1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
19 static struct kmem_cache
*btrfs_ordered_extent_cache
;
21 static u64
entry_end(struct btrfs_ordered_extent
*entry
)
23 if (entry
->file_offset
+ entry
->len
< entry
->file_offset
)
25 return entry
->file_offset
+ entry
->len
;
28 /* returns NULL if the insertion worked, or it returns the node it did find
31 static struct rb_node
*tree_insert(struct rb_root
*root
, u64 file_offset
,
34 struct rb_node
**p
= &root
->rb_node
;
35 struct rb_node
*parent
= NULL
;
36 struct btrfs_ordered_extent
*entry
;
40 entry
= rb_entry(parent
, struct btrfs_ordered_extent
, rb_node
);
42 if (file_offset
< entry
->file_offset
)
44 else if (file_offset
>= entry_end(entry
))
50 rb_link_node(node
, parent
, p
);
51 rb_insert_color(node
, root
);
55 static void ordered_data_tree_panic(struct inode
*inode
, int errno
,
58 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
59 btrfs_panic(fs_info
, errno
,
60 "Inconsistency in ordered tree at offset %llu", offset
);
64 * look for a given offset in the tree, and if it can't be found return the
67 static struct rb_node
*__tree_search(struct rb_root
*root
, u64 file_offset
,
68 struct rb_node
**prev_ret
)
70 struct rb_node
*n
= root
->rb_node
;
71 struct rb_node
*prev
= NULL
;
73 struct btrfs_ordered_extent
*entry
;
74 struct btrfs_ordered_extent
*prev_entry
= NULL
;
77 entry
= rb_entry(n
, struct btrfs_ordered_extent
, rb_node
);
81 if (file_offset
< entry
->file_offset
)
83 else if (file_offset
>= entry_end(entry
))
91 while (prev
&& file_offset
>= entry_end(prev_entry
)) {
95 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
97 if (file_offset
< entry_end(prev_entry
))
103 prev_entry
= rb_entry(prev
, struct btrfs_ordered_extent
,
105 while (prev
&& file_offset
< entry_end(prev_entry
)) {
106 test
= rb_prev(prev
);
109 prev_entry
= rb_entry(test
, struct btrfs_ordered_extent
,
118 * helper to check if a given offset is inside a given entry
120 static int offset_in_entry(struct btrfs_ordered_extent
*entry
, u64 file_offset
)
122 if (file_offset
< entry
->file_offset
||
123 entry
->file_offset
+ entry
->len
<= file_offset
)
128 static int range_overlaps(struct btrfs_ordered_extent
*entry
, u64 file_offset
,
131 if (file_offset
+ len
<= entry
->file_offset
||
132 entry
->file_offset
+ entry
->len
<= file_offset
)
138 * look find the first ordered struct that has this offset, otherwise
139 * the first one less than this offset
141 static inline struct rb_node
*tree_search(struct btrfs_ordered_inode_tree
*tree
,
144 struct rb_root
*root
= &tree
->tree
;
145 struct rb_node
*prev
= NULL
;
147 struct btrfs_ordered_extent
*entry
;
150 entry
= rb_entry(tree
->last
, struct btrfs_ordered_extent
,
152 if (offset_in_entry(entry
, file_offset
))
155 ret
= __tree_search(root
, file_offset
, &prev
);
163 /* allocate and add a new ordered_extent into the per-inode tree.
