media: stv06xx: add missing descriptor sanity checks
[linux/fpc-iii.git] / drivers / infiniband / hw / hfi1 / user_exp_rcv.c
blob4da03f82347492001c5e0fb49af5393087be9b4b
1 /*
2 * Copyright(c) 2015-2018 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
7 * GPL LICENSE SUMMARY
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * BSD LICENSE
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 #include <asm/page.h>
48 #include <linux/string.h>
50 #include "mmu_rb.h"
51 #include "user_exp_rcv.h"
52 #include "trace.h"
54 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
55 struct exp_tid_set *set,
56 struct hfi1_filedata *fd);
57 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages);
58 static int set_rcvarray_entry(struct hfi1_filedata *fd,
59 struct tid_user_buf *tbuf,
60 u32 rcventry, struct tid_group *grp,
61 u16 pageidx, unsigned int npages);
62 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
63 struct tid_rb_node *tnode);
64 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
65 const struct mmu_notifier_range *range,
66 unsigned long cur_seq);
67 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *,
68 struct tid_group *grp,
69 unsigned int start, u16 count,
70 u32 *tidlist, unsigned int *tididx,
71 unsigned int *pmapped);
72 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
73 struct tid_group **grp);
74 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node);
76 static const struct mmu_interval_notifier_ops tid_mn_ops = {
77 .invalidate = tid_rb_invalidate,
81 * Initialize context and file private data needed for Expected
82 * receive caching. This needs to be done after the context has
83 * been configured with the eager/expected RcvEntry counts.
85 int hfi1_user_exp_rcv_init(struct hfi1_filedata *fd,
86 struct hfi1_ctxtdata *uctxt)
88 int ret = 0;
90 fd->entry_to_rb = kcalloc(uctxt->expected_count,
91 sizeof(struct rb_node *),
92 GFP_KERNEL);
93 if (!fd->entry_to_rb)
94 return -ENOMEM;
96 if (!HFI1_CAP_UGET_MASK(uctxt->flags, TID_UNMAP)) {
97 fd->invalid_tid_idx = 0;
98 fd->invalid_tids = kcalloc(uctxt->expected_count,
99 sizeof(*fd->invalid_tids),
100 GFP_KERNEL);
101 if (!fd->invalid_tids) {
102 kfree(fd->entry_to_rb);
103 fd->entry_to_rb = NULL;
104 return -ENOMEM;
106 fd->use_mn = true;
110 * PSM does not have a good way to separate, count, and
111 * effectively enforce a limit on RcvArray entries used by
112 * subctxts (when context sharing is used) when TID caching
113 * is enabled. To help with that, we calculate a per-process
114 * RcvArray entry share and enforce that.
115 * If TID caching is not in use, PSM deals with usage on its
116 * own. In that case, we allow any subctxt to take all of the
117 * entries.
119 * Make sure that we set the tid counts only after successful
120 * init.
122 spin_lock(&fd->tid_lock);
123 if (uctxt->subctxt_cnt && fd->use_mn) {
124 u16 remainder;
126 fd->tid_limit = uctxt->expected_count / uctxt->subctxt_cnt;
127 remainder = uctxt->expected_count % uctxt->subctxt_cnt;
128 if (remainder && fd->subctxt < remainder)
129 fd->tid_limit++;
130 } else {
131 fd->tid_limit = uctxt->expected_count;
133 spin_unlock(&fd->tid_lock);
135 return ret;
138 void hfi1_user_exp_rcv_free(struct hfi1_filedata *fd)
140 struct hfi1_ctxtdata *uctxt = fd->uctxt;
142 mutex_lock(&uctxt->exp_mutex);
143 if (!EXP_TID_SET_EMPTY(uctxt->tid_full_list))
144 unlock_exp_tids(uctxt, &uctxt->tid_full_list, fd);
145 if (!EXP_TID_SET_EMPTY(uctxt->tid_used_list))
146 unlock_exp_tids(uctxt, &uctxt->tid_used_list, fd);
147 mutex_unlock(&uctxt->exp_mutex);
149 kfree(fd->invalid_tids);
150 fd->invalid_tids = NULL;
152 kfree(fd->entry_to_rb);
153 fd->entry_to_rb = NULL;
157 * Release pinned receive buffer pages.
