memcg/sl[au]b: track all the memcg children of a kmem_cache
[linux/fpc-iii.git] / drivers / ata / sata_mv.c
blob68f4fb54d627f43ba24a758e5ed216668e65eb1e
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * sata_mv TODO list:
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <linux/of.h>
69 #include <linux/of_irq.h>
70 #include <scsi/scsi_host.h>
71 #include <scsi/scsi_cmnd.h>
72 #include <scsi/scsi_device.h>
73 #include <linux/libata.h>
75 #define DRV_NAME "sata_mv"
76 #define DRV_VERSION "1.28"
79 * module options
82 #ifdef CONFIG_PCI
83 static int msi;
84 module_param(msi, int, S_IRUGO);
85 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
86 #endif
88 static int irq_coalescing_io_count;
89 module_param(irq_coalescing_io_count, int, S_IRUGO);
90 MODULE_PARM_DESC(irq_coalescing_io_count,
91 "IRQ coalescing I/O count threshold (0..255)");
93 static int irq_coalescing_usecs;
94 module_param(irq_coalescing_usecs, int, S_IRUGO);
95 MODULE_PARM_DESC(irq_coalescing_usecs,
96 "IRQ coalescing time threshold in usecs");
98 enum {
99 /* BAR's are enumerated in terms of pci_resource_start() terms */
100 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
101 MV_IO_BAR = 2, /* offset 0x18: IO space */
102 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
104 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
105 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
107 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
108 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
109 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
110 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
112 MV_PCI_REG_BASE = 0,
115 * Per-chip ("all ports") interrupt coalescing feature.
116 * This is only for GEN_II / GEN_IIE hardware.
118 * Coalescing defers the interrupt until either the IO_THRESHOLD
119 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121 COAL_REG_BASE = 0x18000,
122 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
123 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
125 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
126 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
129 * Registers for the (unused here) transaction coalescing feature:
131 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
132 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
134 SATAHC0_REG_BASE = 0x20000,
135 FLASH_CTL = 0x1046c,
136 GPIO_PORT_CTL = 0x104f0,
137 RESET_CFG = 0x180d8,
139 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
140 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
141 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
142 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
144 MV_MAX_Q_DEPTH = 32,
145 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
147 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
148 * CRPB needs alignment on a 256B boundary. Size == 256B
149 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
152 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
153 MV_MAX_SG_CT = 256,
154 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
156 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
157 MV_PORT_HC_SHIFT = 2,
158 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
159 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
160 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
162 /* Host Flags */
163 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
165 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
167 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
169 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
170 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
172 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
174 CRQB_FLAG_READ = (1 << 0),
175 CRQB_TAG_SHIFT = 1,
176 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
177 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
178 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
179 CRQB_CMD_ADDR_SHIFT = 8,
180 CRQB_CMD_CS = (0x2 << 11),
181 CRQB_CMD_LAST = (1 << 15),
183 CRPB_FLAG_STATUS_SHIFT = 8,
184 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
185 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
187 EPRD_FLAG_END_OF_TBL = (1 << 31),
189 /* PCI interface registers */
191 MV_PCI_COMMAND = 0xc00,
192 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
193 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
195 PCI_MAIN_CMD_STS = 0xd30,
196 STOP_PCI_MASTER = (1 << 2),
197 PCI_MASTER_EMPTY = (1 << 3),
198 GLOB_SFT_RST = (1 << 4),
200 MV_PCI_MODE = 0xd00,
201 MV_PCI_MODE_MASK = 0x30,
203 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
204 MV_PCI_DISC_TIMER = 0xd04,
205 MV_PCI_MSI_TRIGGER = 0xc38,
206 MV_PCI_SERR_MASK = 0xc28,
207 MV_PCI_XBAR_TMOUT = 0x1d04,
208 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
209 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
210 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
211 MV_PCI_ERR_COMMAND = 0x1d50,
213 PCI_IRQ_CAUSE = 0x1d58,
214 PCI_IRQ_MASK = 0x1d5c,
215 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
217 PCIE_IRQ_CAUSE = 0x1900,
218 PCIE_IRQ_MASK = 0x1910,
219 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
221 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
222 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
223 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
224 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
225 SOC_HC_MAIN_IRQ_MASK = 0x20024,
226 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
227 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
228 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
229 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
230 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
231 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
232 PCI_ERR = (1 << 18),
233 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
234 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
235 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
236 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
237 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
238 GPIO_INT = (1 << 22),
239 SELF_INT = (1 << 23),
240 TWSI_INT = (1 << 24),
241 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
242 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
243 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
245 /* SATAHC registers */
246 HC_CFG = 0x00,
248 HC_IRQ_CAUSE = 0x14,
249 DMA_IRQ = (1 << 0), /* shift by port # */
250 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
251 DEV_IRQ = (1 << 8), /* shift by port # */
254 * Per-HC (Host-Controller) interrupt coalescing feature.
255 * This is present on all chip generations.
257 * Coalescing defers the interrupt until either the IO_THRESHOLD
258 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
261 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
263 SOC_LED_CTRL = 0x2c,
264 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
265 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
266 /* with dev activity LED */
268 /* Shadow block registers */
269 SHD_BLK = 0x100,
270 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
272 /* SATA registers */
273 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
274 SATA_ACTIVE = 0x350,
275 FIS_IRQ_CAUSE = 0x364,
276 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
278 LTMODE = 0x30c, /* requires read-after-write */
279 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
281 PHY_MODE2 = 0x330,
282 PHY_MODE3 = 0x310,
284 PHY_MODE4 = 0x314, /* requires read-after-write */
285 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
286 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
287 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
288 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
290 SATA_IFCTL = 0x344,
291 SATA_TESTCTL = 0x348,
292 SATA_IFSTAT = 0x34c,
293 VENDOR_UNIQUE_FIS = 0x35c,
295 FISCFG = 0x360,
296 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
297 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
299 PHY_MODE9_GEN2 = 0x398,
300 PHY_MODE9_GEN1 = 0x39c,
301 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
303 MV5_PHY_MODE = 0x74,
304 MV5_LTMODE = 0x30,
305 MV5_PHY_CTL = 0x0C,
306 SATA_IFCFG = 0x050,
308 MV_M2_PREAMP_MASK = 0x7e0,
310 /* Port registers */
311 EDMA_CFG = 0,
312 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
313 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
314 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
315 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
316 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
317 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
318 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
320 EDMA_ERR_IRQ_CAUSE = 0x8,
321 EDMA_ERR_IRQ_MASK = 0xc,
322 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
323 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
324 EDMA_ERR_DEV = (1 << 2), /* device error */
325 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
326 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
327 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
328 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
329 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
330 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
331 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
332 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
333 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
334 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
335 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
337 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
338 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
339 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
340 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
341 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
343 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
345 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
346 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
347 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
348 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
349 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
350 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
352 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
354 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
355 EDMA_ERR_OVERRUN_5 = (1 << 5),
356 EDMA_ERR_UNDERRUN_5 = (1 << 6),
358 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
359 EDMA_ERR_LNK_CTRL_RX_1 |
360 EDMA_ERR_LNK_CTRL_RX_3 |
361 EDMA_ERR_LNK_CTRL_TX,
363 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
364 EDMA_ERR_PRD_PAR |
365 EDMA_ERR_DEV_DCON |
366 EDMA_ERR_DEV_CON |
367 EDMA_ERR_SERR |
368 EDMA_ERR_SELF_DIS |
369 EDMA_ERR_CRQB_PAR |
370 EDMA_ERR_CRPB_PAR |
371 EDMA_ERR_INTRL_PAR |
372 EDMA_ERR_IORDY |
373 EDMA_ERR_LNK_CTRL_RX_2 |
374 EDMA_ERR_LNK_DATA_RX |
375 EDMA_ERR_LNK_DATA_TX |
376 EDMA_ERR_TRANS_PROTO,
378 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
379 EDMA_ERR_PRD_PAR |
380 EDMA_ERR_DEV_DCON |
381 EDMA_ERR_DEV_CON |
382 EDMA_ERR_OVERRUN_5 |
383 EDMA_ERR_UNDERRUN_5 |
384 EDMA_ERR_SELF_DIS_5 |
385 EDMA_ERR_CRQB_PAR |
386 EDMA_ERR_CRPB_PAR |
387 EDMA_ERR_INTRL_PAR |
388 EDMA_ERR_IORDY,
390 EDMA_REQ_Q_BASE_HI = 0x10,
391 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
393 EDMA_REQ_Q_OUT_PTR = 0x18,
394 EDMA_REQ_Q_PTR_SHIFT = 5,
396 EDMA_RSP_Q_BASE_HI = 0x1c,
397 EDMA_RSP_Q_IN_PTR = 0x20,
398 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
399 EDMA_RSP_Q_PTR_SHIFT = 3,
401 EDMA_CMD = 0x28, /* EDMA command register */
402 EDMA_EN = (1 << 0), /* enable EDMA */
403 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
404 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
406 EDMA_STATUS = 0x30, /* EDMA engine status */
407 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
408 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
410 EDMA_IORDY_TMOUT = 0x34,
411 EDMA_ARB_CFG = 0x38,
413 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
414 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
416 BMDMA_CMD = 0x224, /* bmdma command register */
417 BMDMA_STATUS = 0x228, /* bmdma status register */
418 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
419 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
421 /* Host private flags (hp_flags) */
422 MV_HP_FLAG_MSI = (1 << 0),
423 MV_HP_ERRATA_50XXB0 = (1 << 1),
424 MV_HP_ERRATA_50XXB2 = (1 << 2),
425 MV_HP_ERRATA_60X1B2 = (1 << 3),
426 MV_HP_ERRATA_60X1C0 = (1 << 4),
427 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
428 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
429 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
430 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
431 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
432 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
433 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
435 /* Port private flags (pp_flags) */
436 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
437 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
438 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
439 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
440 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
443 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
444 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
445 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
446 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
447 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
449 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
450 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
452 enum {
453 /* DMA boundary 0xffff is required by the s/g splitting
454 * we need on /length/ in mv_fill-sg().
456 MV_DMA_BOUNDARY = 0xffffU,
458 /* mask of register bits containing lower 32 bits
459 * of EDMA request queue DMA address
461 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
463 /* ditto, for response queue */
464 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
467 enum chip_type {
468 chip_504x,
469 chip_508x,
470 chip_5080,
471 chip_604x,
472 chip_608x,
473 chip_6042,
474 chip_7042,
475 chip_soc,
478 /* Command ReQuest Block: 32B */
479 struct mv_crqb {
480 __le32 sg_addr;
481 __le32 sg_addr_hi;
482 __le16 ctrl_flags;
483 __le16 ata_cmd[11];
486 struct mv_crqb_iie {
487 __le32 addr;
488 __le32 addr_hi;
489 __le32 flags;
490 __le32 len;
491 __le32 ata_cmd[4];
494 /* Command ResPonse Block: 8B */
495 struct mv_crpb {
496 __le16 id;
497 __le16 flags;
498 __le32 tmstmp;
501 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
502 struct mv_sg {
503 __le32 addr;
504 __le32 flags_size;
505 __le32 addr_hi;
506 __le32 reserved;
510 * We keep a local cache of a few frequently accessed port
511 * registers here, to avoid having to read them (very slow)
512 * when switching between EDMA and non-EDMA modes.
514 struct mv_cached_regs {
515 u32 fiscfg;
516 u32 ltmode;
517 u32 haltcond;
518 u32 unknown_rsvd;
521 struct mv_port_priv {
522 struct mv_crqb *crqb;
523 dma_addr_t crqb_dma;
524 struct mv_crpb *crpb;
525 dma_addr_t crpb_dma;
526 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
527 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
529 unsigned int req_idx;
530 unsigned int resp_idx;
532 u32 pp_flags;
533 struct mv_cached_regs cached;
534 unsigned int delayed_eh_pmp_map;
537 struct mv_port_signal {
538 u32 amps;
539 u32 pre;
542 struct mv_host_priv {
543 u32 hp_flags;
544 unsigned int board_idx;
545 u32 main_irq_mask;
546 struct mv_port_signal signal[8];
547 const struct mv_hw_ops *ops;
548 int n_ports;
549 void __iomem *base;
550 void __iomem *main_irq_cause_addr;
551 void __iomem *main_irq_mask_addr;
552 u32 irq_cause_offset;
553 u32 irq_mask_offset;
554 u32 unmask_all_irqs;
556 #if defined(CONFIG_HAVE_CLK)
557 struct clk *clk;
558 struct clk **port_clks;
559 #endif
561 * These consistent DMA memory pools give us guaranteed
562 * alignment for hardware-accessed data structures,
563 * and less memory waste in accomplishing the alignment.
565 struct dma_pool *crqb_pool;
566 struct dma_pool *crpb_pool;
567 struct dma_pool *sg_tbl_pool;
570 struct mv_hw_ops {
571 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
572 unsigned int port);
573 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
574 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
575 void __iomem *mmio);
576 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
577 unsigned int n_hc);
578 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
579 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
582 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
585 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
586 static int mv_port_start(struct ata_port *ap);
587 static void mv_port_stop(struct ata_port *ap);
588 static int mv_qc_defer(struct ata_queued_cmd *qc);
589 static void mv_qc_prep(struct ata_queued_cmd *qc);
590 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
591 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
592 static int mv_hardreset(struct ata_link *link, unsigned int *class,
593 unsigned long deadline);
594 static void mv_eh_freeze(struct ata_port *ap);
595 static void mv_eh_thaw(struct ata_port *ap);
596 static void mv6_dev_config(struct ata_device *dev);
598 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
599 unsigned int port);
600 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
601 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
602 void __iomem *mmio);
603 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
604 unsigned int n_hc);
605 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
606 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
608 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
609 unsigned int port);
610 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
611 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
612 void __iomem *mmio);
613 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
614 unsigned int n_hc);
615 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
616 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
617 void __iomem *mmio);
618 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
619 void __iomem *mmio);
620 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
621 void __iomem *mmio, unsigned int n_hc);
622 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
623 void __iomem *mmio);
624 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
625 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
626 void __iomem *mmio, unsigned int port);
627 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
628 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
629 unsigned int port_no);
630 static int mv_stop_edma(struct ata_port *ap);
631 static int mv_stop_edma_engine(void __iomem *port_mmio);
632 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
634 static void mv_pmp_select(struct ata_port *ap, int pmp);
635 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
636 unsigned long deadline);
637 static int mv_softreset(struct ata_link *link, unsigned int *class,
638 unsigned long deadline);
639 static void mv_pmp_error_handler(struct ata_port *ap);
640 static void mv_process_crpb_entries(struct ata_port *ap,
641 struct mv_port_priv *pp);
643 static void mv_sff_irq_clear(struct ata_port *ap);
644 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
645 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
646 static void mv_bmdma_start(struct ata_queued_cmd *qc);
647 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
648 static u8 mv_bmdma_status(struct ata_port *ap);
649 static u8 mv_sff_check_status(struct ata_port *ap);
651 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
652 * because we have to allow room for worst case splitting of
653 * PRDs for 64K boundaries in mv_fill_sg().
