1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
16 #include "transaction.h"
19 #include "inode-map.h"
21 #include "dev-replace.h"
23 #include "block-group.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * Transaction N [[TRANS_STATE_RUNNING]]
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
41 * | Call btrfs_commit_transaction() on any trans handle attached to
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * | Will wait for previous running transaction to completely finish if there
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
76 * | Until all supporting trees are updated.
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
84 * | At this stage, new transaction is allowed to |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
99 [TRANS_STATE_RUNNING
] = 0U,
100 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
101 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
104 __TRANS_JOIN_NOSTART
),
105 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
108 __TRANS_JOIN_NOLOCK
|
109 __TRANS_JOIN_NOSTART
),
110 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
113 __TRANS_JOIN_NOLOCK
|
114 __TRANS_JOIN_NOSTART
),
117 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
119 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
120 if (refcount_dec_and_test(&transaction
->use_count
)) {
121 BUG_ON(!list_empty(&transaction
->list
));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction
->delayed_refs
.href_root
.rb_root
));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction
->delayed_refs
.dirty_extent_root
));
126 if (transaction
->delayed_refs
.pending_csums
)
127 btrfs_err(transaction
->fs_info
,
128 "pending csums is %llu",
129 transaction
->delayed_refs
.pending_csums
);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction
->deleted_bgs
)) {
138 struct btrfs_block_group
*cache
;
140 cache
= list_first_entry(&transaction
->deleted_bgs
,
141 struct btrfs_block_group
,
143 list_del_init(&cache
->bg_list
);
144 btrfs_put_block_group_trimming(cache
);
145 btrfs_put_block_group(cache
);
147 WARN_ON(!list_empty(&transaction
->dev_update_list
));
152 static noinline
void switch_commit_roots(struct btrfs_trans_handle
*trans
)
154 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
155 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
156 struct btrfs_root
*root
, *tmp
;
158 down_write(&fs_info
->commit_root_sem
);
159 list_for_each_entry_safe(root
, tmp
, &cur_trans
->switch_commits
,
161 list_del_init(&root
->dirty_list
);
162 free_extent_buffer(root
->commit_root
);
163 root
->commit_root
= btrfs_root_node(root
);
164 if (is_fstree(root
->root_key
.objectid
))
165 btrfs_unpin_free_ino(root
);
166 extent_io_tree_release(&root
->dirty_log_pages
);
167 btrfs_qgroup_clean_swapped_blocks(root
);
170 /* We can free old roots now. */
171 spin_lock(&cur_trans
->dropped_roots_lock
);
172 while (!list_empty(&cur_trans
->dropped_roots
)) {
173 root
= list_first_entry(&cur_trans
->dropped_roots
,
174 struct btrfs_root
, root_list
);
175 list_del_init(&root
->root_list
);
176 spin_unlock(&cur_trans
->dropped_roots_lock
);
177 btrfs_free_log(trans
, root
);
178 btrfs_drop_and_free_fs_root(fs_info
, root
);
179 spin_lock(&cur_trans
->dropped_roots_lock
);
181 spin_unlock(&cur_trans
->dropped_roots_lock
);
182 up_write(&fs_info
->commit_root_sem
);
185 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
188 if (type
& TRANS_EXTWRITERS
)
189 atomic_inc(&trans
->num_extwriters
);
192 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
195 if (type
& TRANS_EXTWRITERS
)
196 atomic_dec(&trans
->num_extwriters
);
199 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
202 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
205 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
207 return atomic_read(&trans
->num_extwriters
);
211 * To be called after all the new block groups attached to the transaction
212 * handle have been created (btrfs_create_pending_block_groups()).
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
216 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
218 if (!trans
->chunk_bytes_reserved
)
221 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
223 btrfs_block_rsv_release(fs_info
, &fs_info
->chunk_block_rsv
,
224 trans
->chunk_bytes_reserved
);
225 trans
->chunk_bytes_reserved
= 0;
229 * either allocate a new transaction or hop into the existing one
231 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
234 struct btrfs_transaction
*cur_trans
;
236 spin_lock(&fs_info
->trans_lock
);
238 /* The file system has been taken offline. No new transactions. */
239 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
240 spin_unlock(&fs_info
->trans_lock
);
244 cur_trans
= fs_info
->running_transaction
;
246 if (cur_trans
->aborted
) {
247 spin_unlock(&fs_info
->trans_lock
);
248 return cur_trans
->aborted
;
250 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
251 spin_unlock(&fs_info
->trans_lock
);
254 refcount_inc(&cur_trans
->use_count
);
255 atomic_inc(&cur_trans
->num_writers
);
256 extwriter_counter_inc(cur_trans
, type
);
257 spin_unlock(&fs_info
->trans_lock
);
260 spin_unlock(&fs_info
->trans_lock
);
263 * If we are ATTACH, we just want to catch the current transaction,
264 * and commit it. If there is no transaction, just return ENOENT.
266 if (type
== TRANS_ATTACH
)
270 * JOIN_NOLOCK only happens during the transaction commit, so
271 * it is impossible that ->running_transaction is NULL
273 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
275 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
279 spin_lock(&fs_info
->trans_lock
);
280 if (fs_info
->running_transaction
) {
282 * someone started a transaction after we unlocked. Make sure
283 * to redo the checks above
287 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
288 spin_unlock(&fs_info
->trans_lock
);
293 cur_trans
->fs_info
= fs_info
;
294 atomic_set(&cur_trans
->num_writers
, 1);
295 extwriter_counter_init(cur_trans
, type
);
296 init_waitqueue_head(&cur_trans
->writer_wait
);
297 init_waitqueue_head(&cur_trans
->commit_wait
);
298 cur_trans
->state
= TRANS_STATE_RUNNING
;
300 * One for this trans handle, one so it will live on until we
301 * commit the transaction.
303 refcount_set(&cur_trans
->use_count
, 2);
304 cur_trans
->flags
= 0;
305 cur_trans
->start_time
= ktime_get_seconds();
307 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
309 cur_trans
->delayed_refs
.href_root
= RB_ROOT_CACHED
;
310 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
311 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
314 * although the tree mod log is per file system and not per transaction,
315 * the log must never go across transaction boundaries.