159 * @mapped - true if the pages have been DMA mapped. false otherwise.
160 * @idx - Index of the first page to unpin.
161 * @npages - No of pages to unpin.
163 * If the pages have been DMA mapped (indicated by mapped parameter), their
164 * info will be passed via a struct tid_rb_node. If they haven't been mapped,
165 * their info will be passed via a struct tid_user_buf.
167 static void unpin_rcv_pages(struct hfi1_filedata *fd,
168 struct tid_user_buf *tidbuf,
169 struct tid_rb_node *node,
170 unsigned int idx,
171 unsigned int npages,
172 bool mapped)
174 struct page **pages;
175 struct hfi1_devdata *dd = fd->uctxt->dd;
177 if (mapped) {
178 pci_unmap_single(dd->pcidev, node->dma_addr,
179 node->npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
180 pages = &node->pages[idx];
181 } else {
182 pages = &tidbuf->pages[idx];
184 hfi1_release_user_pages(fd->mm, pages, npages, mapped);
185 fd->tid_n_pinned -= npages;
189 * Pin receive buffer pages.
191 static int pin_rcv_pages(struct hfi1_filedata *fd, struct tid_user_buf *tidbuf)
193 int pinned;
194 unsigned int npages;
195 unsigned long vaddr = tidbuf->vaddr;
196 struct page **pages = NULL;
197 struct hfi1_devdata *dd = fd->uctxt->dd;
199 /* Get the number of pages the user buffer spans */
200 npages = num_user_pages(vaddr, tidbuf->length);
201 if (!npages)
202 return -EINVAL;
204 if (npages > fd->uctxt->expected_count) {
205 dd_dev_err(dd, "Expected buffer too big\n");
206 return -EINVAL;
209 /* Verify that access is OK for the user buffer */
210 if (!access_ok((void __user *)vaddr,
211 npages * PAGE_SIZE)) {
212 dd_dev_err(dd, "Fail vaddr %p, %u pages, !access_ok\n",
213 (void *)vaddr, npages);
214 return -EFAULT;
216 /* Allocate the array of struct page pointers needed for pinning */
217 pages = kcalloc(npages, sizeof(*pages), GFP_KERNEL);
218 if (!pages)
219 return -ENOMEM;
222 * Pin all the pages of the user buffer. If we can't pin all the
223 * pages, accept the amount pinned so far and program only that.
224 * User space knows how to deal with partially programmed buffers.
226 if (!hfi1_can_pin_pages(dd, fd->mm, fd->tid_n_pinned, npages)) {
227 kfree(pages);
228 return -ENOMEM;
231 pinned = hfi1_acquire_user_pages(fd->mm, vaddr, npages, true, pages);
232 if (pinned <= 0) {
233 kfree(pages);
234 return pinned;
236 tidbuf->pages = pages;
237 tidbuf->npages = npages;
238 fd->tid_n_pinned += pinned;
239 return pinned;
243 * RcvArray entry allocation for Expected Receives is done by the
244 * following algorithm:
246 * The context keeps 3 lists of groups of RcvArray entries:
247 * 1. List of empty groups - tid_group_list
248 * This list is created during user context creation and
249 * contains elements which describe sets (of 8) of empty
250 * RcvArray entries.
251 * 2. List of partially used groups - tid_used_list
252 * This list contains sets of RcvArray entries which are
253 * not completely used up. Another mapping request could
254 * use some of all of the remaining entries.
255 * 3. List of full groups - tid_full_list
256 * This is the list where sets that are completely used
257 * up go.
259 * An attempt to optimize the usage of RcvArray entries is
260 * made by finding all sets of physically contiguous pages in a
261 * user's buffer.