655 #ifdef CONFIG_PCI
656 static struct scsi_host_template mv5_sht = {
657 ATA_BASE_SHT(DRV_NAME),
658 .sg_tablesize = MV_MAX_SG_CT / 2,
659 .dma_boundary = MV_DMA_BOUNDARY,
661 #endif
662 static struct scsi_host_template mv6_sht = {
663 ATA_NCQ_SHT(DRV_NAME),
664 .can_queue = MV_MAX_Q_DEPTH - 1,
665 .sg_tablesize = MV_MAX_SG_CT / 2,
666 .dma_boundary = MV_DMA_BOUNDARY,
669 static struct ata_port_operations mv5_ops = {
670 .inherits = &ata_sff_port_ops,
672 .lost_interrupt = ATA_OP_NULL,
674 .qc_defer = mv_qc_defer,
675 .qc_prep = mv_qc_prep,
676 .qc_issue = mv_qc_issue,
678 .freeze = mv_eh_freeze,
679 .thaw = mv_eh_thaw,
680 .hardreset = mv_hardreset,
682 .scr_read = mv5_scr_read,
683 .scr_write = mv5_scr_write,
685 .port_start = mv_port_start,
686 .port_stop = mv_port_stop,
689 static struct ata_port_operations mv6_ops = {
690 .inherits = &ata_bmdma_port_ops,
692 .lost_interrupt = ATA_OP_NULL,
694 .qc_defer = mv_qc_defer,
695 .qc_prep = mv_qc_prep,
696 .qc_issue = mv_qc_issue,
698 .dev_config = mv6_dev_config,
700 .freeze = mv_eh_freeze,
701 .thaw = mv_eh_thaw,
702 .hardreset = mv_hardreset,
703 .softreset = mv_softreset,
704 .pmp_hardreset = mv_pmp_hardreset,
705 .pmp_softreset = mv_softreset,
706 .error_handler = mv_pmp_error_handler,
708 .scr_read = mv_scr_read,
709 .scr_write = mv_scr_write,
711 .sff_check_status = mv_sff_check_status,
712 .sff_irq_clear = mv_sff_irq_clear,
713 .check_atapi_dma = mv_check_atapi_dma,
714 .bmdma_setup = mv_bmdma_setup,
715 .bmdma_start = mv_bmdma_start,
716 .bmdma_stop = mv_bmdma_stop,
717 .bmdma_status = mv_bmdma_status,
719 .port_start = mv_port_start,
720 .port_stop = mv_port_stop,
723 static struct ata_port_operations mv_iie_ops = {
724 .inherits = &mv6_ops,
725 .dev_config = ATA_OP_NULL,
726 .qc_prep = mv_qc_prep_iie,
729 static const struct ata_port_info mv_port_info[] = {
730 { /* chip_504x */
731 .flags = MV_GEN_I_FLAGS,
732 .pio_mask = ATA_PIO4,
733 .udma_mask = ATA_UDMA6,
734 .port_ops = &mv5_ops,
736 { /* chip_508x */
737 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
738 .pio_mask = ATA_PIO4,
739 .udma_mask = ATA_UDMA6,
740 .port_ops = &mv5_ops,
742 { /* chip_5080 */
743 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
744 .pio_mask = ATA_PIO4,
745 .udma_mask = ATA_UDMA6,
746 .port_ops = &mv5_ops,
748 { /* chip_604x */
749 .flags = MV_GEN_II_FLAGS,
750 .pio_mask = ATA_PIO4,
751 .udma_mask = ATA_UDMA6,
752 .port_ops = &mv6_ops,
754 { /* chip_608x */
755 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
756 .pio_mask = ATA_PIO4,
757 .udma_mask = ATA_UDMA6,
758 .port_ops = &mv6_ops,
760 { /* chip_6042 */
761 .flags = MV_GEN_IIE_FLAGS,
762 .pio_mask = ATA_PIO4,
763 .udma_mask = ATA_UDMA6,
764 .port_ops = &mv_iie_ops,
766 { /* chip_7042 */
767 .flags = MV_GEN_IIE_FLAGS,
768 .pio_mask = ATA_PIO4,
769 .udma_mask = ATA_UDMA6,
770 .port_ops = &mv_iie_ops,
772 { /* chip_soc */
773 .flags = MV_GEN_IIE_FLAGS,
774 .pio_mask = ATA_PIO4,
775 .udma_mask = ATA_UDMA6,
776 .port_ops = &mv_iie_ops,
780 static const struct pci_device_id mv_pci_tbl[] = {
781 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
782 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
783 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
784 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
785 /* RocketRAID 1720/174x have different identifiers */
786 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
787 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
788 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
790 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
791 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
792 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
793 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
794 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
796 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
798 /* Adaptec 1430SA */
799 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
801 /* Marvell 7042 support */
802 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
804 /* Highpoint RocketRAID PCIe series */
805 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
806 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
808 { } /* terminate list */
811 static const struct mv_hw_ops mv5xxx_ops = {
812 .phy_errata = mv5_phy_errata,
813 .enable_leds = mv5_enable_leds,
814 .read_preamp = mv5_read_preamp,
815 .reset_hc = mv5_reset_hc,
816 .reset_flash = mv5_reset_flash,
817 .reset_bus = mv5_reset_bus,
820 static const struct mv_hw_ops mv6xxx_ops = {
821 .phy_errata = mv6_phy_errata,
822 .enable_leds = mv6_enable_leds,
823 .read_preamp = mv6_read_preamp,
824 .reset_hc = mv6_reset_hc,
825 .reset_flash = mv6_reset_flash,
826 .reset_bus = mv_reset_pci_bus,
829 static const struct mv_hw_ops mv_soc_ops = {
830 .phy_errata = mv6_phy_errata,
831 .enable_leds = mv_soc_enable_leds,
832 .read_preamp = mv_soc_read_preamp,
833 .reset_hc = mv_soc_reset_hc,
834 .reset_flash = mv_soc_reset_flash,
835 .reset_bus = mv_soc_reset_bus,
838 static const struct mv_hw_ops mv_soc_65n_ops = {
839 .phy_errata = mv_soc_65n_phy_errata,
840 .enable_leds = mv_soc_enable_leds,
841 .reset_hc = mv_soc_reset_hc,
842 .reset_flash = mv_soc_reset_flash,
843 .reset_bus = mv_soc_reset_bus,
847 * Functions
850 static inline void writelfl(unsigned long data, void __iomem *addr)
852 writel(data, addr);
853 (void) readl(addr); /* flush to avoid PCI posted write */
856 static inline unsigned int mv_hc_from_port(unsigned int port)
858 return port >> MV_PORT_HC_SHIFT;
861 static inline unsigned int mv_hardport_from_port(unsigned int port)
863 return port & MV_PORT_MASK;
867 * Consolidate some rather tricky bit shift calculations.
868 * This is hot-path stuff, so not a function.
869 * Simple code, with two return values, so macro rather than inline.
871 * port is the sole input, in range 0..7.
872 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
873 * hardport is the other output, in range 0..3.
875 * Note that port and hardport may be the same variable in some cases.
877 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
879 shift = mv_hc_from_port(port) * HC_SHIFT; \
880 hardport = mv_hardport_from_port(port); \
881 shift += hardport * 2; \
884 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
886 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
889 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
890 unsigned int port)
892 return mv_hc_base(base, mv_hc_from_port(port));
895 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
897 return mv_hc_base_from_port(base, port) +
898 MV_SATAHC_ARBTR_REG_SZ +
899 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
902 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
904 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
905 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
907 return hc_mmio + ofs;
910 static inline void __iomem *mv_host_base(struct ata_host *host)
912 struct mv_host_priv *hpriv = host->private_data;
913 return hpriv->base;
916 static inline void __iomem *mv_ap_base(struct ata_port *ap)
918 return mv_port_base(mv_host_base(ap->host), ap->port_no);
921 static inline int mv_get_hc_count(unsigned long port_flags)
923 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
927 * mv_save_cached_regs - (re-)initialize cached port registers
928 * @ap: the port whose registers we are caching
930 * Initialize the local cache of port registers,
931 * so that reading them over and over again can
932 * be avoided on the hotter paths of this driver.
933 * This saves a few microseconds each time we switch
934 * to/from EDMA mode to perform (eg.) a drive cache flush.
936 static void mv_save_cached_regs(struct ata_port *ap)
938 void __iomem *port_mmio = mv_ap_base(ap);
939 struct mv_port_priv *pp = ap->private_data;
941 pp->cached.fiscfg = readl(port_mmio + FISCFG);
942 pp->cached.ltmode = readl(port_mmio + LTMODE);
943 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
944 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
948 * mv_write_cached_reg - write to a cached port register
949 * @addr: hardware address of the register
950 * @old: pointer to cached value of the register
951 * @new: new value for the register
953 * Write a new value to a cached register,
954 * but only if the value is different from before.
956 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
958 if (new != *old) {
959 unsigned long laddr;
960 *old = new;
962 * Workaround for 88SX60x1-B2 FEr SATA#13:
963 * Read-after-write is needed to prevent generating 64-bit
964 * write cycles on the PCI bus for SATA interface registers
965 * at offsets ending in 0x4 or 0xc.
967 * Looks like a lot of fuss, but it avoids an unnecessary
968 * +1 usec read-after-write delay for unaffected registers.
970 laddr = (long)addr & 0xffff;
971 if (laddr >= 0x300 && laddr <= 0x33c) {
972 laddr &= 0x000f;
973 if (laddr == 0x4 || laddr == 0xc) {
974 writelfl(new, addr); /* read after write */
975 return;
978 writel(new, addr); /* unaffected by the errata */
982 static void mv_set_edma_ptrs(void __iomem *port_mmio,
983 struct mv_host_priv *hpriv,
984 struct mv_port_priv *pp)
986 u32 index;
989 * initialize request queue
991 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
992 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
994 WARN_ON(pp->crqb_dma & 0x3ff);
995 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
996 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
997 port_mmio + EDMA_REQ_Q_IN_PTR);
998 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1001 * initialize response queue
1003 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1004 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1006 WARN_ON(pp->crpb_dma & 0xff);
1007 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1008 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1009 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1010 port_mmio + EDMA_RSP_Q_OUT_PTR);
1013 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1016 * When writing to the main_irq_mask in hardware,
1017 * we must ensure exclusivity between the interrupt coalescing bits
1018 * and the corresponding individual port DONE_IRQ bits.
1020 * Note that this register is really an "IRQ enable" register,
1021 * not an "IRQ mask" register as Marvell's naming might suggest.
1023 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1024 mask &= ~DONE_IRQ_0_3;
1025 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1026 mask &= ~DONE_IRQ_4_7;
1027 writelfl(mask, hpriv->main_irq_mask_addr);
1030 static void mv_set_main_irq_mask(struct ata_host *host,
1031 u32 disable_bits, u32 enable_bits)
1033 struct mv_host_priv *hpriv = host->private_data;
1034 u32 old_mask, new_mask;
1036 old_mask = hpriv->main_irq_mask;
1037 new_mask = (old_mask & ~disable_bits) | enable_bits;
1038 if (new_mask != old_mask) {
1039 hpriv->main_irq_mask = new_mask;
1040 mv_write_main_irq_mask(new_mask, hpriv);
1044 static void mv_enable_port_irqs(struct ata_port *ap,
1045 unsigned int port_bits)
1047 unsigned int shift, hardport, port = ap->port_no;
1048 u32 disable_bits, enable_bits;
1050 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1052 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1053 enable_bits = port_bits << shift;
1054 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1057 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1058 void __iomem *port_mmio,
1059 unsigned int port_irqs)
1061 struct mv_host_priv *hpriv = ap->host->private_data;
1062 int hardport = mv_hardport_from_port(ap->port_no);
1063 void __iomem *hc_mmio = mv_hc_base_from_port(
1064 mv_host_base(ap->host), ap->port_no);
1065 u32 hc_irq_cause;
1067 /* clear EDMA event indicators, if any */
1068 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1070 /* clear pending irq events */
1071 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1072 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1074 /* clear FIS IRQ Cause */
1075 if (IS_GEN_IIE(hpriv))
1076 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1078 mv_enable_port_irqs(ap, port_irqs);
1081 static void mv_set_irq_coalescing(struct ata_host *host,
1082 unsigned int count, unsigned int usecs)
1084 struct mv_host_priv *hpriv = host->private_data;
1085 void __iomem *mmio = hpriv->base, *hc_mmio;
1086 u32 coal_enable = 0;
1087 unsigned long flags;
1088 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1089 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1090 ALL_PORTS_COAL_DONE;
1092 /* Disable IRQ coalescing if either threshold is zero */
1093 if (!usecs || !count) {
1094 clks = count = 0;
1095 } else {
1096 /* Respect maximum limits of the hardware */
1097 clks = usecs * COAL_CLOCKS_PER_USEC;
1098 if (clks > MAX_COAL_TIME_THRESHOLD)
1099 clks = MAX_COAL_TIME_THRESHOLD;
1100 if (count > MAX_COAL_IO_COUNT)
1101 count = MAX_COAL_IO_COUNT;
1104 spin_lock_irqsave(&host->lock, flags);
1105 mv_set_main_irq_mask(host, coal_disable, 0);
1107 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1109 * GEN_II/GEN_IIE with dual host controllers:
1110 * one set of global thresholds for the entire chip.
1112 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1113 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1114 /* clear leftover coal IRQ bit */
1115 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1116 if (count)
1117 coal_enable = ALL_PORTS_COAL_DONE;
1118 clks = count = 0; /* force clearing of regular regs below */
1122 * All chips: independent thresholds for each HC on the chip.
1124 hc_mmio = mv_hc_base_from_port(mmio, 0);
1125 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1126 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1127 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1128 if (count)
1129 coal_enable |= PORTS_0_3_COAL_DONE;
1130 if (is_dual_hc) {
1131 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1132 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1133 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1134 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1135 if (count)
1136 coal_enable |= PORTS_4_7_COAL_DONE;
1139 mv_set_main_irq_mask(host, 0, coal_enable);
1140 spin_unlock_irqrestore(&host->lock, flags);
1144 * mv_start_edma - Enable eDMA engine
1145 * @base: port base address
1146 * @pp: port private data
1148 * Verify the local cache of the eDMA state is accurate with a
1149 * WARN_ON.
1151 * LOCKING:
1152 * Inherited from caller.
1154 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1155 struct mv_port_priv *pp, u8 protocol)
1157 int want_ncq = (protocol == ATA_PROT_NCQ);
1159 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1160 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1161 if (want_ncq != using_ncq)
1162 mv_stop_edma(ap);
1164 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1165 struct mv_host_priv *hpriv = ap->host->private_data;
1167 mv_edma_cfg(ap, want_ncq, 1);
1169 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1170 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1172 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1173 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1177 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1179 void __iomem *port_mmio = mv_ap_base(ap);
1180 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1181 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1182 int i;
1185 * Wait for the EDMA engine to finish transactions in progress.