318 if (!list_empty(&fs_info
->tree_mod_seq_list
))
319 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
321 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 atomic64_set(&fs_info
->tree_mod_seq
, 0);
324 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
326 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
327 INIT_LIST_HEAD(&cur_trans
->dev_update_list
);
328 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
329 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
330 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
331 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
332 mutex_init(&cur_trans
->cache_write_mutex
);
333 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
334 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
335 spin_lock_init(&cur_trans
->dropped_roots_lock
);
336 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
337 extent_io_tree_init(fs_info
, &cur_trans
->dirty_pages
,
338 IO_TREE_TRANS_DIRTY_PAGES
, fs_info
->btree_inode
);
339 fs_info
->generation
++;
340 cur_trans
->transid
= fs_info
->generation
;
341 fs_info
->running_transaction
= cur_trans
;
342 cur_trans
->aborted
= 0;
343 spin_unlock(&fs_info
->trans_lock
);
349 * this does all the record keeping required to make sure that a reference
350 * counted root is properly recorded in a given transaction. This is required
351 * to make sure the old root from before we joined the transaction is deleted
352 * when the transaction commits
354 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
355 struct btrfs_root
*root
,
358 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
360 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
361 root
->last_trans
< trans
->transid
) || force
) {
362 WARN_ON(root
== fs_info
->extent_root
);
363 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
366 * see below for IN_TRANS_SETUP usage rules
367 * we have the reloc mutex held now, so there
368 * is only one writer in this function
370 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
372 /* make sure readers find IN_TRANS_SETUP before
373 * they find our root->last_trans update
377 spin_lock(&fs_info
->fs_roots_radix_lock
);
378 if (root
->last_trans
== trans
->transid
&& !force
) {
379 spin_unlock(&fs_info
->fs_roots_radix_lock
);
382 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
383 (unsigned long)root
->root_key
.objectid
,
384 BTRFS_ROOT_TRANS_TAG
);
385 spin_unlock(&fs_info
->fs_roots_radix_lock
);
386 root
->last_trans
= trans
->transid
;
388 /* this is pretty tricky. We don't want to
389 * take the relocation lock in btrfs_record_root_in_trans
390 * unless we're really doing the first setup for this root in
393 * Normally we'd use root->last_trans as a flag to decide
394 * if we want to take the expensive mutex.
396 * But, we have to set root->last_trans before we
397 * init the relocation root, otherwise, we trip over warnings
398 * in ctree.c. The solution used here is to flag ourselves
399 * with root IN_TRANS_SETUP. When this is 1, we're still
400 * fixing up the reloc trees and everyone must wait.
402 * When this is zero, they can trust root->last_trans and fly
403 * through btrfs_record_root_in_trans without having to take the
404 * lock. smp_wmb() makes sure that all the writes above are
405 * done before we pop in the zero below
407 btrfs_init_reloc_root(trans
, root
);
408 smp_mb__before_atomic();
409 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
415 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
416 struct btrfs_root
*root
)
418 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
419 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
421 /* Add ourselves to the transaction dropped list */
422 spin_lock(&cur_trans
->dropped_roots_lock
);
423 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
424 spin_unlock(&cur_trans
->dropped_roots_lock
);
426 /* Make sure we don't try to update the root at commit time */
427 spin_lock(&fs_info
->fs_roots_radix_lock
);
428 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
429 (unsigned long)root
->root_key
.objectid
,
430 BTRFS_ROOT_TRANS_TAG
);
431 spin_unlock(&fs_info
->fs_roots_radix_lock
);
434 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
435 struct btrfs_root
*root
)
437 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
439 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
443 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447 if (root
->last_trans
== trans
->transid
&&
448 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
451 mutex_lock(&fs_info
->reloc_mutex
);
452 record_root_in_trans(trans
, root
, 0);
453 mutex_unlock(&fs_info
->reloc_mutex
);
458 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
460 return (trans
->state
>= TRANS_STATE_COMMIT_START
&&
461 trans
->state
< TRANS_STATE_UNBLOCKED
&&
465 /* wait for commit against the current transaction to become unblocked
466 * when this is done, it is safe to start a new transaction, but the current
467 * transaction might not be fully on disk.
469 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
471 struct btrfs_transaction
*cur_trans
;
473 spin_lock(&fs_info
->trans_lock
);
474 cur_trans
= fs_info
->running_transaction
;
475 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
476 refcount_inc(&cur_trans
->use_count
);
477 spin_unlock(&fs_info
->trans_lock
);
479 wait_event(fs_info
->transaction_wait
,
480 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
482 btrfs_put_transaction(cur_trans
);
484 spin_unlock(&fs_info
->trans_lock
);
488 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
490 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
493 if (type
== TRANS_START
)
499 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
501 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
503 if (!fs_info
->reloc_ctl
||
504 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
505 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
512 static struct btrfs_trans_handle
*
513 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
514 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
515 bool enforce_qgroups
)
517 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
518 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
519 struct btrfs_trans_handle
*h
;
520 struct btrfs_transaction
*cur_trans
;
522 u64 qgroup_reserved
= 0;
523 bool reloc_reserved
= false;
526 /* Send isn't supposed to start transactions. */
527 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
529 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
530 return ERR_PTR(-EROFS
);
532 if (current
->journal_info
) {
533 WARN_ON(type
& TRANS_EXTWRITERS
);
534 h
= current
->journal_info
;
535 refcount_inc(&h
->use_count
);
536 WARN_ON(refcount_read(&h
->use_count
) > 2);
537 h
->orig_rsv
= h
->block_rsv
;
543 * Do the reservation before we join the transaction so we can do all
544 * the appropriate flushing if need be.