262 * These physically contiguous sets are further split into
263 * sizes supported by the receive engine of the HFI. The
264 * resulting sets of pages are stored in struct tid_pageset,
265 * which describes the sets as:
266 * * .count - number of pages in this set
267 * * .idx - starting index into struct page ** array
268 * of this set
270 * From this point on, the algorithm deals with the page sets
271 * described above. The number of pagesets is divided by the
272 * RcvArray group size to produce the number of full groups
273 * needed.
275 * Groups from the 3 lists are manipulated using the following
276 * rules:
277 * 1. For each set of 8 pagesets, a complete group from
278 * tid_group_list is taken, programmed, and moved to
279 * the tid_full_list list.
280 * 2. For all remaining pagesets:
281 * 2.1 If the tid_used_list is empty and the tid_group_list
282 * is empty, stop processing pageset and return only
283 * what has been programmed up to this point.
284 * 2.2 If the tid_used_list is empty and the tid_group_list
285 * is not empty, move a group from tid_group_list to
286 * tid_used_list.
287 * 2.3 For each group is tid_used_group, program as much as
288 * can fit into the group. If the group becomes fully
289 * used, move it to tid_full_list.
291 int hfi1_user_exp_rcv_setup(struct hfi1_filedata *fd,
292 struct hfi1_tid_info *tinfo)
294 int ret = 0, need_group = 0, pinned;
295 struct hfi1_ctxtdata *uctxt = fd->uctxt;
296 struct hfi1_devdata *dd = uctxt->dd;
297 unsigned int ngroups, pageidx = 0, pageset_count,
298 tididx = 0, mapped, mapped_pages = 0;
299 u32 *tidlist = NULL;
300 struct tid_user_buf *tidbuf;
302 if (!PAGE_ALIGNED(tinfo->vaddr))
303 return -EINVAL;
305 tidbuf = kzalloc(sizeof(*tidbuf), GFP_KERNEL);
306 if (!tidbuf)
307 return -ENOMEM;
309 tidbuf->vaddr = tinfo->vaddr;
310 tidbuf->length = tinfo->length;
311 tidbuf->psets = kcalloc(uctxt->expected_count, sizeof(*tidbuf->psets),
312 GFP_KERNEL);
313 if (!tidbuf->psets) {
314 kfree(tidbuf);
315 return -ENOMEM;
318 pinned = pin_rcv_pages(fd, tidbuf);
319 if (pinned <= 0) {
320 kfree(tidbuf->psets);
321 kfree(tidbuf);
322 return pinned;
325 /* Find sets of physically contiguous pages */
326 tidbuf->n_psets = find_phys_blocks(tidbuf, pinned);
329 * We don't need to access this under a lock since tid_used is per
330 * process and the same process cannot be in hfi1_user_exp_rcv_clear()
331 * and hfi1_user_exp_rcv_setup() at the same time.
333 spin_lock(&fd->tid_lock);
334 if (fd->tid_used + tidbuf->n_psets > fd->tid_limit)
335 pageset_count = fd->tid_limit - fd->tid_used;
336 else
337 pageset_count = tidbuf->n_psets;
338 spin_unlock(&fd->tid_lock);
340 if (!pageset_count)
341 goto bail;
343 ngroups = pageset_count / dd->rcv_entries.group_size;
344 tidlist = kcalloc(pageset_count, sizeof(*tidlist), GFP_KERNEL);
345 if (!tidlist) {
346 ret = -ENOMEM;
347 goto nomem;
350 tididx = 0;
353 * From this point on, we are going to be using shared (between master
354 * and subcontexts) context resources. We need to take the lock.
356 mutex_lock(&uctxt->exp_mutex);
358 * The first step is to program the RcvArray entries which are complete
359 * groups.
361 while (ngroups && uctxt->tid_group_list.count) {
362 struct tid_group *grp =
363 tid_group_pop(&uctxt->tid_group_list);
365 ret = program_rcvarray(fd, tidbuf, grp,
366 pageidx, dd->rcv_entries.group_size,
367 tidlist, &tididx, &mapped);
369 * If there was a failure to program the RcvArray
370 * entries for the entire group, reset the grp fields
371 * and add the grp back to the free group list.
