media: stv06xx: add missing descriptor sanity checks
[linux/fpc-iii.git] / drivers / irqchip / irq-gic-v3-its.c
blob50f89056c16bb1c1b8c211dde3503b60959bccfa
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/irqdomain.h>
18 #include <linux/list.h>
19 #include <linux/log2.h>
20 #include <linux/memblock.h>
21 #include <linux/mm.h>
22 #include <linux/msi.h>
23 #include <linux/of.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_pci.h>
27 #include <linux/of_platform.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/syscore_ops.h>
32 #include <linux/irqchip.h>
33 #include <linux/irqchip/arm-gic-v3.h>
34 #include <linux/irqchip/arm-gic-v4.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
39 #include "irq-gic-common.h"
41 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
42 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
44 #define ITS_FLAGS_SAVE_SUSPEND_STATE (1ULL << 3)
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
49 static u32 lpi_id_bits;
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
56 #define LPI_NRBITS lpi_id_bits
57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
65 * CPU.
67 struct its_collection {
68 u64 target_address;
69 u16 col_id;
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
76 struct its_baser {
77 void *base;
78 u64 val;
79 u32 order;
80 u32 psz;
83 struct its_device;
86 * The ITS structure - contains most of the infrastructure, with the
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
92 * list.
94 struct its_node {
95 raw_spinlock_t lock;
96 struct mutex dev_alloc_lock;
97 struct list_head entry;
98 void __iomem *base;
99 phys_addr_t phys_base;
100 struct its_cmd_block *cmd_base;
101 struct its_cmd_block *cmd_write;
102 struct its_baser tables[GITS_BASER_NR_REGS];
103 struct its_collection *collections;
104 struct fwnode_handle *fwnode_handle;
105 u64 (*get_msi_base)(struct its_device *its_dev);
106 u64 typer;
107 u64 cbaser_save;
108 u32 ctlr_save;
109 struct list_head its_device_list;
110 u64 flags;
111 unsigned long list_nr;
112 int numa_node;
113 unsigned int msi_domain_flags;
114 u32 pre_its_base; /* for Socionext Synquacer */
115 int vlpi_redist_offset;
118 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
119 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
121 #define ITS_ITT_ALIGN SZ_256
123 /* The maximum number of VPEID bits supported by VLPI commands */
124 #define ITS_MAX_VPEID_BITS (16)
125 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
127 /* Convert page order to size in bytes */
128 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
130 struct event_lpi_map {
131 unsigned long *lpi_map;
132 u16 *col_map;
133 irq_hw_number_t lpi_base;
134 int nr_lpis;
135 raw_spinlock_t vlpi_lock;
136 struct its_vm *vm;
137 struct its_vlpi_map *vlpi_maps;
138 int nr_vlpis;
142 * The ITS view of a device - belongs to an ITS, owns an interrupt
143 * translation table, and a list of interrupts. If it some of its
144 * LPIs are injected into a guest (GICv4), the event_map.vm field
145 * indicates which one.
147 struct its_device {
148 struct list_head entry;
149 struct its_node *its;
150 struct event_lpi_map event_map;
151 void *itt;
152 u32 nr_ites;
153 u32 device_id;
154 bool shared;
157 static struct {
158 raw_spinlock_t lock;
159 struct its_device *dev;
160 struct its_vpe **vpes;
161 int next_victim;
162 } vpe_proxy;
164 static LIST_HEAD(its_nodes);
165 static DEFINE_RAW_SPINLOCK(its_lock);
166 static struct rdists *gic_rdists;
167 static struct irq_domain *its_parent;
169 static unsigned long its_list_map;
170 static u16 vmovp_seq_num;
171 static DEFINE_RAW_SPINLOCK(vmovp_lock);
173 static DEFINE_IDA(its_vpeid_ida);
175 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
176 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
177 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
178 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
180 static u16 get_its_list(struct its_vm *vm)
182 struct its_node *its;
183 unsigned long its_list = 0;
185 list_for_each_entry(its, &its_nodes, entry) {
186 if (!is_v4(its))
187 continue;
189 if (vm->vlpi_count[its->list_nr])
190 __set_bit(its->list_nr, &its_list);
193 return (u16)its_list;
196 static inline u32 its_get_event_id(struct irq_data *d)
198 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
199 return d->hwirq - its_dev->event_map.lpi_base;
202 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
203 u32 event)
205 struct its_node *its = its_dev->its;
207 return its->collections + its_dev->event_map.col_map[event];
210 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
211 u32 event)
213 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
214 return NULL;
216 return &its_dev->event_map.vlpi_maps[event];
219 static struct its_collection *irq_to_col(struct irq_data *d)
221 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
223 return dev_event_to_col(its_dev, its_get_event_id(d));
226 static struct its_collection *valid_col(struct its_collection *col)
228 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
229 return NULL;
231 return col;
234 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
236 if (valid_col(its->collections + vpe->col_idx))
237 return vpe;
239 return NULL;
243 * ITS command descriptors - parameters to be encoded in a command
244 * block.
246 struct its_cmd_desc {
247 union {
248 struct {
249 struct its_device *dev;
250 u32 event_id;
251 } its_inv_cmd;
253 struct {
254 struct its_device *dev;
255 u32 event_id;
256 } its_clear_cmd;
258 struct {
259 struct its_device *dev;
260 u32 event_id;
261 } its_int_cmd;
263 struct {
264 struct its_device *dev;
265 int valid;
266 } its_mapd_cmd;
268 struct {
269 struct its_collection *col;
270 int valid;
271 } its_mapc_cmd;
273 struct {
274 struct its_device *dev;
275 u32 phys_id;
276 u32 event_id;
277 } its_mapti_cmd;
279 struct {
280 struct its_device *dev;
281 struct its_collection *col;
282 u32 event_id;
283 } its_movi_cmd;
285 struct {
286 struct its_device *dev;
287 u32 event_id;
288 } its_discard_cmd;
290 struct {
291 struct its_collection *col;
292 } its_invall_cmd;
294 struct {
295 struct its_vpe *vpe;
296 } its_vinvall_cmd;
298 struct {
299 struct its_vpe *vpe;
300 struct its_collection *col;
301 bool valid;
302 } its_vmapp_cmd;
304 struct {
305 struct its_vpe *vpe;
306 struct its_device *dev;
307 u32 virt_id;
308 u32 event_id;
309 bool db_enabled;
310 } its_vmapti_cmd;
312 struct {
313 struct its_vpe *vpe;
314 struct its_device *dev;
315 u32 event_id;
316 bool db_enabled;
317 } its_vmovi_cmd;
319 struct {
320 struct its_vpe *vpe;
321 struct its_collection *col;
322 u16 seq_num;
323 u16 its_list;
324 } its_vmovp_cmd;
329 * The ITS command block, which is what the ITS actually parses.
331 struct its_cmd_block {
332 union {
333 u64 raw_cmd[4];
334 __le64 raw_cmd_le[4];
338 #define ITS_CMD_QUEUE_SZ SZ_64K
339 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
341 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
342 struct its_cmd_block *,
343 struct its_cmd_desc *);
345 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
346 struct its_cmd_block *,
347 struct its_cmd_desc *);
349 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
351 u64 mask = GENMASK_ULL(h, l);
352 *raw_cmd &= ~mask;
353 *raw_cmd |= (val << l) & mask;
356 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
358 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
361 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
363 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
366 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
368 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
371 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
373 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
376 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
378 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
381 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
383 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
386 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
388 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
391 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
393 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
396 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
398 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
401 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
403 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
406 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
408 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
411 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
413 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
416 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
418 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
421 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
423 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
426 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
428 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
431 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
433 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
436 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
438 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
441 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
443 /* Let's fixup BE commands */
444 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
445 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
446 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
447 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
450 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
451 struct its_cmd_block *cmd,
452 struct its_cmd_desc *desc)
454 unsigned long itt_addr;
455 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
457 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
458 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
460 its_encode_cmd(cmd, GITS_CMD_MAPD);
461 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
462 its_encode_size(cmd, size - 1);
463 its_encode_itt(cmd, itt_addr);
464 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
466 its_fixup_cmd(cmd);
468 return NULL;
471 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
472 struct its_cmd_block *cmd,
473 struct its_cmd_desc *desc)
475 its_encode_cmd(cmd, GITS_CMD_MAPC);
476 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
477 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
478 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
480 its_fixup_cmd(cmd);
482 return desc->its_mapc_cmd.col;
485 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
486 struct its_cmd_block *cmd,
487 struct its_cmd_desc *desc)
489 struct its_collection *col;
491 col = dev_event_to_col(desc->its_mapti_cmd.dev,
492 desc->its_mapti_cmd.event_id);
494 its_encode_cmd(cmd, GITS_CMD_MAPTI);
495 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
496 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
497 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
498 its_encode_collection(cmd, col->col_id);
500 its_fixup_cmd(cmd);
502 return valid_col(col);
505 static struct its_collection *its_build_movi_cmd(struct its_node *its,
506 struct its_cmd_block *cmd,
507 struct its_cmd_desc *desc)
509 struct its_collection *col;
511 col = dev_event_to_col(desc->its_movi_cmd.dev,
512 desc->its_movi_cmd.event_id);
514 its_encode_cmd(cmd, GITS_CMD_MOVI);
515 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
516 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
517 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
519 its_fixup_cmd(cmd);
521 return valid_col(col);
524 static struct its_collection *its_build_discard_cmd(struct its_node *its,
525 struct its_cmd_block *cmd,
526 struct its_cmd_desc *desc)
528 struct its_collection *col;
530 col = dev_event_to_col(desc->its_discard_cmd.dev,
531 desc->its_discard_cmd.event_id);
533 its_encode_cmd(cmd, GITS_CMD_DISCARD);
534 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
535 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
537 its_fixup_cmd(cmd);
539 return valid_col(col);
542 static struct its_collection *its_build_inv_cmd(struct its_node *its,
543 struct its_cmd_block *cmd,
544 struct its_cmd_desc *desc)
546 struct its_collection *col;
548 col = dev_event_to_col(desc->its_inv_cmd.dev,
549 desc->its_inv_cmd.event_id);
551 its_encode_cmd(cmd, GITS_CMD_INV);
552 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
553 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
555 its_fixup_cmd(cmd);
557 return valid_col(col);
560 static struct its_collection *its_build_int_cmd(struct its_node *its,
561 struct its_cmd_block *cmd,
562 struct its_cmd_desc *desc)
564 struct its_collection *col;
566 col = dev_event_to_col(desc->its_int_cmd.dev,
567 desc->its_int_cmd.event_id);
569 its_encode_cmd(cmd, GITS_CMD_INT);
570 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
571 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
573 its_fixup_cmd(cmd);
575 return valid_col(col);
578 static struct its_collection *its_build_clear_cmd(struct its_node *its,
579 struct its_cmd_block *cmd,
580 struct its_cmd_desc *desc)
582 struct its_collection *col;
584 col = dev_event_to_col(desc->its_clear_cmd.dev,
585 desc->its_clear_cmd.event_id);
587 its_encode_cmd(cmd, GITS_CMD_CLEAR);
588 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
589 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
591 its_fixup_cmd(cmd);
593 return valid_col(col);
596 static struct its_collection *its_build_invall_cmd(struct its_node *its,
597 struct its_cmd_block *cmd,
598 struct its_cmd_desc *desc)
600 its_encode_cmd(cmd, GITS_CMD_INVALL);
601 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
603 its_fixup_cmd(cmd);
605 return NULL;
608 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
609 struct its_cmd_block *cmd,
610 struct its_cmd_desc *desc)
612 its_encode_cmd(cmd, GITS_CMD_VINVALL);
613 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
615 its_fixup_cmd(cmd);
617 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
620 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
621 struct its_cmd_block *cmd,
622 struct its_cmd_desc *desc)
624 unsigned long vpt_addr;
625 u64 target;
627 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
628 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
630 its_encode_cmd(cmd, GITS_CMD_VMAPP);
631 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
632 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
633 its_encode_target(cmd, target);
634 its_encode_vpt_addr(cmd, vpt_addr);
635 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
637 its_fixup_cmd(cmd);
639 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
642 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
643 struct its_cmd_block *cmd,
644 struct its_cmd_desc *desc)
646 u32 db;
648 if (desc->its_vmapti_cmd.db_enabled)
649 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
650 else
651 db = 1023;
653 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
654 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
655 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
656 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
657 its_encode_db_phys_id(cmd, db);
658 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
660 its_fixup_cmd(cmd);
662 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
665 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
666 struct its_cmd_block *cmd,
667 struct its_cmd_desc *desc)
669 u32 db;
671 if (desc->its_vmovi_cmd.db_enabled)
672 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
673 else
674 db = 1023;
676 its_encode_cmd(cmd, GITS_CMD_VMOVI);
677 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
678 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
679 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
680 its_encode_db_phys_id(cmd, db);
681 its_encode_db_valid(cmd, true);
683 its_fixup_cmd(cmd);
685 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
688 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
689 struct its_cmd_block *cmd,
690 struct its_cmd_desc *desc)
692 u64 target;
694 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
695 its_encode_cmd(cmd, GITS_CMD_VMOVP);
696 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
697 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
698 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
699 its_encode_target(cmd, target);
701 its_fixup_cmd(cmd);
703 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
706 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
707 struct its_cmd_block *cmd,
708 struct its_cmd_desc *desc)
710 struct its_vlpi_map *map;
712 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
713 desc->its_inv_cmd.event_id);
715 its_encode_cmd(cmd, GITS_CMD_INV);
716 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
717 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
719 its_fixup_cmd(cmd);
721 return valid_vpe(its, map->vpe);
724 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
725 struct its_cmd_block *cmd,
726 struct its_cmd_desc *desc)
728 struct its_vlpi_map *map;
730 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
731 desc->its_int_cmd.event_id);
733 its_encode_cmd(cmd, GITS_CMD_INT);
734 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
735 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
737 its_fixup_cmd(cmd);
739 return valid_vpe(its, map->vpe);
742 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
743 struct its_cmd_block *cmd,
744 struct its_cmd_desc *desc)
746 struct its_vlpi_map *map;
748 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
749 desc->its_clear_cmd.event_id);
751 its_encode_cmd(cmd, GITS_CMD_CLEAR);
752 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
753 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
755 its_fixup_cmd(cmd);
757 return valid_vpe(its, map->vpe);
760 static u64 its_cmd_ptr_to_offset(struct its_node *its,
761 struct its_cmd_block *ptr)
763 return (ptr - its->cmd_base) * sizeof(*ptr);
766 static int its_queue_full(struct its_node *its)
768 int widx;
769 int ridx;
771 widx = its->cmd_write - its->cmd_base;
772 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
774 /* This is incredibly unlikely to happen, unless the ITS locks up. */
775 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
776 return 1;
778 return 0;
781 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
783 struct its_cmd_block *cmd;
784 u32 count = 1000000; /* 1s! */
786 while (its_queue_full(its)) {
787 count--;
788 if (!count) {
789 pr_err_ratelimited("ITS queue not draining\n");
790 return NULL;
792 cpu_relax();
793 udelay(1);
796 cmd = its->cmd_write++;
798 /* Handle queue wrapping */
799 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
800 its->cmd_write = its->cmd_base;
802 /* Clear command */
803 cmd->raw_cmd[0] = 0;
804 cmd->raw_cmd[1] = 0;
805 cmd->raw_cmd[2] = 0;
806 cmd->raw_cmd[3] = 0;
808 return cmd;
811 static struct its_cmd_block *its_post_commands(struct its_node *its)
813 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
815 writel_relaxed(wr, its->base + GITS_CWRITER);
817 return its->cmd_write;
820 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
823 * Make sure the commands written to memory are observable by
824 * the ITS.