546 if (num_items
&& root
!= fs_info
->chunk_root
) {
547 struct btrfs_block_rsv
*rsv
= &fs_info
->trans_block_rsv
;
548 u64 delayed_refs_bytes
= 0;
550 qgroup_reserved
= num_items
* fs_info
->nodesize
;
551 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
557 * We want to reserve all the bytes we may need all at once, so
558 * we only do 1 enospc flushing cycle per transaction start. We
559 * accomplish this by simply assuming we'll do 2 x num_items
560 * worth of delayed refs updates in this trans handle, and
561 * refill that amount for whatever is missing in the reserve.
563 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
564 if (delayed_refs_rsv
->full
== 0) {
565 delayed_refs_bytes
= num_bytes
;
570 * Do the reservation for the relocation root creation
572 if (need_reserve_reloc_root(root
)) {
573 num_bytes
+= fs_info
->nodesize
;
574 reloc_reserved
= true;
577 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
, flush
);
580 if (delayed_refs_bytes
) {
581 btrfs_migrate_to_delayed_refs_rsv(fs_info
, rsv
,
583 num_bytes
-= delayed_refs_bytes
;
585 } else if (num_items
== 0 && flush
== BTRFS_RESERVE_FLUSH_ALL
&&
586 !delayed_refs_rsv
->full
) {
588 * Some people call with btrfs_start_transaction(root, 0)
589 * because they can be throttled, but have some other mechanism
590 * for reserving space. We still want these guys to refill the
591 * delayed block_rsv so just add 1 items worth of reservation
594 ret
= btrfs_delayed_refs_rsv_refill(fs_info
, flush
);
599 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
606 * If we are JOIN_NOLOCK we're already committing a transaction and
607 * waiting on this guy, so we don't need to do the sb_start_intwrite
608 * because we're already holding a ref. We need this because we could
609 * have raced in and did an fsync() on a file which can kick a commit
610 * and then we deadlock with somebody doing a freeze.
612 * If we are ATTACH, it means we just want to catch the current
613 * transaction and commit it, so we needn't do sb_start_intwrite().
615 if (type
& __TRANS_FREEZABLE
)
616 sb_start_intwrite(fs_info
->sb
);
618 if (may_wait_transaction(fs_info
, type
))
619 wait_current_trans(fs_info
);
622 ret
= join_transaction(fs_info
, type
);
624 wait_current_trans(fs_info
);
625 if (unlikely(type
== TRANS_ATTACH
||
626 type
== TRANS_JOIN_NOSTART
))
629 } while (ret
== -EBUSY
);
634 cur_trans
= fs_info
->running_transaction
;
636 h
->transid
= cur_trans
->transid
;
637 h
->transaction
= cur_trans
;
639 refcount_set(&h
->use_count
, 1);
640 h
->fs_info
= root
->fs_info
;
643 h
->can_flush_pending_bgs
= true;
644 INIT_LIST_HEAD(&h
->new_bgs
);
647 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
&&
648 may_wait_transaction(fs_info
, type
)) {
649 current
->journal_info
= h
;
650 btrfs_commit_transaction(h
);
655 trace_btrfs_space_reservation(fs_info
, "transaction",
656 h
->transid
, num_bytes
, 1);
657 h
->block_rsv
= &fs_info
->trans_block_rsv
;
658 h
->bytes_reserved
= num_bytes
;
659 h
->reloc_reserved
= reloc_reserved
;
663 btrfs_record_root_in_trans(h
, root
);
665 if (!current
->journal_info
)
666 current
->journal_info
= h
;
670 if (type
& __TRANS_FREEZABLE
)
671 sb_end_intwrite(fs_info
->sb
);
672 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
675 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
678 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
682 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
683 unsigned int num_items
)
685 return start_transaction(root
, num_items
, TRANS_START
,
686 BTRFS_RESERVE_FLUSH_ALL
, true);
689 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
690 struct btrfs_root
*root
,
691 unsigned int num_items
,
694 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
695 struct btrfs_trans_handle
*trans
;
700 * We have two callers: unlink and block group removal. The
701 * former should succeed even if we will temporarily exceed
702 * quota and the latter operates on the extent root so
703 * qgroup enforcement is ignored anyway.
705 trans
= start_transaction(root
, num_items
, TRANS_START
,
706 BTRFS_RESERVE_FLUSH_ALL
, false);
707 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
710 trans
= btrfs_start_transaction(root
, 0);
714 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, num_items
);
715 ret
= btrfs_cond_migrate_bytes(fs_info
, &fs_info
->trans_block_rsv
,
716 num_bytes
, min_factor
);
718 btrfs_end_transaction(trans
);
722 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
723 trans
->bytes_reserved
= num_bytes
;
724 trace_btrfs_space_reservation(fs_info
, "transaction",
725 trans
->transid
, num_bytes
, 1);
730 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
732 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
736 struct btrfs_trans_handle
*btrfs_join_transaction_spacecache(struct btrfs_root
*root
)
738 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
739 BTRFS_RESERVE_NO_FLUSH
, true);
743 * Similar to regular join but it never starts a transaction when none is
744 * running or after waiting for the current one to finish.
746 struct btrfs_trans_handle
*btrfs_join_transaction_nostart(struct btrfs_root
*root
)
748 return start_transaction(root
, 0, TRANS_JOIN_NOSTART
,
749 BTRFS_RESERVE_NO_FLUSH
, true);
753 * btrfs_attach_transaction() - catch the running transaction
755 * It is used when we want to commit the current the transaction, but
756 * don't want to start a new one.