373 if (ret <= 0) {
374 tid_group_add_tail(grp, &uctxt->tid_group_list);
375 hfi1_cdbg(TID,
376 "Failed to program RcvArray group %d", ret);
377 goto unlock;
380 tid_group_add_tail(grp, &uctxt->tid_full_list);
381 ngroups--;
382 pageidx += ret;
383 mapped_pages += mapped;
386 while (pageidx < pageset_count) {
387 struct tid_group *grp, *ptr;
389 * If we don't have any partially used tid groups, check
390 * if we have empty groups. If so, take one from there and
391 * put in the partially used list.
393 if (!uctxt->tid_used_list.count || need_group) {
394 if (!uctxt->tid_group_list.count)
395 goto unlock;
397 grp = tid_group_pop(&uctxt->tid_group_list);
398 tid_group_add_tail(grp, &uctxt->tid_used_list);
399 need_group = 0;
402 * There is an optimization opportunity here - instead of
403 * fitting as many page sets as we can, check for a group
404 * later on in the list that could fit all of them.
406 list_for_each_entry_safe(grp, ptr, &uctxt->tid_used_list.list,
407 list) {
408 unsigned use = min_t(unsigned, pageset_count - pageidx,
409 grp->size - grp->used);
411 ret = program_rcvarray(fd, tidbuf, grp,
412 pageidx, use, tidlist,
413 &tididx, &mapped);
414 if (ret < 0) {
415 hfi1_cdbg(TID,
416 "Failed to program RcvArray entries %d",
417 ret);
418 goto unlock;
419 } else if (ret > 0) {
420 if (grp->used == grp->size)
421 tid_group_move(grp,
422 &uctxt->tid_used_list,
423 &uctxt->tid_full_list);
424 pageidx += ret;
425 mapped_pages += mapped;
426 need_group = 0;
427 /* Check if we are done so we break out early */
428 if (pageidx >= pageset_count)
429 break;
430 } else if (WARN_ON(ret == 0)) {
432 * If ret is 0, we did not program any entries
433 * into this group, which can only happen if
434 * we've screwed up the accounting somewhere.
435 * Warn and try to continue.
437 need_group = 1;
441 unlock:
442 mutex_unlock(&uctxt->exp_mutex);
443 nomem:
444 hfi1_cdbg(TID, "total mapped: tidpairs:%u pages:%u (%d)", tididx,
445 mapped_pages, ret);
446 if (tididx) {
447 spin_lock(&fd->tid_lock);
448 fd->tid_used += tididx;
449 spin_unlock(&fd->tid_lock);
450 tinfo->tidcnt = tididx;
451 tinfo->length = mapped_pages * PAGE_SIZE;
453 if (copy_to_user(u64_to_user_ptr(tinfo->tidlist),
454 tidlist, sizeof(tidlist[0]) * tididx)) {
456 * On failure to copy to the user level, we need to undo
457 * everything done so far so we don't leak resources.
459 tinfo->tidlist = (unsigned long)&tidlist;
460 hfi1_user_exp_rcv_clear(fd, tinfo);
461 tinfo->tidlist = 0;
462 ret = -EFAULT;
463 goto bail;
468 * If not everything was mapped (due to insufficient RcvArray entries,
469 * for example), unpin all unmapped pages so we can pin them nex time.