826 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
827 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
828 else
829 dsb(ishst);
832 static int its_wait_for_range_completion(struct its_node *its,
833 u64 prev_idx,
834 struct its_cmd_block *to)
836 u64 rd_idx, to_idx, linear_idx;
837 u32 count = 1000000; /* 1s! */
839 /* Linearize to_idx if the command set has wrapped around */
840 to_idx = its_cmd_ptr_to_offset(its, to);
841 if (to_idx < prev_idx)
842 to_idx += ITS_CMD_QUEUE_SZ;
844 linear_idx = prev_idx;
846 while (1) {
847 s64 delta;
849 rd_idx = readl_relaxed(its->base + GITS_CREADR);
852 * Compute the read pointer progress, taking the
853 * potential wrap-around into account.
855 delta = rd_idx - prev_idx;
856 if (rd_idx < prev_idx)
857 delta += ITS_CMD_QUEUE_SZ;
859 linear_idx += delta;
860 if (linear_idx >= to_idx)
861 break;
863 count--;
864 if (!count) {
865 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
866 to_idx, linear_idx);
867 return -1;
869 prev_idx = rd_idx;
870 cpu_relax();
871 udelay(1);
874 return 0;
877 /* Warning, macro hell follows */
878 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
879 void name(struct its_node *its, \
880 buildtype builder, \
881 struct its_cmd_desc *desc) \
883 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
884 synctype *sync_obj; \
885 unsigned long flags; \
886 u64 rd_idx; \
888 raw_spin_lock_irqsave(&its->lock, flags); \
890 cmd = its_allocate_entry(its); \
891 if (!cmd) { /* We're soooooo screewed... */ \
892 raw_spin_unlock_irqrestore(&its->lock, flags); \
893 return; \
895 sync_obj = builder(its, cmd, desc); \
896 its_flush_cmd(its, cmd); \
898 if (sync_obj) { \
899 sync_cmd = its_allocate_entry(its); \
900 if (!sync_cmd) \
901 goto post; \
903 buildfn(its, sync_cmd, sync_obj); \
904 its_flush_cmd(its, sync_cmd); \
907 post: \
908 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
909 next_cmd = its_post_commands(its); \
910 raw_spin_unlock_irqrestore(&its->lock, flags); \
912 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
913 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
916 static void its_build_sync_cmd(struct its_node *its,
917 struct its_cmd_block *sync_cmd,
918 struct its_collection *sync_col)
920 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
921 its_encode_target(sync_cmd, sync_col->target_address);
923 its_fixup_cmd(sync_cmd);
926 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
927 struct its_collection, its_build_sync_cmd)
929 static void its_build_vsync_cmd(struct its_node *its,
930 struct its_cmd_block *sync_cmd,
931 struct its_vpe *sync_vpe)
933 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
934 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
936 its_fixup_cmd(sync_cmd);
939 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
940 struct its_vpe, its_build_vsync_cmd)
942 static void its_send_int(struct its_device *dev, u32 event_id)
944 struct its_cmd_desc desc;
946 desc.its_int_cmd.dev = dev;
947 desc.its_int_cmd.event_id = event_id;
949 its_send_single_command(dev->its, its_build_int_cmd, &desc);
952 static void its_send_clear(struct its_device *dev, u32 event_id)
954 struct its_cmd_desc desc;
956 desc.its_clear_cmd.dev = dev;
957 desc.its_clear_cmd.event_id = event_id;
959 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
962 static void its_send_inv(struct its_device *dev, u32 event_id)
964 struct its_cmd_desc desc;
966 desc.its_inv_cmd.dev = dev;
967 desc.its_inv_cmd.event_id = event_id;
969 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
972 static void its_send_mapd(struct its_device *dev, int valid)
974 struct its_cmd_desc desc;
976 desc.its_mapd_cmd.dev = dev;
977 desc.its_mapd_cmd.valid = !!valid;
979 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
982 static void its_send_mapc(struct its_node *its, struct its_collection *col,
983 int valid)
985 struct its_cmd_desc desc;
987 desc.its_mapc_cmd.col = col;
988 desc.its_mapc_cmd.valid = !!valid;
990 its_send_single_command(its, its_build_mapc_cmd, &desc);
993 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
995 struct its_cmd_desc desc;
997 desc.its_mapti_cmd.dev = dev;
998 desc.its_mapti_cmd.phys_id = irq_id;
999 desc.its_mapti_cmd.event_id = id;
1001 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1004 static void its_send_movi(struct its_device *dev,
1005 struct its_collection *col, u32 id)
1007 struct its_cmd_desc desc;
1009 desc.its_movi_cmd.dev = dev;
1010 desc.its_movi_cmd.col = col;
1011 desc.its_movi_cmd.event_id = id;
1013 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1016 static void its_send_discard(struct its_device *dev, u32 id)
1018 struct its_cmd_desc desc;
1020 desc.its_discard_cmd.dev = dev;
1021 desc.its_discard_cmd.event_id = id;
1023 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1026 static void its_send_invall(struct its_node *its, struct its_collection *col)
1028 struct its_cmd_desc desc;
1030 desc.its_invall_cmd.col = col;
1032 its_send_single_command(its, its_build_invall_cmd, &desc);
1035 static void its_send_vmapti(struct its_device *dev, u32 id)
1037 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1038 struct its_cmd_desc desc;
1040 desc.its_vmapti_cmd.vpe = map->vpe;
1041 desc.its_vmapti_cmd.dev = dev;
1042 desc.its_vmapti_cmd.virt_id = map->vintid;
1043 desc.its_vmapti_cmd.event_id = id;
1044 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1046 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1049 static void its_send_vmovi(struct its_device *dev, u32 id)
1051 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1052 struct its_cmd_desc desc;
1054 desc.its_vmovi_cmd.vpe = map->vpe;
1055 desc.its_vmovi_cmd.dev = dev;
1056 desc.its_vmovi_cmd.event_id = id;
1057 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1059 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1062 static void its_send_vmapp(struct its_node *its,
1063 struct its_vpe *vpe, bool valid)
1065 struct its_cmd_desc desc;
1067 desc.its_vmapp_cmd.vpe = vpe;
1068 desc.its_vmapp_cmd.valid = valid;
1069 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1071 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1074 static void its_send_vmovp(struct its_vpe *vpe)
1076 struct its_cmd_desc desc = {};
1077 struct its_node *its;
1078 unsigned long flags;
1079 int col_id = vpe->col_idx;
1081 desc.its_vmovp_cmd.vpe = vpe;
1083 if (!its_list_map) {
1084 its = list_first_entry(&its_nodes, struct its_node, entry);
1085 desc.its_vmovp_cmd.col = &its->collections[col_id];
1086 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1087 return;
1091 * Yet another marvel of the architecture. If using the
1092 * its_list "feature", we need to make sure that all ITSs
1093 * receive all VMOVP commands in the same order. The only way
1094 * to guarantee this is to make vmovp a serialization point.
1096 * Wall <-- Head.
1098 raw_spin_lock_irqsave(&vmovp_lock, flags);
1100 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1101 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1103 /* Emit VMOVPs */
1104 list_for_each_entry(its, &its_nodes, entry) {
1105 if (!is_v4(its))
1106 continue;
1108 if (!vpe->its_vm->vlpi_count[its->list_nr])
1109 continue;
1111 desc.its_vmovp_cmd.col = &its->collections[col_id];
1112 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1115 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1118 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1120 struct its_cmd_desc desc;
1122 desc.its_vinvall_cmd.vpe = vpe;
1123 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1126 static void its_send_vinv(struct its_device *dev, u32 event_id)
1128 struct its_cmd_desc desc;
1131 * There is no real VINV command. This is just a normal INV,
1132 * with a VSYNC instead of a SYNC.
1134 desc.its_inv_cmd.dev = dev;
1135 desc.its_inv_cmd.event_id = event_id;
1137 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1140 static void its_send_vint(struct its_device *dev, u32 event_id)
1142 struct its_cmd_desc desc;
1145 * There is no real VINT command. This is just a normal INT,
1146 * with a VSYNC instead of a SYNC.
1148 desc.its_int_cmd.dev = dev;
1149 desc.its_int_cmd.event_id = event_id;
1151 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1154 static void its_send_vclear(struct its_device *dev, u32 event_id)
1156 struct its_cmd_desc desc;
1159 * There is no real VCLEAR command. This is just a normal CLEAR,
1160 * with a VSYNC instead of a SYNC.
1162 desc.its_clear_cmd.dev = dev;
1163 desc.its_clear_cmd.event_id = event_id;
1165 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1169 * irqchip functions - assumes MSI, mostly.