758 * Note: If this function return -ENOENT, it just means there is no
759 * running transaction. But it is possible that the inactive transaction
760 * is still in the memory, not fully on disk. If you hope there is no
761 * inactive transaction in the fs when -ENOENT is returned, you should
763 * btrfs_attach_transaction_barrier()
765 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
767 return start_transaction(root
, 0, TRANS_ATTACH
,
768 BTRFS_RESERVE_NO_FLUSH
, true);
772 * btrfs_attach_transaction_barrier() - catch the running transaction
774 * It is similar to the above function, the difference is this one
775 * will wait for all the inactive transactions until they fully
778 struct btrfs_trans_handle
*
779 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
781 struct btrfs_trans_handle
*trans
;
783 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
784 BTRFS_RESERVE_NO_FLUSH
, true);
785 if (trans
== ERR_PTR(-ENOENT
))
786 btrfs_wait_for_commit(root
->fs_info
, 0);
791 /* wait for a transaction commit to be fully complete */
792 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
794 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
797 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
799 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
803 if (transid
<= fs_info
->last_trans_committed
)
806 /* find specified transaction */
807 spin_lock(&fs_info
->trans_lock
);
808 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
809 if (t
->transid
== transid
) {
811 refcount_inc(&cur_trans
->use_count
);
815 if (t
->transid
> transid
) {
820 spin_unlock(&fs_info
->trans_lock
);
823 * The specified transaction doesn't exist, or we
824 * raced with btrfs_commit_transaction
827 if (transid
> fs_info
->last_trans_committed
)
832 /* find newest transaction that is committing | committed */
833 spin_lock(&fs_info
->trans_lock
);
834 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
836 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
837 if (t
->state
== TRANS_STATE_COMPLETED
)
840 refcount_inc(&cur_trans
->use_count
);
844 spin_unlock(&fs_info
->trans_lock
);
846 goto out
; /* nothing committing|committed */
849 wait_for_commit(cur_trans
);
850 btrfs_put_transaction(cur_trans
);
855 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
857 wait_current_trans(fs_info
);
860 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
862 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
864 if (btrfs_check_space_for_delayed_refs(fs_info
))
867 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
870 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
872 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
875 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
||
876 cur_trans
->delayed_refs
.flushing
)
879 return should_end_transaction(trans
);
882 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
885 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
887 if (!trans
->block_rsv
) {
888 ASSERT(!trans
->bytes_reserved
);
892 if (!trans
->bytes_reserved
)
895 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
896 trace_btrfs_space_reservation(fs_info
, "transaction",
897 trans
->transid
, trans
->bytes_reserved
, 0);
898 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
899 trans
->bytes_reserved
);
900 trans
->bytes_reserved
= 0;
903 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
906 struct btrfs_fs_info
*info
= trans
->fs_info
;
907 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
910 if (refcount_read(&trans
->use_count
) > 1) {
911 refcount_dec(&trans
->use_count
);
912 trans
->block_rsv
= trans
->orig_rsv
;
916 btrfs_trans_release_metadata(trans
);
917 trans
->block_rsv
= NULL
;
919 btrfs_create_pending_block_groups(trans
);
921 btrfs_trans_release_chunk_metadata(trans
);
923 if (trans
->type
& __TRANS_FREEZABLE
)
924 sb_end_intwrite(info
->sb
);
926 WARN_ON(cur_trans
!= info
->running_transaction
);
927 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
928 atomic_dec(&cur_trans
->num_writers
);
929 extwriter_counter_dec(cur_trans
, trans
->type
);
931 cond_wake_up(&cur_trans
->writer_wait
);
932 btrfs_put_transaction(cur_trans
);
934 if (current
->journal_info
== trans
)
935 current
->journal_info
= NULL
;
938 btrfs_run_delayed_iputs(info
);
940 if (trans
->aborted
||
941 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
942 wake_up_process(info
->transaction_kthread
);
946 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
950 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
952 return __btrfs_end_transaction(trans
, 0);
955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
957 return __btrfs_end_transaction(trans
, 1);
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
963 * those extents are sent to disk but does not wait on them
965 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
966 struct extent_io_tree
*dirty_pages
, int mark
)
970 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
971 struct extent_state
*cached_state
= NULL
;
975 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
976 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
977 mark
, &cached_state
)) {
978 bool wait_writeback
= false;
980 err
= convert_extent_bit(dirty_pages
, start
, end
,
982 mark
, &cached_state
);
984 * convert_extent_bit can return -ENOMEM, which is most of the
985 * time a temporary error. So when it happens, ignore the error
986 * and wait for writeback of this range to finish - because we
987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 * to __btrfs_wait_marked_extents() would not know that
989 * writeback for this range started and therefore wouldn't
990 * wait for it to finish - we don't want to commit a
991 * superblock that points to btree nodes/leafs for which
992 * writeback hasn't finished yet (and without errors).
993 * We cleanup any entries left in the io tree when committing
994 * the transaction (through extent_io_tree_release()).
996 if (err
== -ENOMEM
) {
998 wait_writeback
= true;
1001 err
= filemap_fdatawrite_range(mapping
, start
, end
);
1004 else if (wait_writeback
)
1005 werr
= filemap_fdatawait_range(mapping
, start
, end
);
1006 free_extent_state(cached_state
);
1007 cached_state
= NULL
;
1011 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees. This is used to make sure all of
1018 * those extents are on disk for transaction or log commit. We wait
1019 * on all the pages and clear them from the dirty pages state tree
1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
1022 struct extent_io_tree
*dirty_pages
)
1026 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
1027 struct extent_state
*cached_state
= NULL
;
1031 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
1032 EXTENT_NEED_WAIT
, &cached_state
)) {
1034 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 * When committing the transaction, we'll remove any entries
1036 * left in the io tree. For a log commit, we don't remove them
1037 * after committing the log because the tree can be accessed
1038 * concurrently - we do it only at transaction commit time when
1039 * it's safe to do it (through extent_io_tree_release()).
1041 err
= clear_extent_bit(dirty_pages
, start
, end
,
1042 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
1046 err
= filemap_fdatawait_range(mapping
, start
, end
);
1049 free_extent_state(cached_state
);
1050 cached_state
= NULL
;
1059 static int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
1060 struct extent_io_tree
*dirty_pages
)
1062 bool errors
= false;
1065 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
1074 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
1076 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
1077 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
1078 bool errors
= false;
1081 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
1083 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
1084 if ((mark
& EXTENT_DIRTY
) &&
1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
1088 if ((mark
& EXTENT_NEW
) &&
1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1102 * @trans: transaction whose dirty pages we'd like to write
1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1108 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1109 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1110 struct blk_plug plug
;
1112 blk_start_plug(&plug
);
1113 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1114 blk_finish_plug(&plug
);
1115 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1117 extent_io_tree_release(&trans
->transaction
->dirty_pages
);
1128 * this is used to update the root pointer in the tree of tree roots.
