_fence;
1099 if (i915_request_has_initial_breadcrumb(to))
1100 goto await_fence;
1102 if (!rcu_access_pointer(from->hwsp_cacheline))
1103 goto await_fence;
1106 * If this or its dependents are waiting on an external fence
1107 * that may fail catastrophically, then we want to avoid using
1108 * sempahores as they bypass the fence signaling metadata, and we
1109 * lose the fence->error propagation.
1111 if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1112 goto await_fence;
1114 /* Just emit the first semaphore we see as request space is limited. */
1115 if (already_busywaiting(to) & mask)
1116 goto await_fence;
1118 if (i915_request_await_start(to, from) < 0)
1119 goto await_fence;
1121 /* Only submit our spinner after the signaler is running! */
1122 if (__await_execution(to, from, NULL, gfp))
1123 goto await_fence;
1125 if (__emit_semaphore_wait(to, from, from->fence.seqno))
1126 goto await_fence;
1128 to->sched.semaphores |= mask;
1129 wait = &to->semaphore;
1131 await_fence:
1132 return i915_sw_fence_await_dma_fence(wait,
1133 &from->fence, 0,
1134 I915_FENCE_GFP);
1137 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1138 struct dma_fence *fence)
1140 return __intel_timeline_sync_is_later(tl,
1141 fence->context,
1142 fence->seqno - 1);
1145 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1146 const struct dma_fence *fence)
1148 return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1151 static int
1152 __i915_request_await_execution(struct i915_request *to,
1153 struct i915_request *from,
1154 void (*hook)(struct i915_request *rq,
1155 struct dma_fence *signal))
1157 int err;
1159 GEM_BUG_ON(intel_context_is_barrier(from->context));
1161 /* Submit both requests at the same time */
1162 err = __await_execution(to, from, hook, I915_FENCE_GFP);
1163 if (err)
1164 return err;
1166 /* Squash repeated depenendices to the same timelines */
1167 if (intel_timeline_sync_has_start(i915_request_timeline(to),
1168 &from->fence))
1169 return 0;
1172 * Wait until the start of this request.
1174 * The execution cb fires when we submit the request to HW. But in
1175 * many cases this may be long before the request itself is ready to
1176 * run (consider that we submit 2 requests for the same context, where
1177 * the request of interest is behind an indefinite spinner). So we hook
1178 * up to both to reduce our queues and keep the execution lag minimised
1179 * in the worst case, though we hope that the await_start is elided.
1181 err = i915_request_await_start(to, from);
1182 if (err < 0)
1183 return err;
1186 * Ensure both start together [after all semaphores in signal]
1188 * Now that we are queued to the HW at roughly the same time (thanks
1189 * to the execute cb) and are ready to run at roughly the same time
1190 * (thanks to the await start), our signaler may still be indefinitely
1191 * delayed by waiting on a semaphore from a remote engine. If our
1192 * signaler depends on a semaphore, so indirectly do we, and we do not
1193 * want to start our payload until our signaler also starts theirs.
1194 * So we wait.
1196 * However, there is also a second condition for which we need to wait
1197 * for the precise start of the signaler. Consider that the signaler
1198 * was submitted in a chain of requests following another context
1199 * (with just an ordinary intra-engine fence dependency between the
1200 * two). In this case the signaler is queued to HW, but not for
1201 * immediate execution, and so we must wait until it reaches the
1202 * active slot.
1204 if (intel_engine_has_semaphores(to->engine) &&
1205 !i915_request_has_initial_breadcrumb(to)) {
1206 err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1207 if (err < 0)
1208 return err;
1211 /* Couple the dependency tree for PI on this exposed to->fence */
1212 if (to->engine->schedule) {
1213 err = i915_sched_node_add_dependency(&to->sched,
1214 &from->sched,
1215 I915_DEPENDENCY_WEAK);
1216 if (err < 0)
1217 return err;
1220 return intel_timeline_sync_set_start(i915_request_timeline(to),
1221 &from->fence);
1224 static void mark_external(struct i915_request *rq)
1227 * The downside of using semaphores is that we lose metadata passing
1228 * along the signaling chain. This is particularly nasty when we
1229 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1230 * fatal errors we want to scrub the request before it is executed,
1231 * which means that we cannot preload the request onto HW and have
1232 * it wait upon a semaphore.