164 * file_offset is the logical offset in the file
166 * start is the disk block number of an extent already reserved in the
167 * extent allocation tree
169 * len is the length of the extent
171 * The tree is given a single reference on the ordered extent that was
174 static int __btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
175 u64 start
, u64 len
, u64 disk_len
,
176 int type
, int dio
, int compress_type
)
178 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
179 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
180 struct btrfs_ordered_inode_tree
*tree
;
181 struct rb_node
*node
;
182 struct btrfs_ordered_extent
*entry
;
184 tree
= &BTRFS_I(inode
)->ordered_tree
;
185 entry
= kmem_cache_zalloc(btrfs_ordered_extent_cache
, GFP_NOFS
);
189 entry
->file_offset
= file_offset
;
190 entry
->start
= start
;
192 entry
->disk_len
= disk_len
;
193 entry
->bytes_left
= len
;
194 entry
->inode
= igrab(inode
);
195 entry
->compress_type
= compress_type
;
196 entry
->truncated_len
= (u64
)-1;
197 if (type
!= BTRFS_ORDERED_IO_DONE
&& type
!= BTRFS_ORDERED_COMPLETE
)
198 set_bit(type
, &entry
->flags
);
201 percpu_counter_add_batch(&fs_info
->dio_bytes
, len
,
202 fs_info
->delalloc_batch
);
203 set_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
);
206 /* one ref for the tree */
207 refcount_set(&entry
->refs
, 1);
208 init_waitqueue_head(&entry
->wait
);
209 INIT_LIST_HEAD(&entry
->list
);
210 INIT_LIST_HEAD(&entry
->root_extent_list
);
211 INIT_LIST_HEAD(&entry
->work_list
);
212 init_completion(&entry
->completion
);
213 INIT_LIST_HEAD(&entry
->log_list
);
214 INIT_LIST_HEAD(&entry
->trans_list
);
216 trace_btrfs_ordered_extent_add(inode
, entry
);
218 spin_lock_irq(&tree
->lock
);
219 node
= tree_insert(&tree
->tree
, file_offset
,
222 ordered_data_tree_panic(inode
, -EEXIST
, file_offset
);
223 spin_unlock_irq(&tree
->lock
);
225 spin_lock(&root
->ordered_extent_lock
);
226 list_add_tail(&entry
->root_extent_list
,
227 &root
->ordered_extents
);
228 root
->nr_ordered_extents
++;
229 if (root
->nr_ordered_extents
== 1) {
230 spin_lock(&fs_info
->ordered_root_lock
);
231 BUG_ON(!list_empty(&root
->ordered_root
));
232 list_add_tail(&root
->ordered_root
, &fs_info
->ordered_roots
);
233 spin_unlock(&fs_info
->ordered_root_lock
);
235 spin_unlock(&root
->ordered_extent_lock
);
238 * We don't need the count_max_extents here, we can assume that all of
239 * that work has been done at higher layers, so this is truly the
240 * smallest the extent is going to get.
242 spin_lock(&BTRFS_I(inode
)->lock
);
243 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
244 spin_unlock(&BTRFS_I(inode
)->lock
);
249 int btrfs_add_ordered_extent(struct inode
*inode
, u64 file_offset
,
250 u64 start
, u64 len
, u64 disk_len
, int type
)
252 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
254 BTRFS_COMPRESS_NONE
);
257 int btrfs_add_ordered_extent_dio(struct inode
*inode
, u64 file_offset
,
258 u64 start
, u64 len
, u64 disk_len
, int type
)
260 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
262 BTRFS_COMPRESS_NONE
);
265 int btrfs_add_ordered_extent_compress(struct inode
*inode
, u64 file_offset
,
266 u64 start
, u64 len
, u64 disk_len
,
267 int type
, int compress_type
)
269 return __btrfs_add_ordered_extent(inode
, file_offset
, start
, len
,
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
279 void btrfs_add_ordered_sum(struct btrfs_ordered_extent
*entry
,
280 struct btrfs_ordered_sum
*sum
)
282 struct btrfs_ordered_inode_tree
*tree
;
284 tree
= &BTRFS_I(entry
->inode
)->ordered_tree
;
285 spin_lock_irq(&tree
->lock
);
286 list_add_tail(&sum
->list
, &entry
->list
);
287 spin_unlock_irq(&tree
->lock
);
291 * this is used to account for finished IO across a given range
292 * of the file. The IO may span ordered extents. If
293 * a given ordered_extent is completely done, 1 is returned, otherwise
296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
297 * to make sure this function only returns 1 once for a given ordered extent.
299 * file_offset is updated to one byte past the range that is recorded as
300 * complete. This allows you to walk forward in the file.
