2 * Copyright(c) 2016 Intel Corporation.
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 #include <linux/slab.h>
49 #include <linux/vmalloc.h>
50 #include <rdma/ib_umem.h>
51 #include <rdma/rdma_vt.h>
57 * rvt_driver_mr_init - Init MR resources per driver
58 * @rdi: rvt dev struct
60 * Do any intilization needed when a driver registers with rdmavt.
62 * Return: 0 on success or errno on failure
64 int rvt_driver_mr_init(struct rvt_dev_info
*rdi
)
66 unsigned int lkey_table_size
= rdi
->dparms
.lkey_table_size
;
71 * The top hfi1_lkey_table_size bits are used to index the
72 * table. The lower 8 bits can be owned by the user (copied from
73 * the LKEY). The remaining bits act as a generation number or tag.
78 spin_lock_init(&rdi
->lkey_table
.lock
);
80 /* ensure generation is at least 4 bits */
81 if (lkey_table_size
> RVT_MAX_LKEY_TABLE_BITS
) {
82 rvt_pr_warn(rdi
, "lkey bits %u too large, reduced to %u\n",
83 lkey_table_size
, RVT_MAX_LKEY_TABLE_BITS
);
84 rdi
->dparms
.lkey_table_size
= RVT_MAX_LKEY_TABLE_BITS
;
85 lkey_table_size
= rdi
->dparms
.lkey_table_size
;
87 rdi
->lkey_table
.max
= 1 << lkey_table_size
;
88 rdi
->lkey_table
.shift
= 32 - lkey_table_size
;
89 lk_tab_size
= rdi
->lkey_table
.max
* sizeof(*rdi
->lkey_table
.table
);
90 rdi
->lkey_table
.table
= (struct rvt_mregion __rcu
**)
91 vmalloc_node(lk_tab_size
, rdi
->dparms
.node
);
92 if (!rdi
->lkey_table
.table
)
95 RCU_INIT_POINTER(rdi
->dma_mr
, NULL
);
96 for (i
= 0; i
< rdi
->lkey_table
.max
; i
++)
97 RCU_INIT_POINTER(rdi
->lkey_table
.table
[i
], NULL
);
99 rdi
->dparms
.props
.max_mr
= rdi
->lkey_table
.max
;
100 rdi
->dparms
.props
.max_fmr
= rdi
->lkey_table
.max
;
105 *rvt_mr_exit: clean up MR
106 *@rdi: rvt dev structure
108 * called when drivers have unregistered or perhaps failed to register with us
110 void rvt_mr_exit(struct rvt_dev_info
*rdi
)
113 rvt_pr_err(rdi
, "DMA MR not null!\n");
115 vfree(rdi
->lkey_table
.table
);
118 static void rvt_deinit_mregion(struct rvt_mregion
*mr
)
125 percpu_ref_exit(&mr
->refcount
);
128 static void __rvt_mregion_complete(struct percpu_ref
*ref
)
130 struct rvt_mregion
*mr
= container_of(ref
, struct rvt_mregion
,
136 static int rvt_init_mregion(struct rvt_mregion
*mr
, struct ib_pd
*pd
,
137 int count
, unsigned int percpu_flags
)
140 struct rvt_dev_info
*dev
= ib_to_rvt(pd
->device
);
143 m
= (count
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
145 mr
->map
[i
] = kzalloc_node(sizeof(*mr
->map
[0]), GFP_KERNEL
,
151 init_completion(&mr
->comp
);
152 /* count returning the ptr to user */
153 if (percpu_ref_init(&mr
->refcount
, &__rvt_mregion_complete
,
154 percpu_flags
, GFP_KERNEL
))
157 atomic_set(&mr
->lkey_invalid
, 0);
159 mr
->max_segs
= count
;
162 rvt_deinit_mregion(mr
);
167 * rvt_alloc_lkey - allocate an lkey
168 * @mr: memory region that this lkey protects
169 * @dma_region: 0->normal key, 1->restricted DMA key
171 * Returns 0 if successful, otherwise returns -errno.
173 * Increments mr reference count as required.
175 * Sets the lkey field mr for non-dma regions.