471 if (mapped_pages != pinned)
472 unpin_rcv_pages(fd, tidbuf, NULL, mapped_pages,
473 (pinned - mapped_pages), false);
474 bail:
475 kfree(tidbuf->psets);
476 kfree(tidlist);
477 kfree(tidbuf->pages);
478 kfree(tidbuf);
479 return ret > 0 ? 0 : ret;
482 int hfi1_user_exp_rcv_clear(struct hfi1_filedata *fd,
483 struct hfi1_tid_info *tinfo)
485 int ret = 0;
486 struct hfi1_ctxtdata *uctxt = fd->uctxt;
487 u32 *tidinfo;
488 unsigned tididx;
490 if (unlikely(tinfo->tidcnt > fd->tid_used))
491 return -EINVAL;
493 tidinfo = memdup_user(u64_to_user_ptr(tinfo->tidlist),
494 sizeof(tidinfo[0]) * tinfo->tidcnt);
495 if (IS_ERR(tidinfo))
496 return PTR_ERR(tidinfo);
498 mutex_lock(&uctxt->exp_mutex);
499 for (tididx = 0; tididx < tinfo->tidcnt; tididx++) {
500 ret = unprogram_rcvarray(fd, tidinfo[tididx], NULL);
501 if (ret) {
502 hfi1_cdbg(TID, "Failed to unprogram rcv array %d",
503 ret);
504 break;
507 spin_lock(&fd->tid_lock);
508 fd->tid_used -= tididx;
509 spin_unlock(&fd->tid_lock);
510 tinfo->tidcnt = tididx;
511 mutex_unlock(&uctxt->exp_mutex);
513 kfree(tidinfo);
514 return ret;
517 int hfi1_user_exp_rcv_invalid(struct hfi1_filedata *fd,
518 struct hfi1_tid_info *tinfo)
520 struct hfi1_ctxtdata *uctxt = fd->uctxt;
521 unsigned long *ev = uctxt->dd->events +
522 (uctxt_offset(uctxt) + fd->subctxt);
523 u32 *array;
524 int ret = 0;
527 * copy_to_user() can sleep, which will leave the invalid_lock
528 * locked and cause the MMU notifier to be blocked on the lock
529 * for a long time.
530 * Copy the data to a local buffer so we can release the lock.
532 array = kcalloc(uctxt->expected_count, sizeof(*array), GFP_KERNEL);
533 if (!array)
534 return -EFAULT;
536 spin_lock(&fd->invalid_lock);
537 if (fd->invalid_tid_idx) {
538 memcpy(array, fd->invalid_tids, sizeof(*array) *
539 fd->invalid_tid_idx);
540 memset(fd->invalid_tids, 0, sizeof(*fd->invalid_tids) *
541 fd->invalid_tid_idx);
542 tinfo->tidcnt = fd->invalid_tid_idx;
543 fd->invalid_tid_idx = 0;
545 * Reset the user flag while still holding the lock.
546 * Otherwise, PSM can miss events.
548 clear_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
549 } else {
550 tinfo->tidcnt = 0;
552 spin_unlock(&fd->invalid_lock);
554 if (tinfo->tidcnt) {
555 if (copy_to_user((void __user *)tinfo->tidlist,
556 array, sizeof(*array) * tinfo->tidcnt))
557 ret = -EFAULT;
559 kfree(array);
561 return ret;
564 static u32 find_phys_blocks(struct tid_user_buf *tidbuf, unsigned int npages)
566 unsigned pagecount, pageidx, setcount = 0, i;
567 unsigned long pfn, this_pfn;
568 struct page **pages = tidbuf->pages;
569 struct tid_pageset *list = tidbuf->psets;
571 if (!npages)
572 return 0;
575 * Look for sets of physically contiguous pages in the user buffer.
576 * This will allow us to optimize Expected RcvArray entry usage by
577 * using the bigger supported sizes.
579 pfn = page_to_pfn(pages[0]);
580 for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
581 this_pfn = i < npages ? page_to_pfn(pages[i]) : 0;
584 * If the pfn's are not sequential, pages are not physically
585 * contiguous.
587 if (this_pfn != ++pfn) {
589 * At this point we have to loop over the set of
590 * physically contiguous pages and break them down it
591 * sizes supported by the HW.
592 * There are two main constraints:
593 * 1. The max buffer size is MAX_EXPECTED_BUFFER.
594 * If the total set size is bigger than that
595 * program only a MAX_EXPECTED_BUFFER chunk.
596 * 2. The buffer size has to be a power of two. If
597 * it is not, round down to the closes power of
598 * 2 and program that size.