1234 rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1237 static int
1238 __i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1240 mark_external(rq);
1241 return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1242 i915_fence_context_timeout(rq->engine->i915,
1243 fence->context),
1244 I915_FENCE_GFP);
1247 static int
1248 i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1250 struct dma_fence *iter;
1251 int err = 0;
1253 if (!to_dma_fence_chain(fence))
1254 return __i915_request_await_external(rq, fence);
1256 dma_fence_chain_for_each(iter, fence) {
1257 struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1259 if (!dma_fence_is_i915(chain->fence)) {
1260 err = __i915_request_await_external(rq, iter);
1261 break;
1264 err = i915_request_await_dma_fence(rq, chain->fence);
1265 if (err < 0)
1266 break;
1269 dma_fence_put(iter);
1270 return err;
1274 i915_request_await_execution(struct i915_request *rq,
1275 struct dma_fence *fence,
1276 void (*hook)(struct i915_request *rq,
1277 struct dma_fence *signal))
1279 struct dma_fence **child = &fence;
1280 unsigned int nchild = 1;
1281 int ret;
1283 if (dma_fence_is_array(fence)) {
1284 struct dma_fence_array *array = to_dma_fence_array(fence);
1286 /* XXX Error for signal-on-any fence arrays */
1288 child = array->fences;
1289 nchild = array->num_fences;
1290 GEM_BUG_ON(!nchild);
1293 do {
1294 fence = *child++;
1295 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1296 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1297 continue;
1300 if (fence->context == rq->fence.context)
1301 continue;
1304 * We don't squash repeated fence dependencies here as we
1305 * want to run our callback in all cases.
1308 if (dma_fence_is_i915(fence))
1309 ret = __i915_request_await_execution(rq,
1310 to_request(fence),
1311 hook);
1312 else
1313 ret = i915_request_await_external(rq, fence);
1314 if (ret < 0)
1315 return ret;
1316 } while (--nchild);
1318 return 0;
1321 static int
1322 await_request_submit(struct i915_request *to, struct i915_request *from)
1325 * If we are waiting on a virtual engine, then it may be
1326 * constrained to execute on a single engine *prior* to submission.
1327 * When it is submitted, it will be first submitted to the virtual
1328 * engine and then passed to the physical engine. We cannot allow
1329 * the waiter to be submitted immediately to the physical engine
1330 * as it may then bypass the virtual request.
1332 if (to->engine == READ_ONCE(from->engine))
1333 return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1334 &from->submit,
1335 I915_FENCE_GFP);
1336 else
1337 return __i915_request_await_execution(to, from, NULL);
1340 static int
1341 i915_request_await_request(struct i915_request *to, struct i915_request *from)
1343 int ret;
1345 GEM_BUG_ON(to == from);
1346 GEM_BUG_ON(to->timeline == from->timeline);
1348 if (i915_request_completed(from)) {
1349 i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1350 return 0;
1353 if (to->engine->schedule) {
1354 ret = i915_sched_node_add_dependency(&to->sched,
1355 &from->sched,
1356 I915_DEPENDENCY_EXTERNAL);
1357 if (ret < 0)
1358 return ret;
1361 if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1362 ret = await_request_submit(to, from);
1363 else
1364 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1365 if (ret < 0)
1366 return ret;
1368 return 0;
1372 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1374 struct dma_fence **child = &fence;
1375 unsigned int nchild = 1;
1376 int ret;
1379 * Note that if the fence-array was created in signal-on-any mode,
1380 * we should *not* decompose it into its individual fences. However,
1381 * we don't currently store which mode the fence-array is operating
1382 * in. Fortunately, the only user of signal-on-any is private to
1383 * amdgpu and we should not see any incoming fence-array from
1384 * sync-file being in signal-on-any mode.