178 static int rvt_alloc_lkey(struct rvt_mregion
*mr
, int dma_region
)
184 struct rvt_dev_info
*dev
= ib_to_rvt(mr
->pd
->device
);
185 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
188 spin_lock_irqsave(&rkt
->lock
, flags
);
190 /* special case for dma_mr lkey == 0 */
192 struct rvt_mregion
*tmr
;
194 tmr
= rcu_access_pointer(dev
->dma_mr
);
196 mr
->lkey_published
= 1;
197 /* Insure published written first */
198 rcu_assign_pointer(dev
->dma_mr
, mr
);
204 /* Find the next available LKEY */
208 if (!rcu_access_pointer(rkt
->table
[r
]))
210 r
= (r
+ 1) & (rkt
->max
- 1);
214 rkt
->next
= (r
+ 1) & (rkt
->max
- 1);
216 * Make sure lkey is never zero which is reserved to indicate an
221 * bits are capped to ensure enough bits for generation number
223 mr
->lkey
= (r
<< (32 - dev
->dparms
.lkey_table_size
)) |
224 ((((1 << (24 - dev
->dparms
.lkey_table_size
)) - 1) & rkt
->gen
)
230 mr
->lkey_published
= 1;
231 /* Insure published written first */
232 rcu_assign_pointer(rkt
->table
[r
], mr
);
234 spin_unlock_irqrestore(&rkt
->lock
, flags
);
239 spin_unlock_irqrestore(&rkt
->lock
, flags
);
245 * rvt_free_lkey - free an lkey
246 * @mr: mr to free from tables
248 static void rvt_free_lkey(struct rvt_mregion
*mr
)
253 struct rvt_dev_info
*dev
= ib_to_rvt(mr
->pd
->device
);
254 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
257 spin_lock_irqsave(&rkt
->lock
, flags
);
259 if (mr
->lkey_published
) {
260 mr
->lkey_published
= 0;
261 /* insure published is written before pointer */
262 rcu_assign_pointer(dev
->dma_mr
, NULL
);
266 if (!mr
->lkey_published
)
268 r
= lkey
>> (32 - dev
->dparms
.lkey_table_size
);
269 mr
->lkey_published
= 0;
270 /* insure published is written before pointer */
271 rcu_assign_pointer(rkt
->table
[r
], NULL
);
275 spin_unlock_irqrestore(&rkt
->lock
, flags
);
277 percpu_ref_kill(&mr
->refcount
);
280 static struct rvt_mr
*__rvt_alloc_mr(int count
, struct ib_pd
*pd
)
286 /* Allocate struct plus pointers to first level page tables. */
287 m
= (count
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
288 mr
= kzalloc(struct_size(mr
, mr
.map
, m
), GFP_KERNEL
);
292 rval
= rvt_init_mregion(&mr
->mr
, pd
, count
, 0);
296 * ib_reg_phys_mr() will initialize mr->ibmr except for
299 rval
= rvt_alloc_lkey(&mr
->mr
, 0);
302 mr
->ibmr
.lkey
= mr
->mr
.lkey
;
303 mr
->ibmr
.rkey
= mr
->mr
.lkey
;
308 rvt_deinit_mregion(&mr
->mr
);
315 static void __rvt_free_mr(struct rvt_mr
*mr
)
317 rvt_free_lkey(&mr
->mr
);
318 rvt_deinit_mregion(&mr
->mr
);
323 * rvt_get_dma_mr - get a DMA memory region
324 * @pd: protection domain for this memory region
327 * Return: the memory region on success, otherwise returns an errno.
328 * Note that all DMA addresses should be created via the functions in
329 * struct dma_virt_ops.
331 struct ib_mr
*rvt_get_dma_mr(struct ib_pd
*pd
, int acc
)
337 if (ibpd_to_rvtpd(pd
)->user
)
338 return ERR_PTR(-EPERM
);
340 mr
= kzalloc(sizeof(*mr
), GFP_KERNEL
);
342 ret
= ERR_PTR(-ENOMEM
);
346 rval
= rvt_init_mregion(&mr
->mr
, pd
, 0, 0);
352 rval
= rvt_alloc_lkey(&mr
->mr
, 1);
358 mr
->mr
.access_flags
= acc
;
364 rvt_deinit_mregion(&mr
->mr
);
371 * rvt_reg_user_mr - register a userspace memory region
372 * @pd: protection domain for this memory region
373 * @start: starting userspace address
374 * @length: length of region to register
375 * @mr_access_flags: access flags for this memory region
376 * @udata: unused by the driver
378 * Return: the memory region on success, otherwise returns an errno.