600 while (pagecount) {
601 int maxpages = pagecount;
602 u32 bufsize = pagecount * PAGE_SIZE;
604 if (bufsize > MAX_EXPECTED_BUFFER)
605 maxpages =
606 MAX_EXPECTED_BUFFER >>
607 PAGE_SHIFT;
608 else if (!is_power_of_2(bufsize))
609 maxpages =
610 rounddown_pow_of_two(bufsize) >>
611 PAGE_SHIFT;
613 list[setcount].idx = pageidx;
614 list[setcount].count = maxpages;
615 pagecount -= maxpages;
616 pageidx += maxpages;
617 setcount++;
619 pageidx = i;
620 pagecount = 1;
621 pfn = this_pfn;
622 } else {
623 pagecount++;
626 return setcount;
630 * program_rcvarray() - program an RcvArray group with receive buffers
631 * @fd: filedata pointer
632 * @tbuf: pointer to struct tid_user_buf that has the user buffer starting
633 * virtual address, buffer length, page pointers, pagesets (array of
634 * struct tid_pageset holding information on physically contiguous
635 * chunks from the user buffer), and other fields.
636 * @grp: RcvArray group
637 * @start: starting index into sets array
638 * @count: number of struct tid_pageset's to program
639 * @tidlist: the array of u32 elements when the information about the
640 * programmed RcvArray entries is to be encoded.
641 * @tididx: starting offset into tidlist
642 * @pmapped: (output parameter) number of pages programmed into the RcvArray
643 * entries.
645 * This function will program up to 'count' number of RcvArray entries from the
646 * group 'grp'. To make best use of write-combining writes, the function will
647 * perform writes to the unused RcvArray entries which will be ignored by the
648 * HW. Each RcvArray entry will be programmed with a physically contiguous
649 * buffer chunk from the user's virtual buffer.
651 * Return:
652 * -EINVAL if the requested count is larger than the size of the group,
653 * -ENOMEM or -EFAULT on error from set_rcvarray_entry(), or
654 * number of RcvArray entries programmed.
656 static int program_rcvarray(struct hfi1_filedata *fd, struct tid_user_buf *tbuf,
657 struct tid_group *grp,
658 unsigned int start, u16 count,
659 u32 *tidlist, unsigned int *tididx,
660 unsigned int *pmapped)
662 struct hfi1_ctxtdata *uctxt = fd->uctxt;
663 struct hfi1_devdata *dd = uctxt->dd;
664 u16 idx;
665 u32 tidinfo = 0, rcventry, useidx = 0;
666 int mapped = 0;
668 /* Count should never be larger than the group size */
669 if (count > grp->size)
670 return -EINVAL;
672 /* Find the first unused entry in the group */
673 for (idx = 0; idx < grp->size; idx++) {
674 if (!(grp->map & (1 << idx))) {
675 useidx = idx;
676 break;
678 rcv_array_wc_fill(dd, grp->base + idx);
681 idx = 0;
682 while (idx < count) {
683 u16 npages, pageidx, setidx = start + idx;
684 int ret = 0;
687 * If this entry in the group is used, move to the next one.
688 * If we go past the end of the group, exit the loop.
690 if (useidx >= grp->size) {
691 break;
692 } else if (grp->map & (1 << useidx)) {
693 rcv_array_wc_fill(dd, grp->base + useidx);
694 useidx++;
695 continue;
698 rcventry = grp->base + useidx;
699 npages = tbuf->psets[setidx].count;
700 pageidx = tbuf->psets[setidx].idx;
702 ret = set_rcvarray_entry(fd, tbuf,
703 rcventry, grp, pageidx,
704 npages);
705 if (ret)
706 return ret;
707 mapped += npages;
709 tidinfo = rcventry2tidinfo(rcventry - uctxt->expected_base) |
710 EXP_TID_SET(LEN, npages);
711 tidlist[(*tididx)++] = tidinfo;
712 grp->used++;
713 grp->map |= 1 << useidx++;
714 idx++;
717 /* Fill the rest of the group with "blank" writes */
718 for (; useidx < grp->size; useidx++)
719 rcv_array_wc_fill(dd, grp->base + useidx);
720 *pmapped = mapped;
721 return idx;
724 static int set_rcvarray_entry(struct hfi1_filedata *fd,
725 struct tid_user_buf *tbuf,
726 u32 rcventry, struct tid_group *grp,
727 u16 pageidx, unsigned int npages)
729 int ret;
730 struct hfi1_ctxtdata *uctxt = fd->uctxt;
731 struct tid_rb_node *node;
732 struct hfi1_devdata *dd = uctxt->dd;
733 dma_addr_t phys;
734 struct page **pages = tbuf->pages + pageidx;
737 * Allocate the node first so we can handle a potential
738 * failure before we've programmed anything.
