media: stv06xx: add missing descriptor sanity checks
[linux/fpc-iii.git] / fs / btrfs / ordered-data.c
blob0596117202a21a309b76df940283b4f56d3d039e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
19 static struct kmem_cache *btrfs_ordered_extent_cache;
21 static u64 entry_end(struct btrfs_ordered_extent *entry)
23 if (entry->file_offset + entry->len < entry->file_offset)
24 return (u64)-1;
25 return entry->file_offset + entry->len;
28 /* returns NULL if the insertion worked, or it returns the node it did find
29 * in the tree
31 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
32 struct rb_node *node)
34 struct rb_node **p = &root->rb_node;
35 struct rb_node *parent = NULL;
36 struct btrfs_ordered_extent *entry;
38 while (*p) {
39 parent = *p;
40 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42 if (file_offset < entry->file_offset)
43 p = &(*p)->rb_left;
44 else if (file_offset >= entry_end(entry))
45 p = &(*p)->rb_right;
46 else
47 return parent;
50 rb_link_node(node, parent, p);
51 rb_insert_color(node, root);
52 return NULL;
55 static void ordered_data_tree_panic(struct inode *inode, int errno,
56 u64 offset)
58 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
59 btrfs_panic(fs_info, errno,
60 "Inconsistency in ordered tree at offset %llu", offset);
64 * look for a given offset in the tree, and if it can't be found return the
65 * first lesser offset
67 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
68 struct rb_node **prev_ret)
70 struct rb_node *n = root->rb_node;
71 struct rb_node *prev = NULL;
72 struct rb_node *test;
73 struct btrfs_ordered_extent *entry;
74 struct btrfs_ordered_extent *prev_entry = NULL;
76 while (n) {
77 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
78 prev = n;
79 prev_entry = entry;
81 if (file_offset < entry->file_offset)
82 n = n->rb_left;
83 else if (file_offset >= entry_end(entry))
84 n = n->rb_right;
85 else
86 return n;
88 if (!prev_ret)
89 return NULL;
91 while (prev && file_offset >= entry_end(prev_entry)) {
92 test = rb_next(prev);
93 if (!test)
94 break;
95 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
96 rb_node);
97 if (file_offset < entry_end(prev_entry))
98 break;
100 prev = test;
102 if (prev)
103 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
104 rb_node);
105 while (prev && file_offset < entry_end(prev_entry)) {
106 test = rb_prev(prev);
107 if (!test)
108 break;
109 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
110 rb_node);
111 prev = test;
113 *prev_ret = prev;
114 return NULL;
118 * helper to check if a given offset is inside a given entry
120 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
122 if (file_offset < entry->file_offset ||
123 entry->file_offset + entry->len <= file_offset)
124 return 0;
125 return 1;
128 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
129 u64 len)
131 if (file_offset + len <= entry->file_offset ||
132 entry->file_offset + entry->len <= file_offset)
133 return 0;
134 return 1;
138 * look find the first ordered struct that has this offset, otherwise
139 * the first one less than this offset
141 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
142 u64 file_offset)
144 struct rb_root *root = &tree->tree;
145 struct rb_node *prev = NULL;
146 struct rb_node *ret;
147 struct btrfs_ordered_extent *entry;
149 if (tree->last) {
150 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
151 rb_node);
152 if (offset_in_entry(entry, file_offset))
153 return tree->last;
155 ret = __tree_search(root, file_offset, &prev);
156 if (!ret)
157 ret = prev;
158 if (ret)
159 tree->last = ret;
160 return ret;
163 /* allocate and add a new ordered_extent into the per-inode tree.
164 * file_offset is the logical offset in the file
166 * start is the disk block number of an extent already reserved in the
167 * extent allocation tree
169 * len is the length of the extent
171 * The tree is given a single reference on the ordered extent that was
172 * inserted.