1186 * No idea what a good "timeout" value might be, but measurements
1187 * indicate that it often requires hundreds of microseconds
1188 * with two drives in-use. So we use the 15msec value above
1189 * as a rough guess at what even more drives might require.
1191 for (i = 0; i < timeout; ++i) {
1192 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1193 if ((edma_stat & empty_idle) == empty_idle)
1194 break;
1195 udelay(per_loop);
1197 /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1201 * mv_stop_edma_engine - Disable eDMA engine
1202 * @port_mmio: io base address
1204 * LOCKING:
1205 * Inherited from caller.
1207 static int mv_stop_edma_engine(void __iomem *port_mmio)
1209 int i;
1211 /* Disable eDMA. The disable bit auto clears. */
1212 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1214 /* Wait for the chip to confirm eDMA is off. */
1215 for (i = 10000; i > 0; i--) {
1216 u32 reg = readl(port_mmio + EDMA_CMD);
1217 if (!(reg & EDMA_EN))
1218 return 0;
1219 udelay(10);
1221 return -EIO;
1224 static int mv_stop_edma(struct ata_port *ap)
1226 void __iomem *port_mmio = mv_ap_base(ap);
1227 struct mv_port_priv *pp = ap->private_data;
1228 int err = 0;
1230 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1231 return 0;
1232 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1233 mv_wait_for_edma_empty_idle(ap);
1234 if (mv_stop_edma_engine(port_mmio)) {
1235 ata_port_err(ap, "Unable to stop eDMA\n");
1236 err = -EIO;
1238 mv_edma_cfg(ap, 0, 0);
1239 return err;
1242 #ifdef ATA_DEBUG
1243 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1245 int b, w;
1246 for (b = 0; b < bytes; ) {
1247 DPRINTK("%p: ", start + b);
1248 for (w = 0; b < bytes && w < 4; w++) {
1249 printk("%08x ", readl(start + b));
1250 b += sizeof(u32);
1252 printk("\n");
1255 #endif
1256 #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1257 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1259 #ifdef ATA_DEBUG
1260 int b, w;
1261 u32 dw;
1262 for (b = 0; b < bytes; ) {
1263 DPRINTK("%02x: ", b);
1264 for (w = 0; b < bytes && w < 4; w++) {
1265 (void) pci_read_config_dword(pdev, b, &dw);
1266 printk("%08x ", dw);
1267 b += sizeof(u32);
1269 printk("\n");
1271 #endif
1273 #endif
1274 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1275 struct pci_dev *pdev)
1277 #ifdef ATA_DEBUG
1278 void __iomem *hc_base = mv_hc_base(mmio_base,
1279 port >> MV_PORT_HC_SHIFT);
1280 void __iomem *port_base;
1281 int start_port, num_ports, p, start_hc, num_hcs, hc;
1283 if (0 > port) {
1284 start_hc = start_port = 0;
1285 num_ports = 8; /* shld be benign for 4 port devs */
1286 num_hcs = 2;
1287 } else {
1288 start_hc = port >> MV_PORT_HC_SHIFT;
1289 start_port = port;
1290 num_ports = num_hcs = 1;
1292 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1293 num_ports > 1 ? num_ports - 1 : start_port);
1295 if (NULL != pdev) {
1296 DPRINTK("PCI config space regs:\n");
1297 mv_dump_pci_cfg(pdev, 0x68);
1299 DPRINTK("PCI regs:\n");
1300 mv_dump_mem(mmio_base+0xc00, 0x3c);
1301 mv_dump_mem(mmio_base+0xd00, 0x34);
1302 mv_dump_mem(mmio_base+0xf00, 0x4);
1303 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1304 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1305 hc_base = mv_hc_base(mmio_base, hc);
1306 DPRINTK("HC regs (HC %i):\n", hc);
1307 mv_dump_mem(hc_base, 0x1c);
1309 for (p = start_port; p < start_port + num_ports; p++) {
1310 port_base = mv_port_base(mmio_base, p);
1311 DPRINTK("EDMA regs (port %i):\n", p);
1312 mv_dump_mem(port_base, 0x54);
1313 DPRINTK("SATA regs (port %i):\n", p);
1314 mv_dump_mem(port_base+0x300, 0x60);
1316 #endif
1319 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1321 unsigned int ofs;
1323 switch (sc_reg_in) {
1324 case SCR_STATUS:
1325 case SCR_CONTROL:
1326 case SCR_ERROR:
1327 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1328 break;
1329 case SCR_ACTIVE:
1330 ofs = SATA_ACTIVE; /* active is not with the others */
1331 break;
1332 default:
1333 ofs = 0xffffffffU;
1334 break;
1336 return ofs;
1339 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1341 unsigned int ofs = mv_scr_offset(sc_reg_in);
1343 if (ofs != 0xffffffffU) {
1344 *val = readl(mv_ap_base(link->ap) + ofs);
1345 return 0;
1346 } else
1347 return -EINVAL;
1350 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1352 unsigned int ofs = mv_scr_offset(sc_reg_in);
1354 if (ofs != 0xffffffffU) {
1355 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1356 if (sc_reg_in == SCR_CONTROL) {
1358 * Workaround for 88SX60x1 FEr SATA#26:
1360 * COMRESETs have to take care not to accidentally
1361 * put the drive to sleep when writing SCR_CONTROL.
1362 * Setting bits 12..15 prevents this problem.
1364 * So if we see an outbound COMMRESET, set those bits.
1365 * Ditto for the followup write that clears the reset.
1367 * The proprietary driver does this for
1368 * all chip versions, and so do we.
1370 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1371 val |= 0xf000;
1373 writelfl(val, addr);
1374 return 0;
1375 } else
1376 return -EINVAL;
1379 static void mv6_dev_config(struct ata_device *adev)
1382 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1384 * Gen-II does not support NCQ over a port multiplier
1385 * (no FIS-based switching).
1387 if (adev->flags & ATA_DFLAG_NCQ) {
1388 if (sata_pmp_attached(adev->link->ap)) {
1389 adev->flags &= ~ATA_DFLAG_NCQ;
1390 ata_dev_info(adev,
1391 "NCQ disabled for command-based switching\n");
1396 static int mv_qc_defer(struct ata_queued_cmd *qc)
1398 struct ata_link *link = qc->dev->link;
1399 struct ata_port *ap = link->ap;
1400 struct mv_port_priv *pp = ap->private_data;
1403 * Don't allow new commands if we're in a delayed EH state
1404 * for NCQ and/or FIS-based switching.
1406 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1407 return ATA_DEFER_PORT;
1409 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1410 * can run concurrently.
1411 * set excl_link when we want to send a PIO command in DMA mode
1412 * or a non-NCQ command in NCQ mode.
1413 * When we receive a command from that link, and there are no
1414 * outstanding commands, mark a flag to clear excl_link and let
1415 * the command go through.
1417 if (unlikely(ap->excl_link)) {
1418 if (link == ap->excl_link) {
1419 if (ap->nr_active_links)
1420 return ATA_DEFER_PORT;
1421 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1422 return 0;
1423 } else
1424 return ATA_DEFER_PORT;
1428 * If the port is completely idle, then allow the new qc.
1430 if (ap->nr_active_links == 0)
1431 return 0;
1434 * The port is operating in host queuing mode (EDMA) with NCQ
1435 * enabled, allow multiple NCQ commands. EDMA also allows
1436 * queueing multiple DMA commands but libata core currently
1437 * doesn't allow it.
1439 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1440 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1441 if (ata_is_ncq(qc->tf.protocol))
1442 return 0;
1443 else {
1444 ap->excl_link = link;
1445 return ATA_DEFER_PORT;
1449 return ATA_DEFER_PORT;
1452 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1454 struct mv_port_priv *pp = ap->private_data;
1455 void __iomem *port_mmio;
1457 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1458 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1459 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1461 ltmode = *old_ltmode & ~LTMODE_BIT8;
1462 haltcond = *old_haltcond | EDMA_ERR_DEV;
1464 if (want_fbs) {
1465 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1466 ltmode = *old_ltmode | LTMODE_BIT8;
1467 if (want_ncq)
1468 haltcond &= ~EDMA_ERR_DEV;
1469 else
1470 fiscfg |= FISCFG_WAIT_DEV_ERR;
1471 } else {
1472 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1475 port_mmio = mv_ap_base(ap);
1476 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1477 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1478 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1481 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1483 struct mv_host_priv *hpriv = ap->host->private_data;
1484 u32 old, new;
1486 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1487 old = readl(hpriv->base + GPIO_PORT_CTL);
1488 if (want_ncq)
1489 new = old | (1 << 22);
1490 else
1491 new = old & ~(1 << 22);
1492 if (new != old)
1493 writel(new, hpriv->base + GPIO_PORT_CTL);
1497 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1498 * @ap: Port being initialized
1500 * There are two DMA modes on these chips: basic DMA, and EDMA.
1502 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1503 * of basic DMA on the GEN_IIE versions of the chips.
1505 * This bit survives EDMA resets, and must be set for basic DMA
1506 * to function, and should be cleared when EDMA is active.
1508 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1510 struct mv_port_priv *pp = ap->private_data;
1511 u32 new, *old = &pp->cached.unknown_rsvd;
1513 if (enable_bmdma)
1514 new = *old | 1;
1515 else
1516 new = *old & ~1;
1517 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1521 * SOC chips have an issue whereby the HDD LEDs don't always blink
1522 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1523 * of the SOC takes care of it, generating a steady blink rate when
1524 * any drive on the chip is active.
1526 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1527 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1529 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1530 * LED operation works then, and provides better (more accurate) feedback.
1532 * Note that this code assumes that an SOC never has more than one HC onboard.
1534 static void mv_soc_led_blink_enable(struct ata_port *ap)
1536 struct ata_host *host = ap->host;
1537 struct mv_host_priv *hpriv = host->private_data;
1538 void __iomem *hc_mmio;
1539 u32 led_ctrl;
1541 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1542 return;
1543 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1544 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1545 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1546 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1549 static void mv_soc_led_blink_disable(struct ata_port *ap)
1551 struct ata_host *host = ap->host;
1552 struct mv_host_priv *hpriv = host->private_data;
1553 void __iomem *hc_mmio;
1554 u32 led_ctrl;
1555 unsigned int port;
1557 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1558 return;
1560 /* disable led-blink only if no ports are using NCQ */
1561 for (port = 0; port < hpriv->n_ports; port++) {
1562 struct ata_port *this_ap = host->ports[port];
1563 struct mv_port_priv *pp = this_ap->private_data;
1565 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1566 return;
1569 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1570 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1571 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1572 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1575 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1577 u32 cfg;
1578 struct mv_port_priv *pp = ap->private_data;
1579 struct mv_host_priv *hpriv = ap->host->private_data;
1580 void __iomem *port_mmio = mv_ap_base(ap);
1582 /* set up non-NCQ EDMA configuration */
1583 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1584 pp->pp_flags &=
1585 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1587 if (IS_GEN_I(hpriv))
1588 cfg |= (1 << 8); /* enab config burst size mask */
1590 else if (IS_GEN_II(hpriv)) {
1591 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1592 mv_60x1_errata_sata25(ap, want_ncq);
1594 } else if (IS_GEN_IIE(hpriv)) {
1595 int want_fbs = sata_pmp_attached(ap);
1597 * Possible future enhancement:
1599 * The chip can use FBS with non-NCQ, if we allow it,
1600 * But first we need to have the error handling in place
1601 * for this mode (datasheet section 7.3.15.4.2.3).
1602 * So disallow non-NCQ FBS for now.
1604 want_fbs &= want_ncq;
1606 mv_config_fbs(ap, want_ncq, want_fbs);
1608 if (want_fbs) {
1609 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1610 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1613 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1614 if (want_edma) {
1615 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1616 if (!IS_SOC(hpriv))
1617 cfg |= (1 << 18); /* enab early completion */
1619 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1620 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1621 mv_bmdma_enable_iie(ap, !want_edma);
1623 if (IS_SOC(hpriv)) {
1624 if (want_ncq)
1625 mv_soc_led_blink_enable(ap);
1626 else
1627 mv_soc_led_blink_disable(ap);
1631 if (want_ncq) {
1632 cfg |= EDMA_CFG_NCQ;
1633 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1636 writelfl(cfg, port_mmio + EDMA_CFG);
1639 static void mv_port_free_dma_mem(struct ata_port *ap)
1641 struct mv_host_priv *hpriv = ap->host->private_data;
1642 struct mv_port_priv *pp = ap->private_data;
1643 int tag;
1645 if (pp->crqb) {
1646 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1647 pp->crqb = NULL;
1649 if (pp->crpb) {
1650 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1651 pp->crpb = NULL;
1654 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1655 * For later hardware, we have one unique sg_tbl per NCQ tag.
1657 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1658 if (pp->sg_tbl[tag]) {
1659 if (tag == 0 || !IS_GEN_I(hpriv))
1660 dma_pool_free(hpriv->sg_tbl_pool,
1661 pp->sg_tbl[tag],
1662 pp->sg_tbl_dma[tag]);
1663 pp->sg_tbl[tag] = NULL;
1669 * mv_port_start - Port specific init/start routine.
1670 * @ap: ATA channel to manipulate
1672 * Allocate and point to DMA memory, init port private memory,
1673 * zero indices.
1675 * LOCKING:
1676 * Inherited from caller.
1678 static int mv_port_start(struct ata_port *ap)
1680 struct device *dev = ap->host->dev;
1681 struct mv_host_priv *hpriv = ap->host->private_data;
1682 struct mv_port_priv *pp;
1683 unsigned long flags;
1684 int tag;
1686 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1687 if (!pp)
1688 return -ENOMEM;
1689 ap->private_data = pp;
1691 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1692 if (!pp->crqb)
1693 return -ENOMEM;
1694 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1696 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1697 if (!pp->crpb)
1698 goto out_port_free_dma_mem;
1699 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1701 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1702 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1703 ap->flags |= ATA_FLAG_AN;
1705 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1706 * For later hardware, we need one unique sg_tbl per NCQ tag.
1708 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1709 if (tag == 0 || !IS_GEN_I(hpriv)) {
1710 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1711 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1712 if (!pp->sg_tbl[tag])
1713 goto out_port_free_dma_mem;
1714 } else {
1715 pp->sg_tbl[tag] = pp->sg_tbl[0];
1716 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1720 spin_lock_irqsave(ap->lock, flags);
1721 mv_save_cached_regs(ap);
1722 mv_edma_cfg(ap, 0, 0);
1723 spin_unlock_irqrestore(ap->lock, flags);
1725 return 0;
1727 out_port_free_dma_mem:
1728 mv_port_free_dma_mem(ap);
1729 return -ENOMEM;
1733 * mv_port_stop - Port specific cleanup/stop routine.