740 node = kzalloc(sizeof(*node) + (sizeof(struct page *) * npages),
741 GFP_KERNEL);
742 if (!node)
743 return -ENOMEM;
745 phys = pci_map_single(dd->pcidev,
746 __va(page_to_phys(pages[0])),
747 npages * PAGE_SIZE, PCI_DMA_FROMDEVICE);
748 if (dma_mapping_error(&dd->pcidev->dev, phys)) {
749 dd_dev_err(dd, "Failed to DMA map Exp Rcv pages 0x%llx\n",
750 phys);
751 kfree(node);
752 return -EFAULT;
755 node->fdata = fd;
756 node->phys = page_to_phys(pages[0]);
757 node->npages = npages;
758 node->rcventry = rcventry;
759 node->dma_addr = phys;
760 node->grp = grp;
761 node->freed = false;
762 memcpy(node->pages, pages, sizeof(struct page *) * npages);
764 if (fd->use_mn) {
765 ret = mmu_interval_notifier_insert(
766 &node->notifier, fd->mm,
767 tbuf->vaddr + (pageidx * PAGE_SIZE), npages * PAGE_SIZE,
768 &tid_mn_ops);
769 if (ret)
770 goto out_unmap;
772 * FIXME: This is in the wrong order, the notifier should be
773 * established before the pages are pinned by pin_rcv_pages.
775 mmu_interval_read_begin(&node->notifier);
777 fd->entry_to_rb[node->rcventry - uctxt->expected_base] = node;
779 hfi1_put_tid(dd, rcventry, PT_EXPECTED, phys, ilog2(npages) + 1);
780 trace_hfi1_exp_tid_reg(uctxt->ctxt, fd->subctxt, rcventry, npages,
781 node->notifier.interval_tree.start, node->phys,
782 phys);
783 return 0;
785 out_unmap:
786 hfi1_cdbg(TID, "Failed to insert RB node %u 0x%lx, 0x%lx %d",
787 node->rcventry, node->notifier.interval_tree.start,
788 node->phys, ret);
789 pci_unmap_single(dd->pcidev, phys, npages * PAGE_SIZE,
790 PCI_DMA_FROMDEVICE);
791 kfree(node);
792 return -EFAULT;
795 static int unprogram_rcvarray(struct hfi1_filedata *fd, u32 tidinfo,
796 struct tid_group **grp)
798 struct hfi1_ctxtdata *uctxt = fd->uctxt;
799 struct hfi1_devdata *dd = uctxt->dd;
800 struct tid_rb_node *node;
801 u8 tidctrl = EXP_TID_GET(tidinfo, CTRL);
802 u32 tididx = EXP_TID_GET(tidinfo, IDX) << 1, rcventry;
804 if (tididx >= uctxt->expected_count) {
805 dd_dev_err(dd, "Invalid RcvArray entry (%u) index for ctxt %u\n",
806 tididx, uctxt->ctxt);
807 return -EINVAL;
810 if (tidctrl == 0x3)
811 return -EINVAL;
813 rcventry = tididx + (tidctrl - 1);
815 node = fd->entry_to_rb[rcventry];
816 if (!node || node->rcventry != (uctxt->expected_base + rcventry))
817 return -EBADF;
819 if (grp)
820 *grp = node->grp;
822 if (fd->use_mn)
823 mmu_interval_notifier_remove(&node->notifier);
824 cacheless_tid_rb_remove(fd, node);
826 return 0;
829 static void clear_tid_node(struct hfi1_filedata *fd, struct tid_rb_node *node)
831 struct hfi1_ctxtdata *uctxt = fd->uctxt;
832 struct hfi1_devdata *dd = uctxt->dd;
834 trace_hfi1_exp_tid_unreg(uctxt->ctxt, fd->subctxt, node->rcventry,
835 node->npages,
836 node->notifier.interval_tree.start, node->phys,
837 node->dma_addr);
840 * Make sure device has seen the write before we unpin the
841 * pages.