380 struct ib_mr
*rvt_reg_user_mr(struct ib_pd
*pd
, u64 start
, u64 length
,
381 u64 virt_addr
, int mr_access_flags
,
382 struct ib_udata
*udata
)
385 struct ib_umem
*umem
;
386 struct sg_page_iter sg_iter
;
391 return ERR_PTR(-EINVAL
);
393 umem
= ib_umem_get(udata
, start
, length
, mr_access_flags
);
397 n
= ib_umem_num_pages(umem
);
399 mr
= __rvt_alloc_mr(n
, pd
);
401 ret
= (struct ib_mr
*)mr
;
405 mr
->mr
.user_base
= start
;
406 mr
->mr
.iova
= virt_addr
;
407 mr
->mr
.length
= length
;
408 mr
->mr
.offset
= ib_umem_offset(umem
);
409 mr
->mr
.access_flags
= mr_access_flags
;
412 mr
->mr
.page_shift
= PAGE_SHIFT
;
415 for_each_sg_page (umem
->sg_head
.sgl
, &sg_iter
, umem
->nmap
, 0) {
418 vaddr
= page_address(sg_page_iter_page(&sg_iter
));
420 ret
= ERR_PTR(-EINVAL
);
423 mr
->mr
.map
[m
]->segs
[n
].vaddr
= vaddr
;
424 mr
->mr
.map
[m
]->segs
[n
].length
= PAGE_SIZE
;
425 trace_rvt_mr_user_seg(&mr
->mr
, m
, n
, vaddr
, PAGE_SIZE
);
426 if (++n
== RVT_SEGSZ
) {
437 ib_umem_release(umem
);
443 * rvt_dereg_clean_qp_cb - callback from iterator
445 * @v - the mregion (as u64)
447 * This routine fields the callback for all QPs and
448 * for QPs in the same PD as the MR will call the
449 * rvt_qp_mr_clean() to potentially cleanup references.
451 static void rvt_dereg_clean_qp_cb(struct rvt_qp
*qp
, u64 v
)
453 struct rvt_mregion
*mr
= (struct rvt_mregion
*)v
;
455 /* skip PDs that are not ours */
456 if (mr
->pd
!= qp
->ibqp
.pd
)
458 rvt_qp_mr_clean(qp
, mr
->lkey
);
462 * rvt_dereg_clean_qps - find QPs for reference cleanup
463 * @mr - the MR that is being deregistered
465 * This routine iterates RC QPs looking for references
466 * to the lkey noted in mr.
468 static void rvt_dereg_clean_qps(struct rvt_mregion
*mr
)
470 struct rvt_dev_info
*rdi
= ib_to_rvt(mr
->pd
->device
);
472 rvt_qp_iter(rdi
, (u64
)mr
, rvt_dereg_clean_qp_cb
);
476 * rvt_check_refs - check references
478 * @t - the caller identification
480 * This routine checks MRs holding a reference during
481 * when being de-registered.
483 * If the count is non-zero, the code calls a clean routine then
484 * waits for the timeout for the count to zero.
486 static int rvt_check_refs(struct rvt_mregion
*mr
, const char *t
)
488 unsigned long timeout
;
489 struct rvt_dev_info
*rdi
= ib_to_rvt(mr
->pd
->device
);
493 rvt_dereg_clean_qps(mr
);
494 /* @mr was indexed on rcu protected @lkey_table */
498 timeout
= wait_for_completion_timeout(&mr
->comp
, 5 * HZ
);
501 "%s timeout mr %p pd %p lkey %x refcount %ld\n",
502 t
, mr
, mr
->pd
, mr
->lkey
,
503 atomic_long_read(&mr
->refcount
.count
));
511 * rvt_mr_has_lkey - is MR
515 bool rvt_mr_has_lkey(struct rvt_mregion
*mr
, u32 lkey
)
517 return mr
&& lkey
== mr
->lkey
;
521 * rvt_ss_has_lkey - is mr in sge tests
522 * @ss - the sge state
525 * This code tests for an MR in the indicated
528 bool rvt_ss_has_lkey(struct rvt_sge_state
*ss
, u32 lkey
)
536 rval
= rvt_mr_has_lkey(ss
->sge
.mr
, lkey
);
538 for (i
= 0; !rval
&& i
< ss
->num_sge
- 1; i
++)
539 rval
= rvt_mr_has_lkey(ss
->sg_list
[i
].mr
, lkey
);
544 * rvt_dereg_mr - unregister and free a memory region
545 * @ibmr: the memory region to free
548 * Note that this is called to free MRs created by rvt_get_dma_mr()
549 * or rvt_reg_user_mr().