1734 * @ap: ATA channel to manipulate
1736 * Stop DMA, cleanup port memory.
1738 * LOCKING:
1739 * This routine uses the host lock to protect the DMA stop.
1741 static void mv_port_stop(struct ata_port *ap)
1743 unsigned long flags;
1745 spin_lock_irqsave(ap->lock, flags);
1746 mv_stop_edma(ap);
1747 mv_enable_port_irqs(ap, 0);
1748 spin_unlock_irqrestore(ap->lock, flags);
1749 mv_port_free_dma_mem(ap);
1753 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1754 * @qc: queued command whose SG list to source from
1756 * Populate the SG list and mark the last entry.
1758 * LOCKING:
1759 * Inherited from caller.
1761 static void mv_fill_sg(struct ata_queued_cmd *qc)
1763 struct mv_port_priv *pp = qc->ap->private_data;
1764 struct scatterlist *sg;
1765 struct mv_sg *mv_sg, *last_sg = NULL;
1766 unsigned int si;
1768 mv_sg = pp->sg_tbl[qc->tag];
1769 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1770 dma_addr_t addr = sg_dma_address(sg);
1771 u32 sg_len = sg_dma_len(sg);
1773 while (sg_len) {
1774 u32 offset = addr & 0xffff;
1775 u32 len = sg_len;
1777 if (offset + len > 0x10000)
1778 len = 0x10000 - offset;
1780 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1781 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1782 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1783 mv_sg->reserved = 0;
1785 sg_len -= len;
1786 addr += len;
1788 last_sg = mv_sg;
1789 mv_sg++;
1793 if (likely(last_sg))
1794 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1795 mb(); /* ensure data structure is visible to the chipset */
1798 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1800 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1801 (last ? CRQB_CMD_LAST : 0);
1802 *cmdw = cpu_to_le16(tmp);
1806 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1807 * @ap: Port associated with this ATA transaction.
1809 * We need this only for ATAPI bmdma transactions,
1810 * as otherwise we experience spurious interrupts
1811 * after libata-sff handles the bmdma interrupts.
1813 static void mv_sff_irq_clear(struct ata_port *ap)
1815 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1819 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1820 * @qc: queued command to check for chipset/DMA compatibility.
1822 * The bmdma engines cannot handle speculative data sizes
1823 * (bytecount under/over flow). So only allow DMA for
1824 * data transfer commands with known data sizes.
1826 * LOCKING:
1827 * Inherited from caller.
1829 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1831 struct scsi_cmnd *scmd = qc->scsicmd;
1833 if (scmd) {
1834 switch (scmd->cmnd[0]) {
1835 case READ_6:
1836 case READ_10:
1837 case READ_12:
1838 case WRITE_6:
1839 case WRITE_10:
1840 case WRITE_12:
1841 case GPCMD_READ_CD:
1842 case GPCMD_SEND_DVD_STRUCTURE:
1843 case GPCMD_SEND_CUE_SHEET:
1844 return 0; /* DMA is safe */
1847 return -EOPNOTSUPP; /* use PIO instead */
1851 * mv_bmdma_setup - Set up BMDMA transaction
1852 * @qc: queued command to prepare DMA for.
1854 * LOCKING:
1855 * Inherited from caller.
1857 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1859 struct ata_port *ap = qc->ap;
1860 void __iomem *port_mmio = mv_ap_base(ap);
1861 struct mv_port_priv *pp = ap->private_data;
1863 mv_fill_sg(qc);
1865 /* clear all DMA cmd bits */
1866 writel(0, port_mmio + BMDMA_CMD);
1868 /* load PRD table addr. */
1869 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1870 port_mmio + BMDMA_PRD_HIGH);
1871 writelfl(pp->sg_tbl_dma[qc->tag],
1872 port_mmio + BMDMA_PRD_LOW);
1874 /* issue r/w command */
1875 ap->ops->sff_exec_command(ap, &qc->tf);
1879 * mv_bmdma_start - Start a BMDMA transaction
1880 * @qc: queued command to start DMA on.
1882 * LOCKING:
1883 * Inherited from caller.
1885 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1887 struct ata_port *ap = qc->ap;
1888 void __iomem *port_mmio = mv_ap_base(ap);
1889 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1890 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1892 /* start host DMA transaction */
1893 writelfl(cmd, port_mmio + BMDMA_CMD);
1897 * mv_bmdma_stop - Stop BMDMA transfer
1898 * @qc: queued command to stop DMA on.
1900 * Clears the ATA_DMA_START flag in the bmdma control register
1902 * LOCKING:
1903 * Inherited from caller.
1905 static void mv_bmdma_stop_ap(struct ata_port *ap)
1907 void __iomem *port_mmio = mv_ap_base(ap);
1908 u32 cmd;
1910 /* clear start/stop bit */
1911 cmd = readl(port_mmio + BMDMA_CMD);
1912 if (cmd & ATA_DMA_START) {
1913 cmd &= ~ATA_DMA_START;
1914 writelfl(cmd, port_mmio + BMDMA_CMD);
1916 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1917 ata_sff_dma_pause(ap);
1921 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1923 mv_bmdma_stop_ap(qc->ap);
1927 * mv_bmdma_status - Read BMDMA status
1928 * @ap: port for which to retrieve DMA status.
1930 * Read and return equivalent of the sff BMDMA status register.
1932 * LOCKING:
1933 * Inherited from caller.
1935 static u8 mv_bmdma_status(struct ata_port *ap)
1937 void __iomem *port_mmio = mv_ap_base(ap);
1938 u32 reg, status;
1941 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1942 * and the ATA_DMA_INTR bit doesn't exist.
1944 reg = readl(port_mmio + BMDMA_STATUS);
1945 if (reg & ATA_DMA_ACTIVE)
1946 status = ATA_DMA_ACTIVE;
1947 else if (reg & ATA_DMA_ERR)
1948 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1949 else {
1951 * Just because DMA_ACTIVE is 0 (DMA completed),
1952 * this does _not_ mean the device is "done".
1953 * So we should not yet be signalling ATA_DMA_INTR
1954 * in some cases. Eg. DSM/TRIM, and perhaps others.
1956 mv_bmdma_stop_ap(ap);
1957 if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1958 status = 0;
1959 else
1960 status = ATA_DMA_INTR;
1962 return status;
1965 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1967 struct ata_taskfile *tf = &qc->tf;
1969 * Workaround for 88SX60x1 FEr SATA#24.
1971 * Chip may corrupt WRITEs if multi_count >= 4kB.
1972 * Note that READs are unaffected.
1974 * It's not clear if this errata really means "4K bytes",
1975 * or if it always happens for multi_count > 7
1976 * regardless of device sector_size.
1978 * So, for safety, any write with multi_count > 7
1979 * gets converted here into a regular PIO write instead:
1981 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1982 if (qc->dev->multi_count > 7) {
1983 switch (tf->command) {
1984 case ATA_CMD_WRITE_MULTI:
1985 tf->command = ATA_CMD_PIO_WRITE;
1986 break;
1987 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1988 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1989 /* fall through */
1990 case ATA_CMD_WRITE_MULTI_EXT:
1991 tf->command = ATA_CMD_PIO_WRITE_EXT;
1992 break;
1999 * mv_qc_prep - Host specific command preparation.
2000 * @qc: queued command to prepare
2002 * This routine simply redirects to the general purpose routine
2003 * if command is not DMA. Else, it handles prep of the CRQB
2004 * (command request block), does some sanity checking, and calls
2005 * the SG load routine.
2007 * LOCKING:
2008 * Inherited from caller.
2010 static void mv_qc_prep(struct ata_queued_cmd *qc)
2012 struct ata_port *ap = qc->ap;
2013 struct mv_port_priv *pp = ap->private_data;
2014 __le16 *cw;
2015 struct ata_taskfile *tf = &qc->tf;
2016 u16 flags = 0;
2017 unsigned in_index;
2019 switch (tf->protocol) {
2020 case ATA_PROT_DMA:
2021 if (tf->command == ATA_CMD_DSM)
2022 return;
2023 /* fall-thru */
2024 case ATA_PROT_NCQ:
2025 break; /* continue below */
2026 case ATA_PROT_PIO:
2027 mv_rw_multi_errata_sata24(qc);
2028 return;
2029 default:
2030 return;
2033 /* Fill in command request block
2035 if (!(tf->flags & ATA_TFLAG_WRITE))
2036 flags |= CRQB_FLAG_READ;
2037 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2038 flags |= qc->tag << CRQB_TAG_SHIFT;
2039 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2041 /* get current queue index from software */
2042 in_index = pp->req_idx;
2044 pp->crqb[in_index].sg_addr =
2045 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2046 pp->crqb[in_index].sg_addr_hi =
2047 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2048 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2050 cw = &pp->crqb[in_index].ata_cmd[0];
2052 /* Sadly, the CRQB cannot accommodate all registers--there are
2053 * only 11 bytes...so we must pick and choose required
2054 * registers based on the command. So, we drop feature and
2055 * hob_feature for [RW] DMA commands, but they are needed for
2056 * NCQ. NCQ will drop hob_nsect, which is not needed there
2057 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2059 switch (tf->command) {
2060 case ATA_CMD_READ:
2061 case ATA_CMD_READ_EXT:
2062 case ATA_CMD_WRITE:
2063 case ATA_CMD_WRITE_EXT:
2064 case ATA_CMD_WRITE_FUA_EXT:
2065 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2066 break;
2067 case ATA_CMD_FPDMA_READ:
2068 case ATA_CMD_FPDMA_WRITE:
2069 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2070 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2071 break;
2072 default:
2073 /* The only other commands EDMA supports in non-queued and
2074 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2075 * of which are defined/used by Linux. If we get here, this
2076 * driver needs work.
2078 * FIXME: modify libata to give qc_prep a return value and
2079 * return error here.
2081 BUG_ON(tf->command);
2082 break;
2084 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2085 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2086 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2087 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2088 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2089 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2090 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2091 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2092 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2094 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2095 return;
2096 mv_fill_sg(qc);
2100 * mv_qc_prep_iie - Host specific command preparation.
2101 * @qc: queued command to prepare
2103 * This routine simply redirects to the general purpose routine
2104 * if command is not DMA. Else, it handles prep of the CRQB
2105 * (command request block), does some sanity checking, and calls
2106 * the SG load routine.
2108 * LOCKING:
2109 * Inherited from caller.
2111 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2113 struct ata_port *ap = qc->ap;
2114 struct mv_port_priv *pp = ap->private_data;
2115 struct mv_crqb_iie *crqb;
2116 struct ata_taskfile *tf = &qc->tf;
2117 unsigned in_index;
2118 u32 flags = 0;
2120 if ((tf->protocol != ATA_PROT_DMA) &&
2121 (tf->protocol != ATA_PROT_NCQ))
2122 return;
2123 if (tf->command == ATA_CMD_DSM)
2124 return; /* use bmdma for this */
2126 /* Fill in Gen IIE command request block */
2127 if (!(tf->flags & ATA_TFLAG_WRITE))
2128 flags |= CRQB_FLAG_READ;
2130 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2131 flags |= qc->tag << CRQB_TAG_SHIFT;
2132 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2133 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2135 /* get current queue index from software */
2136 in_index = pp->req_idx;
2138 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2139 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2140 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2141 crqb->flags = cpu_to_le32(flags);
2143 crqb->ata_cmd[0] = cpu_to_le32(
2144 (tf->command << 16) |
2145 (tf->feature << 24)
2147 crqb->ata_cmd[1] = cpu_to_le32(
2148 (tf->lbal << 0) |
2149 (tf->lbam << 8) |
2150 (tf->lbah << 16) |
2151 (tf->device << 24)
2153 crqb->ata_cmd[2] = cpu_to_le32(
2154 (tf->hob_lbal << 0) |
2155 (tf->hob_lbam << 8) |
2156 (tf->hob_lbah << 16) |
2157 (tf->hob_feature << 24)
2159 crqb->ata_cmd[3] = cpu_to_le32(
2160 (tf->nsect << 0) |
2161 (tf->hob_nsect << 8)
2164 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2165 return;
2166 mv_fill_sg(qc);
2170 * mv_sff_check_status - fetch device status, if valid
2171 * @ap: ATA port to fetch status from
2173 * When using command issue via mv_qc_issue_fis(),
2174 * the initial ATA_BUSY state does not show up in the
2175 * ATA status (shadow) register. This can confuse libata!
2177 * So we have a hook here to fake ATA_BUSY for that situation,
2178 * until the first time a BUSY, DRQ, or ERR bit is seen.
2180 * The rest of the time, it simply returns the ATA status register.
2182 static u8 mv_sff_check_status(struct ata_port *ap)
2184 u8 stat = ioread8(ap->ioaddr.status_addr);
2185 struct mv_port_priv *pp = ap->private_data;
2187 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2188 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2189 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2190 else
2191 stat = ATA_BUSY;
2193 return stat;
2197 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2198 * @fis: fis to be sent
2199 * @nwords: number of 32-bit words in the fis
2201 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2203 void __iomem *port_mmio = mv_ap_base(ap);
2204 u32 ifctl, old_ifctl, ifstat;
2205 int i, timeout = 200, final_word = nwords - 1;
2207 /* Initiate FIS transmission mode */
2208 old_ifctl = readl(port_mmio + SATA_IFCTL);
2209 ifctl = 0x100 | (old_ifctl & 0xf);
2210 writelfl(ifctl, port_mmio + SATA_IFCTL);
2212 /* Send all words of the FIS except for the final word */
2213 for (i = 0; i < final_word; ++i)
2214 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2216 /* Flag end-of-transmission, and then send the final word */
2217 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2218 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2221 * Wait for FIS transmission to complete.
2222 * This typically takes just a single iteration.
2224 do {
2225 ifstat = readl(port_mmio + SATA_IFSTAT);
2226 } while (!(ifstat & 0x1000) && --timeout);
2228 /* Restore original port configuration */
2229 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2231 /* See if it worked */
2232 if ((ifstat & 0x3000) != 0x1000) {
2233 ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2234 __func__, ifstat);
2235 return AC_ERR_OTHER;
2237 return 0;
2241 * mv_qc_issue_fis - Issue a command directly as a FIS
2242 * @qc: queued command to start
2244 * Note that the ATA shadow registers are not updated
2245 * after command issue, so the device will appear "READY"
2246 * if polled, even while it is BUSY processing the command.
2248 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2250 * Note: we don't get updated shadow regs on *completion*
2251 * of non-data commands. So avoid sending them via this function,
2252 * as they will appear to have completed immediately.
2254 * GEN_IIE has special registers that we could get the result tf from,
2255 * but earlier chipsets do not. For now, we ignore those registers.