174 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
175 u64 start, u64 len, u64 disk_len,
176 int type, int dio, int compress_type)
178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
179 struct btrfs_root *root = BTRFS_I(inode)->root;
180 struct btrfs_ordered_inode_tree *tree;
181 struct rb_node *node;
182 struct btrfs_ordered_extent *entry;
184 tree = &BTRFS_I(inode)->ordered_tree;
185 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
186 if (!entry)
187 return -ENOMEM;
189 entry->file_offset = file_offset;
190 entry->start = start;
191 entry->len = len;
192 entry->disk_len = disk_len;
193 entry->bytes_left = len;
194 entry->inode = igrab(inode);
195 entry->compress_type = compress_type;
196 entry->truncated_len = (u64)-1;
197 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
198 set_bit(type, &entry->flags);
200 if (dio) {
201 percpu_counter_add_batch(&fs_info->dio_bytes, len,
202 fs_info->delalloc_batch);
203 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
206 /* one ref for the tree */
207 refcount_set(&entry->refs, 1);
208 init_waitqueue_head(&entry->wait);
209 INIT_LIST_HEAD(&entry->list);
210 INIT_LIST_HEAD(&entry->root_extent_list);
211 INIT_LIST_HEAD(&entry->work_list);
212 init_completion(&entry->completion);
213 INIT_LIST_HEAD(&entry->log_list);
214 INIT_LIST_HEAD(&entry->trans_list);
216 trace_btrfs_ordered_extent_add(inode, entry);
218 spin_lock_irq(&tree->lock);
219 node = tree_insert(&tree->tree, file_offset,
220 &entry->rb_node);
221 if (node)
222 ordered_data_tree_panic(inode, -EEXIST, file_offset);
223 spin_unlock_irq(&tree->lock);
225 spin_lock(&root->ordered_extent_lock);
226 list_add_tail(&entry->root_extent_list,
227 &root->ordered_extents);
228 root->nr_ordered_extents++;
229 if (root->nr_ordered_extents == 1) {
230 spin_lock(&fs_info->ordered_root_lock);
231 BUG_ON(!list_empty(&root->ordered_root));
232 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
233 spin_unlock(&fs_info->ordered_root_lock);
235 spin_unlock(&root->ordered_extent_lock);
238 * We don't need the count_max_extents here, we can assume that all of
239 * that work has been done at higher layers, so this is truly the
240 * smallest the extent is going to get.
242 spin_lock(&BTRFS_I(inode)->lock);
243 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
244 spin_unlock(&BTRFS_I(inode)->lock);
246 return 0;
249 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
257 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
265 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
279 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
280 struct btrfs_ordered_sum *sum)
282 struct btrfs_ordered_inode_tree *tree;
284 tree = &BTRFS_I(entry->inode)->ordered_tree;
285 spin_lock_irq(&tree->lock);
286 list_add_tail(&sum->list, &entry->list);
287 spin_unlock_irq(&tree->lock);
291 * this is used to account for finished IO across a given range
292 * of the file. The IO may span ordered extents. If
293 * a given ordered_extent is completely done, 1 is returned, otherwise
294 * 0.
296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297 * to make sure this function only returns 1 once for a given ordered extent.
299 * file_offset is updated to one byte past the range that is recorded as
300 * complete. This allows you to walk forward in the file.
302 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
303 struct btrfs_ordered_extent **cached,
304 u64 *file_offset, u64 io_size, int uptodate)
306 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
307 struct btrfs_ordered_inode_tree *tree;
308 struct rb_node *node;
309 struct btrfs_ordered_extent *entry = NULL;
310 int ret;
311 unsigned long flags;
312 u64 dec_end;
313 u64 dec_start;
314 u64 to_dec;
316 tree = &BTRFS_I(inode)->ordered_tree;
317 spin_lock_irqsave(&tree->lock, flags);
318 node = tree_search(tree, *file_offset);
319 if (!node) {
320 ret = 1;
321 goto out;
324 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
325 if (!offset_in_entry(entry, *file_offset)) {
326 ret = 1;
327 goto out;
330 dec_start = max(*file_offset, entry->file_offset);
331 dec_end = min(*file_offset + io_size, entry->file_offset +
332 entry->len);
333 *file_offset = dec_end;
334 if (dec_start > dec_end) {
335 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
336 dec_start, dec_end);
338 to_dec = dec_end - dec_start;
339 if (to_dec > entry->bytes_left) {
340 btrfs_crit(fs_info,
341 "bad ordered accounting left %llu size %llu",
342 entry->bytes_left, to_dec);
344 entry->bytes_left -= to_dec;
345 if (!uptodate)
346 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
348 if (entry->bytes_left == 0) {
349 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
350 /* test_and_set_bit implies a barrier */
351 cond_wake_up_nomb(&entry->wait);
352 } else {
353 ret = 1;
355 out:
356 if (!ret && cached && entry) {
357 *cached = entry;
358 refcount_inc(&entry->refs);
360 spin_unlock_irqrestore(&tree->lock, flags);
361 return ret == 0;
365 * this is used to account for finished IO across a given range
366 * of the file. The IO should not span ordered extents. If
367 * a given ordered_extent is completely done, 1 is returned, otherwise
368 * 0.