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1137 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1138 struct btrfs_root
*root
)
1141 u64 old_root_bytenr
;
1143 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1144 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1146 old_root_used
= btrfs_root_used(&root
->root_item
);
1149 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1150 if (old_root_bytenr
== root
->node
->start
&&
1151 old_root_used
== btrfs_root_used(&root
->root_item
))
1154 btrfs_set_root_node(&root
->root_item
, root
->node
);
1155 ret
= btrfs_update_root(trans
, tree_root
,
1161 old_root_used
= btrfs_root_used(&root
->root_item
);
1168 * update all the cowonly tree roots on disk
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1174 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1176 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1177 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1178 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1179 struct list_head
*next
;
1180 struct extent_buffer
*eb
;
1183 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1184 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1186 btrfs_tree_unlock(eb
);
1187 free_extent_buffer(eb
);
1192 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1196 ret
= btrfs_run_dev_stats(trans
);
1199 ret
= btrfs_run_dev_replace(trans
);
1202 ret
= btrfs_run_qgroups(trans
);
1206 ret
= btrfs_setup_space_cache(trans
);
1210 /* run_qgroups might have added some more refs */
1211 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1215 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1216 struct btrfs_root
*root
;
1217 next
= fs_info
->dirty_cowonly_roots
.next
;
1218 list_del_init(next
);
1219 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1220 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1222 if (root
!= fs_info
->extent_root
)
1223 list_add_tail(&root
->dirty_list
,
1224 &trans
->transaction
->switch_commits
);
1225 ret
= update_cowonly_root(trans
, root
);
1228 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1233 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1234 ret
= btrfs_write_dirty_block_groups(trans
);
1237 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1242 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1245 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1246 &trans
->transaction
->switch_commits
);
1248 /* Update dev-replace pointer once everything is committed */
1249 fs_info
->dev_replace
.committed_cursor_left
=
1250 fs_info
->dev_replace
.cursor_left_last_write_of_item
;
1256 * dead roots are old snapshots that need to be deleted. This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1260 void btrfs_add_dead_root(struct btrfs_root
*root
)
1262 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1264 spin_lock(&fs_info
->trans_lock
);
1265 if (list_empty(&root
->root_list
))
1266 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1267 spin_unlock(&fs_info
->trans_lock
);
1271 * update all the cowonly tree roots on disk
1273 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1275 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1276 struct btrfs_root
*gang
[8];
1281 spin_lock(&fs_info
->fs_roots_radix_lock
);
1283 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1286 BTRFS_ROOT_TRANS_TAG
);
1289 for (i
= 0; i
< ret
; i
++) {
1290 struct btrfs_root
*root
= gang
[i
];
1291 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1292 (unsigned long)root
->root_key
.objectid
,
1293 BTRFS_ROOT_TRANS_TAG
);
1294 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1296 btrfs_free_log(trans
, root
);
1297 btrfs_update_reloc_root(trans
, root
);
1299 btrfs_save_ino_cache(root
, trans
);
1301 /* see comments in should_cow_block() */
1302 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1303 smp_mb__after_atomic();
1305 if (root
->commit_root
!= root
->node
) {
1306 list_add_tail(&root
->dirty_list
,
1307 &trans
->transaction
->switch_commits
);
1308 btrfs_set_root_node(&root
->root_item
,
1312 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1315 spin_lock(&fs_info
->fs_roots_radix_lock
);
1318 btrfs_qgroup_free_meta_all_pertrans(root
);
1321 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1326 * defrag a given btree.
1327 * Every leaf in the btree is read and defragged.
1329 int btrfs_defrag_root(struct btrfs_root
*root
)
1331 struct btrfs_fs_info
*info
= root
->fs_info
;
1332 struct btrfs_trans_handle
*trans
;
1335 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1339 trans
= btrfs_start_transaction(root
, 0);
1341 return PTR_ERR(trans
);
1343 ret
= btrfs_defrag_leaves(trans
, root
);
1345 btrfs_end_transaction(trans
);
1346 btrfs_btree_balance_dirty(info
);
1349 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1352 if (btrfs_defrag_cancelled(info
)) {
1353 btrfs_debug(info
, "defrag_root cancelled");
1358 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1363 * Do all special snapshot related qgroup dirty hack.
1365 * Will do all needed qgroup inherit and dirty hack like switch commit
1366 * roots inside one transaction and write all btree into disk, to make
1369 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1370 struct btrfs_root
*src
,
1371 struct btrfs_root
*parent
,
1372 struct btrfs_qgroup_inherit
*inherit
,
1375 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1379 * Save some performance in the case that qgroups are not
1380 * enabled. If this check races with the ioctl, rescan will
1383 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1387 * Ensure dirty @src will be committed. Or, after coming
1388 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1389 * recorded root will never be updated again, causing an outdated root
1392 record_root_in_trans(trans
, src
, 1);
1395 * We are going to commit transaction, see btrfs_commit_transaction()
1396 * comment for reason locking tree_log_mutex
1398 mutex_lock(&fs_info
->tree_log_mutex
);
1400 ret
= commit_fs_roots(trans
);
1403 ret
= btrfs_qgroup_account_extents(trans
);
1407 /* Now qgroup are all updated, we can inherit it to new qgroups */
1408 ret
= btrfs_qgroup_inherit(trans
, src
->root_key
.objectid
, dst_objectid
,
1414 * Now we do a simplified commit transaction, which will:
1415 * 1) commit all subvolume and extent tree
1416 * To ensure all subvolume and extent tree have a valid
1417 * commit_root to accounting later insert_dir_item()
1418 * 2) write all btree blocks onto disk
1419 * This is to make sure later btree modification will be cowed
1420 * Or commit_root can be populated and cause wrong qgroup numbers
1421 * In this simplified commit, we don't really care about other trees
1422 * like chunk and root tree, as they won't affect qgroup.
1423 * And we don't write super to avoid half committed status.