302 int btrfs_dec_test_first_ordered_pending(struct inode
*inode
,
303 struct btrfs_ordered_extent
**cached
,
304 u64
*file_offset
, u64 io_size
, int uptodate
)
306 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
307 struct btrfs_ordered_inode_tree
*tree
;
308 struct rb_node
*node
;
309 struct btrfs_ordered_extent
*entry
= NULL
;
316 tree
= &BTRFS_I(inode
)->ordered_tree
;
317 spin_lock_irqsave(&tree
->lock
, flags
);
318 node
= tree_search(tree
, *file_offset
);
324 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
325 if (!offset_in_entry(entry
, *file_offset
)) {
330 dec_start
= max(*file_offset
, entry
->file_offset
);
331 dec_end
= min(*file_offset
+ io_size
, entry
->file_offset
+
333 *file_offset
= dec_end
;
334 if (dec_start
> dec_end
) {
335 btrfs_crit(fs_info
, "bad ordering dec_start %llu end %llu",
338 to_dec
= dec_end
- dec_start
;
339 if (to_dec
> entry
->bytes_left
) {
341 "bad ordered accounting left %llu size %llu",
342 entry
->bytes_left
, to_dec
);
344 entry
->bytes_left
-= to_dec
;
346 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
348 if (entry
->bytes_left
== 0) {
349 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
350 /* test_and_set_bit implies a barrier */
351 cond_wake_up_nomb(&entry
->wait
);
356 if (!ret
&& cached
&& entry
) {
358 refcount_inc(&entry
->refs
);
360 spin_unlock_irqrestore(&tree
->lock
, flags
);
365 * this is used to account for finished IO across a given range
366 * of the file. The IO should not span ordered extents. If
367 * a given ordered_extent is completely done, 1 is returned, otherwise
370 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
371 * to make sure this function only returns 1 once for a given ordered extent.
373 int btrfs_dec_test_ordered_pending(struct inode
*inode
,
374 struct btrfs_ordered_extent
**cached
,
375 u64 file_offset
, u64 io_size
, int uptodate
)
377 struct btrfs_ordered_inode_tree
*tree
;
378 struct rb_node
*node
;
379 struct btrfs_ordered_extent
*entry
= NULL
;
383 tree
= &BTRFS_I(inode
)->ordered_tree
;
384 spin_lock_irqsave(&tree
->lock
, flags
);
385 if (cached
&& *cached
) {
390 node
= tree_search(tree
, file_offset
);
396 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
398 if (!offset_in_entry(entry
, file_offset
)) {
403 if (io_size
> entry
->bytes_left
) {
404 btrfs_crit(BTRFS_I(inode
)->root
->fs_info
,
405 "bad ordered accounting left %llu size %llu",
406 entry
->bytes_left
, io_size
);
408 entry
->bytes_left
-= io_size
;
410 set_bit(BTRFS_ORDERED_IOERR
, &entry
->flags
);
412 if (entry
->bytes_left
== 0) {
413 ret
= test_and_set_bit(BTRFS_ORDERED_IO_DONE
, &entry
->flags
);
414 /* test_and_set_bit implies a barrier */
415 cond_wake_up_nomb(&entry
->wait
);
420 if (!ret
&& cached
&& entry
) {
422 refcount_inc(&entry
->refs
);
424 spin_unlock_irqrestore(&tree
->lock
, flags
);
429 * used to drop a reference on an ordered extent. This will free
430 * the extent if the last reference is dropped
432 void btrfs_put_ordered_extent(struct btrfs_ordered_extent
*entry
)
434 struct list_head
*cur
;
435 struct btrfs_ordered_sum
*sum
;
437 trace_btrfs_ordered_extent_put(entry
->inode
, entry
);
439 if (refcount_dec_and_test(&entry
->refs
)) {
440 ASSERT(list_empty(&entry
->log_list
));
441 ASSERT(list_empty(&entry
->trans_list
));
442 ASSERT(list_empty(&entry
->root_extent_list
));
443 ASSERT(RB_EMPTY_NODE(&entry
->rb_node
));
445 btrfs_add_delayed_iput(entry
->inode
);
446 while (!list_empty(&entry
->list
)) {
447 cur
= entry
->list
.next
;
448 sum
= list_entry(cur
, struct btrfs_ordered_sum
, list
);
449 list_del(&sum
->list
);
452 kmem_cache_free(btrfs_ordered_extent_cache
, entry
);
457 * remove an ordered extent from the tree. No references are dropped
458 * and waiters are woken up.