370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371 * to make sure this function only returns 1 once for a given ordered extent.
373 int btrfs_dec_test_ordered_pending(struct inode *inode,
374 struct btrfs_ordered_extent **cached,
375 u64 file_offset, u64 io_size, int uptodate)
377 struct btrfs_ordered_inode_tree *tree;
378 struct rb_node *node;
379 struct btrfs_ordered_extent *entry = NULL;
380 unsigned long flags;
381 int ret;
383 tree = &BTRFS_I(inode)->ordered_tree;
384 spin_lock_irqsave(&tree->lock, flags);
385 if (cached && *cached) {
386 entry = *cached;
387 goto have_entry;
390 node = tree_search(tree, file_offset);
391 if (!node) {
392 ret = 1;
393 goto out;
396 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
397 have_entry:
398 if (!offset_in_entry(entry, file_offset)) {
399 ret = 1;
400 goto out;
403 if (io_size > entry->bytes_left) {
404 btrfs_crit(BTRFS_I(inode)->root->fs_info,
405 "bad ordered accounting left %llu size %llu",
406 entry->bytes_left, io_size);
408 entry->bytes_left -= io_size;
409 if (!uptodate)
410 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412 if (entry->bytes_left == 0) {
413 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
414 /* test_and_set_bit implies a barrier */
415 cond_wake_up_nomb(&entry->wait);
416 } else {
417 ret = 1;
419 out:
420 if (!ret && cached && entry) {
421 *cached = entry;
422 refcount_inc(&entry->refs);
424 spin_unlock_irqrestore(&tree->lock, flags);
425 return ret == 0;
429 * used to drop a reference on an ordered extent. This will free
430 * the extent if the last reference is dropped
432 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
434 struct list_head *cur;
435 struct btrfs_ordered_sum *sum;
437 trace_btrfs_ordered_extent_put(entry->inode, entry);
439 if (refcount_dec_and_test(&entry->refs)) {
440 ASSERT(list_empty(&entry->log_list));
441 ASSERT(list_empty(&entry->trans_list));
442 ASSERT(list_empty(&entry->root_extent_list));
443 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
444 if (entry->inode)
445 btrfs_add_delayed_iput(entry->inode);
446 while (!list_empty(&entry->list)) {
447 cur = entry->list.next;
448 sum = list_entry(cur, struct btrfs_ordered_sum, list);
449 list_del(&sum->list);
450 kvfree(sum);
452 kmem_cache_free(btrfs_ordered_extent_cache, entry);
457 * remove an ordered extent from the tree. No references are dropped
458 * and waiters are woken up.