1171 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
1173 if (irqd_is_forwarded_to_vcpu(d)) {
1174 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1175 u32 event = its_get_event_id(d);
1177 return dev_event_to_vlpi_map(its_dev, event);
1180 return NULL;
1183 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1185 struct its_vlpi_map *map = get_vlpi_map(d);
1186 irq_hw_number_t hwirq;
1187 void *va;
1188 u8 *cfg;
1190 if (map) {
1191 va = page_address(map->vm->vprop_page);
1192 hwirq = map->vintid;
1194 /* Remember the updated property */
1195 map->properties &= ~clr;
1196 map->properties |= set | LPI_PROP_GROUP1;
1197 } else {
1198 va = gic_rdists->prop_table_va;
1199 hwirq = d->hwirq;
1202 cfg = va + hwirq - 8192;
1203 *cfg &= ~clr;
1204 *cfg |= set | LPI_PROP_GROUP1;
1207 * Make the above write visible to the redistributors.
1208 * And yes, we're flushing exactly: One. Single. Byte.
1209 * Humpf...
1211 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1212 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1213 else
1214 dsb(ishst);
1217 static void wait_for_syncr(void __iomem *rdbase)
1219 while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
1220 cpu_relax();
1223 static void direct_lpi_inv(struct irq_data *d)
1225 struct its_collection *col;
1226 void __iomem *rdbase;
1228 /* Target the redistributor this LPI is currently routed to */
1229 col = irq_to_col(d);
1230 rdbase = per_cpu_ptr(gic_rdists->rdist, col->col_id)->rd_base;
1231 gic_write_lpir(d->hwirq, rdbase + GICR_INVLPIR);
1233 wait_for_syncr(rdbase);
1236 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1238 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1240 lpi_write_config(d, clr, set);
1241 if (gic_rdists->has_direct_lpi && !irqd_is_forwarded_to_vcpu(d))
1242 direct_lpi_inv(d);
1243 else if (!irqd_is_forwarded_to_vcpu(d))
1244 its_send_inv(its_dev, its_get_event_id(d));
1245 else
1246 its_send_vinv(its_dev, its_get_event_id(d));
1249 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1251 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1252 u32 event = its_get_event_id(d);
1253 struct its_vlpi_map *map;
1255 map = dev_event_to_vlpi_map(its_dev, event);
1257 if (map->db_enabled == enable)
1258 return;
1260 map->db_enabled = enable;
1263 * More fun with the architecture:
1265 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1266 * value or to 1023, depending on the enable bit. But that
1267 * would be issueing a mapping for an /existing/ DevID+EventID
1268 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1269 * to the /same/ vPE, using this opportunity to adjust the
1270 * doorbell. Mouahahahaha. We loves it, Precious.
1272 its_send_vmovi(its_dev, event);
1275 static void its_mask_irq(struct irq_data *d)
1277 if (irqd_is_forwarded_to_vcpu(d))
1278 its_vlpi_set_doorbell(d, false);
1280 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1283 static void its_unmask_irq(struct irq_data *d)
1285 if (irqd_is_forwarded_to_vcpu(d))
1286 its_vlpi_set_doorbell(d, true);
1288 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1291 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1292 bool force)
1294 unsigned int cpu;
1295 const struct cpumask *cpu_mask = cpu_online_mask;
1296 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1297 struct its_collection *target_col;
1298 u32 id = its_get_event_id(d);
1300 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1301 if (irqd_is_forwarded_to_vcpu(d))
1302 return -EINVAL;
1304 /* lpi cannot be routed to a redistributor that is on a foreign node */
1305 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1306 if (its_dev->its->numa_node >= 0) {
1307 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1308 if (!cpumask_intersects(mask_val, cpu_mask))
1309 return -EINVAL;
1313 cpu = cpumask_any_and(mask_val, cpu_mask);
1315 if (cpu >= nr_cpu_ids)
1316 return -EINVAL;
1318 /* don't set the affinity when the target cpu is same as current one */
1319 if (cpu != its_dev->event_map.col_map[id]) {
1320 target_col = &its_dev->its->collections[cpu];
1321 its_send_movi(its_dev, target_col, id);
1322 its_dev->event_map.col_map[id] = cpu;
1323 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1326 return IRQ_SET_MASK_OK_DONE;
1329 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1331 struct its_node *its = its_dev->its;
1333 return its->phys_base + GITS_TRANSLATER;
1336 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1338 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1339 struct its_node *its;
1340 u64 addr;
1342 its = its_dev->its;
1343 addr = its->get_msi_base(its_dev);
1345 msg->address_lo = lower_32_bits(addr);
1346 msg->address_hi = upper_32_bits(addr);
1347 msg->data = its_get_event_id(d);
1349 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1352 static int its_irq_set_irqchip_state(struct irq_data *d,
1353 enum irqchip_irq_state which,
1354 bool state)
1356 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1357 u32 event = its_get_event_id(d);
1359 if (which != IRQCHIP_STATE_PENDING)
1360 return -EINVAL;
1362 if (irqd_is_forwarded_to_vcpu(d)) {
1363 if (state)
1364 its_send_vint(its_dev, event);
1365 else
1366 its_send_vclear(its_dev, event);
1367 } else {
1368 if (state)
1369 its_send_int(its_dev, event);
1370 else
1371 its_send_clear(its_dev, event);
1374 return 0;
1377 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1379 unsigned long flags;
1381 /* Not using the ITS list? Everything is always mapped. */
1382 if (!its_list_map)
1383 return;
1385 raw_spin_lock_irqsave(&vmovp_lock, flags);
1388 * If the VM wasn't mapped yet, iterate over the vpes and get
1389 * them mapped now.
1391 vm->vlpi_count[its->list_nr]++;
1393 if (vm->vlpi_count[its->list_nr] == 1) {
1394 int i;
1396 for (i = 0; i < vm->nr_vpes; i++) {
1397 struct its_vpe *vpe = vm->vpes[i];
1398 struct irq_data *d = irq_get_irq_data(vpe->irq);
1400 /* Map the VPE to the first possible CPU */
1401 vpe->col_idx = cpumask_first(cpu_online_mask);
1402 its_send_vmapp(its, vpe, true);
1403 its_send_vinvall(its, vpe);
1404 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1408 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1411 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1413 unsigned long flags;
1415 /* Not using the ITS list? Everything is always mapped. */
1416 if (!its_list_map)
1417 return;
1419 raw_spin_lock_irqsave(&vmovp_lock, flags);
1421 if (!--vm->vlpi_count[its->list_nr]) {
1422 int i;
1424 for (i = 0; i < vm->nr_vpes; i++)
1425 its_send_vmapp(its, vm->vpes[i], false);
1428 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1431 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1433 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1434 u32 event = its_get_event_id(d);
1435 int ret = 0;
1437 if (!info->map)
1438 return -EINVAL;
1440 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1442 if (!its_dev->event_map.vm) {
1443 struct its_vlpi_map *maps;
1445 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1446 GFP_ATOMIC);
1447 if (!maps) {
1448 ret = -ENOMEM;
1449 goto out;
1452 its_dev->event_map.vm = info->map->vm;
1453 its_dev->event_map.vlpi_maps = maps;
1454 } else if (its_dev->event_map.vm != info->map->vm) {
1455 ret = -EINVAL;
1456 goto out;
1459 /* Get our private copy of the mapping information */
1460 its_dev->event_map.vlpi_maps[event] = *info->map;
1462 if (irqd_is_forwarded_to_vcpu(d)) {
1463 /* Already mapped, move it around */
1464 its_send_vmovi(its_dev, event);
1465 } else {
1466 /* Ensure all the VPEs are mapped on this ITS */
1467 its_map_vm(its_dev->its, info->map->vm);
1470 * Flag the interrupt as forwarded so that we can
1471 * start poking the virtual property table.
1473 irqd_set_forwarded_to_vcpu(d);
1475 /* Write out the property to the prop table */
1476 lpi_write_config(d, 0xff, info->map->properties);
1478 /* Drop the physical mapping */
1479 its_send_discard(its_dev, event);
1481 /* and install the virtual one */
1482 its_send_vmapti(its_dev, event);
1484 /* Increment the number of VLPIs */
1485 its_dev->event_map.nr_vlpis++;
1488 out:
1489 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1490 return ret;
1493 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1495 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1496 struct its_vlpi_map *map;
1497 int ret = 0;
1499 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1501 map = get_vlpi_map(d);
1503 if (!its_dev->event_map.vm || !map) {
1504 ret = -EINVAL;
1505 goto out;
1508 /* Copy our mapping information to the incoming request */
1509 *info->map = *map;
1511 out:
1512 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1513 return ret;
1516 static int its_vlpi_unmap(struct irq_data *d)
1518 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519 u32 event = its_get_event_id(d);
1520 int ret = 0;
1522 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1524 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1525 ret = -EINVAL;
1526 goto out;
1529 /* Drop the virtual mapping */
1530 its_send_discard(its_dev, event);
1532 /* and restore the physical one */
1533 irqd_clr_forwarded_to_vcpu(d);
1534 its_send_mapti(its_dev, d->hwirq, event);
1535 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1536 LPI_PROP_ENABLED |
1537 LPI_PROP_GROUP1));
1539 /* Potentially unmap the VM from this ITS */
1540 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1543 * Drop the refcount and make the device available again if
1544 * this was the last VLPI.
1546 if (!--its_dev->event_map.nr_vlpis) {
1547 its_dev->event_map.vm = NULL;
1548 kfree(its_dev->event_map.vlpi_maps);
1551 out:
1552 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1553 return ret;
1556 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1558 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1560 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1561 return -EINVAL;
1563 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1564 lpi_update_config(d, 0xff, info->config);
1565 else
1566 lpi_write_config(d, 0xff, info->config);
1567 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1569 return 0;
1572 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1574 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1575 struct its_cmd_info *info = vcpu_info;
1577 /* Need a v4 ITS */
1578 if (!is_v4(its_dev->its))
1579 return -EINVAL;
1581 /* Unmap request? */
1582 if (!info)
1583 return its_vlpi_unmap(d);
1585 switch (info->cmd_type) {
1586 case MAP_VLPI:
1587 return its_vlpi_map(d, info);
1589 case GET_VLPI:
1590 return its_vlpi_get(d, info);
1592 case PROP_UPDATE_VLPI:
1593 case PROP_UPDATE_AND_INV_VLPI:
1594 return its_vlpi_prop_update(d, info);
1596 default:
1597 return -EINVAL;
1601 static struct irq_chip its_irq_chip = {
1602 .name = "ITS",
1603 .irq_mask = its_mask_irq,
1604 .irq_unmask = its_unmask_irq,
1605 .irq_eoi = irq_chip_eoi_parent,
1606 .irq_set_affinity = its_set_affinity,
1607 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1608 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1609 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1614 * How we allocate LPIs:
1616 * lpi_range_list contains ranges of LPIs that are to available to
1617 * allocate from. To allocate LPIs, just pick the first range that
1618 * fits the required allocation, and reduce it by the required
1619 * amount. Once empty, remove the range from the list.
1621 * To free a range of LPIs, add a free range to the list, sort it and
1622 * merge the result if the new range happens to be adjacent to an
1623 * already free block.
1625 * The consequence of the above is that allocation is cost is low, but
1626 * freeing is expensive. We assumes that freeing rarely occurs.
1628 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
1630 static DEFINE_MUTEX(lpi_range_lock);
1631 static LIST_HEAD(lpi_range_list);
1633 struct lpi_range {
1634 struct list_head entry;
1635 u32 base_id;
1636 u32 span;
1639 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1641 struct lpi_range *range;
1643 range = kmalloc(sizeof(*range), GFP_KERNEL);
1644 if (range) {
1645 range->base_id = base;
1646 range->span = span;
1649 return range;
1652 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1654 struct lpi_range *range, *tmp;
1655 int err = -ENOSPC;
1657 mutex_lock(&lpi_range_lock);
1659 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1660 if (range->span >= nr_lpis) {
1661 *base = range->base_id;
1662 range->base_id += nr_lpis;
1663 range->span -= nr_lpis;
1665 if (range->span == 0) {
1666 list_del(&range->entry);
1667 kfree(range);
1670 err = 0;
1671 break;
1675 mutex_unlock(&lpi_range_lock);
1677 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1678 return err;
1681 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
1683 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
1684 return;
1685 if (a->base_id + a->span != b->base_id)
1686 return;
1687 b->base_id = a->base_id;
1688 b->span += a->span;
1689 list_del(&a->entry);
1690 kfree(a);
1693 static int free_lpi_range(u32 base, u32 nr_lpis)
1695 struct lpi_range *new, *old;
1697 new = mk_lpi_range(base, nr_lpis);
1698 if (!new)
1699 return -ENOMEM;
1701 mutex_lock(&lpi_range_lock);
1703 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
1704 if (old->base_id < base)
1705 break;
1708 * old is the last element with ->base_id smaller than base,
1709 * so new goes right after it. If there are no elements with
1710 * ->base_id smaller than base, &old->entry ends up pointing
1711 * at the head of the list, and inserting new it the start of
1712 * the list is the right thing to do in that case as well.