551 * Returns 0 on success.
553 int rvt_dereg_mr(struct ib_mr
*ibmr
, struct ib_udata
*udata
)
555 struct rvt_mr
*mr
= to_imr(ibmr
);
558 rvt_free_lkey(&mr
->mr
);
560 rvt_put_mr(&mr
->mr
); /* will set completion if last */
561 ret
= rvt_check_refs(&mr
->mr
, __func__
);
564 rvt_deinit_mregion(&mr
->mr
);
565 ib_umem_release(mr
->umem
);
572 * rvt_alloc_mr - Allocate a memory region usable with the
573 * @pd: protection domain for this memory region
574 * @mr_type: mem region type
575 * @max_num_sg: Max number of segments allowed
577 * Return: the memory region on success, otherwise return an errno.
579 struct ib_mr
*rvt_alloc_mr(struct ib_pd
*pd
, enum ib_mr_type mr_type
,
580 u32 max_num_sg
, struct ib_udata
*udata
)
584 if (mr_type
!= IB_MR_TYPE_MEM_REG
)
585 return ERR_PTR(-EINVAL
);
587 mr
= __rvt_alloc_mr(max_num_sg
, pd
);
589 return (struct ib_mr
*)mr
;
595 * rvt_set_page - page assignment function called by ib_sg_to_pages
596 * @ibmr: memory region
597 * @addr: dma address of mapped page
599 * Return: 0 on success
601 static int rvt_set_page(struct ib_mr
*ibmr
, u64 addr
)
603 struct rvt_mr
*mr
= to_imr(ibmr
);
604 u32 ps
= 1 << mr
->mr
.page_shift
;
605 u32 mapped_segs
= mr
->mr
.length
>> mr
->mr
.page_shift
;
608 if (unlikely(mapped_segs
== mr
->mr
.max_segs
))
611 m
= mapped_segs
/ RVT_SEGSZ
;
612 n
= mapped_segs
% RVT_SEGSZ
;
613 mr
->mr
.map
[m
]->segs
[n
].vaddr
= (void *)addr
;
614 mr
->mr
.map
[m
]->segs
[n
].length
= ps
;
616 trace_rvt_mr_page_seg(&mr
->mr
, m
, n
, (void *)addr
, ps
);
622 * rvt_map_mr_sg - map sg list and set it the memory region
623 * @ibmr: memory region
624 * @sg: dma mapped scatterlist
625 * @sg_nents: number of entries in sg
626 * @sg_offset: offset in bytes into sg
628 * Overwrite rvt_mr length with mr length calculated by ib_sg_to_pages.
630 * Return: number of sg elements mapped to the memory region
632 int rvt_map_mr_sg(struct ib_mr
*ibmr
, struct scatterlist
*sg
,
633 int sg_nents
, unsigned int *sg_offset
)
635 struct rvt_mr
*mr
= to_imr(ibmr
);
639 mr
->mr
.page_shift
= PAGE_SHIFT
;
640 ret
= ib_sg_to_pages(ibmr
, sg
, sg_nents
, sg_offset
, rvt_set_page
);
641 mr
->mr
.user_base
= ibmr
->iova
;
642 mr
->mr
.iova
= ibmr
->iova
;
643 mr
->mr
.offset
= ibmr
->iova
- (u64
)mr
->mr
.map
[0]->segs
[0].vaddr
;
644 mr
->mr
.length
= (size_t)ibmr
->length
;
645 trace_rvt_map_mr_sg(ibmr
, sg_nents
, sg_offset
);
650 * rvt_fast_reg_mr - fast register physical MR
651 * @qp: the queue pair where the work request comes from
652 * @ibmr: the memory region to be registered
653 * @key: updated key for this memory region
654 * @access: access flags for this memory region
656 * Returns 0 on success.