1386 if (dma_fence_is_array(fence)) {
1387 struct dma_fence_array *array = to_dma_fence_array(fence);
1389 child = array->fences;
1390 nchild = array->num_fences;
1391 GEM_BUG_ON(!nchild);
1394 do {
1395 fence = *child++;
1396 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1397 i915_sw_fence_set_error_once(&rq->submit, fence->error);
1398 continue;
1402 * Requests on the same timeline are explicitly ordered, along
1403 * with their dependencies, by i915_request_add() which ensures
1404 * that requests are submitted in-order through each ring.
1406 if (fence->context == rq->fence.context)
1407 continue;
1409 /* Squash repeated waits to the same timelines */
1410 if (fence->context &&
1411 intel_timeline_sync_is_later(i915_request_timeline(rq),
1412 fence))
1413 continue;
1415 if (dma_fence_is_i915(fence))
1416 ret = i915_request_await_request(rq, to_request(fence));
1417 else
1418 ret = i915_request_await_external(rq, fence);
1419 if (ret < 0)
1420 return ret;
1422 /* Record the latest fence used against each timeline */
1423 if (fence->context)
1424 intel_timeline_sync_set(i915_request_timeline(rq),
1425 fence);
1426 } while (--nchild);
1428 return 0;
1432 * i915_request_await_object - set this request to (async) wait upon a bo
1433 * @to: request we are wishing to use
1434 * @obj: object which may be in use on another ring.
1435 * @write: whether the wait is on behalf of a writer
1437 * This code is meant to abstract object synchronization with the GPU.
1438 * Conceptually we serialise writes between engines inside the GPU.
1439 * We only allow one engine to write into a buffer at any time, but
1440 * multiple readers. To ensure each has a coherent view of memory, we must:
1442 * - If there is an outstanding write request to the object, the new
1443 * request must wait for it to complete (either CPU or in hw, requests
1444 * on the same ring will be naturally ordered).
1446 * - If we are a write request (pending_write_domain is set), the new
1447 * request must wait for outstanding read requests to complete.
1449 * Returns 0 if successful, else propagates up the lower layer error.
1452 i915_request_await_object(struct i915_request *to,
1453 struct drm_i915_gem_object *obj,
1454 bool write)
1456 struct dma_fence *excl;
1457 int ret = 0;
1459 if (write) {
1460 struct dma_fence **shared;
1461 unsigned int count, i;
1463 ret = dma_resv_get_fences_rcu(obj->base.resv,
1464 &excl, &count, &shared);
1465 if (ret)
1466 return ret;
1468 for (i = 0; i < count; i++) {
1469 ret = i915_request_await_dma_fence(to, shared[i]);
1470 if (ret)
1471 break;
1473 dma_fence_put(shared[i]);
1476 for (; i < count; i++)
1477 dma_fence_put(shared[i]);
1478 kfree(shared);
1479 } else {
1480 excl = dma_resv_get_excl_rcu(obj->base.resv);
1483 if (excl) {
1484 if (ret == 0)
1485 ret = i915_request_await_dma_fence(to, excl);
1487 dma_fence_put(excl);
1490 return ret;
1493 static struct i915_request *
1494 __i915_request_add_to_timeline(struct i915_request *rq)
1496 struct intel_timeline *timeline = i915_request_timeline(rq);
1497 struct i915_request *prev;
1500 * Dependency tracking and request ordering along the timeline
1501 * is special cased so that we can eliminate redundant ordering
1502 * operations while building the request (we know that the timeline
1503 * itself is ordered, and here we guarantee it).
1505 * As we know we will need to emit tracking along the timeline,
1506 * we embed the hooks into our request struct -- at the cost of
1507 * having to have specialised no-allocation interfaces (which will
1508 * be beneficial elsewhere).
1510 * A second benefit to open-coding i915_request_await_request is
1511 * that we can apply a slight variant of the rules specialised
1512 * for timelines that jump between engines (such as virtual engines).