1714 list_add(&new->entry, &old->entry);
1716 * Now check if we can merge with the preceding and/or
1717 * following ranges.
1719 merge_lpi_ranges(old, new);
1720 merge_lpi_ranges(new, list_next_entry(new, entry));
1722 mutex_unlock(&lpi_range_lock);
1723 return 0;
1726 static int __init its_lpi_init(u32 id_bits)
1728 u32 lpis = (1UL << id_bits) - 8192;
1729 u32 numlpis;
1730 int err;
1732 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1734 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1735 lpis = numlpis;
1736 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1737 lpis);
1741 * Initializing the allocator is just the same as freeing the
1742 * full range of LPIs.
1744 err = free_lpi_range(8192, lpis);
1745 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1746 return err;
1749 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1751 unsigned long *bitmap = NULL;
1752 int err = 0;
1754 do {
1755 err = alloc_lpi_range(nr_irqs, base);
1756 if (!err)
1757 break;
1759 nr_irqs /= 2;
1760 } while (nr_irqs > 0);
1762 if (!nr_irqs)
1763 err = -ENOSPC;
1765 if (err)
1766 goto out;
1768 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1769 if (!bitmap)
1770 goto out;
1772 *nr_ids = nr_irqs;
1774 out:
1775 if (!bitmap)
1776 *base = *nr_ids = 0;
1778 return bitmap;
1781 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1783 WARN_ON(free_lpi_range(base, nr_ids));
1784 kfree(bitmap);
1787 static void gic_reset_prop_table(void *va)
1789 /* Priority 0xa0, Group-1, disabled */
1790 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
1792 /* Make sure the GIC will observe the written configuration */
1793 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
1796 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1798 struct page *prop_page;
1800 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1801 if (!prop_page)
1802 return NULL;
1804 gic_reset_prop_table(page_address(prop_page));
1806 return prop_page;
1809 static void its_free_prop_table(struct page *prop_page)
1811 free_pages((unsigned long)page_address(prop_page),
1812 get_order(LPI_PROPBASE_SZ));
1815 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
1817 phys_addr_t start, end, addr_end;
1818 u64 i;
1821 * We don't bother checking for a kdump kernel as by
1822 * construction, the LPI tables are out of this kernel's
1823 * memory map.
1825 if (is_kdump_kernel())
1826 return true;
1828 addr_end = addr + size - 1;
1830 for_each_reserved_mem_region(i, &start, &end) {
1831 if (addr >= start && addr_end <= end)
1832 return true;
1835 /* Not found, not a good sign... */
1836 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
1837 &addr, &addr_end);
1838 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
1839 return false;
1842 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
1844 if (efi_enabled(EFI_CONFIG_TABLES))
1845 return efi_mem_reserve_persistent(addr, size);
1847 return 0;
1850 static int __init its_setup_lpi_prop_table(void)
1852 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
1853 u64 val;
1855 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
1856 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
1858 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
1859 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
1860 LPI_PROPBASE_SZ,
1861 MEMREMAP_WB);
1862 gic_reset_prop_table(gic_rdists->prop_table_va);
1863 } else {
1864 struct page *page;
1866 lpi_id_bits = min_t(u32,
1867 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1868 ITS_MAX_LPI_NRBITS);
1869 page = its_allocate_prop_table(GFP_NOWAIT);
1870 if (!page) {
1871 pr_err("Failed to allocate PROPBASE\n");
1872 return -ENOMEM;
1875 gic_rdists->prop_table_pa = page_to_phys(page);
1876 gic_rdists->prop_table_va = page_address(page);
1877 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
1878 LPI_PROPBASE_SZ));
1881 pr_info("GICv3: using LPI property table @%pa\n",
1882 &gic_rdists->prop_table_pa);
1884 return its_lpi_init(lpi_id_bits);
1887 static const char *its_base_type_string[] = {
1888 [GITS_BASER_TYPE_DEVICE] = "Devices",
1889 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
1890 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
1891 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
1892 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
1893 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
1894 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
1897 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1899 u32 idx = baser - its->tables;
1901 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1904 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1905 u64 val)
1907 u32 idx = baser - its->tables;
1909 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1910 baser->val = its_read_baser(its, baser);
1913 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1914 u64 cache, u64 shr, u32 psz, u32 order,
1915 bool indirect)
1917 u64 val = its_read_baser(its, baser);
1918 u64 esz = GITS_BASER_ENTRY_SIZE(val);
1919 u64 type = GITS_BASER_TYPE(val);
1920 u64 baser_phys, tmp;
1921 u32 alloc_pages;
1922 struct page *page;
1923 void *base;
1925 retry_alloc_baser:
1926 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1927 if (alloc_pages > GITS_BASER_PAGES_MAX) {
1928 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1929 &its->phys_base, its_base_type_string[type],
1930 alloc_pages, GITS_BASER_PAGES_MAX);
1931 alloc_pages = GITS_BASER_PAGES_MAX;
1932 order = get_order(GITS_BASER_PAGES_MAX * psz);
1935 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
1936 if (!page)
1937 return -ENOMEM;
1939 base = (void *)page_address(page);
1940 baser_phys = virt_to_phys(base);
1942 /* Check if the physical address of the memory is above 48bits */
1943 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1945 /* 52bit PA is supported only when PageSize=64K */
1946 if (psz != SZ_64K) {
1947 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1948 free_pages((unsigned long)base, order);
1949 return -ENXIO;
1952 /* Convert 52bit PA to 48bit field */
1953 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1956 retry_baser:
1957 val = (baser_phys |
1958 (type << GITS_BASER_TYPE_SHIFT) |
1959 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
1960 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
1961 cache |
1962 shr |
1963 GITS_BASER_VALID);
1965 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
1967 switch (psz) {
1968 case SZ_4K:
1969 val |= GITS_BASER_PAGE_SIZE_4K;
1970 break;
1971 case SZ_16K:
1972 val |= GITS_BASER_PAGE_SIZE_16K;
1973 break;
1974 case SZ_64K:
1975 val |= GITS_BASER_PAGE_SIZE_64K;
1976 break;
1979 its_write_baser(its, baser, val);
1980 tmp = baser->val;
1982 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1984 * Shareability didn't stick. Just use
1985 * whatever the read reported, which is likely
1986 * to be the only thing this redistributor
1987 * supports. If that's zero, make it
1988 * non-cacheable as well.
1990 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1991 if (!shr) {
1992 cache = GITS_BASER_nC;
1993 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1995 goto retry_baser;
1998 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
2000 * Page size didn't stick. Let's try a smaller
2001 * size and retry. If we reach 4K, then
2002 * something is horribly wrong...
2004 free_pages((unsigned long)base, order);
2005 baser->base = NULL;
2007 switch (psz) {
2008 case SZ_16K:
2009 psz = SZ_4K;
2010 goto retry_alloc_baser;
2011 case SZ_64K:
2012 psz = SZ_16K;
2013 goto retry_alloc_baser;
2017 if (val != tmp) {
2018 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2019 &its->phys_base, its_base_type_string[type],
2020 val, tmp);
2021 free_pages((unsigned long)base, order);
2022 return -ENXIO;
2025 baser->order = order;
2026 baser->base = base;
2027 baser->psz = psz;
2028 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2030 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2031 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2032 its_base_type_string[type],
2033 (unsigned long)virt_to_phys(base),
2034 indirect ? "indirect" : "flat", (int)esz,
2035 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2037 return 0;
2040 static bool its_parse_indirect_baser(struct its_node *its,
2041 struct its_baser *baser,
2042 u32 psz, u32 *order, u32 ids)
2044 u64 tmp = its_read_baser(its, baser);
2045 u64 type = GITS_BASER_TYPE(tmp);
2046 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2047 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2048 u32 new_order = *order;
2049 bool indirect = false;
2051 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2052 if ((esz << ids) > (psz * 2)) {
2054 * Find out whether hw supports a single or two-level table by
2055 * table by reading bit at offset '62' after writing '1' to it.
2057 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2058 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2060 if (indirect) {
2062 * The size of the lvl2 table is equal to ITS page size
2063 * which is 'psz'. For computing lvl1 table size,
2064 * subtract ID bits that sparse lvl2 table from 'ids'
2065 * which is reported by ITS hardware times lvl1 table
2066 * entry size.
2068 ids -= ilog2(psz / (int)esz);
2069 esz = GITS_LVL1_ENTRY_SIZE;
2074 * Allocate as many entries as required to fit the
2075 * range of device IDs that the ITS can grok... The ID
2076 * space being incredibly sparse, this results in a
2077 * massive waste of memory if two-level device table
2078 * feature is not supported by hardware.
2080 new_order = max_t(u32, get_order(esz << ids), new_order);
2081 if (new_order >= MAX_ORDER) {
2082 new_order = MAX_ORDER - 1;
2083 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2084 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2085 &its->phys_base, its_base_type_string[type],
2086 device_ids(its), ids);
2089 *order = new_order;
2091 return indirect;
2094 static void its_free_tables(struct its_node *its)
2096 int i;
2098 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2099 if (its->tables[i].base) {
2100 free_pages((unsigned long)its->tables[i].base,
2101 its->tables[i].order);
2102 its->tables[i].base = NULL;
2107 static int its_alloc_tables(struct its_node *its)
2109 u64 shr = GITS_BASER_InnerShareable;
2110 u64 cache = GITS_BASER_RaWaWb;
2111 u32 psz = SZ_64K;
2112 int err, i;
2114 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2115 /* erratum 24313: ignore memory access type */
2116 cache = GITS_BASER_nCnB;
2118 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2119 struct its_baser *baser = its->tables + i;
2120 u64 val = its_read_baser(its, baser);
2121 u64 type = GITS_BASER_TYPE(val);
2122 u32 order = get_order(psz);
2123 bool indirect = false;
2125 switch (type) {
2126 case GITS_BASER_TYPE_NONE:
2127 continue;
2129 case GITS_BASER_TYPE_DEVICE:
2130 indirect = its_parse_indirect_baser(its, baser,
2131 psz, &order,
2132 device_ids(its));
2133 break;
2135 case GITS_BASER_TYPE_VCPU:
2136 indirect = its_parse_indirect_baser(its, baser,
2137 psz, &order,
2138 ITS_MAX_VPEID_BITS);
2139 break;
2142 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
2143 if (err < 0) {
2144 its_free_tables(its);
2145 return err;
2148 /* Update settings which will be used for next BASERn */
2149 psz = baser->psz;
2150 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2151 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2154 return 0;
2157 static int its_alloc_collections(struct its_node *its)
2159 int i;
2161 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2162 GFP_KERNEL);
2163 if (!its->collections)
2164 return -ENOMEM;
2166 for (i = 0; i < nr_cpu_ids; i++)
2167 its->collections[i].target_address = ~0ULL;
2169 return 0;
2172 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2174 struct page *pend_page;
2176 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2177 get_order(LPI_PENDBASE_SZ));
2178 if (!pend_page)
2179 return NULL;
2181 /* Make sure the GIC will observe the zero-ed page */
2182 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2184 return pend_page;
2187 static void its_free_pending_table(struct page *pt)
2189 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2193 * Booting with kdump and LPIs enabled is generally fine. Any other
2194 * case is wrong in the absence of firmware/EFI support.
2196 static bool enabled_lpis_allowed(void)
2198 phys_addr_t addr;
2199 u64 val;
2201 /* Check whether the property table is in a reserved region */
2202 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2203 addr = val & GENMASK_ULL(51, 12);
2205 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2208 static int __init allocate_lpi_tables(void)
2210 u64 val;
2211 int err, cpu;
2214 * If LPIs are enabled while we run this from the boot CPU,
2215 * flag the RD tables as pre-allocated if the stars do align.