658 int rvt_fast_reg_mr(struct rvt_qp
*qp
, struct ib_mr
*ibmr
, u32 key
,
661 struct rvt_mr
*mr
= to_imr(ibmr
);
663 if (qp
->ibqp
.pd
!= mr
->mr
.pd
)
666 /* not applicable to dma MR or user MR */
667 if (!mr
->mr
.lkey
|| mr
->umem
)
670 if ((key
& 0xFFFFFF00) != (mr
->mr
.lkey
& 0xFFFFFF00))
676 mr
->mr
.access_flags
= access
;
677 mr
->mr
.iova
= ibmr
->iova
;
678 atomic_set(&mr
->mr
.lkey_invalid
, 0);
682 EXPORT_SYMBOL(rvt_fast_reg_mr
);
685 * rvt_invalidate_rkey - invalidate an MR rkey
686 * @qp: queue pair associated with the invalidate op
687 * @rkey: rkey to invalidate
689 * Returns 0 on success.
691 int rvt_invalidate_rkey(struct rvt_qp
*qp
, u32 rkey
)
693 struct rvt_dev_info
*dev
= ib_to_rvt(qp
->ibqp
.device
);
694 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
695 struct rvt_mregion
*mr
;
701 mr
= rcu_dereference(
702 rkt
->table
[(rkey
>> (32 - dev
->dparms
.lkey_table_size
))]);
703 if (unlikely(!mr
|| mr
->lkey
!= rkey
|| qp
->ibqp
.pd
!= mr
->pd
))
706 atomic_set(&mr
->lkey_invalid
, 1);
714 EXPORT_SYMBOL(rvt_invalidate_rkey
);
717 * rvt_alloc_fmr - allocate a fast memory region
718 * @pd: the protection domain for this memory region
719 * @mr_access_flags: access flags for this memory region
720 * @fmr_attr: fast memory region attributes
722 * Return: the memory region on success, otherwise returns an errno.
724 struct ib_fmr
*rvt_alloc_fmr(struct ib_pd
*pd
, int mr_access_flags
,
725 struct ib_fmr_attr
*fmr_attr
)
732 /* Allocate struct plus pointers to first level page tables. */
733 m
= (fmr_attr
->max_pages
+ RVT_SEGSZ
- 1) / RVT_SEGSZ
;
734 fmr
= kzalloc(struct_size(fmr
, mr
.map
, m
), GFP_KERNEL
);
738 rval
= rvt_init_mregion(&fmr
->mr
, pd
, fmr_attr
->max_pages
,
739 PERCPU_REF_INIT_ATOMIC
);
744 * ib_alloc_fmr() will initialize fmr->ibfmr except for lkey &
747 rval
= rvt_alloc_lkey(&fmr
->mr
, 0);
750 fmr
->ibfmr
.rkey
= fmr
->mr
.lkey
;
751 fmr
->ibfmr
.lkey
= fmr
->mr
.lkey
;
753 * Resources are allocated but no valid mapping (RKEY can't be
756 fmr
->mr
.access_flags
= mr_access_flags
;
757 fmr
->mr
.max_segs
= fmr_attr
->max_pages
;
758 fmr
->mr
.page_shift
= fmr_attr
->page_shift
;
765 rvt_deinit_mregion(&fmr
->mr
);
773 * rvt_map_phys_fmr - set up a fast memory region
774 * @ibfmr: the fast memory region to set up
775 * @page_list: the list of pages to associate with the fast memory region
776 * @list_len: the number of pages to associate with the fast memory region
777 * @iova: the virtual address of the start of the fast memory region
779 * This may be called from interrupt context.
781 * Return: 0 on success
784 int rvt_map_phys_fmr(struct ib_fmr
*ibfmr
, u64
*page_list
,
785 int list_len
, u64 iova
)
787 struct rvt_fmr
*fmr
= to_ifmr(ibfmr
);
788 struct rvt_lkey_table
*rkt
;
793 struct rvt_dev_info
*rdi
= ib_to_rvt(ibfmr
->device
);
795 i
= atomic_long_read(&fmr
->mr
.refcount
.count
);
799 if (list_len
> fmr
->mr
.max_segs
)
802 rkt
= &rdi
->lkey_table
;
803 spin_lock_irqsave(&rkt
->lock
, flags
);
804 fmr
->mr
.user_base
= iova
;
806 ps
= 1 << fmr
->mr
.page_shift
;
807 fmr
->mr
.length
= list_len
* ps
;
810 for (i
= 0; i
< list_len
; i
++) {
811 fmr
->mr
.map
[m
]->segs
[n
].vaddr
= (void *)page_list
[i
];
812 fmr
->mr
.map
[m
]->segs
[n
].length
= ps
;
813 trace_rvt_mr_fmr_seg(&fmr
->mr
, m
, n
, (void *)page_list
[i
], ps
);
814 if (++n
== RVT_SEGSZ
) {
819 spin_unlock_irqrestore(&rkt
->lock
, flags
);
824 * rvt_unmap_fmr - unmap fast memory regions
825 * @fmr_list: the list of fast memory regions to unmap
827 * Return: 0 on success.