1513 * If we consider the case of virtual engine, we must emit a dma-fence
1514 * to prevent scheduling of the second request until the first is
1515 * complete (to maximise our greedy late load balancing) and this
1516 * precludes optimising to use semaphores serialisation of a single
1517 * timeline across engines.
1519 prev = to_request(__i915_active_fence_set(&timeline->last_request,
1520 &rq->fence));
1521 if (prev && !i915_request_completed(prev)) {
1523 * The requests are supposed to be kept in order. However,
1524 * we need to be wary in case the timeline->last_request
1525 * is used as a barrier for external modification to this
1526 * context.
1528 GEM_BUG_ON(prev->context == rq->context &&
1529 i915_seqno_passed(prev->fence.seqno,
1530 rq->fence.seqno));
1532 if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1533 i915_sw_fence_await_sw_fence(&rq->submit,
1534 &prev->submit,
1535 &rq->submitq);
1536 else
1537 __i915_sw_fence_await_dma_fence(&rq->submit,
1538 &prev->fence,
1539 &rq->dmaq);
1540 if (rq->engine->schedule)
1541 __i915_sched_node_add_dependency(&rq->sched,
1542 &prev->sched,
1543 &rq->dep,
1548 * Make sure that no request gazumped us - if it was allocated after
1549 * our i915_request_alloc() and called __i915_request_add() before
1550 * us, the timeline will hold its seqno which is later than ours.
1552 GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1554 return prev;
1558 * NB: This function is not allowed to fail. Doing so would mean the the
1559 * request is not being tracked for completion but the work itself is
1560 * going to happen on the hardware. This would be a Bad Thing(tm).
1562 struct i915_request *__i915_request_commit(struct i915_request *rq)
1564 struct intel_engine_cs *engine = rq->engine;
1565 struct intel_ring *ring = rq->ring;
1566 u32 *cs;
1568 RQ_TRACE(rq, "\n");
1571 * To ensure that this call will not fail, space for its emissions
1572 * should already have been reserved in the ring buffer. Let the ring
1573 * know that it is time to use that space up.
1575 GEM_BUG_ON(rq->reserved_space > ring->space);
1576 rq->reserved_space = 0;
1577 rq->emitted_jiffies = jiffies;
1580 * Record the position of the start of the breadcrumb so that
1581 * should we detect the updated seqno part-way through the
1582 * GPU processing the request, we never over-estimate the
1583 * position of the ring's HEAD.
1585 cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1586 GEM_BUG_ON(IS_ERR(cs));
1587 rq->postfix = intel_ring_offset(rq, cs);
1589 return __i915_request_add_to_timeline(rq);
1592 void __i915_request_queue(struct i915_request *rq,
1593 const struct i915_sched_attr *attr)
1596 * Let the backend know a new request has arrived that may need
1597 * to adjust the existing execution schedule due to a high priority
1598 * request - i.e. we may want to preempt the current request in order
1599 * to run a high priority dependency chain *before* we can execute this
1600 * request.
1602 * This is called before the request is ready to run so that we can
1603 * decide whether to preempt the entire chain so that it is ready to
1604 * run at the earliest possible convenience.
1606 if (attr && rq->engine->schedule)
1607 rq->engine->schedule(rq, attr);
1608 i915_sw_fence_commit(&rq->semaphore);
1609 i915_sw_fence_commit(&rq->submit);
1612 void i915_request_add(struct i915_request *rq)
1614 struct intel_timeline * const tl = i915_request_timeline(rq);
1615 struct i915_sched_attr attr = {};
1616 struct i915_gem_context *ctx;
1618 lockdep_assert_held(&tl->mutex);
1619 lockdep_unpin_lock(&tl->mutex, rq->cookie);
1621 trace_i915_request_add(rq);
1622 __i915_request_commit(rq);
1624 /* XXX placeholder for selftests */
1625 rcu_read_lock();
1626 ctx = rcu_dereference(rq->context->gem_context);
1627 if (ctx)
1628 attr = ctx->sched;
1629 rcu_read_unlock();
1631 __i915_request_queue(rq, &attr);
1633 mutex_unlock(&tl->mutex);
1636 static unsigned long local_clock_ns(unsigned int *cpu)
1638 unsigned long t;
1641 * Cheaply and approximately convert from nanoseconds to microseconds.