460 void btrfs_remove_ordered_extent(struct inode
*inode
,
461 struct btrfs_ordered_extent
*entry
)
463 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
464 struct btrfs_ordered_inode_tree
*tree
;
465 struct btrfs_inode
*btrfs_inode
= BTRFS_I(inode
);
466 struct btrfs_root
*root
= btrfs_inode
->root
;
467 struct rb_node
*node
;
469 /* This is paired with btrfs_add_ordered_extent. */
470 spin_lock(&btrfs_inode
->lock
);
471 btrfs_mod_outstanding_extents(btrfs_inode
, -1);
472 spin_unlock(&btrfs_inode
->lock
);
473 if (root
!= fs_info
->tree_root
)
474 btrfs_delalloc_release_metadata(btrfs_inode
, entry
->len
, false);
476 if (test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
477 percpu_counter_add_batch(&fs_info
->dio_bytes
, -entry
->len
,
478 fs_info
->delalloc_batch
);
480 tree
= &btrfs_inode
->ordered_tree
;
481 spin_lock_irq(&tree
->lock
);
482 node
= &entry
->rb_node
;
483 rb_erase(node
, &tree
->tree
);
485 if (tree
->last
== node
)
487 set_bit(BTRFS_ORDERED_COMPLETE
, &entry
->flags
);
488 spin_unlock_irq(&tree
->lock
);
490 spin_lock(&root
->ordered_extent_lock
);
491 list_del_init(&entry
->root_extent_list
);
492 root
->nr_ordered_extents
--;
494 trace_btrfs_ordered_extent_remove(inode
, entry
);
496 if (!root
->nr_ordered_extents
) {
497 spin_lock(&fs_info
->ordered_root_lock
);
498 BUG_ON(list_empty(&root
->ordered_root
));
499 list_del_init(&root
->ordered_root
);
500 spin_unlock(&fs_info
->ordered_root_lock
);
502 spin_unlock(&root
->ordered_extent_lock
);
503 wake_up(&entry
->wait
);
506 static void btrfs_run_ordered_extent_work(struct btrfs_work
*work
)
508 struct btrfs_ordered_extent
*ordered
;
510 ordered
= container_of(work
, struct btrfs_ordered_extent
, flush_work
);
511 btrfs_start_ordered_extent(ordered
->inode
, ordered
, 1);
512 complete(&ordered
->completion
);
516 * wait for all the ordered extents in a root. This is done when balancing
517 * space between drives.
519 u64
btrfs_wait_ordered_extents(struct btrfs_root
*root
, u64 nr
,
520 const u64 range_start
, const u64 range_len
)
522 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
526 struct btrfs_ordered_extent
*ordered
, *next
;
528 const u64 range_end
= range_start
+ range_len
;
530 mutex_lock(&root
->ordered_extent_mutex
);
531 spin_lock(&root
->ordered_extent_lock
);
532 list_splice_init(&root
->ordered_extents
, &splice
);
533 while (!list_empty(&splice
) && nr
) {
534 ordered
= list_first_entry(&splice
, struct btrfs_ordered_extent
,
537 if (range_end
<= ordered
->start
||
538 ordered
->start
+ ordered
->disk_len
<= range_start
) {
539 list_move_tail(&ordered
->root_extent_list
, &skipped
);
540 cond_resched_lock(&root
->ordered_extent_lock
);
544 list_move_tail(&ordered
->root_extent_list
,
545 &root
->ordered_extents
);
546 refcount_inc(&ordered
->refs
);
547 spin_unlock(&root
->ordered_extent_lock
);
549 btrfs_init_work(&ordered
->flush_work
,
550 btrfs_run_ordered_extent_work
, NULL
, NULL
);
551 list_add_tail(&ordered
->work_list
, &works
);
552 btrfs_queue_work(fs_info
->flush_workers
, &ordered
->flush_work
);
555 spin_lock(&root
->ordered_extent_lock
);
560 list_splice_tail(&skipped
, &root
->ordered_extents
);
561 list_splice_tail(&splice
, &root
->ordered_extents
);
562 spin_unlock(&root
->ordered_extent_lock
);
564 list_for_each_entry_safe(ordered
, next
, &works
, work_list
) {
565 list_del_init(&ordered
->work_list
);
566 wait_for_completion(&ordered
->completion
);
567 btrfs_put_ordered_extent(ordered
);
570 mutex_unlock(&root
->ordered_extent_mutex
);
575 void btrfs_wait_ordered_roots(struct btrfs_fs_info
*fs_info
, u64 nr
,
576 const u64 range_start
, const u64 range_len
)
578 struct btrfs_root
*root
;
579 struct list_head splice
;
582 INIT_LIST_HEAD(&splice
);
584 mutex_lock(&fs_info
->ordered_operations_mutex
);
585 spin_lock(&fs_info
->ordered_root_lock
);
586 list_splice_init(&fs_info
->ordered_roots
, &splice
);
587 while (!list_empty(&splice
) && nr
) {
588 root
= list_first_entry(&splice
, struct btrfs_root
,
590 root
= btrfs_grab_fs_root(root
);
592 list_move_tail(&root
->ordered_root
,
593 &fs_info
->ordered_roots
);
594 spin_unlock(&fs_info
->ordered_root_lock
);
596 done
= btrfs_wait_ordered_extents(root
, nr
,
597 range_start
, range_len
);
598 btrfs_put_fs_root(root
);
600 spin_lock(&fs_info
->ordered_root_lock
);
605 list_splice_tail(&splice
, &fs_info
->ordered_roots
);
606 spin_unlock(&fs_info
->ordered_root_lock
);
607 mutex_unlock(&fs_info
->ordered_operations_mutex
);
611 * Used to start IO or wait for a given ordered extent to finish.