829 int rvt_unmap_fmr(struct list_head
*fmr_list
)
832 struct rvt_lkey_table
*rkt
;
834 struct rvt_dev_info
*rdi
;
836 list_for_each_entry(fmr
, fmr_list
, ibfmr
.list
) {
837 rdi
= ib_to_rvt(fmr
->ibfmr
.device
);
838 rkt
= &rdi
->lkey_table
;
839 spin_lock_irqsave(&rkt
->lock
, flags
);
840 fmr
->mr
.user_base
= 0;
843 spin_unlock_irqrestore(&rkt
->lock
, flags
);
849 * rvt_dealloc_fmr - deallocate a fast memory region
850 * @ibfmr: the fast memory region to deallocate
852 * Return: 0 on success.
854 int rvt_dealloc_fmr(struct ib_fmr
*ibfmr
)
856 struct rvt_fmr
*fmr
= to_ifmr(ibfmr
);
859 rvt_free_lkey(&fmr
->mr
);
860 rvt_put_mr(&fmr
->mr
); /* will set completion if last */
861 ret
= rvt_check_refs(&fmr
->mr
, __func__
);
864 rvt_deinit_mregion(&fmr
->mr
);
871 * rvt_sge_adjacent - is isge compressible
872 * @last_sge: last outgoing SGE written
875 * If adjacent will update last_sge to add length.
877 * Return: true if isge is adjacent to last sge
879 static inline bool rvt_sge_adjacent(struct rvt_sge
*last_sge
,
882 if (last_sge
&& sge
->lkey
== last_sge
->mr
->lkey
&&
883 ((uint64_t)(last_sge
->vaddr
+ last_sge
->length
) == sge
->addr
)) {
885 if (unlikely((sge
->addr
- last_sge
->mr
->user_base
+
886 sge
->length
> last_sge
->mr
->length
)))
887 return false; /* overrun, caller will catch */
889 last_sge
->length
+= sge
->length
;
891 last_sge
->sge_length
+= sge
->length
;
892 trace_rvt_sge_adjacent(last_sge
, sge
);
899 * rvt_lkey_ok - check IB SGE for validity and initialize
900 * @rkt: table containing lkey to check SGE against
901 * @pd: protection domain
902 * @isge: outgoing internal SGE
903 * @last_sge: last outgoing SGE written
907 * Check the IB SGE for validity and initialize our internal version
910 * Increments the reference count when a new sge is stored.
912 * Return: 0 if compressed, 1 if added , otherwise returns -errno.
914 int rvt_lkey_ok(struct rvt_lkey_table
*rkt
, struct rvt_pd
*pd
,
915 struct rvt_sge
*isge
, struct rvt_sge
*last_sge
,
916 struct ib_sge
*sge
, int acc
)
918 struct rvt_mregion
*mr
;
923 * We use LKEY == zero for kernel virtual addresses
924 * (see rvt_get_dma_mr() and dma_virt_ops).
926 if (sge
->lkey
== 0) {
927 struct rvt_dev_info
*dev
= ib_to_rvt(pd
->ibpd
.device
);
931 if (rvt_sge_adjacent(last_sge
, sge
))
934 mr
= rcu_dereference(dev
->dma_mr
);
941 isge
->vaddr
= (void *)sge
->addr
;
942 isge
->length
= sge
->length
;
943 isge
->sge_length
= sge
->length
;
948 if (rvt_sge_adjacent(last_sge
, sge
))
951 mr
= rcu_dereference(rkt
->table
[sge
->lkey
>> rkt
->shift
]);
955 if (!READ_ONCE(mr
->lkey_published
))
958 if (unlikely(atomic_read(&mr
->lkey_invalid
) ||
959 mr
->lkey
!= sge
->lkey
|| mr
->pd
!= &pd
->ibpd
))
962 off
= sge
->addr
- mr
->user_base
;
963 if (unlikely(sge
->addr
< mr
->user_base
||
964 off
+ sge
->length
> mr
->length
||
965 (mr
->access_flags
& acc
) != acc
))
970 if (mr
->page_shift
) {
972 * page sizes are uniform power of 2 so no loop is necessary
973 * entries_spanned_by_off is the number of times the loop below
974 * would have executed.