2217 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2218 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2219 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2220 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2221 pr_info("GICv3: Using preallocated redistributor tables\n");
2224 err = its_setup_lpi_prop_table();
2225 if (err)
2226 return err;
2229 * We allocate all the pending tables anyway, as we may have a
2230 * mix of RDs that have had LPIs enabled, and some that
2231 * don't. We'll free the unused ones as each CPU comes online.
2233 for_each_possible_cpu(cpu) {
2234 struct page *pend_page;
2236 pend_page = its_allocate_pending_table(GFP_NOWAIT);
2237 if (!pend_page) {
2238 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
2239 return -ENOMEM;
2242 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
2245 return 0;
2248 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
2250 u32 count = 1000000; /* 1s! */
2251 bool clean;
2252 u64 val;
2254 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2255 val &= ~GICR_VPENDBASER_Valid;
2256 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2258 do {
2259 val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2260 clean = !(val & GICR_VPENDBASER_Dirty);
2261 if (!clean) {
2262 count--;
2263 cpu_relax();
2264 udelay(1);
2266 } while (!clean && count);
2268 return val;
2271 static void its_cpu_init_lpis(void)
2273 void __iomem *rbase = gic_data_rdist_rd_base();
2274 struct page *pend_page;
2275 phys_addr_t paddr;
2276 u64 val, tmp;
2278 if (gic_data_rdist()->lpi_enabled)
2279 return;
2281 val = readl_relaxed(rbase + GICR_CTLR);
2282 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
2283 (val & GICR_CTLR_ENABLE_LPIS)) {
2285 * Check that we get the same property table on all
2286 * RDs. If we don't, this is hopeless.
2288 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
2289 paddr &= GENMASK_ULL(51, 12);
2290 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
2291 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2293 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2294 paddr &= GENMASK_ULL(51, 16);
2296 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
2297 its_free_pending_table(gic_data_rdist()->pend_page);
2298 gic_data_rdist()->pend_page = NULL;
2300 goto out;
2303 pend_page = gic_data_rdist()->pend_page;
2304 paddr = page_to_phys(pend_page);
2305 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
2307 /* set PROPBASE */
2308 val = (gic_rdists->prop_table_pa |
2309 GICR_PROPBASER_InnerShareable |
2310 GICR_PROPBASER_RaWaWb |
2311 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2313 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2314 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2316 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2317 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2319 * The HW reports non-shareable, we must
2320 * remove the cacheability attributes as
2321 * well.
2323 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2324 GICR_PROPBASER_CACHEABILITY_MASK);
2325 val |= GICR_PROPBASER_nC;
2326 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2328 pr_info_once("GIC: using cache flushing for LPI property table\n");
2329 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2332 /* set PENDBASE */
2333 val = (page_to_phys(pend_page) |
2334 GICR_PENDBASER_InnerShareable |
2335 GICR_PENDBASER_RaWaWb);
2337 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2338 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2340 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2342 * The HW reports non-shareable, we must remove the
2343 * cacheability attributes as well.
2345 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2346 GICR_PENDBASER_CACHEABILITY_MASK);
2347 val |= GICR_PENDBASER_nC;
2348 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2351 /* Enable LPIs */
2352 val = readl_relaxed(rbase + GICR_CTLR);
2353 val |= GICR_CTLR_ENABLE_LPIS;
2354 writel_relaxed(val, rbase + GICR_CTLR);
2356 if (gic_rdists->has_vlpis) {
2357 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2360 * It's possible for CPU to receive VLPIs before it is
2361 * sheduled as a vPE, especially for the first CPU, and the
2362 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2363 * as out of range and dropped by GIC.
2364 * So we initialize IDbits to known value to avoid VLPI drop.
2366 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2367 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2368 smp_processor_id(), val);
2369 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2372 * Also clear Valid bit of GICR_VPENDBASER, in case some
2373 * ancient programming gets left in and has possibility of
2374 * corrupting memory.
2376 val = its_clear_vpend_valid(vlpi_base);
2377 WARN_ON(val & GICR_VPENDBASER_Dirty);
2380 /* Make sure the GIC has seen the above */
2381 dsb(sy);
2382 out:
2383 gic_data_rdist()->lpi_enabled = true;
2384 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
2385 smp_processor_id(),
2386 gic_data_rdist()->pend_page ? "allocated" : "reserved",
2387 &paddr);
2390 static void its_cpu_init_collection(struct its_node *its)
2392 int cpu = smp_processor_id();
2393 u64 target;
2395 /* avoid cross node collections and its mapping */
2396 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2397 struct device_node *cpu_node;
2399 cpu_node = of_get_cpu_node(cpu, NULL);
2400 if (its->numa_node != NUMA_NO_NODE &&
2401 its->numa_node != of_node_to_nid(cpu_node))
2402 return;
2406 * We now have to bind each collection to its target
2407 * redistributor.
2409 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2411 * This ITS wants the physical address of the
2412 * redistributor.
2414 target = gic_data_rdist()->phys_base;
2415 } else {
2416 /* This ITS wants a linear CPU number. */
2417 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2418 target = GICR_TYPER_CPU_NUMBER(target) << 16;
2421 /* Perform collection mapping */
2422 its->collections[cpu].target_address = target;
2423 its->collections[cpu].col_id = cpu;
2425 its_send_mapc(its, &its->collections[cpu], 1);
2426 its_send_invall(its, &its->collections[cpu]);
2429 static void its_cpu_init_collections(void)
2431 struct its_node *its;
2433 raw_spin_lock(&its_lock);
2435 list_for_each_entry(its, &its_nodes, entry)
2436 its_cpu_init_collection(its);
2438 raw_spin_unlock(&its_lock);
2441 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2443 struct its_device *its_dev = NULL, *tmp;
2444 unsigned long flags;
2446 raw_spin_lock_irqsave(&its->lock, flags);
2448 list_for_each_entry(tmp, &its->its_device_list, entry) {
2449 if (tmp->device_id == dev_id) {
2450 its_dev = tmp;
2451 break;
2455 raw_spin_unlock_irqrestore(&its->lock, flags);
2457 return its_dev;
2460 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2462 int i;
2464 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2465 if (GITS_BASER_TYPE(its->tables[i].val) == type)
2466 return &its->tables[i];
2469 return NULL;
2472 static bool its_alloc_table_entry(struct its_node *its,
2473 struct its_baser *baser, u32 id)
2475 struct page *page;
2476 u32 esz, idx;
2477 __le64 *table;
2479 /* Don't allow device id that exceeds single, flat table limit */
2480 esz = GITS_BASER_ENTRY_SIZE(baser->val);
2481 if (!(baser->val & GITS_BASER_INDIRECT))
2482 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2484 /* Compute 1st level table index & check if that exceeds table limit */
2485 idx = id >> ilog2(baser->psz / esz);
2486 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2487 return false;
2489 table = baser->base;
2491 /* Allocate memory for 2nd level table */
2492 if (!table[idx]) {
2493 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
2494 get_order(baser->psz));
2495 if (!page)
2496 return false;
2498 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2499 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2500 gic_flush_dcache_to_poc(page_address(page), baser->psz);
2502 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2504 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2505 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2506 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2508 /* Ensure updated table contents are visible to ITS hardware */
2509 dsb(sy);
2512 return true;
2515 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2517 struct its_baser *baser;
2519 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2521 /* Don't allow device id that exceeds ITS hardware limit */
2522 if (!baser)
2523 return (ilog2(dev_id) < device_ids(its));
2525 return its_alloc_table_entry(its, baser, dev_id);
2528 static bool its_alloc_vpe_table(u32 vpe_id)
2530 struct its_node *its;
2533 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2534 * could try and only do it on ITSs corresponding to devices
2535 * that have interrupts targeted at this VPE, but the
2536 * complexity becomes crazy (and you have tons of memory
2537 * anyway, right?).
2539 list_for_each_entry(its, &its_nodes, entry) {
2540 struct its_baser *baser;
2542 if (!is_v4(its))
2543 continue;
2545 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2546 if (!baser)
2547 return false;
2549 if (!its_alloc_table_entry(its, baser, vpe_id))
2550 return false;
2553 return true;
2556 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2557 int nvecs, bool alloc_lpis)
2559 struct its_device *dev;
2560 unsigned long *lpi_map = NULL;
2561 unsigned long flags;
2562 u16 *col_map = NULL;
2563 void *itt;
2564 int lpi_base;
2565 int nr_lpis;
2566 int nr_ites;
2567 int sz;
2569 if (!its_alloc_device_table(its, dev_id))
2570 return NULL;
2572 if (WARN_ON(!is_power_of_2(nvecs)))
2573 nvecs = roundup_pow_of_two(nvecs);
2575 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2577 * Even if the device wants a single LPI, the ITT must be
2578 * sized as a power of two (and you need at least one bit...).
2580 nr_ites = max(2, nvecs);
2581 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
2582 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2583 itt = kzalloc_node(sz, GFP_KERNEL, its->numa_node);
2584 if (alloc_lpis) {
2585 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2586 if (lpi_map)
2587 col_map = kcalloc(nr_lpis, sizeof(*col_map),
2588 GFP_KERNEL);
2589 } else {
2590 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2591 nr_lpis = 0;
2592 lpi_base = 0;
2595 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
2596 kfree(dev);
2597 kfree(itt);
2598 kfree(lpi_map);
2599 kfree(col_map);
2600 return NULL;
2603 gic_flush_dcache_to_poc(itt, sz);
2605 dev->its = its;
2606 dev->itt = itt;
2607 dev->nr_ites = nr_ites;
2608 dev->event_map.lpi_map = lpi_map;
2609 dev->event_map.col_map = col_map;
2610 dev->event_map.lpi_base = lpi_base;
2611 dev->event_map.nr_lpis = nr_lpis;
2612 raw_spin_lock_init(&dev->event_map.vlpi_lock);
2613 dev->device_id = dev_id;
2614 INIT_LIST_HEAD(&dev->entry);
2616 raw_spin_lock_irqsave(&its->lock, flags);
2617 list_add(&dev->entry, &its->its_device_list);
2618 raw_spin_unlock_irqrestore(&its->lock, flags);
2620 /* Map device to its ITT */
2621 its_send_mapd(dev, 1);
2623 return dev;
2626 static void its_free_device(struct its_device *its_dev)
2628 unsigned long flags;
2630 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2631 list_del(&its_dev->entry);
2632 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2633 kfree(its_dev->event_map.col_map);
2634 kfree(its_dev->itt);
2635 kfree(its_dev);
2638 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2640 int idx;
2642 /* Find a free LPI region in lpi_map and allocate them. */
2643 idx = bitmap_find_free_region(dev->event_map.lpi_map,
2644 dev->event_map.nr_lpis,
2645 get_count_order(nvecs));
2646 if (idx < 0)
2647 return -ENOSPC;
2649 *hwirq = dev->event_map.lpi_base + idx;
2651 return 0;
2654 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2655 int nvec, msi_alloc_info_t *info)
2657 struct its_node *its;
2658 struct its_device *its_dev;
2659 struct msi_domain_info *msi_info;
2660 u32 dev_id;
2661 int err = 0;
2664 * We ignore "dev" entirely, and rely on the dev_id that has
2665 * been passed via the scratchpad. This limits this domain's
2666 * usefulness to upper layers that definitely know that they
2667 * are built on top of the ITS.
2669 dev_id = info->scratchpad[0].ul;
2671 msi_info = msi_get_domain_info(domain);
2672 its = msi_info->data;
2674 if (!gic_rdists->has_direct_lpi &&
2675 vpe_proxy.dev &&
2676 vpe_proxy.dev->its == its &&
2677 dev_id == vpe_proxy.dev->device_id) {
2678 /* Bad luck. Get yourself a better implementation */
2679 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2680 dev_id);
2681 return -EINVAL;
2684 mutex_lock(&its->dev_alloc_lock);
2685 its_dev = its_find_device(its, dev_id);
2686 if (its_dev) {
2688 * We already have seen this ID, probably through
2689 * another alias (PCI bridge of some sort). No need to
2690 * create the device.