460 void btrfs_remove_ordered_extent(struct inode *inode,
461 struct btrfs_ordered_extent *entry)
463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
464 struct btrfs_ordered_inode_tree *tree;
465 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
466 struct btrfs_root *root = btrfs_inode->root;
467 struct rb_node *node;
469 /* This is paired with btrfs_add_ordered_extent. */
470 spin_lock(&btrfs_inode->lock);
471 btrfs_mod_outstanding_extents(btrfs_inode, -1);
472 spin_unlock(&btrfs_inode->lock);
473 if (root != fs_info->tree_root)
474 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
476 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
477 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->len,
478 fs_info->delalloc_batch);
480 tree = &btrfs_inode->ordered_tree;
481 spin_lock_irq(&tree->lock);
482 node = &entry->rb_node;
483 rb_erase(node, &tree->tree);
484 RB_CLEAR_NODE(node);
485 if (tree->last == node)
486 tree->last = NULL;
487 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
488 spin_unlock_irq(&tree->lock);
490 spin_lock(&root->ordered_extent_lock);
491 list_del_init(&entry->root_extent_list);
492 root->nr_ordered_extents--;
494 trace_btrfs_ordered_extent_remove(inode, entry);
496 if (!root->nr_ordered_extents) {
497 spin_lock(&fs_info->ordered_root_lock);
498 BUG_ON(list_empty(&root->ordered_root));
499 list_del_init(&root->ordered_root);
500 spin_unlock(&fs_info->ordered_root_lock);
502 spin_unlock(&root->ordered_extent_lock);
503 wake_up(&entry->wait);
506 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
508 struct btrfs_ordered_extent *ordered;
510 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
511 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
512 complete(&ordered->completion);
516 * wait for all the ordered extents in a root. This is done when balancing
517 * space between drives.
519 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
520 const u64 range_start, const u64 range_len)
522 struct btrfs_fs_info *fs_info = root->fs_info;
523 LIST_HEAD(splice);
524 LIST_HEAD(skipped);
525 LIST_HEAD(works);
526 struct btrfs_ordered_extent *ordered, *next;
527 u64 count = 0;
528 const u64 range_end = range_start + range_len;
530 mutex_lock(&root->ordered_extent_mutex);
531 spin_lock(&root->ordered_extent_lock);
532 list_splice_init(&root->ordered_extents, &splice);
533 while (!list_empty(&splice) && nr) {
534 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
535 root_extent_list);
537 if (range_end <= ordered->start ||
538 ordered->start + ordered->disk_len <= range_start) {
539 list_move_tail(&ordered->root_extent_list, &skipped);
540 cond_resched_lock(&root->ordered_extent_lock);
541 continue;
544 list_move_tail(&ordered->root_extent_list,
545 &root->ordered_extents);
546 refcount_inc(&ordered->refs);
547 spin_unlock(&root->ordered_extent_lock);
549 btrfs_init_work(&ordered->flush_work,
550 btrfs_run_ordered_extent_work, NULL, NULL);
551 list_add_tail(&ordered->work_list, &works);
552 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
554 cond_resched();
555 spin_lock(&root->ordered_extent_lock);
556 if (nr != U64_MAX)
557 nr--;
558 count++;
560 list_splice_tail(&skipped, &root->ordered_extents);
561 list_splice_tail(&splice, &root->ordered_extents);
562 spin_unlock(&root->ordered_extent_lock);
564 list_for_each_entry_safe(ordered, next, &works, work_list) {
565 list_del_init(&ordered->work_list);
566 wait_for_completion(&ordered->completion);
567 btrfs_put_ordered_extent(ordered);
568 cond_resched();
570 mutex_unlock(&root->ordered_extent_mutex);
572 return count;
575 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
576 const u64 range_start, const u64 range_len)
578 struct btrfs_root *root;
579 struct list_head splice;
580 u64 done;
582 INIT_LIST_HEAD(&splice);
584 mutex_lock(&fs_info->ordered_operations_mutex);
585 spin_lock(&fs_info->ordered_root_lock);
586 list_splice_init(&fs_info->ordered_roots, &splice);
587 while (!list_empty(&splice) && nr) {
588 root = list_first_entry(&splice, struct btrfs_root,
589 ordered_root);
590 root = btrfs_grab_fs_root(root);
591 BUG_ON(!root);
592 list_move_tail(&root->ordered_root,
593 &fs_info->ordered_roots);
594 spin_unlock(&fs_info->ordered_root_lock);
596 done = btrfs_wait_ordered_extents(root, nr,
597 range_start, range_len);
598 btrfs_put_fs_root(root);
600 spin_lock(&fs_info->ordered_root_lock);
601 if (nr != U64_MAX) {
602 nr -= done;
605 list_splice_tail(&splice, &fs_info->ordered_roots);
606 spin_unlock(&fs_info->ordered_root_lock);
607 mutex_unlock(&fs_info->ordered_operations_mutex);
611 * Used to start IO or wait for a given ordered extent to finish.