2257 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2259 struct ata_port *ap = qc->ap;
2260 struct mv_port_priv *pp = ap->private_data;
2261 struct ata_link *link = qc->dev->link;
2262 u32 fis[5];
2263 int err = 0;
2265 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2266 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2267 if (err)
2268 return err;
2270 switch (qc->tf.protocol) {
2271 case ATAPI_PROT_PIO:
2272 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2273 /* fall through */
2274 case ATAPI_PROT_NODATA:
2275 ap->hsm_task_state = HSM_ST_FIRST;
2276 break;
2277 case ATA_PROT_PIO:
2278 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2279 if (qc->tf.flags & ATA_TFLAG_WRITE)
2280 ap->hsm_task_state = HSM_ST_FIRST;
2281 else
2282 ap->hsm_task_state = HSM_ST;
2283 break;
2284 default:
2285 ap->hsm_task_state = HSM_ST_LAST;
2286 break;
2289 if (qc->tf.flags & ATA_TFLAG_POLLING)
2290 ata_sff_queue_pio_task(link, 0);
2291 return 0;
2295 * mv_qc_issue - Initiate a command to the host
2296 * @qc: queued command to start
2298 * This routine simply redirects to the general purpose routine
2299 * if command is not DMA. Else, it sanity checks our local
2300 * caches of the request producer/consumer indices then enables
2301 * DMA and bumps the request producer index.
2303 * LOCKING:
2304 * Inherited from caller.
2306 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2308 static int limit_warnings = 10;
2309 struct ata_port *ap = qc->ap;
2310 void __iomem *port_mmio = mv_ap_base(ap);
2311 struct mv_port_priv *pp = ap->private_data;
2312 u32 in_index;
2313 unsigned int port_irqs;
2315 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2317 switch (qc->tf.protocol) {
2318 case ATA_PROT_DMA:
2319 if (qc->tf.command == ATA_CMD_DSM) {
2320 if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
2321 return AC_ERR_OTHER;
2322 break; /* use bmdma for this */
2324 /* fall thru */
2325 case ATA_PROT_NCQ:
2326 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2327 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2328 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2330 /* Write the request in pointer to kick the EDMA to life */
2331 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2332 port_mmio + EDMA_REQ_Q_IN_PTR);
2333 return 0;
2335 case ATA_PROT_PIO:
2337 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2339 * Someday, we might implement special polling workarounds
2340 * for these, but it all seems rather unnecessary since we
2341 * normally use only DMA for commands which transfer more
2342 * than a single block of data.
2344 * Much of the time, this could just work regardless.
2345 * So for now, just log the incident, and allow the attempt.
2347 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2348 --limit_warnings;
2349 ata_link_warn(qc->dev->link, DRV_NAME
2350 ": attempting PIO w/multiple DRQ: "
2351 "this may fail due to h/w errata\n");
2353 /* drop through */
2354 case ATA_PROT_NODATA:
2355 case ATAPI_PROT_PIO:
2356 case ATAPI_PROT_NODATA:
2357 if (ap->flags & ATA_FLAG_PIO_POLLING)
2358 qc->tf.flags |= ATA_TFLAG_POLLING;
2359 break;
2362 if (qc->tf.flags & ATA_TFLAG_POLLING)
2363 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2364 else
2365 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2368 * We're about to send a non-EDMA capable command to the
2369 * port. Turn off EDMA so there won't be problems accessing
2370 * shadow block, etc registers.
2372 mv_stop_edma(ap);
2373 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2374 mv_pmp_select(ap, qc->dev->link->pmp);
2376 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2377 struct mv_host_priv *hpriv = ap->host->private_data;
2379 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2381 * After any NCQ error, the READ_LOG_EXT command
2382 * from libata-eh *must* use mv_qc_issue_fis().
2383 * Otherwise it might fail, due to chip errata.
2385 * Rather than special-case it, we'll just *always*
2386 * use this method here for READ_LOG_EXT, making for
2387 * easier testing.
2389 if (IS_GEN_II(hpriv))
2390 return mv_qc_issue_fis(qc);
2392 return ata_bmdma_qc_issue(qc);
2395 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2397 struct mv_port_priv *pp = ap->private_data;
2398 struct ata_queued_cmd *qc;
2400 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2401 return NULL;
2402 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2403 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2404 return qc;
2405 return NULL;
2408 static void mv_pmp_error_handler(struct ata_port *ap)
2410 unsigned int pmp, pmp_map;
2411 struct mv_port_priv *pp = ap->private_data;
2413 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2415 * Perform NCQ error analysis on failed PMPs
2416 * before we freeze the port entirely.
2418 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2420 pmp_map = pp->delayed_eh_pmp_map;
2421 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2422 for (pmp = 0; pmp_map != 0; pmp++) {
2423 unsigned int this_pmp = (1 << pmp);
2424 if (pmp_map & this_pmp) {
2425 struct ata_link *link = &ap->pmp_link[pmp];
2426 pmp_map &= ~this_pmp;
2427 ata_eh_analyze_ncq_error(link);
2430 ata_port_freeze(ap);
2432 sata_pmp_error_handler(ap);
2435 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2437 void __iomem *port_mmio = mv_ap_base(ap);
2439 return readl(port_mmio + SATA_TESTCTL) >> 16;
2442 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2444 struct ata_eh_info *ehi;
2445 unsigned int pmp;
2448 * Initialize EH info for PMPs which saw device errors
2450 ehi = &ap->link.eh_info;
2451 for (pmp = 0; pmp_map != 0; pmp++) {
2452 unsigned int this_pmp = (1 << pmp);
2453 if (pmp_map & this_pmp) {
2454 struct ata_link *link = &ap->pmp_link[pmp];
2456 pmp_map &= ~this_pmp;
2457 ehi = &link->eh_info;
2458 ata_ehi_clear_desc(ehi);
2459 ata_ehi_push_desc(ehi, "dev err");
2460 ehi->err_mask |= AC_ERR_DEV;
2461 ehi->action |= ATA_EH_RESET;
2462 ata_link_abort(link);
2467 static int mv_req_q_empty(struct ata_port *ap)
2469 void __iomem *port_mmio = mv_ap_base(ap);
2470 u32 in_ptr, out_ptr;
2472 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2473 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2474 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2475 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2476 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2479 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2481 struct mv_port_priv *pp = ap->private_data;
2482 int failed_links;
2483 unsigned int old_map, new_map;
2486 * Device error during FBS+NCQ operation:
2488 * Set a port flag to prevent further I/O being enqueued.
2489 * Leave the EDMA running to drain outstanding commands from this port.
2490 * Perform the post-mortem/EH only when all responses are complete.
2491 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2493 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2494 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2495 pp->delayed_eh_pmp_map = 0;
2497 old_map = pp->delayed_eh_pmp_map;
2498 new_map = old_map | mv_get_err_pmp_map(ap);
2500 if (old_map != new_map) {
2501 pp->delayed_eh_pmp_map = new_map;
2502 mv_pmp_eh_prep(ap, new_map & ~old_map);
2504 failed_links = hweight16(new_map);
2506 ata_port_info(ap,
2507 "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2508 __func__, pp->delayed_eh_pmp_map,
2509 ap->qc_active, failed_links,
2510 ap->nr_active_links);
2512 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2513 mv_process_crpb_entries(ap, pp);
2514 mv_stop_edma(ap);
2515 mv_eh_freeze(ap);
2516 ata_port_info(ap, "%s: done\n", __func__);
2517 return 1; /* handled */
2519 ata_port_info(ap, "%s: waiting\n", __func__);
2520 return 1; /* handled */
2523 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2526 * Possible future enhancement:
2528 * FBS+non-NCQ operation is not yet implemented.
2529 * See related notes in mv_edma_cfg().
2531 * Device error during FBS+non-NCQ operation:
2533 * We need to snapshot the shadow registers for each failed command.
2534 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2536 return 0; /* not handled */
2539 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2541 struct mv_port_priv *pp = ap->private_data;
2543 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2544 return 0; /* EDMA was not active: not handled */
2545 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2546 return 0; /* FBS was not active: not handled */
2548 if (!(edma_err_cause & EDMA_ERR_DEV))
2549 return 0; /* non DEV error: not handled */
2550 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2551 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2552 return 0; /* other problems: not handled */
2554 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2556 * EDMA should NOT have self-disabled for this case.
2557 * If it did, then something is wrong elsewhere,
2558 * and we cannot handle it here.
2560 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2561 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2562 __func__, edma_err_cause, pp->pp_flags);
2563 return 0; /* not handled */
2565 return mv_handle_fbs_ncq_dev_err(ap);
2566 } else {
2568 * EDMA should have self-disabled for this case.
2569 * If it did not, then something is wrong elsewhere,
2570 * and we cannot handle it here.
2572 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2573 ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2574 __func__, edma_err_cause, pp->pp_flags);
2575 return 0; /* not handled */
2577 return mv_handle_fbs_non_ncq_dev_err(ap);
2579 return 0; /* not handled */
2582 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2584 struct ata_eh_info *ehi = &ap->link.eh_info;
2585 char *when = "idle";
2587 ata_ehi_clear_desc(ehi);
2588 if (edma_was_enabled) {
2589 when = "EDMA enabled";
2590 } else {
2591 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2592 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2593 when = "polling";
2595 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2596 ehi->err_mask |= AC_ERR_OTHER;
2597 ehi->action |= ATA_EH_RESET;
2598 ata_port_freeze(ap);
2602 * mv_err_intr - Handle error interrupts on the port
2603 * @ap: ATA channel to manipulate
2605 * Most cases require a full reset of the chip's state machine,
2606 * which also performs a COMRESET.
2607 * Also, if the port disabled DMA, update our cached copy to match.
2609 * LOCKING:
2610 * Inherited from caller.
2612 static void mv_err_intr(struct ata_port *ap)
2614 void __iomem *port_mmio = mv_ap_base(ap);
2615 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2616 u32 fis_cause = 0;
2617 struct mv_port_priv *pp = ap->private_data;
2618 struct mv_host_priv *hpriv = ap->host->private_data;
2619 unsigned int action = 0, err_mask = 0;
2620 struct ata_eh_info *ehi = &ap->link.eh_info;
2621 struct ata_queued_cmd *qc;
2622 int abort = 0;
2625 * Read and clear the SError and err_cause bits.
2626 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2627 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2629 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2630 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2632 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2633 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2634 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2635 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2637 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2639 if (edma_err_cause & EDMA_ERR_DEV) {
2641 * Device errors during FIS-based switching operation
2642 * require special handling.
2644 if (mv_handle_dev_err(ap, edma_err_cause))
2645 return;
2648 qc = mv_get_active_qc(ap);
2649 ata_ehi_clear_desc(ehi);
2650 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2651 edma_err_cause, pp->pp_flags);
2653 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2654 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2655 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2656 u32 ec = edma_err_cause &
2657 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2658 sata_async_notification(ap);
2659 if (!ec)
2660 return; /* Just an AN; no need for the nukes */
2661 ata_ehi_push_desc(ehi, "SDB notify");
2665 * All generations share these EDMA error cause bits:
2667 if (edma_err_cause & EDMA_ERR_DEV) {
2668 err_mask |= AC_ERR_DEV;
2669 action |= ATA_EH_RESET;
2670 ata_ehi_push_desc(ehi, "dev error");
2672 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2673 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2674 EDMA_ERR_INTRL_PAR)) {
2675 err_mask |= AC_ERR_ATA_BUS;
2676 action |= ATA_EH_RESET;
2677 ata_ehi_push_desc(ehi, "parity error");
2679 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2680 ata_ehi_hotplugged(ehi);
2681 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2682 "dev disconnect" : "dev connect");
2683 action |= ATA_EH_RESET;
2687 * Gen-I has a different SELF_DIS bit,
2688 * different FREEZE bits, and no SERR bit:
2690 if (IS_GEN_I(hpriv)) {
2691 eh_freeze_mask = EDMA_EH_FREEZE_5;
2692 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2693 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2694 ata_ehi_push_desc(ehi, "EDMA self-disable");
2696 } else {
2697 eh_freeze_mask = EDMA_EH_FREEZE;
2698 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2699 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2700 ata_ehi_push_desc(ehi, "EDMA self-disable");
2702 if (edma_err_cause & EDMA_ERR_SERR) {
2703 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2704 err_mask |= AC_ERR_ATA_BUS;
2705 action |= ATA_EH_RESET;
2709 if (!err_mask) {
2710 err_mask = AC_ERR_OTHER;
2711 action |= ATA_EH_RESET;
2714 ehi->serror |= serr;
2715 ehi->action |= action;
2717 if (qc)
2718 qc->err_mask |= err_mask;
2719 else
2720 ehi->err_mask |= err_mask;
2722 if (err_mask == AC_ERR_DEV) {
2724 * Cannot do ata_port_freeze() here,
2725 * because it would kill PIO access,
2726 * which is needed for further diagnosis.
2728 mv_eh_freeze(ap);
2729 abort = 1;
2730 } else if (edma_err_cause & eh_freeze_mask) {
2732 * Note to self: ata_port_freeze() calls ata_port_abort()
2734 ata_port_freeze(ap);
2735 } else {
2736 abort = 1;
2739 if (abort) {
2740 if (qc)
2741 ata_link_abort(qc->dev->link);
2742 else
2743 ata_port_abort(ap);
2747 static bool mv_process_crpb_response(struct ata_port *ap,
2748 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2750 u8 ata_status;
2751 u16 edma_status = le16_to_cpu(response->flags);
2754 * edma_status from a response queue entry:
2755 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2756 * MSB is saved ATA status from command completion.
2758 if (!ncq_enabled) {
2759 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2760 if (err_cause) {
2762 * Error will be seen/handled by
2763 * mv_err_intr(). So do nothing at all here.
2765 return false;
2768 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2769 if (!ac_err_mask(ata_status))
2770 return true;
2771 /* else: leave it for mv_err_intr() */
2772 return false;
2775 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2777 void __iomem *port_mmio = mv_ap_base(ap);
2778 struct mv_host_priv *hpriv = ap->host->private_data;
2779 u32 in_index;
2780 bool work_done = false;
2781 u32 done_mask = 0;
2782 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2784 /* Get the hardware queue position index */
2785 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2786 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2788 /* Process new responses from since the last time we looked */
2789 while (in_index != pp->resp_idx) {
2790 unsigned int tag;
2791 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2793 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2795 if (IS_GEN_I(hpriv)) {
2796 /* 50xx: no NCQ, only one command active at a time */
2797 tag = ap->link.active_tag;
2798 } else {
2799 /* Gen II/IIE: get command tag from CRPB entry */
2800 tag = le16_to_cpu(response->id) & 0x1f;
2802 if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2803 done_mask |= 1 << tag;
2804 work_done = true;
2807 if (work_done) {
2808 ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2810 /* Update the software queue position index in hardware */
2811 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2812 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2813 port_mmio + EDMA_RSP_Q_OUT_PTR);
2817 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2819 struct mv_port_priv *pp;
2820 int edma_was_enabled;
2823 * Grab a snapshot of the EDMA_EN flag setting,
2824 * so that we have a consistent view for this port,
2825 * even if something we call of our routines changes it.