1642 * The result and subsequent calculations are also defined in the same
1643 * approximate microseconds units. The principal source of timing
1644 * error here is from the simple truncation.
1646 * Note that local_clock() is only defined wrt to the current CPU;
1647 * the comparisons are no longer valid if we switch CPUs. Instead of
1648 * blocking preemption for the entire busywait, we can detect the CPU
1649 * switch and use that as indicator of system load and a reason to
1650 * stop busywaiting, see busywait_stop().
1652 *cpu = get_cpu();
1653 t = local_clock();
1654 put_cpu();
1656 return t;
1659 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1661 unsigned int this_cpu;
1663 if (time_after(local_clock_ns(&this_cpu), timeout))
1664 return true;
1666 return this_cpu != cpu;
1669 static bool __i915_spin_request(const struct i915_request * const rq, int state)
1671 unsigned long timeout_ns;
1672 unsigned int cpu;
1675 * Only wait for the request if we know it is likely to complete.
1677 * We don't track the timestamps around requests, nor the average
1678 * request length, so we do not have a good indicator that this
1679 * request will complete within the timeout. What we do know is the
1680 * order in which requests are executed by the context and so we can
1681 * tell if the request has been started. If the request is not even
1682 * running yet, it is a fair assumption that it will not complete
1683 * within our relatively short timeout.
1685 if (!i915_request_is_running(rq))
1686 return false;
1689 * When waiting for high frequency requests, e.g. during synchronous
1690 * rendering split between the CPU and GPU, the finite amount of time
1691 * required to set up the irq and wait upon it limits the response
1692 * rate. By busywaiting on the request completion for a short while we
1693 * can service the high frequency waits as quick as possible. However,
1694 * if it is a slow request, we want to sleep as quickly as possible.
1695 * The tradeoff between waiting and sleeping is roughly the time it
1696 * takes to sleep on a request, on the order of a microsecond.
1699 timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1700 timeout_ns += local_clock_ns(&cpu);
1701 do {
1702 if (i915_request_completed(rq))
1703 return true;
1705 if (signal_pending_state(state, current))
1706 break;
1708 if (busywait_stop(timeout_ns, cpu))
1709 break;
1711 cpu_relax();
1712 } while (!need_resched());
1714 return false;
1717 struct request_wait {
1718 struct dma_fence_cb cb;
1719 struct task_struct *tsk;
1722 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1724 struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1726 wake_up_process(wait->tsk);
1730 * i915_request_wait - wait until execution of request has finished
1731 * @rq: the request to wait upon
1732 * @flags: how to wait
1733 * @timeout: how long to wait in jiffies
1735 * i915_request_wait() waits for the request to be completed, for a
1736 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1737 * unbounded wait).
1739 * Returns the remaining time (in jiffies) if the request completed, which may
1740 * be zero or -ETIME if the request is unfinished after the timeout expires.
1741 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1742 * pending before the request completes.
1744 long i915_request_wait(struct i915_request *rq,
1745 unsigned int flags,
1746 long timeout)
1748 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1749 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1750 struct request_wait wait;
1752 might_sleep();
1753 GEM_BUG_ON(timeout < 0);
1755 if (dma_fence_is_signaled(&rq->fence))
1756 return timeout;
1758 if (!timeout)
1759 return -ETIME;
1761 trace_i915_request_wait_begin(rq, flags);
1764 * We must never wait on the GPU while holding a lock as we
1765 * may need to perform a GPU reset. So while we don't need to
1766 * serialise wait/reset with an explicit lock, we do want
1767 * lockdep to detect potential dependency cycles.
1769 mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1772 * Optimistic spin before touching IRQs.