613 * If wait is one, this effectively waits on page writeback for all the pages
614 * in the extent, and it waits on the io completion code to insert
615 * metadata into the btree corresponding to the extent
617 void btrfs_start_ordered_extent(struct inode *inode,
618 struct btrfs_ordered_extent *entry,
619 int wait)
621 u64 start = entry->file_offset;
622 u64 end = start + entry->len - 1;
624 trace_btrfs_ordered_extent_start(inode, entry);
627 * pages in the range can be dirty, clean or writeback. We
628 * start IO on any dirty ones so the wait doesn't stall waiting
629 * for the flusher thread to find them
631 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
632 filemap_fdatawrite_range(inode->i_mapping, start, end);
633 if (wait) {
634 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
635 &entry->flags));
640 * Used to wait on ordered extents across a large range of bytes.
642 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
644 int ret = 0;
645 int ret_wb = 0;
646 u64 end;
647 u64 orig_end;
648 struct btrfs_ordered_extent *ordered;
650 if (start + len < start) {
651 orig_end = INT_LIMIT(loff_t);
652 } else {
653 orig_end = start + len - 1;
654 if (orig_end > INT_LIMIT(loff_t))
655 orig_end = INT_LIMIT(loff_t);
658 /* start IO across the range first to instantiate any delalloc
659 * extents
661 ret = btrfs_fdatawrite_range(inode, start, orig_end);
662 if (ret)
663 return ret;
666 * If we have a writeback error don't return immediately. Wait first
667 * for any ordered extents that haven't completed yet. This is to make
668 * sure no one can dirty the same page ranges and call writepages()
669 * before the ordered extents complete - to avoid failures (-EEXIST)
670 * when adding the new ordered extents to the ordered tree.
672 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
674 end = orig_end;
675 while (1) {
676 ordered = btrfs_lookup_first_ordered_extent(inode, end);
677 if (!ordered)
678 break;
679 if (ordered->file_offset > orig_end) {
680 btrfs_put_ordered_extent(ordered);
681 break;
683 if (ordered->file_offset + ordered->len <= start) {
684 btrfs_put_ordered_extent(ordered);
685 break;
687 btrfs_start_ordered_extent(inode, ordered, 1);
688 end = ordered->file_offset;
690 * If the ordered extent had an error save the error but don't
691 * exit without waiting first for all other ordered extents in
692 * the range to complete.
694 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
695 ret = -EIO;
696 btrfs_put_ordered_extent(ordered);
697 if (end == 0 || end == start)
698 break;
699 end--;
701 return ret_wb ? ret_wb : ret;
705 * find an ordered extent corresponding to file_offset. return NULL if
706 * nothing is found, otherwise take a reference on the extent and return it
708 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
709 u64 file_offset)
711 struct btrfs_ordered_inode_tree *tree;
712 struct rb_node *node;
713 struct btrfs_ordered_extent *entry = NULL;
715 tree = &BTRFS_I(inode)->ordered_tree;
716 spin_lock_irq(&tree->lock);
717 node = tree_search(tree, file_offset);
718 if (!node)
719 goto out;
721 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
722 if (!offset_in_entry(entry, file_offset))
723 entry = NULL;
724 if (entry)
725 refcount_inc(&entry->refs);
726 out:
727 spin_unlock_irq(&tree->lock);
728 return entry;
731 /* Since the DIO code tries to lock a wide area we need to look for any ordered
732 * extents that exist in the range, rather than just the start of the range.