2692 its_dev->shared = true;
2693 pr_debug("Reusing ITT for devID %x\n", dev_id);
2694 goto out;
2697 its_dev = its_create_device(its, dev_id, nvec, true);
2698 if (!its_dev) {
2699 err = -ENOMEM;
2700 goto out;
2703 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2704 out:
2705 mutex_unlock(&its->dev_alloc_lock);
2706 info->scratchpad[0].ptr = its_dev;
2707 return err;
2710 static struct msi_domain_ops its_msi_domain_ops = {
2711 .msi_prepare = its_msi_prepare,
2714 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2715 unsigned int virq,
2716 irq_hw_number_t hwirq)
2718 struct irq_fwspec fwspec;
2720 if (irq_domain_get_of_node(domain->parent)) {
2721 fwspec.fwnode = domain->parent->fwnode;
2722 fwspec.param_count = 3;
2723 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2724 fwspec.param[1] = hwirq;
2725 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2726 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2727 fwspec.fwnode = domain->parent->fwnode;
2728 fwspec.param_count = 2;
2729 fwspec.param[0] = hwirq;
2730 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2731 } else {
2732 return -EINVAL;
2735 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2738 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2739 unsigned int nr_irqs, void *args)
2741 msi_alloc_info_t *info = args;
2742 struct its_device *its_dev = info->scratchpad[0].ptr;
2743 struct its_node *its = its_dev->its;
2744 irq_hw_number_t hwirq;
2745 int err;
2746 int i;
2748 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2749 if (err)
2750 return err;
2752 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
2753 if (err)
2754 return err;
2756 for (i = 0; i < nr_irqs; i++) {
2757 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2758 if (err)
2759 return err;
2761 irq_domain_set_hwirq_and_chip(domain, virq + i,
2762 hwirq + i, &its_irq_chip, its_dev);
2763 irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2764 pr_debug("ID:%d pID:%d vID:%d\n",
2765 (int)(hwirq + i - its_dev->event_map.lpi_base),
2766 (int)(hwirq + i), virq + i);
2769 return 0;
2772 static int its_irq_domain_activate(struct irq_domain *domain,
2773 struct irq_data *d, bool reserve)
2775 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2776 u32 event = its_get_event_id(d);
2777 const struct cpumask *cpu_mask = cpu_online_mask;
2778 int cpu;
2780 /* get the cpu_mask of local node */
2781 if (its_dev->its->numa_node >= 0)
2782 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2784 /* Bind the LPI to the first possible CPU */
2785 cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2786 if (cpu >= nr_cpu_ids) {
2787 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2788 return -EINVAL;
2790 cpu = cpumask_first(cpu_online_mask);
2793 its_dev->event_map.col_map[event] = cpu;
2794 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2796 /* Map the GIC IRQ and event to the device */
2797 its_send_mapti(its_dev, d->hwirq, event);
2798 return 0;
2801 static void its_irq_domain_deactivate(struct irq_domain *domain,
2802 struct irq_data *d)
2804 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2805 u32 event = its_get_event_id(d);
2807 /* Stop the delivery of interrupts */
2808 its_send_discard(its_dev, event);
2811 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2812 unsigned int nr_irqs)
2814 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2815 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2816 struct its_node *its = its_dev->its;
2817 int i;
2819 bitmap_release_region(its_dev->event_map.lpi_map,
2820 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2821 get_count_order(nr_irqs));
2823 for (i = 0; i < nr_irqs; i++) {
2824 struct irq_data *data = irq_domain_get_irq_data(domain,
2825 virq + i);
2826 /* Nuke the entry in the domain */
2827 irq_domain_reset_irq_data(data);
2830 mutex_lock(&its->dev_alloc_lock);
2833 * If all interrupts have been freed, start mopping the
2834 * floor. This is conditionned on the device not being shared.
2836 if (!its_dev->shared &&
2837 bitmap_empty(its_dev->event_map.lpi_map,
2838 its_dev->event_map.nr_lpis)) {
2839 its_lpi_free(its_dev->event_map.lpi_map,
2840 its_dev->event_map.lpi_base,
2841 its_dev->event_map.nr_lpis);
2843 /* Unmap device/itt */
2844 its_send_mapd(its_dev, 0);
2845 its_free_device(its_dev);
2848 mutex_unlock(&its->dev_alloc_lock);
2850 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2853 static const struct irq_domain_ops its_domain_ops = {
2854 .alloc = its_irq_domain_alloc,
2855 .free = its_irq_domain_free,
2856 .activate = its_irq_domain_activate,
2857 .deactivate = its_irq_domain_deactivate,
2861 * This is insane.
2863 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2864 * likely), the only way to perform an invalidate is to use a fake
2865 * device to issue an INV command, implying that the LPI has first
2866 * been mapped to some event on that device. Since this is not exactly
2867 * cheap, we try to keep that mapping around as long as possible, and
2868 * only issue an UNMAP if we're short on available slots.
2870 * Broken by design(tm).
2872 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2874 /* Already unmapped? */
2875 if (vpe->vpe_proxy_event == -1)
2876 return;
2878 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2879 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2882 * We don't track empty slots at all, so let's move the
2883 * next_victim pointer if we can quickly reuse that slot
2884 * instead of nuking an existing entry. Not clear that this is
2885 * always a win though, and this might just generate a ripple
2886 * effect... Let's just hope VPEs don't migrate too often.
2888 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2889 vpe_proxy.next_victim = vpe->vpe_proxy_event;
2891 vpe->vpe_proxy_event = -1;
2894 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2896 if (!gic_rdists->has_direct_lpi) {
2897 unsigned long flags;
2899 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2900 its_vpe_db_proxy_unmap_locked(vpe);
2901 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2905 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2907 /* Already mapped? */
2908 if (vpe->vpe_proxy_event != -1)
2909 return;
2911 /* This slot was already allocated. Kick the other VPE out. */
2912 if (vpe_proxy.vpes[vpe_proxy.next_victim])
2913 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2915 /* Map the new VPE instead */
2916 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2917 vpe->vpe_proxy_event = vpe_proxy.next_victim;
2918 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2920 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2921 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2924 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2926 unsigned long flags;
2927 struct its_collection *target_col;
2929 if (gic_rdists->has_direct_lpi) {
2930 void __iomem *rdbase;
2932 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2933 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2934 wait_for_syncr(rdbase);
2936 return;
2939 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2941 its_vpe_db_proxy_map_locked(vpe);
2943 target_col = &vpe_proxy.dev->its->collections[to];
2944 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2945 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2947 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2950 static int its_vpe_set_affinity(struct irq_data *d,
2951 const struct cpumask *mask_val,
2952 bool force)
2954 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2955 int cpu = cpumask_first(mask_val);
2958 * Changing affinity is mega expensive, so let's be as lazy as
2959 * we can and only do it if we really have to. Also, if mapped
2960 * into the proxy device, we need to move the doorbell
2961 * interrupt to its new location.
2963 if (vpe->col_idx != cpu) {
2964 int from = vpe->col_idx;
2966 vpe->col_idx = cpu;
2967 its_send_vmovp(vpe);
2968 its_vpe_db_proxy_move(vpe, from, cpu);
2971 irq_data_update_effective_affinity(d, cpumask_of(cpu));
2973 return IRQ_SET_MASK_OK_DONE;
2976 static void its_vpe_schedule(struct its_vpe *vpe)
2978 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2979 u64 val;
2981 /* Schedule the VPE */
2982 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2983 GENMASK_ULL(51, 12);
2984 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2985 val |= GICR_VPROPBASER_RaWb;
2986 val |= GICR_VPROPBASER_InnerShareable;
2987 gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2989 val = virt_to_phys(page_address(vpe->vpt_page)) &
2990 GENMASK_ULL(51, 16);
2991 val |= GICR_VPENDBASER_RaWaWb;
2992 val |= GICR_VPENDBASER_NonShareable;
2994 * There is no good way of finding out if the pending table is
2995 * empty as we can race against the doorbell interrupt very
2996 * easily. So in the end, vpe->pending_last is only an
2997 * indication that the vcpu has something pending, not one
2998 * that the pending table is empty. A good implementation
2999 * would be able to read its coarse map pretty quickly anyway,
3000 * making this a tolerable issue.
3002 val |= GICR_VPENDBASER_PendingLast;
3003 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3004 val |= GICR_VPENDBASER_Valid;
3005 gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3008 static void its_vpe_deschedule(struct its_vpe *vpe)
3010 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3011 u64 val;
3013 val = its_clear_vpend_valid(vlpi_base);
3015 if (unlikely(val & GICR_VPENDBASER_Dirty)) {
3016 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3017 vpe->idai = false;
3018 vpe->pending_last = true;
3019 } else {
3020 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3021 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3025 static void its_vpe_invall(struct its_vpe *vpe)
3027 struct its_node *its;
3029 list_for_each_entry(its, &its_nodes, entry) {
3030 if (!is_v4(its))
3031 continue;
3033 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3034 continue;
3037 * Sending a VINVALL to a single ITS is enough, as all
3038 * we need is to reach the redistributors.
3040 its_send_vinvall(its, vpe);
3041 return;
3045 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3047 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3048 struct its_cmd_info *info = vcpu_info;
3050 switch (info->cmd_type) {
3051 case SCHEDULE_VPE:
3052 its_vpe_schedule(vpe);
3053 return 0;
3055 case DESCHEDULE_VPE:
3056 its_vpe_deschedule(vpe);
3057 return 0;
3059 case INVALL_VPE:
3060 its_vpe_invall(vpe);
3061 return 0;
3063 default:
3064 return -EINVAL;
3068 static void its_vpe_send_cmd(struct its_vpe *vpe,
3069 void (*cmd)(struct its_device *, u32))
3071 unsigned long flags;
3073 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3075 its_vpe_db_proxy_map_locked(vpe);
3076 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3078 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3081 static void its_vpe_send_inv(struct irq_data *d)
3083 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3085 if (gic_rdists->has_direct_lpi) {
3086 void __iomem *rdbase;
3088 /* Target the redistributor this VPE is currently known on */
3089 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3090 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3091 wait_for_syncr(rdbase);
3092 } else {
3093 its_vpe_send_cmd(vpe, its_send_inv);
3097 static void its_vpe_mask_irq(struct irq_data *d)
3100 * We need to unmask the LPI, which is described by the parent
3101 * irq_data. Instead of calling into the parent (which won't
3102 * exactly do the right thing, let's simply use the
3103 * parent_data pointer. Yes, I'm naughty.