1774 * We may use a rather large value here to offset the penalty of
1775 * switching away from the active task. Frequently, the client will
1776 * wait upon an old swapbuffer to throttle itself to remain within a
1777 * frame of the gpu. If the client is running in lockstep with the gpu,
1778 * then it should not be waiting long at all, and a sleep now will incur
1779 * extra scheduler latency in producing the next frame. To try to
1780 * avoid adding the cost of enabling/disabling the interrupt to the
1781 * short wait, we first spin to see if the request would have completed
1782 * in the time taken to setup the interrupt.
1784 * We need upto 5us to enable the irq, and upto 20us to hide the
1785 * scheduler latency of a context switch, ignoring the secondary
1786 * impacts from a context switch such as cache eviction.
1788 * The scheme used for low-latency IO is called "hybrid interrupt
1789 * polling". The suggestion there is to sleep until just before you
1790 * expect to be woken by the device interrupt and then poll for its
1791 * completion. That requires having a good predictor for the request
1792 * duration, which we currently lack.
1794 if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1795 __i915_spin_request(rq, state)) {
1796 dma_fence_signal(&rq->fence);
1797 goto out;
1801 * This client is about to stall waiting for the GPU. In many cases
1802 * this is undesirable and limits the throughput of the system, as
1803 * many clients cannot continue processing user input/output whilst
1804 * blocked. RPS autotuning may take tens of milliseconds to respond
1805 * to the GPU load and thus incurs additional latency for the client.
1806 * We can circumvent that by promoting the GPU frequency to maximum
1807 * before we sleep. This makes the GPU throttle up much more quickly
1808 * (good for benchmarks and user experience, e.g. window animations),
1809 * but at a cost of spending more power processing the workload
1810 * (bad for battery).
1812 if (flags & I915_WAIT_PRIORITY) {
1813 if (!i915_request_started(rq) &&
1814 INTEL_GEN(rq->engine->i915) >= 6)
1815 intel_rps_boost(rq);
1818 wait.tsk = current;
1819 if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1820 goto out;
1822 for (;;) {
1823 set_current_state(state);
1825 if (i915_request_completed(rq)) {
1826 dma_fence_signal(&rq->fence);
1827 break;
1830 intel_engine_flush_submission(rq->engine);
1832 if (signal_pending_state(state, current)) {
1833 timeout = -ERESTARTSYS;
1834 break;
1837 if (!timeout) {
1838 timeout = -ETIME;
1839 break;
1842 timeout = io_schedule_timeout(timeout);
1844 __set_current_state(TASK_RUNNING);
1846 dma_fence_remove_callback(&rq->fence, &wait.cb);
1848 out:
1849 mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1850 trace_i915_request_wait_end(rq);
1851 return timeout;
1854 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1855 #include "selftests/mock_request.c"
1856 #include "selftests/i915_request.c"
1857 #endif
1859 static void i915_global_request_shrink(void)
1861 kmem_cache_shrink(global.slab_execute_cbs);
1862 kmem_cache_shrink(global.slab_requests);
1865 static void i915_global_request_exit(void)
1867 kmem_cache_destroy(global.slab_execute_cbs);
1868 kmem_cache_destroy(global.slab_requests);
1871 static struct i915_global_request global = { {
1872 .shrink = i915_global_request_shrink,
1873 .exit = i915_global_request_exit,
1874 } };
1876 int __init i915_global_request_init(void)
1878 global.slab_requests =
1879 kmem_cache_create("i915_request",
1880 sizeof(struct i915_request),
1881 __alignof__(struct i915_request),
1882 SLAB_HWCACHE_ALIGN |
1883 SLAB_RECLAIM_ACCOUNT |
1884 SLAB_TYPESAFE_BY_RCU,
1885 __i915_request_ctor);
1886 if (!global.slab_requests)
1887 return -ENOMEM;
1889 global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1890 SLAB_HWCACHE_ALIGN |
1891 SLAB_RECLAIM_ACCOUNT |
1892 SLAB_TYPESAFE_BY_RCU);
1893 if (!global.slab_execute_cbs)
1894 goto err_requests;
1896 i915_global_register(&global.base);
1897 return 0;
1899 err_requests:
1900 kmem_cache_destroy(global.slab_requests);
1901 return -ENOMEM;