1425 ret
= commit_cowonly_roots(trans
);
1428 switch_commit_roots(trans
);
1429 ret
= btrfs_write_and_wait_transaction(trans
);
1431 btrfs_handle_fs_error(fs_info
, ret
,
1432 "Error while writing out transaction for qgroup");
1435 mutex_unlock(&fs_info
->tree_log_mutex
);
1438 * Force parent root to be updated, as we recorded it before so its
1439 * last_trans == cur_transid.
1440 * Or it won't be committed again onto disk after later
1444 record_root_in_trans(trans
, parent
, 1);
1449 * new snapshots need to be created at a very specific time in the
1450 * transaction commit. This does the actual creation.
1453 * If the error which may affect the commitment of the current transaction
1454 * happens, we should return the error number. If the error which just affect
1455 * the creation of the pending snapshots, just return 0.
1457 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1458 struct btrfs_pending_snapshot
*pending
)
1461 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1462 struct btrfs_key key
;
1463 struct btrfs_root_item
*new_root_item
;
1464 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1465 struct btrfs_root
*root
= pending
->root
;
1466 struct btrfs_root
*parent_root
;
1467 struct btrfs_block_rsv
*rsv
;
1468 struct inode
*parent_inode
;
1469 struct btrfs_path
*path
;
1470 struct btrfs_dir_item
*dir_item
;
1471 struct dentry
*dentry
;
1472 struct extent_buffer
*tmp
;
1473 struct extent_buffer
*old
;
1474 struct timespec64 cur_time
;
1482 ASSERT(pending
->path
);
1483 path
= pending
->path
;
1485 ASSERT(pending
->root_item
);
1486 new_root_item
= pending
->root_item
;
1488 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1490 goto no_free_objectid
;
1493 * Make qgroup to skip current new snapshot's qgroupid, as it is
1494 * accounted by later btrfs_qgroup_inherit().
1496 btrfs_set_skip_qgroup(trans
, objectid
);
1498 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1500 if (to_reserve
> 0) {
1501 pending
->error
= btrfs_block_rsv_add(root
,
1502 &pending
->block_rsv
,
1504 BTRFS_RESERVE_NO_FLUSH
);
1506 goto clear_skip_qgroup
;
1509 key
.objectid
= objectid
;
1510 key
.offset
= (u64
)-1;
1511 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1513 rsv
= trans
->block_rsv
;
1514 trans
->block_rsv
= &pending
->block_rsv
;
1515 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1516 trace_btrfs_space_reservation(fs_info
, "transaction",
1518 trans
->bytes_reserved
, 1);
1519 dentry
= pending
->dentry
;
1520 parent_inode
= pending
->dir
;
1521 parent_root
= BTRFS_I(parent_inode
)->root
;
1522 record_root_in_trans(trans
, parent_root
, 0);
1524 cur_time
= current_time(parent_inode
);
1527 * insert the directory item
1529 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1530 BUG_ON(ret
); /* -ENOMEM */
1532 /* check if there is a file/dir which has the same name. */
1533 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1534 btrfs_ino(BTRFS_I(parent_inode
)),
1535 dentry
->d_name
.name
,
1536 dentry
->d_name
.len
, 0);
1537 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1538 pending
->error
= -EEXIST
;
1539 goto dir_item_existed
;
1540 } else if (IS_ERR(dir_item
)) {
1541 ret
= PTR_ERR(dir_item
);
1542 btrfs_abort_transaction(trans
, ret
);
1545 btrfs_release_path(path
);
1548 * pull in the delayed directory update
1549 * and the delayed inode item
1550 * otherwise we corrupt the FS during
1553 ret
= btrfs_run_delayed_items(trans
);
1554 if (ret
) { /* Transaction aborted */
1555 btrfs_abort_transaction(trans
, ret
);
1559 record_root_in_trans(trans
, root
, 0);
1560 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1561 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1562 btrfs_check_and_init_root_item(new_root_item
);
1564 root_flags
= btrfs_root_flags(new_root_item
);
1565 if (pending
->readonly
)
1566 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1568 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1569 btrfs_set_root_flags(new_root_item
, root_flags
);
1571 btrfs_set_root_generation_v2(new_root_item
,
1573 uuid_le_gen(&new_uuid
);
1574 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1575 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1577 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1578 memset(new_root_item
->received_uuid
, 0,
1579 sizeof(new_root_item
->received_uuid
));
1580 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1581 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1582 btrfs_set_root_stransid(new_root_item
, 0);
1583 btrfs_set_root_rtransid(new_root_item
, 0);
1585 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1586 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1587 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1589 old
= btrfs_lock_root_node(root
);
1590 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1592 btrfs_tree_unlock(old
);
1593 free_extent_buffer(old
);
1594 btrfs_abort_transaction(trans
, ret
);
1598 btrfs_set_lock_blocking_write(old
);
1600 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1601 /* clean up in any case */
1602 btrfs_tree_unlock(old
);
1603 free_extent_buffer(old
);
1605 btrfs_abort_transaction(trans
, ret
);
1608 /* see comments in should_cow_block() */
1609 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1612 btrfs_set_root_node(new_root_item
, tmp
);
1613 /* record when the snapshot was created in key.offset */
1614 key
.offset
= trans
->transid
;
1615 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1616 btrfs_tree_unlock(tmp
);
1617 free_extent_buffer(tmp
);
1619 btrfs_abort_transaction(trans
, ret
);
1624 * insert root back/forward references
1626 ret
= btrfs_add_root_ref(trans
, objectid
,
1627 parent_root
->root_key
.objectid
,
1628 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1629 dentry
->d_name
.name
, dentry
->d_name
.len
);
1631 btrfs_abort_transaction(trans
, ret
);
1635 key
.offset
= (u64
)-1;
1636 pending
->snap
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1637 if (IS_ERR(pending
->snap
)) {
1638 ret
= PTR_ERR(pending
->snap
);
1639 btrfs_abort_transaction(trans
, ret
);
1643 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1645 btrfs_abort_transaction(trans
, ret
);
1649 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1651 btrfs_abort_transaction(trans
, ret
);
1656 * Do special qgroup accounting for snapshot, as we do some qgroup
1657 * snapshot hack to do fast snapshot.