2827 pp = ap->private_data;
2828 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2830 * Process completed CRPB response(s) before other events.
2832 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2833 mv_process_crpb_entries(ap, pp);
2834 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2835 mv_handle_fbs_ncq_dev_err(ap);
2838 * Handle chip-reported errors, or continue on to handle PIO.
2840 if (unlikely(port_cause & ERR_IRQ)) {
2841 mv_err_intr(ap);
2842 } else if (!edma_was_enabled) {
2843 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2844 if (qc)
2845 ata_bmdma_port_intr(ap, qc);
2846 else
2847 mv_unexpected_intr(ap, edma_was_enabled);
2852 * mv_host_intr - Handle all interrupts on the given host controller
2853 * @host: host specific structure
2854 * @main_irq_cause: Main interrupt cause register for the chip.
2856 * LOCKING:
2857 * Inherited from caller.
2859 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2861 struct mv_host_priv *hpriv = host->private_data;
2862 void __iomem *mmio = hpriv->base, *hc_mmio;
2863 unsigned int handled = 0, port;
2865 /* If asserted, clear the "all ports" IRQ coalescing bit */
2866 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2867 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2869 for (port = 0; port < hpriv->n_ports; port++) {
2870 struct ata_port *ap = host->ports[port];
2871 unsigned int p, shift, hardport, port_cause;
2873 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2875 * Each hc within the host has its own hc_irq_cause register,
2876 * where the interrupting ports bits get ack'd.
2878 if (hardport == 0) { /* first port on this hc ? */
2879 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2880 u32 port_mask, ack_irqs;
2882 * Skip this entire hc if nothing pending for any ports
2884 if (!hc_cause) {
2885 port += MV_PORTS_PER_HC - 1;
2886 continue;
2889 * We don't need/want to read the hc_irq_cause register,
2890 * because doing so hurts performance, and
2891 * main_irq_cause already gives us everything we need.
2893 * But we do have to *write* to the hc_irq_cause to ack
2894 * the ports that we are handling this time through.
2896 * This requires that we create a bitmap for those
2897 * ports which interrupted us, and use that bitmap
2898 * to ack (only) those ports via hc_irq_cause.
2900 ack_irqs = 0;
2901 if (hc_cause & PORTS_0_3_COAL_DONE)
2902 ack_irqs = HC_COAL_IRQ;
2903 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2904 if ((port + p) >= hpriv->n_ports)
2905 break;
2906 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2907 if (hc_cause & port_mask)
2908 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2910 hc_mmio = mv_hc_base_from_port(mmio, port);
2911 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2912 handled = 1;
2915 * Handle interrupts signalled for this port:
2917 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2918 if (port_cause)
2919 mv_port_intr(ap, port_cause);
2921 return handled;
2924 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2926 struct mv_host_priv *hpriv = host->private_data;
2927 struct ata_port *ap;
2928 struct ata_queued_cmd *qc;
2929 struct ata_eh_info *ehi;
2930 unsigned int i, err_mask, printed = 0;
2931 u32 err_cause;
2933 err_cause = readl(mmio + hpriv->irq_cause_offset);
2935 dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2937 DPRINTK("All regs @ PCI error\n");
2938 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2940 writelfl(0, mmio + hpriv->irq_cause_offset);
2942 for (i = 0; i < host->n_ports; i++) {
2943 ap = host->ports[i];
2944 if (!ata_link_offline(&ap->link)) {
2945 ehi = &ap->link.eh_info;
2946 ata_ehi_clear_desc(ehi);
2947 if (!printed++)
2948 ata_ehi_push_desc(ehi,
2949 "PCI err cause 0x%08x", err_cause);
2950 err_mask = AC_ERR_HOST_BUS;
2951 ehi->action = ATA_EH_RESET;
2952 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2953 if (qc)
2954 qc->err_mask |= err_mask;
2955 else
2956 ehi->err_mask |= err_mask;
2958 ata_port_freeze(ap);
2961 return 1; /* handled */
2965 * mv_interrupt - Main interrupt event handler
2966 * @irq: unused
2967 * @dev_instance: private data; in this case the host structure
2969 * Read the read only register to determine if any host
2970 * controllers have pending interrupts. If so, call lower level
2971 * routine to handle. Also check for PCI errors which are only
2972 * reported here.
2974 * LOCKING:
2975 * This routine holds the host lock while processing pending
2976 * interrupts.
2978 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2980 struct ata_host *host = dev_instance;
2981 struct mv_host_priv *hpriv = host->private_data;
2982 unsigned int handled = 0;
2983 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2984 u32 main_irq_cause, pending_irqs;
2986 spin_lock(&host->lock);
2988 /* for MSI: block new interrupts while in here */
2989 if (using_msi)
2990 mv_write_main_irq_mask(0, hpriv);
2992 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2993 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2995 * Deal with cases where we either have nothing pending, or have read
2996 * a bogus register value which can indicate HW removal or PCI fault.
2998 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2999 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3000 handled = mv_pci_error(host, hpriv->base);
3001 else
3002 handled = mv_host_intr(host, pending_irqs);
3005 /* for MSI: unmask; interrupt cause bits will retrigger now */
3006 if (using_msi)
3007 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3009 spin_unlock(&host->lock);
3011 return IRQ_RETVAL(handled);
3014 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3016 unsigned int ofs;
3018 switch (sc_reg_in) {
3019 case SCR_STATUS:
3020 case SCR_ERROR:
3021 case SCR_CONTROL:
3022 ofs = sc_reg_in * sizeof(u32);
3023 break;
3024 default:
3025 ofs = 0xffffffffU;
3026 break;
3028 return ofs;
3031 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3033 struct mv_host_priv *hpriv = link->ap->host->private_data;
3034 void __iomem *mmio = hpriv->base;
3035 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3036 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3038 if (ofs != 0xffffffffU) {
3039 *val = readl(addr + ofs);
3040 return 0;
3041 } else
3042 return -EINVAL;
3045 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3047 struct mv_host_priv *hpriv = link->ap->host->private_data;
3048 void __iomem *mmio = hpriv->base;
3049 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3050 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3052 if (ofs != 0xffffffffU) {
3053 writelfl(val, addr + ofs);
3054 return 0;
3055 } else
3056 return -EINVAL;
3059 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3061 struct pci_dev *pdev = to_pci_dev(host->dev);
3062 int early_5080;
3064 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3066 if (!early_5080) {
3067 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3068 tmp |= (1 << 0);
3069 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3072 mv_reset_pci_bus(host, mmio);
3075 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3077 writel(0x0fcfffff, mmio + FLASH_CTL);
3080 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3081 void __iomem *mmio)
3083 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3084 u32 tmp;
3086 tmp = readl(phy_mmio + MV5_PHY_MODE);
3088 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3089 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3092 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3094 u32 tmp;
3096 writel(0, mmio + GPIO_PORT_CTL);
3098 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3100 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3101 tmp |= ~(1 << 0);
3102 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3105 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3106 unsigned int port)
3108 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3109 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3110 u32 tmp;
3111 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3113 if (fix_apm_sq) {
3114 tmp = readl(phy_mmio + MV5_LTMODE);
3115 tmp |= (1 << 19);
3116 writel(tmp, phy_mmio + MV5_LTMODE);
3118 tmp = readl(phy_mmio + MV5_PHY_CTL);
3119 tmp &= ~0x3;
3120 tmp |= 0x1;
3121 writel(tmp, phy_mmio + MV5_PHY_CTL);
3124 tmp = readl(phy_mmio + MV5_PHY_MODE);
3125 tmp &= ~mask;
3126 tmp |= hpriv->signal[port].pre;
3127 tmp |= hpriv->signal[port].amps;
3128 writel(tmp, phy_mmio + MV5_PHY_MODE);
3132 #undef ZERO
3133 #define ZERO(reg) writel(0, port_mmio + (reg))
3134 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3135 unsigned int port)
3137 void __iomem *port_mmio = mv_port_base(mmio, port);
3139 mv_reset_channel(hpriv, mmio, port);
3141 ZERO(0x028); /* command */
3142 writel(0x11f, port_mmio + EDMA_CFG);
3143 ZERO(0x004); /* timer */
3144 ZERO(0x008); /* irq err cause */
3145 ZERO(0x00c); /* irq err mask */
3146 ZERO(0x010); /* rq bah */
3147 ZERO(0x014); /* rq inp */
3148 ZERO(0x018); /* rq outp */
3149 ZERO(0x01c); /* respq bah */
3150 ZERO(0x024); /* respq outp */
3151 ZERO(0x020); /* respq inp */
3152 ZERO(0x02c); /* test control */
3153 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3155 #undef ZERO
3157 #define ZERO(reg) writel(0, hc_mmio + (reg))
3158 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3159 unsigned int hc)
3161 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3162 u32 tmp;
3164 ZERO(0x00c);
3165 ZERO(0x010);
3166 ZERO(0x014);
3167 ZERO(0x018);
3169 tmp = readl(hc_mmio + 0x20);
3170 tmp &= 0x1c1c1c1c;
3171 tmp |= 0x03030303;
3172 writel(tmp, hc_mmio + 0x20);
3174 #undef ZERO
3176 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3177 unsigned int n_hc)
3179 unsigned int hc, port;
3181 for (hc = 0; hc < n_hc; hc++) {
3182 for (port = 0; port < MV_PORTS_PER_HC; port++)
3183 mv5_reset_hc_port(hpriv, mmio,
3184 (hc * MV_PORTS_PER_HC) + port);
3186 mv5_reset_one_hc(hpriv, mmio, hc);
3189 return 0;
3192 #undef ZERO
3193 #define ZERO(reg) writel(0, mmio + (reg))
3194 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3196 struct mv_host_priv *hpriv = host->private_data;
3197 u32 tmp;
3199 tmp = readl(mmio + MV_PCI_MODE);
3200 tmp &= 0xff00ffff;
3201 writel(tmp, mmio + MV_PCI_MODE);
3203 ZERO(MV_PCI_DISC_TIMER);
3204 ZERO(MV_PCI_MSI_TRIGGER);
3205 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3206 ZERO(MV_PCI_SERR_MASK);
3207 ZERO(hpriv->irq_cause_offset);
3208 ZERO(hpriv->irq_mask_offset);
3209 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3210 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3211 ZERO(MV_PCI_ERR_ATTRIBUTE);
3212 ZERO(MV_PCI_ERR_COMMAND);
3214 #undef ZERO
3216 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3218 u32 tmp;
3220 mv5_reset_flash(hpriv, mmio);
3222 tmp = readl(mmio + GPIO_PORT_CTL);
3223 tmp &= 0x3;
3224 tmp |= (1 << 5) | (1 << 6);
3225 writel(tmp, mmio + GPIO_PORT_CTL);
3229 * mv6_reset_hc - Perform the 6xxx global soft reset
3230 * @mmio: base address of the HBA
3232 * This routine only applies to 6xxx parts.
3234 * LOCKING:
3235 * Inherited from caller.
3237 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3238 unsigned int n_hc)
3240 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3241 int i, rc = 0;
3242 u32 t;
3244 /* Following procedure defined in PCI "main command and status
3245 * register" table.
3247 t = readl(reg);
3248 writel(t | STOP_PCI_MASTER, reg);
3250 for (i = 0; i < 1000; i++) {
3251 udelay(1);
3252 t = readl(reg);
3253 if (PCI_MASTER_EMPTY & t)
3254 break;
3256 if (!(PCI_MASTER_EMPTY & t)) {
3257 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3258 rc = 1;
3259 goto done;
3262 /* set reset */
3263 i = 5;
3264 do {
3265 writel(t | GLOB_SFT_RST, reg);
3266 t = readl(reg);
3267 udelay(1);
3268 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3270 if (!(GLOB_SFT_RST & t)) {
3271 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3272 rc = 1;
3273 goto done;
3276 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3277 i = 5;
3278 do {
3279 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3280 t = readl(reg);
3281 udelay(1);
3282 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3284 if (GLOB_SFT_RST & t) {
3285 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3286 rc = 1;
3288 done:
3289 return rc;
3292 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3293 void __iomem *mmio)
3295 void __iomem *port_mmio;
3296 u32 tmp;
3298 tmp = readl(mmio + RESET_CFG);
3299 if ((tmp & (1 << 0)) == 0) {
3300 hpriv->signal[idx].amps = 0x7 << 8;
3301 hpriv->signal[idx].pre = 0x1 << 5;
3302 return;
3305 port_mmio = mv_port_base(mmio, idx);
3306 tmp = readl(port_mmio + PHY_MODE2);
3308 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3309 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3312 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3314 writel(0x00000060, mmio + GPIO_PORT_CTL);
3317 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3318 unsigned int port)
3320 void __iomem *port_mmio = mv_port_base(mmio, port);
3322 u32 hp_flags = hpriv->hp_flags;
3323 int fix_phy_mode2 =
3324 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3325 int fix_phy_mode4 =
3326 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3327 u32 m2, m3;
3329 if (fix_phy_mode2) {
3330 m2 = readl(port_mmio + PHY_MODE2);
3331 m2 &= ~(1 << 16);
3332 m2 |= (1 << 31);
3333 writel(m2, port_mmio + PHY_MODE2);
3335 udelay(200);
3337 m2 = readl(port_mmio + PHY_MODE2);
3338 m2 &= ~((1 << 16) | (1 << 31));
3339 writel(m2, port_mmio + PHY_MODE2);
3341 udelay(200);
3345 * Gen-II/IIe PHY_MODE3 errata RM#2:
3346 * Achieves better receiver noise performance than the h/w default:
3348 m3 = readl(port_mmio + PHY_MODE3);
3349 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3351 /* Guideline 88F5182 (GL# SATA-S11) */
3352 if (IS_SOC(hpriv))
3353 m3 &= ~0x1c;
3355 if (fix_phy_mode4) {
3356 u32 m4 = readl(port_mmio + PHY_MODE4);
3358 * Enforce reserved-bit restrictions on GenIIe devices only.
3359 * For earlier chipsets, force only the internal config field
3360 * (workaround for errata FEr SATA#10 part 1).
3362 if (IS_GEN_IIE(hpriv))
3363 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3364 else
3365 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3366 writel(m4, port_mmio + PHY_MODE4);
3369 * Workaround for 60x1-B2 errata SATA#13:
3370 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3371 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3372 * Or ensure we use writelfl() when writing PHY_MODE4.