613 * If wait is one, this effectively waits on page writeback for all the pages
614 * in the extent, and it waits on the io completion code to insert
615 * metadata into the btree corresponding to the extent
617 void btrfs_start_ordered_extent(struct inode
*inode
,
618 struct btrfs_ordered_extent
*entry
,
621 u64 start
= entry
->file_offset
;
622 u64 end
= start
+ entry
->len
- 1;
624 trace_btrfs_ordered_extent_start(inode
, entry
);
627 * pages in the range can be dirty, clean or writeback. We
628 * start IO on any dirty ones so the wait doesn't stall waiting
629 * for the flusher thread to find them
631 if (!test_bit(BTRFS_ORDERED_DIRECT
, &entry
->flags
))
632 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
634 wait_event(entry
->wait
, test_bit(BTRFS_ORDERED_COMPLETE
,
640 * Used to wait on ordered extents across a large range of bytes.
642 int btrfs_wait_ordered_range(struct inode
*inode
, u64 start
, u64 len
)
648 struct btrfs_ordered_extent
*ordered
;
650 if (start
+ len
< start
) {
651 orig_end
= INT_LIMIT(loff_t
);
653 orig_end
= start
+ len
- 1;
654 if (orig_end
> INT_LIMIT(loff_t
))
655 orig_end
= INT_LIMIT(loff_t
);
658 /* start IO across the range first to instantiate any delalloc
661 ret
= btrfs_fdatawrite_range(inode
, start
, orig_end
);
666 * If we have a writeback error don't return immediately. Wait first
667 * for any ordered extents that haven't completed yet. This is to make
668 * sure no one can dirty the same page ranges and call writepages()
669 * before the ordered extents complete - to avoid failures (-EEXIST)
670 * when adding the new ordered extents to the ordered tree.
672 ret_wb
= filemap_fdatawait_range(inode
->i_mapping
, start
, orig_end
);
676 ordered
= btrfs_lookup_first_ordered_extent(inode
, end
);
679 if (ordered
->file_offset
> orig_end
) {
680 btrfs_put_ordered_extent(ordered
);
683 if (ordered
->file_offset
+ ordered
->len
<= start
) {
684 btrfs_put_ordered_extent(ordered
);
687 btrfs_start_ordered_extent(inode
, ordered
, 1);
688 end
= ordered
->file_offset
;
690 * If the ordered extent had an error save the error but don't
691 * exit without waiting first for all other ordered extents in
692 * the range to complete.
694 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
))
696 btrfs_put_ordered_extent(ordered
);
697 if (end
== 0 || end
== start
)
701 return ret_wb
? ret_wb
: ret
;
705 * find an ordered extent corresponding to file_offset. return NULL if
706 * nothing is found, otherwise take a reference on the extent and return it
708 struct btrfs_ordered_extent
*btrfs_lookup_ordered_extent(struct inode
*inode
,
711 struct btrfs_ordered_inode_tree
*tree
;
712 struct rb_node
*node
;
713 struct btrfs_ordered_extent
*entry
= NULL
;
715 tree
= &BTRFS_I(inode
)->ordered_tree
;
716 spin_lock_irq(&tree
->lock
);
717 node
= tree_search(tree
, file_offset
);
721 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
722 if (!offset_in_entry(entry
, file_offset
))
725 refcount_inc(&entry
->refs
);
727 spin_unlock_irq(&tree
->lock
);
731 /* Since the DIO code tries to lock a wide area we need to look for any ordered
732 * extents that exist in the range, rather than just the start of the range.