1658 * To co-operate with that hack, we do hack again.
1659 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1662 pending
->inherit
, objectid
);
1666 ret
= btrfs_insert_dir_item(trans
, dentry
->d_name
.name
,
1667 dentry
->d_name
.len
, BTRFS_I(parent_inode
),
1668 &key
, BTRFS_FT_DIR
, index
);
1669 /* We have check then name at the beginning, so it is impossible. */
1670 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1672 btrfs_abort_transaction(trans
, ret
);
1676 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1677 dentry
->d_name
.len
* 2);
1678 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1679 current_time(parent_inode
);
1680 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1682 btrfs_abort_transaction(trans
, ret
);
1685 ret
= btrfs_uuid_tree_add(trans
, new_uuid
.b
, BTRFS_UUID_KEY_SUBVOL
,
1688 btrfs_abort_transaction(trans
, ret
);
1691 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1692 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1693 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1695 if (ret
&& ret
!= -EEXIST
) {
1696 btrfs_abort_transaction(trans
, ret
);
1701 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1703 btrfs_abort_transaction(trans
, ret
);
1708 pending
->error
= ret
;
1710 trans
->block_rsv
= rsv
;
1711 trans
->bytes_reserved
= 0;
1713 btrfs_clear_skip_qgroup(trans
);
1715 kfree(new_root_item
);
1716 pending
->root_item
= NULL
;
1717 btrfs_free_path(path
);
1718 pending
->path
= NULL
;
1724 * create all the snapshots we've scheduled for creation
1726 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1728 struct btrfs_pending_snapshot
*pending
, *next
;
1729 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1732 list_for_each_entry_safe(pending
, next
, head
, list
) {
1733 list_del(&pending
->list
);
1734 ret
= create_pending_snapshot(trans
, pending
);
1741 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1743 struct btrfs_root_item
*root_item
;
1744 struct btrfs_super_block
*super
;
1746 super
= fs_info
->super_copy
;
1748 root_item
= &fs_info
->chunk_root
->root_item
;
1749 super
->chunk_root
= root_item
->bytenr
;
1750 super
->chunk_root_generation
= root_item
->generation
;
1751 super
->chunk_root_level
= root_item
->level
;
1753 root_item
= &fs_info
->tree_root
->root_item
;
1754 super
->root
= root_item
->bytenr
;
1755 super
->generation
= root_item
->generation
;
1756 super
->root_level
= root_item
->level
;
1757 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1758 super
->cache_generation
= root_item
->generation
;
1759 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1760 super
->uuid_tree_generation
= root_item
->generation
;
1763 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1765 struct btrfs_transaction
*trans
;
1768 spin_lock(&info
->trans_lock
);
1769 trans
= info
->running_transaction
;
1771 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1772 spin_unlock(&info
->trans_lock
);
1776 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1778 struct btrfs_transaction
*trans
;
1781 spin_lock(&info
->trans_lock
);
1782 trans
= info
->running_transaction
;
1784 ret
= is_transaction_blocked(trans
);
1785 spin_unlock(&info
->trans_lock
);
1790 * wait for the current transaction commit to start and block subsequent
1793 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1794 struct btrfs_transaction
*trans
)
1796 wait_event(fs_info
->transaction_blocked_wait
,
1797 trans
->state
>= TRANS_STATE_COMMIT_START
|| trans
->aborted
);
1801 * wait for the current transaction to start and then become unblocked.
1804 static void wait_current_trans_commit_start_and_unblock(
1805 struct btrfs_fs_info
*fs_info
,
1806 struct btrfs_transaction
*trans
)
1808 wait_event(fs_info
->transaction_wait
,
1809 trans
->state
>= TRANS_STATE_UNBLOCKED
|| trans
->aborted
);
1813 * commit transactions asynchronously. once btrfs_commit_transaction_async
1814 * returns, any subsequent transaction will not be allowed to join.
1816 struct btrfs_async_commit
{
1817 struct btrfs_trans_handle
*newtrans
;
1818 struct work_struct work
;
1821 static void do_async_commit(struct work_struct
*work
)
1823 struct btrfs_async_commit
*ac
=
1824 container_of(work
, struct btrfs_async_commit
, work
);
1827 * We've got freeze protection passed with the transaction.
1828 * Tell lockdep about it.
1830 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1831 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1833 current
->journal_info
= ac
->newtrans
;
1835 btrfs_commit_transaction(ac
->newtrans
);
1839 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1840 int wait_for_unblock
)
1842 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1843 struct btrfs_async_commit
*ac
;
1844 struct btrfs_transaction
*cur_trans
;
1846 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1850 INIT_WORK(&ac
->work
, do_async_commit
);
1851 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1852 if (IS_ERR(ac
->newtrans
)) {
1853 int err
= PTR_ERR(ac
->newtrans
);
1858 /* take transaction reference */
1859 cur_trans
= trans
->transaction
;
1860 refcount_inc(&cur_trans
->use_count
);
1862 btrfs_end_transaction(trans
);
1865 * Tell lockdep we've released the freeze rwsem, since the
1866 * async commit thread will be the one to unlock it.
1868 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1869 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1871 schedule_work(&ac
->work
);
1873 /* wait for transaction to start and unblock */
1874 if (wait_for_unblock
)
1875 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1877 wait_current_trans_commit_start(fs_info
, cur_trans
);
1879 if (current
->journal_info
== trans
)
1880 current
->journal_info
= NULL
;
1882 btrfs_put_transaction(cur_trans
);
1887 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1889 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1890 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1892 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1894 btrfs_abort_transaction(trans
, err
);
1896 spin_lock(&fs_info
->trans_lock
);
1899 * If the transaction is removed from the list, it means this
1900 * transaction has been committed successfully, so it is impossible
1901 * to call the cleanup function.