3374 writel(m3, port_mmio + PHY_MODE3);
3376 /* Revert values of pre-emphasis and signal amps to the saved ones */
3377 m2 = readl(port_mmio + PHY_MODE2);
3379 m2 &= ~MV_M2_PREAMP_MASK;
3380 m2 |= hpriv->signal[port].amps;
3381 m2 |= hpriv->signal[port].pre;
3382 m2 &= ~(1 << 16);
3384 /* according to mvSata 3.6.1, some IIE values are fixed */
3385 if (IS_GEN_IIE(hpriv)) {
3386 m2 &= ~0xC30FF01F;
3387 m2 |= 0x0000900F;
3390 writel(m2, port_mmio + PHY_MODE2);
3393 /* TODO: use the generic LED interface to configure the SATA Presence */
3394 /* & Acitivy LEDs on the board */
3395 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3396 void __iomem *mmio)
3398 return;
3401 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3402 void __iomem *mmio)
3404 void __iomem *port_mmio;
3405 u32 tmp;
3407 port_mmio = mv_port_base(mmio, idx);
3408 tmp = readl(port_mmio + PHY_MODE2);
3410 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3411 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3414 #undef ZERO
3415 #define ZERO(reg) writel(0, port_mmio + (reg))
3416 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3417 void __iomem *mmio, unsigned int port)
3419 void __iomem *port_mmio = mv_port_base(mmio, port);
3421 mv_reset_channel(hpriv, mmio, port);
3423 ZERO(0x028); /* command */
3424 writel(0x101f, port_mmio + EDMA_CFG);
3425 ZERO(0x004); /* timer */
3426 ZERO(0x008); /* irq err cause */
3427 ZERO(0x00c); /* irq err mask */
3428 ZERO(0x010); /* rq bah */
3429 ZERO(0x014); /* rq inp */
3430 ZERO(0x018); /* rq outp */
3431 ZERO(0x01c); /* respq bah */
3432 ZERO(0x024); /* respq outp */
3433 ZERO(0x020); /* respq inp */
3434 ZERO(0x02c); /* test control */
3435 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3438 #undef ZERO
3440 #define ZERO(reg) writel(0, hc_mmio + (reg))
3441 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3442 void __iomem *mmio)
3444 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3446 ZERO(0x00c);
3447 ZERO(0x010);
3448 ZERO(0x014);
3452 #undef ZERO
3454 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3455 void __iomem *mmio, unsigned int n_hc)
3457 unsigned int port;
3459 for (port = 0; port < hpriv->n_ports; port++)
3460 mv_soc_reset_hc_port(hpriv, mmio, port);
3462 mv_soc_reset_one_hc(hpriv, mmio);
3464 return 0;
3467 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3468 void __iomem *mmio)
3470 return;
3473 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3475 return;
3478 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3479 void __iomem *mmio, unsigned int port)
3481 void __iomem *port_mmio = mv_port_base(mmio, port);
3482 u32 reg;
3484 reg = readl(port_mmio + PHY_MODE3);
3485 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3486 reg |= (0x1 << 27);
3487 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3488 reg |= (0x1 << 29);
3489 writel(reg, port_mmio + PHY_MODE3);
3491 reg = readl(port_mmio + PHY_MODE4);
3492 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3493 reg |= (0x1 << 16);
3494 writel(reg, port_mmio + PHY_MODE4);
3496 reg = readl(port_mmio + PHY_MODE9_GEN2);
3497 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3498 reg |= 0x8;
3499 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3500 writel(reg, port_mmio + PHY_MODE9_GEN2);
3502 reg = readl(port_mmio + PHY_MODE9_GEN1);
3503 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3504 reg |= 0x8;
3505 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3506 writel(reg, port_mmio + PHY_MODE9_GEN1);
3510 * soc_is_65 - check if the soc is 65 nano device
3512 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3513 * register, this register should contain non-zero value and it exists only
3514 * in the 65 nano devices, when reading it from older devices we get 0.
3516 static bool soc_is_65n(struct mv_host_priv *hpriv)
3518 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3520 if (readl(port0_mmio + PHYCFG_OFS))
3521 return true;
3522 return false;
3525 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3527 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3529 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3530 if (want_gen2i)
3531 ifcfg |= (1 << 7); /* enable gen2i speed */
3532 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3535 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3536 unsigned int port_no)
3538 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3541 * The datasheet warns against setting EDMA_RESET when EDMA is active
3542 * (but doesn't say what the problem might be). So we first try
3543 * to disable the EDMA engine before doing the EDMA_RESET operation.
3545 mv_stop_edma_engine(port_mmio);
3546 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3548 if (!IS_GEN_I(hpriv)) {
3549 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3550 mv_setup_ifcfg(port_mmio, 1);
3553 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3554 * link, and physical layers. It resets all SATA interface registers
3555 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3557 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3558 udelay(25); /* allow reset propagation */
3559 writelfl(0, port_mmio + EDMA_CMD);
3561 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3563 if (IS_GEN_I(hpriv))
3564 mdelay(1);
3567 static void mv_pmp_select(struct ata_port *ap, int pmp)
3569 if (sata_pmp_supported(ap)) {
3570 void __iomem *port_mmio = mv_ap_base(ap);
3571 u32 reg = readl(port_mmio + SATA_IFCTL);
3572 int old = reg & 0xf;
3574 if (old != pmp) {
3575 reg = (reg & ~0xf) | pmp;
3576 writelfl(reg, port_mmio + SATA_IFCTL);
3581 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3582 unsigned long deadline)
3584 mv_pmp_select(link->ap, sata_srst_pmp(link));
3585 return sata_std_hardreset(link, class, deadline);
3588 static int mv_softreset(struct ata_link *link, unsigned int *class,
3589 unsigned long deadline)
3591 mv_pmp_select(link->ap, sata_srst_pmp(link));
3592 return ata_sff_softreset(link, class, deadline);
3595 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3596 unsigned long deadline)
3598 struct ata_port *ap = link->ap;
3599 struct mv_host_priv *hpriv = ap->host->private_data;
3600 struct mv_port_priv *pp = ap->private_data;
3601 void __iomem *mmio = hpriv->base;
3602 int rc, attempts = 0, extra = 0;
3603 u32 sstatus;
3604 bool online;
3606 mv_reset_channel(hpriv, mmio, ap->port_no);
3607 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3608 pp->pp_flags &=
3609 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3611 /* Workaround for errata FEr SATA#10 (part 2) */
3612 do {
3613 const unsigned long *timing =
3614 sata_ehc_deb_timing(&link->eh_context);
3616 rc = sata_link_hardreset(link, timing, deadline + extra,
3617 &online, NULL);
3618 rc = online ? -EAGAIN : rc;
3619 if (rc)
3620 return rc;
3621 sata_scr_read(link, SCR_STATUS, &sstatus);
3622 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3623 /* Force 1.5gb/s link speed and try again */
3624 mv_setup_ifcfg(mv_ap_base(ap), 0);
3625 if (time_after(jiffies + HZ, deadline))
3626 extra = HZ; /* only extend it once, max */
3628 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3629 mv_save_cached_regs(ap);
3630 mv_edma_cfg(ap, 0, 0);
3632 return rc;
3635 static void mv_eh_freeze(struct ata_port *ap)
3637 mv_stop_edma(ap);
3638 mv_enable_port_irqs(ap, 0);
3641 static void mv_eh_thaw(struct ata_port *ap)
3643 struct mv_host_priv *hpriv = ap->host->private_data;
3644 unsigned int port = ap->port_no;
3645 unsigned int hardport = mv_hardport_from_port(port);
3646 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3647 void __iomem *port_mmio = mv_ap_base(ap);
3648 u32 hc_irq_cause;
3650 /* clear EDMA errors on this port */
3651 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3653 /* clear pending irq events */
3654 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3655 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3657 mv_enable_port_irqs(ap, ERR_IRQ);
3661 * mv_port_init - Perform some early initialization on a single port.
3662 * @port: libata data structure storing shadow register addresses
3663 * @port_mmio: base address of the port
3665 * Initialize shadow register mmio addresses, clear outstanding
3666 * interrupts on the port, and unmask interrupts for the future
3667 * start of the port.
3669 * LOCKING:
3670 * Inherited from caller.
3672 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3674 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3676 /* PIO related setup
3678 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3679 port->error_addr =
3680 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3681 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3682 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3683 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3684 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3685 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3686 port->status_addr =
3687 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3688 /* special case: control/altstatus doesn't have ATA_REG_ address */
3689 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3691 /* Clear any currently outstanding port interrupt conditions */
3692 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3693 writelfl(readl(serr), serr);
3694 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3696 /* unmask all non-transient EDMA error interrupts */
3697 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3699 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3700 readl(port_mmio + EDMA_CFG),
3701 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3702 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3705 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3707 struct mv_host_priv *hpriv = host->private_data;
3708 void __iomem *mmio = hpriv->base;
3709 u32 reg;
3711 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3712 return 0; /* not PCI-X capable */
3713 reg = readl(mmio + MV_PCI_MODE);
3714 if ((reg & MV_PCI_MODE_MASK) == 0)
3715 return 0; /* conventional PCI mode */
3716 return 1; /* chip is in PCI-X mode */
3719 static int mv_pci_cut_through_okay(struct ata_host *host)
3721 struct mv_host_priv *hpriv = host->private_data;
3722 void __iomem *mmio = hpriv->base;
3723 u32 reg;
3725 if (!mv_in_pcix_mode(host)) {
3726 reg = readl(mmio + MV_PCI_COMMAND);
3727 if (reg & MV_PCI_COMMAND_MRDTRIG)
3728 return 0; /* not okay */
3730 return 1; /* okay */
3733 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3735 struct mv_host_priv *hpriv = host->private_data;
3736 void __iomem *mmio = hpriv->base;
3738 /* workaround for 60x1-B2 errata PCI#7 */
3739 if (mv_in_pcix_mode(host)) {
3740 u32 reg = readl(mmio + MV_PCI_COMMAND);
3741 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3745 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3747 struct pci_dev *pdev = to_pci_dev(host->dev);
3748 struct mv_host_priv *hpriv = host->private_data;
3749 u32 hp_flags = hpriv->hp_flags;
3751 switch (board_idx) {
3752 case chip_5080:
3753 hpriv->ops = &mv5xxx_ops;
3754 hp_flags |= MV_HP_GEN_I;
3756 switch (pdev->revision) {
3757 case 0x1:
3758 hp_flags |= MV_HP_ERRATA_50XXB0;
3759 break;
3760 case 0x3:
3761 hp_flags |= MV_HP_ERRATA_50XXB2;
3762 break;
3763 default:
3764 dev_warn(&pdev->dev,
3765 "Applying 50XXB2 workarounds to unknown rev\n");
3766 hp_flags |= MV_HP_ERRATA_50XXB2;
3767 break;
3769 break;
3771 case chip_504x:
3772 case chip_508x:
3773 hpriv->ops = &mv5xxx_ops;
3774 hp_flags |= MV_HP_GEN_I;
3776 switch (pdev->revision) {
3777 case 0x0:
3778 hp_flags |= MV_HP_ERRATA_50XXB0;
3779 break;
3780 case 0x3:
3781 hp_flags |= MV_HP_ERRATA_50XXB2;
3782 break;
3783 default:
3784 dev_warn(&pdev->dev,
3785 "Applying B2 workarounds to unknown rev\n");
3786 hp_flags |= MV_HP_ERRATA_50XXB2;
3787 break;
3789 break;
3791 case chip_604x:
3792 case chip_608x:
3793 hpriv->ops = &mv6xxx_ops;
3794 hp_flags |= MV_HP_GEN_II;
3796 switch (pdev->revision) {
3797 case 0x7:
3798 mv_60x1b2_errata_pci7(host);
3799 hp_flags |= MV_HP_ERRATA_60X1B2;
3800 break;
3801 case 0x9:
3802 hp_flags |= MV_HP_ERRATA_60X1C0;
3803 break;
3804 default:
3805 dev_warn(&pdev->dev,
3806 "Applying B2 workarounds to unknown rev\n");
3807 hp_flags |= MV_HP_ERRATA_60X1B2;
3808 break;
3810 break;
3812 case chip_7042:
3813 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3814 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3815 (pdev->device == 0x2300 || pdev->device == 0x2310))
3818 * Highpoint RocketRAID PCIe 23xx series cards:
3820 * Unconfigured drives are treated as "Legacy"
3821 * by the BIOS, and it overwrites sector 8 with
3822 * a "Lgcy" metadata block prior to Linux boot.
3824 * Configured drives (RAID or JBOD) leave sector 8
3825 * alone, but instead overwrite a high numbered
3826 * sector for the RAID metadata. This sector can
3827 * be determined exactly, by truncating the physical
3828 * drive capacity to a nice even GB value.
3830 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3832 * Warn the user, lest they think we're just buggy.
3834 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3835 " BIOS CORRUPTS DATA on all attached drives,"
3836 " regardless of if/how they are configured."
3837 " BEWARE!\n");
3838 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3839 " use sectors 8-9 on \"Legacy\" drives,"
3840 " and avoid the final two gigabytes on"
3841 " all RocketRAID BIOS initialized drives.\n");
3843 /* drop through */
3844 case chip_6042:
3845 hpriv->ops = &mv6xxx_ops;
3846 hp_flags |= MV_HP_GEN_IIE;
3847 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3848 hp_flags |= MV_HP_CUT_THROUGH;
3850 switch (pdev->revision) {
3851 case 0x2: /* Rev.B0: the first/only public release */
3852 hp_flags |= MV_HP_ERRATA_60X1C0;
3853 break;
3854 default:
3855 dev_warn(&pdev->dev,
3856 "Applying 60X1C0 workarounds to unknown rev\n");
3857 hp_flags |= MV_HP_ERRATA_60X1C0;
3858 break;
3860 break;
3861 case chip_soc:
3862 if (soc_is_65n(hpriv))
3863 hpriv->ops = &mv_soc_65n_ops;
3864 else
3865 hpriv->ops = &mv_soc_ops;
3866 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3867 MV_HP_ERRATA_60X1C0;
3868 break;
3870 default:
3871 dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3872 return 1;
3875 hpriv->hp_flags = hp_flags;
3876 if (hp_flags & MV_HP_PCIE) {
3877 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3878 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3879 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3880 } else {
3881 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3882 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3883 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3886 return 0;
3890 * mv_init_host - Perform some early initialization of the host.
3891 * @host: ATA host to initialize
3893 * If possible, do an early global reset of the host. Then do
3894 * our port init and clear/unmask all/relevant host interrupts.
3896 * LOCKING:
3897 * Inherited from caller.