734 struct btrfs_ordered_extent
*btrfs_lookup_ordered_range(
735 struct btrfs_inode
*inode
, u64 file_offset
, u64 len
)
737 struct btrfs_ordered_inode_tree
*tree
;
738 struct rb_node
*node
;
739 struct btrfs_ordered_extent
*entry
= NULL
;
741 tree
= &inode
->ordered_tree
;
742 spin_lock_irq(&tree
->lock
);
743 node
= tree_search(tree
, file_offset
);
745 node
= tree_search(tree
, file_offset
+ len
);
751 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
752 if (range_overlaps(entry
, file_offset
, len
))
755 if (entry
->file_offset
>= file_offset
+ len
) {
760 node
= rb_next(node
);
766 refcount_inc(&entry
->refs
);
767 spin_unlock_irq(&tree
->lock
);
772 * lookup and return any extent before 'file_offset'. NULL is returned
775 struct btrfs_ordered_extent
*
776 btrfs_lookup_first_ordered_extent(struct inode
*inode
, u64 file_offset
)
778 struct btrfs_ordered_inode_tree
*tree
;
779 struct rb_node
*node
;
780 struct btrfs_ordered_extent
*entry
= NULL
;
782 tree
= &BTRFS_I(inode
)->ordered_tree
;
783 spin_lock_irq(&tree
->lock
);
784 node
= tree_search(tree
, file_offset
);
788 entry
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
789 refcount_inc(&entry
->refs
);
791 spin_unlock_irq(&tree
->lock
);
796 * After an extent is done, call this to conditionally update the on disk
797 * i_size. i_size is updated to cover any fully written part of the file.
799 int btrfs_ordered_update_i_size(struct inode
*inode
, u64 offset
,
800 struct btrfs_ordered_extent
*ordered
)
802 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
805 u64 i_size
= i_size_read(inode
);
806 struct rb_node
*node
;
807 struct rb_node
*prev
= NULL
;
808 struct btrfs_ordered_extent
*test
;
810 u64 orig_offset
= offset
;
812 spin_lock_irq(&tree
->lock
);
814 offset
= entry_end(ordered
);
815 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
))
817 ordered
->file_offset
+
818 ordered
->truncated_len
);
820 offset
= ALIGN(offset
, btrfs_inode_sectorsize(inode
));
822 disk_i_size
= BTRFS_I(inode
)->disk_i_size
;
826 * If ordered is not NULL, then this is called from endio and
827 * disk_i_size will be updated by either truncate itself or any
828 * in-flight IOs which are inside the disk_i_size.
830 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
831 * fails somehow, we need to make sure we have a precise disk_i_size by
832 * updating it as usual.
835 if (!ordered
&& disk_i_size
> i_size
) {
836 BTRFS_I(inode
)->disk_i_size
= orig_offset
;
842 * if the disk i_size is already at the inode->i_size, or
843 * this ordered extent is inside the disk i_size, we're done
845 if (disk_i_size
== i_size
)
849 * We still need to update disk_i_size if outstanding_isize is greater
852 if (offset
<= disk_i_size
&&
853 (!ordered
|| ordered
->outstanding_isize
<= disk_i_size
))
857 * walk backward from this ordered extent to disk_i_size.
858 * if we find an ordered extent then we can't update disk i_size
862 node
= rb_prev(&ordered
->rb_node
);
864 prev
= tree_search(tree
, offset
);
866 * we insert file extents without involving ordered struct,
867 * so there should be no ordered struct cover this offset
870 test
= rb_entry(prev
, struct btrfs_ordered_extent
,
872 BUG_ON(offset_in_entry(test
, offset
));
876 for (; node
; node
= rb_prev(node
)) {
877 test
= rb_entry(node
, struct btrfs_ordered_extent
, rb_node
);
879 /* We treat this entry as if it doesn't exist */
880 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &test
->flags
))
883 if (entry_end(test
) <= disk_i_size
)
885 if (test
->file_offset
>= i_size
)
889 * We don't update disk_i_size now, so record this undealt
890 * i_size. Or we will not know the real i_size.
892 if (test
->outstanding_isize
< offset
)
893 test
->outstanding_isize
= offset
;
895 ordered
->outstanding_isize
> test
->outstanding_isize
)
896 test
->outstanding_isize
= ordered
->outstanding_isize
;
899 new_i_size
= min_t(u64
, offset
, i_size
);
902 * Some ordered extents may completed before the current one, and
903 * we hold the real i_size in ->outstanding_isize.