843 hfi1_put_tid(dd, node->rcventry, PT_INVALID_FLUSH, 0, 0);
845 unpin_rcv_pages(fd, NULL, node, 0, node->npages, true);
847 node->grp->used--;
848 node->grp->map &= ~(1 << (node->rcventry - node->grp->base));
850 if (node->grp->used == node->grp->size - 1)
851 tid_group_move(node->grp, &uctxt->tid_full_list,
852 &uctxt->tid_used_list);
853 else if (!node->grp->used)
854 tid_group_move(node->grp, &uctxt->tid_used_list,
855 &uctxt->tid_group_list);
856 kfree(node);
860 * As a simple helper for hfi1_user_exp_rcv_free, this function deals with
861 * clearing nodes in the non-cached case.
863 static void unlock_exp_tids(struct hfi1_ctxtdata *uctxt,
864 struct exp_tid_set *set,
865 struct hfi1_filedata *fd)
867 struct tid_group *grp, *ptr;
868 int i;
870 list_for_each_entry_safe(grp, ptr, &set->list, list) {
871 list_del_init(&grp->list);
873 for (i = 0; i < grp->size; i++) {
874 if (grp->map & (1 << i)) {
875 u16 rcventry = grp->base + i;
876 struct tid_rb_node *node;
878 node = fd->entry_to_rb[rcventry -
879 uctxt->expected_base];
880 if (!node || node->rcventry != rcventry)
881 continue;
883 if (fd->use_mn)
884 mmu_interval_notifier_remove(
885 &node->notifier);
886 cacheless_tid_rb_remove(fd, node);
892 static bool tid_rb_invalidate(struct mmu_interval_notifier *mni,
893 const struct mmu_notifier_range *range,
894 unsigned long cur_seq)
896 struct tid_rb_node *node =
897 container_of(mni, struct tid_rb_node, notifier);
898 struct hfi1_filedata *fdata = node->fdata;
899 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
901 if (node->freed)
902 return true;
904 trace_hfi1_exp_tid_inval(uctxt->ctxt, fdata->subctxt,
905 node->notifier.interval_tree.start,
906 node->rcventry, node->npages, node->dma_addr);
907 node->freed = true;
909 spin_lock(&fdata->invalid_lock);
910 if (fdata->invalid_tid_idx < uctxt->expected_count) {
911 fdata->invalid_tids[fdata->invalid_tid_idx] =
912 rcventry2tidinfo(node->rcventry - uctxt->expected_base);
913 fdata->invalid_tids[fdata->invalid_tid_idx] |=
914 EXP_TID_SET(LEN, node->npages);
915 if (!fdata->invalid_tid_idx) {
916 unsigned long *ev;
919 * hfi1_set_uevent_bits() sets a user event flag
920 * for all processes. Because calling into the
921 * driver to process TID cache invalidations is
922 * expensive and TID cache invalidations are
923 * handled on a per-process basis, we can
924 * optimize this to set the flag only for the
925 * process in question.
927 ev = uctxt->dd->events +
928 (uctxt_offset(uctxt) + fdata->subctxt);
929 set_bit(_HFI1_EVENT_TID_MMU_NOTIFY_BIT, ev);
931 fdata->invalid_tid_idx++;
933 spin_unlock(&fdata->invalid_lock);
934 return true;
937 static void cacheless_tid_rb_remove(struct hfi1_filedata *fdata,
938 struct tid_rb_node *tnode)
940 u32 base = fdata->uctxt->expected_base;
942 fdata->entry_to_rb[tnode->rcventry - base] = NULL;
943 clear_tid_node(fdata, tnode);