3105 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
3106 its_vpe_send_inv(d);
3109 static void its_vpe_unmask_irq(struct irq_data *d)
3111 /* Same hack as above... */
3112 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
3113 its_vpe_send_inv(d);
3116 static int its_vpe_set_irqchip_state(struct irq_data *d,
3117 enum irqchip_irq_state which,
3118 bool state)
3120 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3122 if (which != IRQCHIP_STATE_PENDING)
3123 return -EINVAL;
3125 if (gic_rdists->has_direct_lpi) {
3126 void __iomem *rdbase;
3128 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3129 if (state) {
3130 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
3131 } else {
3132 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3133 wait_for_syncr(rdbase);
3135 } else {
3136 if (state)
3137 its_vpe_send_cmd(vpe, its_send_int);
3138 else
3139 its_vpe_send_cmd(vpe, its_send_clear);
3142 return 0;
3145 static struct irq_chip its_vpe_irq_chip = {
3146 .name = "GICv4-vpe",
3147 .irq_mask = its_vpe_mask_irq,
3148 .irq_unmask = its_vpe_unmask_irq,
3149 .irq_eoi = irq_chip_eoi_parent,
3150 .irq_set_affinity = its_vpe_set_affinity,
3151 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
3152 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
3155 static int its_vpe_id_alloc(void)
3157 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
3160 static void its_vpe_id_free(u16 id)
3162 ida_simple_remove(&its_vpeid_ida, id);
3165 static int its_vpe_init(struct its_vpe *vpe)
3167 struct page *vpt_page;
3168 int vpe_id;
3170 /* Allocate vpe_id */
3171 vpe_id = its_vpe_id_alloc();
3172 if (vpe_id < 0)
3173 return vpe_id;
3175 /* Allocate VPT */
3176 vpt_page = its_allocate_pending_table(GFP_KERNEL);
3177 if (!vpt_page) {
3178 its_vpe_id_free(vpe_id);
3179 return -ENOMEM;
3182 if (!its_alloc_vpe_table(vpe_id)) {
3183 its_vpe_id_free(vpe_id);
3184 its_free_pending_table(vpt_page);
3185 return -ENOMEM;
3188 vpe->vpe_id = vpe_id;
3189 vpe->vpt_page = vpt_page;
3190 vpe->vpe_proxy_event = -1;
3192 return 0;
3195 static void its_vpe_teardown(struct its_vpe *vpe)
3197 its_vpe_db_proxy_unmap(vpe);
3198 its_vpe_id_free(vpe->vpe_id);
3199 its_free_pending_table(vpe->vpt_page);
3202 static void its_vpe_irq_domain_free(struct irq_domain *domain,
3203 unsigned int virq,
3204 unsigned int nr_irqs)
3206 struct its_vm *vm = domain->host_data;
3207 int i;
3209 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3211 for (i = 0; i < nr_irqs; i++) {
3212 struct irq_data *data = irq_domain_get_irq_data(domain,
3213 virq + i);
3214 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
3216 BUG_ON(vm != vpe->its_vm);
3218 clear_bit(data->hwirq, vm->db_bitmap);
3219 its_vpe_teardown(vpe);
3220 irq_domain_reset_irq_data(data);
3223 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
3224 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
3225 its_free_prop_table(vm->vprop_page);
3229 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3230 unsigned int nr_irqs, void *args)
3232 struct its_vm *vm = args;
3233 unsigned long *bitmap;
3234 struct page *vprop_page;
3235 int base, nr_ids, i, err = 0;
3237 BUG_ON(!vm);
3239 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
3240 if (!bitmap)
3241 return -ENOMEM;
3243 if (nr_ids < nr_irqs) {
3244 its_lpi_free(bitmap, base, nr_ids);
3245 return -ENOMEM;
3248 vprop_page = its_allocate_prop_table(GFP_KERNEL);
3249 if (!vprop_page) {
3250 its_lpi_free(bitmap, base, nr_ids);
3251 return -ENOMEM;
3254 vm->db_bitmap = bitmap;
3255 vm->db_lpi_base = base;
3256 vm->nr_db_lpis = nr_ids;
3257 vm->vprop_page = vprop_page;
3259 for (i = 0; i < nr_irqs; i++) {
3260 vm->vpes[i]->vpe_db_lpi = base + i;
3261 err = its_vpe_init(vm->vpes[i]);
3262 if (err)
3263 break;
3264 err = its_irq_gic_domain_alloc(domain, virq + i,
3265 vm->vpes[i]->vpe_db_lpi);
3266 if (err)
3267 break;
3268 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
3269 &its_vpe_irq_chip, vm->vpes[i]);
3270 set_bit(i, bitmap);
3273 if (err) {
3274 if (i > 0)
3275 its_vpe_irq_domain_free(domain, virq, i - 1);
3277 its_lpi_free(bitmap, base, nr_ids);
3278 its_free_prop_table(vprop_page);
3281 return err;
3284 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3285 struct irq_data *d, bool reserve)
3287 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3288 struct its_node *its;
3290 /* If we use the list map, we issue VMAPP on demand... */
3291 if (its_list_map)
3292 return 0;
3294 /* Map the VPE to the first possible CPU */
3295 vpe->col_idx = cpumask_first(cpu_online_mask);
3297 list_for_each_entry(its, &its_nodes, entry) {
3298 if (!is_v4(its))
3299 continue;
3301 its_send_vmapp(its, vpe, true);
3302 its_send_vinvall(its, vpe);
3305 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3307 return 0;
3310 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3311 struct irq_data *d)
3313 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3314 struct its_node *its;
3317 * If we use the list map, we unmap the VPE once no VLPIs are
3318 * associated with the VM.
3320 if (its_list_map)
3321 return;
3323 list_for_each_entry(its, &its_nodes, entry) {
3324 if (!is_v4(its))
3325 continue;
3327 its_send_vmapp(its, vpe, false);
3331 static const struct irq_domain_ops its_vpe_domain_ops = {
3332 .alloc = its_vpe_irq_domain_alloc,
3333 .free = its_vpe_irq_domain_free,
3334 .activate = its_vpe_irq_domain_activate,
3335 .deactivate = its_vpe_irq_domain_deactivate,
3338 static int its_force_quiescent(void __iomem *base)
3340 u32 count = 1000000; /* 1s */
3341 u32 val;
3343 val = readl_relaxed(base + GITS_CTLR);
3345 * GIC architecture specification requires the ITS to be both
3346 * disabled and quiescent for writes to GITS_BASER<n> or
3347 * GITS_CBASER to not have UNPREDICTABLE results.
3349 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3350 return 0;
3352 /* Disable the generation of all interrupts to this ITS */
3353 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3354 writel_relaxed(val, base + GITS_CTLR);
3356 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
3357 while (1) {
3358 val = readl_relaxed(base + GITS_CTLR);
3359 if (val & GITS_CTLR_QUIESCENT)
3360 return 0;
3362 count--;
3363 if (!count)
3364 return -EBUSY;
3366 cpu_relax();
3367 udelay(1);
3371 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3373 struct its_node *its = data;
3375 /* erratum 22375: only alloc 8MB table size (20 bits) */
3376 its->typer &= ~GITS_TYPER_DEVBITS;
3377 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
3378 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3380 return true;
3383 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3385 struct its_node *its = data;
3387 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3389 return true;
3392 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3394 struct its_node *its = data;
3396 /* On QDF2400, the size of the ITE is 16Bytes */
3397 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
3398 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
3400 return true;
3403 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3405 struct its_node *its = its_dev->its;
3408 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3409 * which maps 32-bit writes targeted at a separate window of
3410 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3411 * with device ID taken from bits [device_id_bits + 1:2] of
3412 * the window offset.
3414 return its->pre_its_base + (its_dev->device_id << 2);
3417 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3419 struct its_node *its = data;
3420 u32 pre_its_window[2];
3421 u32 ids;
3423 if (!fwnode_property_read_u32_array(its->fwnode_handle,
3424 "socionext,synquacer-pre-its",
3425 pre_its_window,
3426 ARRAY_SIZE(pre_its_window))) {
3428 its->pre_its_base = pre_its_window[0];
3429 its->get_msi_base = its_irq_get_msi_base_pre_its;
3431 ids = ilog2(pre_its_window[1]) - 2;
3432 if (device_ids(its) > ids) {
3433 its->typer &= ~GITS_TYPER_DEVBITS;
3434 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
3437 /* the pre-ITS breaks isolation, so disable MSI remapping */
3438 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3439 return true;
3441 return false;
3444 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3446 struct its_node *its = data;
3449 * Hip07 insists on using the wrong address for the VLPI
3450 * page. Trick it into doing the right thing...
3452 its->vlpi_redist_offset = SZ_128K;
3453 return true;
3456 static const struct gic_quirk its_quirks[] = {
3457 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3459 .desc = "ITS: Cavium errata 22375, 24313",
3460 .iidr = 0xa100034c, /* ThunderX pass 1.x */
3461 .mask = 0xffff0fff,
3462 .init = its_enable_quirk_cavium_22375,
3464 #endif
3465 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3467 .desc = "ITS: Cavium erratum 23144",
3468 .iidr = 0xa100034c, /* ThunderX pass 1.x */
3469 .mask = 0xffff0fff,
3470 .init = its_enable_quirk_cavium_23144,
3472 #endif
3473 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3475 .desc = "ITS: QDF2400 erratum 0065",
3476 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
3477 .mask = 0xffffffff,
3478 .init = its_enable_quirk_qdf2400_e0065,
3480 #endif
3481 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3484 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3485 * implementation, but with a 'pre-ITS' added that requires
3486 * special handling in software.
3488 .desc = "ITS: Socionext Synquacer pre-ITS",
3489 .iidr = 0x0001143b,
3490 .mask = 0xffffffff,
3491 .init = its_enable_quirk_socionext_synquacer,
3493 #endif
3494 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3496 .desc = "ITS: Hip07 erratum 161600802",
3497 .iidr = 0x00000004,
3498 .mask = 0xffffffff,
3499 .init = its_enable_quirk_hip07_161600802,
3501 #endif
3506 static void its_enable_quirks(struct its_node *its)
3508 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3510 gic_enable_quirks(iidr, its_quirks, its);
3513 static int its_save_disable(void)
3515 struct its_node *its;
3516 int err = 0;
3518 raw_spin_lock(&its_lock);
3519 list_for_each_entry(its, &its_nodes, entry) {
3520 void __iomem *base;
3522 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3523 continue;
3525 base = its->base;
3526 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3527 err = its_force_quiescent(base);
3528 if (err) {
3529 pr_err("ITS@%pa: failed to quiesce: %d\n",
3530 &its->phys_base, err);
3531 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3532 goto err;
3535 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3538 err:
3539 if (err) {
3540 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3541 void __iomem *base;
3543 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3544 continue;
3546 base = its->base;
3547 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3550 raw_spin_unlock(&its_lock);
3552 return err;
3555 static void its_restore_enable(void)
3557 struct its_node *its;
3558 int ret;
3560 raw_spin_lock(&its_lock);
3561 list_for_each_entry(its, &its_nodes, entry) {
3562 void __iomem *base;
3563 int i;
3565 if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3566 continue;
3568 base = its->base;
3571 * Make sure that the ITS is disabled. If it fails to quiesce,
3572 * don't restore it since writing to CBASER or BASER<n>
3573 * registers is undefined according to the GIC v3 ITS
3574 * Specification.
3576 ret = its_force_quiescent(base);
3577 if (ret) {
3578 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3579 &its->phys_base, ret);
3580 continue;
3583 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3586 * Writing CBASER resets CREADR to 0, so make CWRITER and
3587 * cmd_write line up with it.
3589 its->cmd_write = its->cmd_base;
3590 gits_write_cwriter(0, base + GITS_CWRITER);
3592 /* Restore GITS_BASER from the value cache. */
3593 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3594 struct its_baser *baser = &its->tables[i];
3596 if (!(baser->val & GITS_BASER_VALID))
3597 continue;
3599 its_write_baser(its, baser, baser->val);
3601 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3604 * Reinit the collection if it's stored in the ITS. This is
3605 * indicated by the col_id being less than the HCC field.
3606 * CID < HCC as specified in the GIC v3 Documentation.
3608 if (its->collections[smp_processor_id()].col_id <
3609 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3610 its_cpu_init_collection(its);
3612 raw_spin_unlock(&its_lock);
3615 static struct syscore_ops its_syscore_ops = {
3616 .suspend = its_save_disable,
3617 .resume = its_restore_enable,
3620 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3622 struct irq_domain *inner_domain;
3623 struct msi_domain_info *info;
3625 info = kzalloc(sizeof(*info), GFP_KERNEL);
3626 if (!info)
3627 return -ENOMEM;
3629 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3630 if (!inner_domain) {
3631 kfree(info);
3632 return -ENOMEM;
3635 inner_domain->parent = its_parent;
3636 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3637 inner_domain->flags |= its->msi_domain_flags;
3638 info->ops = &its_msi_domain_ops;
3639 info->data = its;
3640 inner_domain->host_data = info;
3642 return 0;
3645 static int its_init_vpe_domain(void)
3647 struct its_node *its;
3648 u32 devid;
3649 int entries;
3651 if (gic_rdists->has_direct_lpi) {
3652 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3653 return 0;
3656 /* Any ITS will do, even if not v4 */
3657 its = list_first_entry(&its_nodes, struct its_node, entry);
3659 entries = roundup_pow_of_two(nr_cpu_ids);
3660 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3661 GFP_KERNEL);
3662 if (!vpe_proxy.vpes) {
3663 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3664 return -ENOMEM;
3667 /* Use the last possible DevID */
3668 devid = GENMASK(device_ids(its) - 1, 0);
3669 vpe_proxy.dev = its_create_device(its, devid, entries, false);
3670 if (!vpe_proxy.dev) {
3671 kfree(vpe_proxy.vpes);
3672 pr_err("ITS: Can't allocate GICv4 proxy device\n");
3673 return -ENOMEM;
3676 BUG_ON(entries > vpe_proxy.dev->nr_ites);
3678 raw_spin_lock_init(&vpe_proxy.lock);
3679 vpe_proxy.next_victim = 0;
3680 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3681 devid, vpe_proxy.dev->nr_ites);
3683 return 0;
3686 static int __init its_compute_its_list_map(struct resource *res,
3687 void __iomem *its_base)
3689 int its_number;
3690 u32 ctlr;
3693 * This is assumed to be done early enough that we're
3694 * guaranteed to be single-threaded, hence no
3695 * locking. Should this change, we should address
3696 * this.