976 size_t entries_spanned_by_off
;
978 entries_spanned_by_off
= off
>> mr
->page_shift
;
979 off
-= (entries_spanned_by_off
<< mr
->page_shift
);
980 m
= entries_spanned_by_off
/ RVT_SEGSZ
;
981 n
= entries_spanned_by_off
% RVT_SEGSZ
;
985 while (off
>= mr
->map
[m
]->segs
[n
].length
) {
986 off
-= mr
->map
[m
]->segs
[n
].length
;
988 if (n
>= RVT_SEGSZ
) {
995 isge
->vaddr
= mr
->map
[m
]->segs
[n
].vaddr
+ off
;
996 isge
->length
= mr
->map
[m
]->segs
[n
].length
- off
;
997 isge
->sge_length
= sge
->length
;
1001 trace_rvt_sge_new(isge
, sge
);
1009 EXPORT_SYMBOL(rvt_lkey_ok
);
1012 * rvt_rkey_ok - check the IB virtual address, length, and RKEY
1013 * @qp: qp for validation
1015 * @len: length of data
1016 * @vaddr: virtual address to place data
1017 * @rkey: rkey to check
1018 * @acc: access flags
1020 * Return: 1 if successful, otherwise 0.
1022 * increments the reference count upon success
1024 int rvt_rkey_ok(struct rvt_qp
*qp
, struct rvt_sge
*sge
,
1025 u32 len
, u64 vaddr
, u32 rkey
, int acc
)
1027 struct rvt_dev_info
*dev
= ib_to_rvt(qp
->ibqp
.device
);
1028 struct rvt_lkey_table
*rkt
= &dev
->lkey_table
;
1029 struct rvt_mregion
*mr
;
1034 * We use RKEY == zero for kernel virtual addresses
1035 * (see rvt_get_dma_mr() and dma_virt_ops).
1039 struct rvt_pd
*pd
= ibpd_to_rvtpd(qp
->ibqp
.pd
);
1040 struct rvt_dev_info
*rdi
= ib_to_rvt(pd
->ibpd
.device
);
1044 mr
= rcu_dereference(rdi
->dma_mr
);
1051 sge
->vaddr
= (void *)vaddr
;
1053 sge
->sge_length
= len
;
1059 mr
= rcu_dereference(rkt
->table
[rkey
>> rkt
->shift
]);
1063 /* insure mr read is before test */
1064 if (!READ_ONCE(mr
->lkey_published
))
1066 if (unlikely(atomic_read(&mr
->lkey_invalid
) ||
1067 mr
->lkey
!= rkey
|| qp
->ibqp
.pd
!= mr
->pd
))
1070 off
= vaddr
- mr
->iova
;
1071 if (unlikely(vaddr
< mr
->iova
|| off
+ len
> mr
->length
||
1072 (mr
->access_flags
& acc
) == 0))
1077 if (mr
->page_shift
) {
1079 * page sizes are uniform power of 2 so no loop is necessary
1080 * entries_spanned_by_off is the number of times the loop below
1081 * would have executed.
1083 size_t entries_spanned_by_off
;
1085 entries_spanned_by_off
= off
>> mr
->page_shift
;
1086 off
-= (entries_spanned_by_off
<< mr
->page_shift
);
1087 m
= entries_spanned_by_off
/ RVT_SEGSZ
;
1088 n
= entries_spanned_by_off
% RVT_SEGSZ
;
1092 while (off
>= mr
->map
[m
]->segs
[n
].length
) {
1093 off
-= mr
->map
[m
]->segs
[n
].length
;
1095 if (n
>= RVT_SEGSZ
) {
1102 sge
->vaddr
= mr
->map
[m
]->segs
[n
].vaddr
+ off
;
1103 sge
->length
= mr
->map
[m
]->segs
[n
].length
- off
;
1104 sge
->sge_length
= len
;
1115 EXPORT_SYMBOL(rvt_rkey_ok
);