734 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
735 struct btrfs_inode *inode, u64 file_offset, u64 len)
737 struct btrfs_ordered_inode_tree *tree;
738 struct rb_node *node;
739 struct btrfs_ordered_extent *entry = NULL;
741 tree = &inode->ordered_tree;
742 spin_lock_irq(&tree->lock);
743 node = tree_search(tree, file_offset);
744 if (!node) {
745 node = tree_search(tree, file_offset + len);
746 if (!node)
747 goto out;
750 while (1) {
751 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
752 if (range_overlaps(entry, file_offset, len))
753 break;
755 if (entry->file_offset >= file_offset + len) {
756 entry = NULL;
757 break;
759 entry = NULL;
760 node = rb_next(node);
761 if (!node)
762 break;
764 out:
765 if (entry)
766 refcount_inc(&entry->refs);
767 spin_unlock_irq(&tree->lock);
768 return entry;
772 * lookup and return any extent before 'file_offset'. NULL is returned
773 * if none is found
775 struct btrfs_ordered_extent *
776 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
778 struct btrfs_ordered_inode_tree *tree;
779 struct rb_node *node;
780 struct btrfs_ordered_extent *entry = NULL;
782 tree = &BTRFS_I(inode)->ordered_tree;
783 spin_lock_irq(&tree->lock);
784 node = tree_search(tree, file_offset);
785 if (!node)
786 goto out;
788 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
789 refcount_inc(&entry->refs);
790 out:
791 spin_unlock_irq(&tree->lock);
792 return entry;
796 * After an extent is done, call this to conditionally update the on disk
797 * i_size. i_size is updated to cover any fully written part of the file.
799 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
800 struct btrfs_ordered_extent *ordered)
802 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
803 u64 disk_i_size;
804 u64 new_i_size;
805 u64 i_size = i_size_read(inode);
806 struct rb_node *node;
807 struct rb_node *prev = NULL;
808 struct btrfs_ordered_extent *test;
809 int ret = 1;
810 u64 orig_offset = offset;
812 spin_lock_irq(&tree->lock);
813 if (ordered) {
814 offset = entry_end(ordered);
815 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
816 offset = min(offset,
817 ordered->file_offset +
818 ordered->truncated_len);
819 } else {
820 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
822 disk_i_size = BTRFS_I(inode)->disk_i_size;
825 * truncate file.
826 * If ordered is not NULL, then this is called from endio and
827 * disk_i_size will be updated by either truncate itself or any
828 * in-flight IOs which are inside the disk_i_size.
830 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
831 * fails somehow, we need to make sure we have a precise disk_i_size by
832 * updating it as usual.
835 if (!ordered && disk_i_size > i_size) {
836 BTRFS_I(inode)->disk_i_size = orig_offset;
837 ret = 0;
838 goto out;
842 * if the disk i_size is already at the inode->i_size, or
843 * this ordered extent is inside the disk i_size, we're done
845 if (disk_i_size == i_size)
846 goto out;
849 * We still need to update disk_i_size if outstanding_isize is greater
850 * than disk_i_size.
852 if (offset <= disk_i_size &&
853 (!ordered || ordered->outstanding_isize <= disk_i_size))
854 goto out;
857 * walk backward from this ordered extent to disk_i_size.
858 * if we find an ordered extent then we can't update disk i_size
859 * yet
861 if (ordered) {
862 node = rb_prev(&ordered->rb_node);
863 } else {
864 prev = tree_search(tree, offset);
866 * we insert file extents without involving ordered struct,
867 * so there should be no ordered struct cover this offset
869 if (prev) {
870 test = rb_entry(prev, struct btrfs_ordered_extent,
871 rb_node);
872 BUG_ON(offset_in_entry(test, offset));
874 node = prev;
876 for (; node; node = rb_prev(node)) {
877 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
879 /* We treat this entry as if it doesn't exist */
880 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
881 continue;
883 if (entry_end(test) <= disk_i_size)
884 break;
885 if (test->file_offset >= i_size)
886 break;
889 * We don't update disk_i_size now, so record this undealt
890 * i_size. Or we will not know the real i_size.