3698 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3699 if (its_number >= GICv4_ITS_LIST_MAX) {
3700 pr_err("ITS@%pa: No ITSList entry available!\n",
3701 &res->start);
3702 return -EINVAL;
3705 ctlr = readl_relaxed(its_base + GITS_CTLR);
3706 ctlr &= ~GITS_CTLR_ITS_NUMBER;
3707 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3708 writel_relaxed(ctlr, its_base + GITS_CTLR);
3709 ctlr = readl_relaxed(its_base + GITS_CTLR);
3710 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3711 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3712 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3715 if (test_and_set_bit(its_number, &its_list_map)) {
3716 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3717 &res->start, its_number);
3718 return -EINVAL;
3721 return its_number;
3724 static int __init its_probe_one(struct resource *res,
3725 struct fwnode_handle *handle, int numa_node)
3727 struct its_node *its;
3728 void __iomem *its_base;
3729 u32 val, ctlr;
3730 u64 baser, tmp, typer;
3731 struct page *page;
3732 int err;
3734 its_base = ioremap(res->start, resource_size(res));
3735 if (!its_base) {
3736 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3737 return -ENOMEM;
3740 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3741 if (val != 0x30 && val != 0x40) {
3742 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3743 err = -ENODEV;
3744 goto out_unmap;
3747 err = its_force_quiescent(its_base);
3748 if (err) {
3749 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3750 goto out_unmap;
3753 pr_info("ITS %pR\n", res);
3755 its = kzalloc(sizeof(*its), GFP_KERNEL);
3756 if (!its) {
3757 err = -ENOMEM;
3758 goto out_unmap;
3761 raw_spin_lock_init(&its->lock);
3762 mutex_init(&its->dev_alloc_lock);
3763 INIT_LIST_HEAD(&its->entry);
3764 INIT_LIST_HEAD(&its->its_device_list);
3765 typer = gic_read_typer(its_base + GITS_TYPER);
3766 its->typer = typer;
3767 its->base = its_base;
3768 its->phys_base = res->start;
3769 if (is_v4(its)) {
3770 if (!(typer & GITS_TYPER_VMOVP)) {
3771 err = its_compute_its_list_map(res, its_base);
3772 if (err < 0)
3773 goto out_free_its;
3775 its->list_nr = err;
3777 pr_info("ITS@%pa: Using ITS number %d\n",
3778 &res->start, err);
3779 } else {
3780 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3784 its->numa_node = numa_node;
3786 page = alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3787 get_order(ITS_CMD_QUEUE_SZ));
3788 if (!page) {
3789 err = -ENOMEM;
3790 goto out_free_its;
3792 its->cmd_base = (void *)page_address(page);
3793 its->cmd_write = its->cmd_base;
3794 its->fwnode_handle = handle;
3795 its->get_msi_base = its_irq_get_msi_base;
3796 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3798 its_enable_quirks(its);
3800 err = its_alloc_tables(its);
3801 if (err)
3802 goto out_free_cmd;
3804 err = its_alloc_collections(its);
3805 if (err)
3806 goto out_free_tables;
3808 baser = (virt_to_phys(its->cmd_base) |
3809 GITS_CBASER_RaWaWb |
3810 GITS_CBASER_InnerShareable |
3811 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
3812 GITS_CBASER_VALID);
3814 gits_write_cbaser(baser, its->base + GITS_CBASER);
3815 tmp = gits_read_cbaser(its->base + GITS_CBASER);
3817 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3818 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3820 * The HW reports non-shareable, we must
3821 * remove the cacheability attributes as
3822 * well.
3824 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3825 GITS_CBASER_CACHEABILITY_MASK);
3826 baser |= GITS_CBASER_nC;
3827 gits_write_cbaser(baser, its->base + GITS_CBASER);
3829 pr_info("ITS: using cache flushing for cmd queue\n");
3830 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3833 gits_write_cwriter(0, its->base + GITS_CWRITER);
3834 ctlr = readl_relaxed(its->base + GITS_CTLR);
3835 ctlr |= GITS_CTLR_ENABLE;
3836 if (is_v4(its))
3837 ctlr |= GITS_CTLR_ImDe;
3838 writel_relaxed(ctlr, its->base + GITS_CTLR);
3840 if (GITS_TYPER_HCC(typer))
3841 its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3843 err = its_init_domain(handle, its);
3844 if (err)
3845 goto out_free_tables;
3847 raw_spin_lock(&its_lock);
3848 list_add(&its->entry, &its_nodes);
3849 raw_spin_unlock(&its_lock);
3851 return 0;
3853 out_free_tables:
3854 its_free_tables(its);
3855 out_free_cmd:
3856 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3857 out_free_its:
3858 kfree(its);
3859 out_unmap:
3860 iounmap(its_base);
3861 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3862 return err;
3865 static bool gic_rdists_supports_plpis(void)
3867 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3870 static int redist_disable_lpis(void)
3872 void __iomem *rbase = gic_data_rdist_rd_base();
3873 u64 timeout = USEC_PER_SEC;
3874 u64 val;
3876 if (!gic_rdists_supports_plpis()) {
3877 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3878 return -ENXIO;
3881 val = readl_relaxed(rbase + GICR_CTLR);
3882 if (!(val & GICR_CTLR_ENABLE_LPIS))
3883 return 0;
3886 * If coming via a CPU hotplug event, we don't need to disable
3887 * LPIs before trying to re-enable them. They are already
3888 * configured and all is well in the world.
3890 * If running with preallocated tables, there is nothing to do.
3892 if (gic_data_rdist()->lpi_enabled ||
3893 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
3894 return 0;
3897 * From that point on, we only try to do some damage control.
3899 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3900 smp_processor_id());
3901 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3903 /* Disable LPIs */
3904 val &= ~GICR_CTLR_ENABLE_LPIS;
3905 writel_relaxed(val, rbase + GICR_CTLR);
3907 /* Make sure any change to GICR_CTLR is observable by the GIC */
3908 dsb(sy);
3911 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3912 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3913 * Error out if we time out waiting for RWP to clear.
3915 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3916 if (!timeout) {
3917 pr_err("CPU%d: Timeout while disabling LPIs\n",
3918 smp_processor_id());
3919 return -ETIMEDOUT;
3921 udelay(1);
3922 timeout--;
3926 * After it has been written to 1, it is IMPLEMENTATION
3927 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3928 * cleared to 0. Error out if clearing the bit failed.
3930 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3931 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3932 return -EBUSY;
3935 return 0;
3938 int its_cpu_init(void)
3940 if (!list_empty(&its_nodes)) {
3941 int ret;
3943 ret = redist_disable_lpis();
3944 if (ret)
3945 return ret;
3947 its_cpu_init_lpis();
3948 its_cpu_init_collections();
3951 return 0;
3954 static const struct of_device_id its_device_id[] = {
3955 { .compatible = "arm,gic-v3-its", },
3959 static int __init its_of_probe(struct device_node *node)
3961 struct device_node *np;
3962 struct resource res;
3964 for (np = of_find_matching_node(node, its_device_id); np;
3965 np = of_find_matching_node(np, its_device_id)) {
3966 if (!of_device_is_available(np))
3967 continue;
3968 if (!of_property_read_bool(np, "msi-controller")) {
3969 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3970 np);
3971 continue;
3974 if (of_address_to_resource(np, 0, &res)) {
3975 pr_warn("%pOF: no regs?\n", np);
3976 continue;
3979 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3981 return 0;
3984 #ifdef CONFIG_ACPI
3986 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3988 #ifdef CONFIG_ACPI_NUMA
3989 struct its_srat_map {
3990 /* numa node id */
3991 u32 numa_node;
3992 /* GIC ITS ID */
3993 u32 its_id;
3996 static struct its_srat_map *its_srat_maps __initdata;
3997 static int its_in_srat __initdata;
3999 static int __init acpi_get_its_numa_node(u32 its_id)
4001 int i;
4003 for (i = 0; i < its_in_srat; i++) {
4004 if (its_id == its_srat_maps[i].its_id)
4005 return its_srat_maps[i].numa_node;
4007 return NUMA_NO_NODE;
4010 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
4011 const unsigned long end)
4013 return 0;
4016 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
4017 const unsigned long end)
4019 int node;
4020 struct acpi_srat_gic_its_affinity *its_affinity;
4022 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
4023 if (!its_affinity)
4024 return -EINVAL;
4026 if (its_affinity->header.length < sizeof(*its_affinity)) {
4027 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
4028 its_affinity->header.length);
4029 return -EINVAL;
4032 node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
4034 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
4035 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
4036 return 0;
4039 its_srat_maps[its_in_srat].numa_node = node;
4040 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
4041 its_in_srat++;
4042 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
4043 its_affinity->proximity_domain, its_affinity->its_id, node);
4045 return 0;
4048 static void __init acpi_table_parse_srat_its(void)
4050 int count;
4052 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
4053 sizeof(struct acpi_table_srat),
4054 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
4055 gic_acpi_match_srat_its, 0);
4056 if (count <= 0)
4057 return;
4059 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
4060 GFP_KERNEL);
4061 if (!its_srat_maps) {
4062 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
4063 return;
4066 acpi_table_parse_entries(ACPI_SIG_SRAT,
4067 sizeof(struct acpi_table_srat),
4068 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
4069 gic_acpi_parse_srat_its, 0);
4072 /* free the its_srat_maps after ITS probing */
4073 static void __init acpi_its_srat_maps_free(void)
4075 kfree(its_srat_maps);
4077 #else
4078 static void __init acpi_table_parse_srat_its(void) { }
4079 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
4080 static void __init acpi_its_srat_maps_free(void) { }
4081 #endif
4083 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
4084 const unsigned long end)
4086 struct acpi_madt_generic_translator *its_entry;
4087 struct fwnode_handle *dom_handle;
4088 struct resource res;
4089 int err;
4091 its_entry = (struct acpi_madt_generic_translator *)header;
4092 memset(&res, 0, sizeof(res));
4093 res.start = its_entry->base_address;
4094 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
4095 res.flags = IORESOURCE_MEM;
4097 dom_handle = irq_domain_alloc_fwnode(&res.start);
4098 if (!dom_handle) {
4099 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
4100 &res.start);
4101 return -ENOMEM;
4104 err = iort_register_domain_token(its_entry->translation_id, res.start,
4105 dom_handle);
4106 if (err) {
4107 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
4108 &res.start, its_entry->translation_id);
4109 goto dom_err;
4112 err = its_probe_one(&res, dom_handle,
4113 acpi_get_its_numa_node(its_entry->translation_id));
4114 if (!err)
4115 return 0;
4117 iort_deregister_domain_token(its_entry->translation_id);
4118 dom_err:
4119 irq_domain_free_fwnode(dom_handle);
4120 return err;
4123 static void __init its_acpi_probe(void)
4125 acpi_table_parse_srat_its();
4126 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
4127 gic_acpi_parse_madt_its, 0);
4128 acpi_its_srat_maps_free();
4130 #else
4131 static void __init its_acpi_probe(void) { }
4132 #endif
4134 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
4135 struct irq_domain *parent_domain)
4137 struct device_node *of_node;
4138 struct its_node *its;
4139 bool has_v4 = false;
4140 int err;
4142 its_parent = parent_domain;
4143 of_node = to_of_node(handle);
4144 if (of_node)
4145 its_of_probe(of_node);
4146 else
4147 its_acpi_probe();
4149 if (list_empty(&its_nodes)) {
4150 pr_warn("ITS: No ITS available, not enabling LPIs\n");
4151 return -ENXIO;
4154 gic_rdists = rdists;
4156 err = allocate_lpi_tables();
4157 if (err)
4158 return err;
4160 list_for_each_entry(its, &its_nodes, entry)
4161 has_v4 |= is_v4(its);
4163 if (has_v4 & rdists->has_vlpis) {
4164 if (its_init_vpe_domain() ||
4165 its_init_v4(parent_domain, &its_vpe_domain_ops)) {
4166 rdists->has_vlpis = false;
4167 pr_err("ITS: Disabling GICv4 support\n");
4171 register_syscore_ops(&its_syscore_ops);
4173 return 0;