905 if (ordered
&& ordered
->outstanding_isize
> new_i_size
)
906 new_i_size
= min_t(u64
, ordered
->outstanding_isize
, i_size
);
907 BTRFS_I(inode
)->disk_i_size
= new_i_size
;
911 * We need to do this because we can't remove ordered extents until
912 * after the i_disk_size has been updated and then the inode has been
913 * updated to reflect the change, so we need to tell anybody who finds
914 * this ordered extent that we've already done all the real work, we
915 * just haven't completed all the other work.
918 set_bit(BTRFS_ORDERED_UPDATED_ISIZE
, &ordered
->flags
);
919 spin_unlock_irq(&tree
->lock
);
924 * search the ordered extents for one corresponding to 'offset' and
925 * try to find a checksum. This is used because we allow pages to
926 * be reclaimed before their checksum is actually put into the btree
928 int btrfs_find_ordered_sum(struct inode
*inode
, u64 offset
, u64 disk_bytenr
,
931 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
932 struct btrfs_ordered_sum
*ordered_sum
;
933 struct btrfs_ordered_extent
*ordered
;
934 struct btrfs_ordered_inode_tree
*tree
= &BTRFS_I(inode
)->ordered_tree
;
935 unsigned long num_sectors
;
937 u32 sectorsize
= btrfs_inode_sectorsize(inode
);
938 const u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
941 ordered
= btrfs_lookup_ordered_extent(inode
, offset
);
945 spin_lock_irq(&tree
->lock
);
946 list_for_each_entry_reverse(ordered_sum
, &ordered
->list
, list
) {
947 if (disk_bytenr
>= ordered_sum
->bytenr
&&
948 disk_bytenr
< ordered_sum
->bytenr
+ ordered_sum
->len
) {
949 i
= (disk_bytenr
- ordered_sum
->bytenr
) >>
950 inode
->i_sb
->s_blocksize_bits
;
951 num_sectors
= ordered_sum
->len
>>
952 inode
->i_sb
->s_blocksize_bits
;
953 num_sectors
= min_t(int, len
- index
, num_sectors
- i
);
954 memcpy(sum
+ index
, ordered_sum
->sums
+ i
* csum_size
,
955 num_sectors
* csum_size
);
957 index
+= (int)num_sectors
* csum_size
;
960 disk_bytenr
+= num_sectors
* sectorsize
;
964 spin_unlock_irq(&tree
->lock
);
965 btrfs_put_ordered_extent(ordered
);
970 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
971 * ordered extents in it are run to completion.
973 * @tree: IO tree used for locking out other users of the range
974 * @inode: Inode whose ordered tree is to be searched
975 * @start: Beginning of range to flush
976 * @end: Last byte of range to lock
977 * @cached_state: If passed, will return the extent state responsible for the
978 * locked range. It's the caller's responsibility to free the cached state.
980 * This function always returns with the given range locked, ensuring after it's
981 * called no order extent can be pending.
983 void btrfs_lock_and_flush_ordered_range(struct extent_io_tree
*tree
,
984 struct btrfs_inode
*inode
, u64 start
,
986 struct extent_state
**cached_state
)
988 struct btrfs_ordered_extent
*ordered
;
989 struct extent_state
*cache
= NULL
;
990 struct extent_state
**cachedp
= &cache
;
993 cachedp
= cached_state
;
996 lock_extent_bits(tree
, start
, end
, cachedp
);
997 ordered
= btrfs_lookup_ordered_range(inode
, start
,
1001 * If no external cached_state has been passed then
1002 * decrement the extra ref taken for cachedp since we
1003 * aren't exposing it outside of this function
1006 refcount_dec(&cache
->refs
);
1009 unlock_extent_cached(tree
, start
, end
, cachedp
);
1010 btrfs_start_ordered_extent(&inode
->vfs_inode
, ordered
, 1);
1011 btrfs_put_ordered_extent(ordered
);
1015 int __init
ordered_data_init(void)
1017 btrfs_ordered_extent_cache
= kmem_cache_create("btrfs_ordered_extent",
1018 sizeof(struct btrfs_ordered_extent
), 0,
1021 if (!btrfs_ordered_extent_cache
)
1027 void __cold
ordered_data_exit(void)
1029 kmem_cache_destroy(btrfs_ordered_extent_cache
);