892 if (test->outstanding_isize < offset)
893 test->outstanding_isize = offset;
894 if (ordered &&
895 ordered->outstanding_isize > test->outstanding_isize)
896 test->outstanding_isize = ordered->outstanding_isize;
897 goto out;
899 new_i_size = min_t(u64, offset, i_size);
902 * Some ordered extents may completed before the current one, and
903 * we hold the real i_size in ->outstanding_isize.
905 if (ordered && ordered->outstanding_isize > new_i_size)
906 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
907 BTRFS_I(inode)->disk_i_size = new_i_size;
908 ret = 0;
909 out:
911 * We need to do this because we can't remove ordered extents until
912 * after the i_disk_size has been updated and then the inode has been
913 * updated to reflect the change, so we need to tell anybody who finds
914 * this ordered extent that we've already done all the real work, we
915 * just haven't completed all the other work.
917 if (ordered)
918 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
919 spin_unlock_irq(&tree->lock);
920 return ret;
924 * search the ordered extents for one corresponding to 'offset' and
925 * try to find a checksum. This is used because we allow pages to
926 * be reclaimed before their checksum is actually put into the btree
928 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
929 u8 *sum, int len)
931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
932 struct btrfs_ordered_sum *ordered_sum;
933 struct btrfs_ordered_extent *ordered;
934 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
935 unsigned long num_sectors;
936 unsigned long i;
937 u32 sectorsize = btrfs_inode_sectorsize(inode);
938 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
939 int index = 0;
941 ordered = btrfs_lookup_ordered_extent(inode, offset);
942 if (!ordered)
943 return 0;
945 spin_lock_irq(&tree->lock);
946 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
947 if (disk_bytenr >= ordered_sum->bytenr &&
948 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
949 i = (disk_bytenr - ordered_sum->bytenr) >>
950 inode->i_sb->s_blocksize_bits;
951 num_sectors = ordered_sum->len >>
952 inode->i_sb->s_blocksize_bits;
953 num_sectors = min_t(int, len - index, num_sectors - i);
954 memcpy(sum + index, ordered_sum->sums + i * csum_size,
955 num_sectors * csum_size);
957 index += (int)num_sectors * csum_size;
958 if (index == len)
959 goto out;
960 disk_bytenr += num_sectors * sectorsize;
963 out:
964 spin_unlock_irq(&tree->lock);
965 btrfs_put_ordered_extent(ordered);
966 return index;
970 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
971 * ordered extents in it are run to completion.
973 * @tree: IO tree used for locking out other users of the range
974 * @inode: Inode whose ordered tree is to be searched
975 * @start: Beginning of range to flush
976 * @end: Last byte of range to lock
977 * @cached_state: If passed, will return the extent state responsible for the
978 * locked range. It's the caller's responsibility to free the cached state.
980 * This function always returns with the given range locked, ensuring after it's
981 * called no order extent can be pending.
983 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree *tree,
984 struct btrfs_inode *inode, u64 start,
985 u64 end,
986 struct extent_state **cached_state)
988 struct btrfs_ordered_extent *ordered;
989 struct extent_state *cache = NULL;
990 struct extent_state **cachedp = &cache;
992 if (cached_state)
993 cachedp = cached_state;
995 while (1) {
996 lock_extent_bits(tree, start, end, cachedp);
997 ordered = btrfs_lookup_ordered_range(inode, start,
998 end - start + 1);
999 if (!ordered) {
1001 * If no external cached_state has been passed then
1002 * decrement the extra ref taken for cachedp since we
1003 * aren't exposing it outside of this function
1005 if (!cached_state)
1006 refcount_dec(&cache->refs);
1007 break;
1009 unlock_extent_cached(tree, start, end, cachedp);
1010 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
1011 btrfs_put_ordered_extent(ordered);
1015 int __init ordered_data_init(void)
1017 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1018 sizeof(struct btrfs_ordered_extent), 0,
1019 SLAB_MEM_SPREAD,
1020 NULL);
1021 if (!btrfs_ordered_extent_cache)
1022 return -ENOMEM;
1024 return 0;
1027 void __cold ordered_data_exit(void)
1029 kmem_cache_destroy(btrfs_ordered_extent_cache);