3899 static int mv_init_host(struct ata_host *host)
3901 int rc = 0, n_hc, port, hc;
3902 struct mv_host_priv *hpriv = host->private_data;
3903 void __iomem *mmio = hpriv->base;
3905 rc = mv_chip_id(host, hpriv->board_idx);
3906 if (rc)
3907 goto done;
3909 if (IS_SOC(hpriv)) {
3910 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3911 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3912 } else {
3913 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3914 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3917 /* initialize shadow irq mask with register's value */
3918 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3920 /* global interrupt mask: 0 == mask everything */
3921 mv_set_main_irq_mask(host, ~0, 0);
3923 n_hc = mv_get_hc_count(host->ports[0]->flags);
3925 for (port = 0; port < host->n_ports; port++)
3926 if (hpriv->ops->read_preamp)
3927 hpriv->ops->read_preamp(hpriv, port, mmio);
3929 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3930 if (rc)
3931 goto done;
3933 hpriv->ops->reset_flash(hpriv, mmio);
3934 hpriv->ops->reset_bus(host, mmio);
3935 hpriv->ops->enable_leds(hpriv, mmio);
3937 for (port = 0; port < host->n_ports; port++) {
3938 struct ata_port *ap = host->ports[port];
3939 void __iomem *port_mmio = mv_port_base(mmio, port);
3941 mv_port_init(&ap->ioaddr, port_mmio);
3944 for (hc = 0; hc < n_hc; hc++) {
3945 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3947 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3948 "(before clear)=0x%08x\n", hc,
3949 readl(hc_mmio + HC_CFG),
3950 readl(hc_mmio + HC_IRQ_CAUSE));
3952 /* Clear any currently outstanding hc interrupt conditions */
3953 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3956 if (!IS_SOC(hpriv)) {
3957 /* Clear any currently outstanding host interrupt conditions */
3958 writelfl(0, mmio + hpriv->irq_cause_offset);
3960 /* and unmask interrupt generation for host regs */
3961 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3965 * enable only global host interrupts for now.
3966 * The per-port interrupts get done later as ports are set up.
3968 mv_set_main_irq_mask(host, 0, PCI_ERR);
3969 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3970 irq_coalescing_usecs);
3971 done:
3972 return rc;
3975 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3977 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3978 MV_CRQB_Q_SZ, 0);
3979 if (!hpriv->crqb_pool)
3980 return -ENOMEM;
3982 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3983 MV_CRPB_Q_SZ, 0);
3984 if (!hpriv->crpb_pool)
3985 return -ENOMEM;
3987 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3988 MV_SG_TBL_SZ, 0);
3989 if (!hpriv->sg_tbl_pool)
3990 return -ENOMEM;
3992 return 0;
3995 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3996 const struct mbus_dram_target_info *dram)
3998 int i;
4000 for (i = 0; i < 4; i++) {
4001 writel(0, hpriv->base + WINDOW_CTRL(i));
4002 writel(0, hpriv->base + WINDOW_BASE(i));
4005 for (i = 0; i < dram->num_cs; i++) {
4006 const struct mbus_dram_window *cs = dram->cs + i;
4008 writel(((cs->size - 1) & 0xffff0000) |
4009 (cs->mbus_attr << 8) |
4010 (dram->mbus_dram_target_id << 4) | 1,
4011 hpriv->base + WINDOW_CTRL(i));
4012 writel(cs->base, hpriv->base + WINDOW_BASE(i));
4017 * mv_platform_probe - handle a positive probe of an soc Marvell
4018 * host
4019 * @pdev: platform device found
4021 * LOCKING:
4022 * Inherited from caller.
4024 static int mv_platform_probe(struct platform_device *pdev)
4026 const struct mv_sata_platform_data *mv_platform_data;
4027 const struct mbus_dram_target_info *dram;
4028 const struct ata_port_info *ppi[] =
4029 { &mv_port_info[chip_soc], NULL };
4030 struct ata_host *host;
4031 struct mv_host_priv *hpriv;
4032 struct resource *res;
4033 int n_ports = 0, irq = 0;
4034 int rc;
4035 #if defined(CONFIG_HAVE_CLK)
4036 int port;
4037 #endif
4039 ata_print_version_once(&pdev->dev, DRV_VERSION);
4042 * Simple resource validation ..
4044 if (unlikely(pdev->num_resources != 2)) {
4045 dev_err(&pdev->dev, "invalid number of resources\n");
4046 return -EINVAL;
4050 * Get the register base first
4052 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4053 if (res == NULL)
4054 return -EINVAL;
4056 /* allocate host */
4057 if (pdev->dev.of_node) {
4058 of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4059 irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4060 } else {
4061 mv_platform_data = pdev->dev.platform_data;
4062 n_ports = mv_platform_data->n_ports;
4063 irq = platform_get_irq(pdev, 0);
4066 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4067 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4069 if (!host || !hpriv)
4070 return -ENOMEM;
4071 #if defined(CONFIG_HAVE_CLK)
4072 hpriv->port_clks = devm_kzalloc(&pdev->dev,
4073 sizeof(struct clk *) * n_ports,
4074 GFP_KERNEL);
4075 if (!hpriv->port_clks)
4076 return -ENOMEM;
4077 #endif
4078 host->private_data = hpriv;
4079 hpriv->n_ports = n_ports;
4080 hpriv->board_idx = chip_soc;
4082 host->iomap = NULL;
4083 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4084 resource_size(res));
4085 hpriv->base -= SATAHC0_REG_BASE;
4087 #if defined(CONFIG_HAVE_CLK)
4088 hpriv->clk = clk_get(&pdev->dev, NULL);
4089 if (IS_ERR(hpriv->clk))
4090 dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4091 else
4092 clk_prepare_enable(hpriv->clk);
4094 for (port = 0; port < n_ports; port++) {
4095 char port_number[16];
4096 sprintf(port_number, "%d", port);
4097 hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4098 if (!IS_ERR(hpriv->port_clks[port]))
4099 clk_prepare_enable(hpriv->port_clks[port]);
4101 #endif
4104 * (Re-)program MBUS remapping windows if we are asked to.
4106 dram = mv_mbus_dram_info();
4107 if (dram)
4108 mv_conf_mbus_windows(hpriv, dram);
4110 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4111 if (rc)
4112 goto err;
4114 /* initialize adapter */
4115 rc = mv_init_host(host);
4116 if (rc)
4117 goto err;
4119 dev_info(&pdev->dev, "slots %u ports %d\n",
4120 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4122 rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4123 if (!rc)
4124 return 0;
4126 err:
4127 #if defined(CONFIG_HAVE_CLK)
4128 if (!IS_ERR(hpriv->clk)) {
4129 clk_disable_unprepare(hpriv->clk);
4130 clk_put(hpriv->clk);
4132 for (port = 0; port < n_ports; port++) {
4133 if (!IS_ERR(hpriv->port_clks[port])) {
4134 clk_disable_unprepare(hpriv->port_clks[port]);
4135 clk_put(hpriv->port_clks[port]);
4138 #endif
4140 return rc;
4145 * mv_platform_remove - unplug a platform interface
4146 * @pdev: platform device
4148 * A platform bus SATA device has been unplugged. Perform the needed
4149 * cleanup. Also called on module unload for any active devices.
4151 static int __devexit mv_platform_remove(struct platform_device *pdev)
4153 struct ata_host *host = platform_get_drvdata(pdev);
4154 #if defined(CONFIG_HAVE_CLK)
4155 struct mv_host_priv *hpriv = host->private_data;
4156 int port;
4157 #endif
4158 ata_host_detach(host);
4160 #if defined(CONFIG_HAVE_CLK)
4161 if (!IS_ERR(hpriv->clk)) {
4162 clk_disable_unprepare(hpriv->clk);
4163 clk_put(hpriv->clk);
4165 for (port = 0; port < host->n_ports; port++) {
4166 if (!IS_ERR(hpriv->port_clks[port])) {
4167 clk_disable_unprepare(hpriv->port_clks[port]);
4168 clk_put(hpriv->port_clks[port]);
4171 #endif
4172 return 0;
4175 #ifdef CONFIG_PM
4176 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4178 struct ata_host *host = platform_get_drvdata(pdev);
4179 if (host)
4180 return ata_host_suspend(host, state);
4181 else
4182 return 0;
4185 static int mv_platform_resume(struct platform_device *pdev)
4187 struct ata_host *host = platform_get_drvdata(pdev);
4188 const struct mbus_dram_target_info *dram;
4189 int ret;
4191 if (host) {
4192 struct mv_host_priv *hpriv = host->private_data;
4195 * (Re-)program MBUS remapping windows if we are asked to.
4197 dram = mv_mbus_dram_info();
4198 if (dram)
4199 mv_conf_mbus_windows(hpriv, dram);
4201 /* initialize adapter */
4202 ret = mv_init_host(host);
4203 if (ret) {
4204 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4205 return ret;
4207 ata_host_resume(host);
4210 return 0;
4212 #else
4213 #define mv_platform_suspend NULL
4214 #define mv_platform_resume NULL
4215 #endif
4217 #ifdef CONFIG_OF
4218 static struct of_device_id mv_sata_dt_ids[] __devinitdata = {
4219 { .compatible = "marvell,orion-sata", },
4222 MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4223 #endif
4225 static struct platform_driver mv_platform_driver = {
4226 .probe = mv_platform_probe,
4227 .remove = __devexit_p(mv_platform_remove),
4228 .suspend = mv_platform_suspend,
4229 .resume = mv_platform_resume,
4230 .driver = {
4231 .name = DRV_NAME,
4232 .owner = THIS_MODULE,
4233 .of_match_table = of_match_ptr(mv_sata_dt_ids),
4238 #ifdef CONFIG_PCI
4239 static int mv_pci_init_one(struct pci_dev *pdev,
4240 const struct pci_device_id *ent);
4241 #ifdef CONFIG_PM
4242 static int mv_pci_device_resume(struct pci_dev *pdev);
4243 #endif
4246 static struct pci_driver mv_pci_driver = {
4247 .name = DRV_NAME,
4248 .id_table = mv_pci_tbl,
4249 .probe = mv_pci_init_one,
4250 .remove = ata_pci_remove_one,
4251 #ifdef CONFIG_PM
4252 .suspend = ata_pci_device_suspend,
4253 .resume = mv_pci_device_resume,
4254 #endif
4258 /* move to PCI layer or libata core? */
4259 static int pci_go_64(struct pci_dev *pdev)
4261 int rc;
4263 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4264 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4265 if (rc) {
4266 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4267 if (rc) {
4268 dev_err(&pdev->dev,
4269 "64-bit DMA enable failed\n");
4270 return rc;
4273 } else {
4274 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4275 if (rc) {
4276 dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4277 return rc;
4279 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4280 if (rc) {
4281 dev_err(&pdev->dev,
4282 "32-bit consistent DMA enable failed\n");
4283 return rc;
4287 return rc;
4291 * mv_print_info - Dump key info to kernel log for perusal.
4292 * @host: ATA host to print info about
4294 * FIXME: complete this.
4296 * LOCKING:
4297 * Inherited from caller.
4299 static void mv_print_info(struct ata_host *host)
4301 struct pci_dev *pdev = to_pci_dev(host->dev);
4302 struct mv_host_priv *hpriv = host->private_data;
4303 u8 scc;
4304 const char *scc_s, *gen;
4306 /* Use this to determine the HW stepping of the chip so we know
4307 * what errata to workaround
4309 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4310 if (scc == 0)
4311 scc_s = "SCSI";
4312 else if (scc == 0x01)
4313 scc_s = "RAID";
4314 else
4315 scc_s = "?";
4317 if (IS_GEN_I(hpriv))
4318 gen = "I";
4319 else if (IS_GEN_II(hpriv))
4320 gen = "II";
4321 else if (IS_GEN_IIE(hpriv))
4322 gen = "IIE";
4323 else
4324 gen = "?";
4326 dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4327 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4328 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4332 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4333 * @pdev: PCI device found
4334 * @ent: PCI device ID entry for the matched host
4336 * LOCKING:
4337 * Inherited from caller.
4339 static int mv_pci_init_one(struct pci_dev *pdev,
4340 const struct pci_device_id *ent)
4342 unsigned int board_idx = (unsigned int)ent->driver_data;
4343 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4344 struct ata_host *host;
4345 struct mv_host_priv *hpriv;
4346 int n_ports, port, rc;
4348 ata_print_version_once(&pdev->dev, DRV_VERSION);
4350 /* allocate host */
4351 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4353 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4354 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4355 if (!host || !hpriv)
4356 return -ENOMEM;
4357 host->private_data = hpriv;
4358 hpriv->n_ports = n_ports;
4359 hpriv->board_idx = board_idx;
4361 /* acquire resources */
4362 rc = pcim_enable_device(pdev);
4363 if (rc)
4364 return rc;
4366 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4367 if (rc == -EBUSY)
4368 pcim_pin_device(pdev);
4369 if (rc)
4370 return rc;
4371 host->iomap = pcim_iomap_table(pdev);
4372 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4374 rc = pci_go_64(pdev);
4375 if (rc)
4376 return rc;
4378 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4379 if (rc)
4380 return rc;
4382 for (port = 0; port < host->n_ports; port++) {
4383 struct ata_port *ap = host->ports[port];
4384 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4385 unsigned int offset = port_mmio - hpriv->base;
4387 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4388 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4391 /* initialize adapter */
4392 rc = mv_init_host(host);
4393 if (rc)
4394 return rc;
4396 /* Enable message-switched interrupts, if requested */
4397 if (msi && pci_enable_msi(pdev) == 0)
4398 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4400 mv_dump_pci_cfg(pdev, 0x68);
4401 mv_print_info(host);
4403 pci_set_master(pdev);
4404 pci_try_set_mwi(pdev);
4405 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4406 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4409 #ifdef CONFIG_PM
4410 static int mv_pci_device_resume(struct pci_dev *pdev)
4412 struct ata_host *host = pci_get_drvdata(pdev);
4413 int rc;
4415 rc = ata_pci_device_do_resume(pdev);
4416 if (rc)
4417 return rc;
4419 /* initialize adapter */
4420 rc = mv_init_host(host);
4421 if (rc)
4422 return rc;
4424 ata_host_resume(host);
4426 return 0;
4428 #endif
4429 #endif
4431 static int mv_platform_probe(struct platform_device *pdev);
4432 static int __devexit mv_platform_remove(struct platform_device *pdev);
4434 static int __init mv_init(void)
4436 int rc = -ENODEV;
4437 #ifdef CONFIG_PCI
4438 rc = pci_register_driver(&mv_pci_driver);
4439 if (rc < 0)
4440 return rc;
4441 #endif
4442 rc = platform_driver_register(&mv_platform_driver);
4444 #ifdef CONFIG_PCI
4445 if (rc < 0)
4446 pci_unregister_driver(&mv_pci_driver);
4447 #endif
4448 return rc;
4451 static void __exit mv_exit(void)
4453 #ifdef CONFIG_PCI
4454 pci_unregister_driver(&mv_pci_driver);
4455 #endif
4456 platform_driver_unregister(&mv_platform_driver);
4459 MODULE_AUTHOR("Brett Russ");
4460 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4461 MODULE_LICENSE("GPL");
4462 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4463 MODULE_VERSION(DRV_VERSION);
4464 MODULE_ALIAS("platform:" DRV_NAME);
4466 module_init(mv_init);
4467 module_exit(mv_exit);