1903 BUG_ON(list_empty(&cur_trans
->list
));
1905 list_del_init(&cur_trans
->list
);
1906 if (cur_trans
== fs_info
->running_transaction
) {
1907 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1908 spin_unlock(&fs_info
->trans_lock
);
1909 wait_event(cur_trans
->writer_wait
,
1910 atomic_read(&cur_trans
->num_writers
) == 1);
1912 spin_lock(&fs_info
->trans_lock
);
1914 spin_unlock(&fs_info
->trans_lock
);
1916 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1918 spin_lock(&fs_info
->trans_lock
);
1919 if (cur_trans
== fs_info
->running_transaction
)
1920 fs_info
->running_transaction
= NULL
;
1921 spin_unlock(&fs_info
->trans_lock
);
1923 if (trans
->type
& __TRANS_FREEZABLE
)
1924 sb_end_intwrite(fs_info
->sb
);
1925 btrfs_put_transaction(cur_trans
);
1926 btrfs_put_transaction(cur_trans
);
1928 trace_btrfs_transaction_commit(trans
->root
);
1930 if (current
->journal_info
== trans
)
1931 current
->journal_info
= NULL
;
1932 btrfs_scrub_cancel(fs_info
);
1934 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1938 * Release reserved delayed ref space of all pending block groups of the
1939 * transaction and remove them from the list
1941 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle
*trans
)
1943 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1944 struct btrfs_block_group
*block_group
, *tmp
;
1946 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
1947 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1948 list_del_init(&block_group
->bg_list
);
1952 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle
*trans
)
1954 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1957 * We use writeback_inodes_sb here because if we used
1958 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 * Currently are holding the fs freeze lock, if we do an async flush
1960 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 * wait for the fs freeze lock. Using the direct flushing we benefit
1962 * from already being in a transaction and our join_transaction doesn't
1963 * have to re-take the fs freeze lock.
1965 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1966 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
1968 struct btrfs_pending_snapshot
*pending
;
1969 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1972 * Flush dellaloc for any root that is going to be snapshotted.
1973 * This is done to avoid a corrupted version of files, in the
1974 * snapshots, that had both buffered and direct IO writes (even
1975 * if they were done sequentially) due to an unordered update of
1976 * the inode's size on disk.
1978 list_for_each_entry(pending
, head
, list
) {
1981 ret
= btrfs_start_delalloc_snapshot(pending
->root
);
1989 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle
*trans
)
1991 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1993 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1994 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1996 struct btrfs_pending_snapshot
*pending
;
1997 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
2000 * Wait for any dellaloc that we started previously for the roots
2001 * that are going to be snapshotted. This is to avoid a corrupted
2002 * version of files in the snapshots that had both buffered and
2003 * direct IO writes (even if they were done sequentially).
2005 list_for_each_entry(pending
, head
, list
)
2006 btrfs_wait_ordered_extents(pending
->root
,
2007 U64_MAX
, 0, U64_MAX
);
2011 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
2013 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2014 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
2015 struct btrfs_transaction
*prev_trans
= NULL
;
2018 ASSERT(refcount_read(&trans
->use_count
) == 1);
2021 * Some places just start a transaction to commit it. We need to make
2022 * sure that if this commit fails that the abort code actually marks the
2023 * transaction as failed, so set trans->dirty to make the abort code do
2026 trans
->dirty
= true;
2028 /* Stop the commit early if ->aborted is set */
2029 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2030 ret
= cur_trans
->aborted
;
2031 btrfs_end_transaction(trans
);
2035 btrfs_trans_release_metadata(trans
);
2036 trans
->block_rsv
= NULL
;
2038 /* make a pass through all the delayed refs we have so far
2039 * any runnings procs may add more while we are here
2041 ret
= btrfs_run_delayed_refs(trans
, 0);
2043 btrfs_end_transaction(trans
);
2047 cur_trans
= trans
->transaction
;
2050 * set the flushing flag so procs in this transaction have to
2051 * start sending their work down.
2053 cur_trans
->delayed_refs
.flushing
= 1;
2056 btrfs_create_pending_block_groups(trans
);
2058 ret
= btrfs_run_delayed_refs(trans
, 0);
2060 btrfs_end_transaction(trans
);
2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
2067 /* this mutex is also taken before trying to set
2068 * block groups readonly. We need to make sure
2069 * that nobody has set a block group readonly
2070 * after a extents from that block group have been
2071 * allocated for cache files. btrfs_set_block_group_ro
2072 * will wait for the transaction to commit if it
2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 * only one process starts all the block group IO. It wouldn't
2077 * hurt to have more than one go through, but there's no
2078 * real advantage to it either.
2080 mutex_lock(&fs_info
->ro_block_group_mutex
);
2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
2084 mutex_unlock(&fs_info
->ro_block_group_mutex
);
2087 ret
= btrfs_start_dirty_block_groups(trans
);
2089 btrfs_end_transaction(trans
);
2095 spin_lock(&fs_info
->trans_lock
);
2096 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
2097 spin_unlock(&fs_info
->trans_lock
);
2098 refcount_inc(&cur_trans
->use_count
);
2099 ret
= btrfs_end_transaction(trans
);
2101 wait_for_commit(cur_trans
);
2103 if (unlikely(cur_trans
->aborted
))
2104 ret
= cur_trans
->aborted
;
2106 btrfs_put_transaction(cur_trans
);
2111 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2112 wake_up(&fs_info
->transaction_blocked_wait
);
2114 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2115 prev_trans
= list_entry(cur_trans
->list
.prev
,
2116 struct btrfs_transaction
, list
);
2117 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2118 refcount_inc(&prev_trans
->use_count
);
2119 spin_unlock(&fs_info
->trans_lock
);
2121 wait_for_commit(prev_trans
);
2122 ret
= prev_trans
->aborted
;
2124 btrfs_put_transaction(prev_trans
);
2126 goto cleanup_transaction
;
2128 spin_unlock(&fs_info
->trans_lock
);
2131 spin_unlock(&fs_info
->trans_lock
);
2133 * The previous transaction was aborted and was already removed
2134 * from the list of transactions at fs_info->trans_list. So we
2135 * abort to prevent writing a new superblock that reflects a
2136 * corrupt state (pointing to trees with unwritten nodes/leafs).
2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED
, &fs_info
->fs_state
)) {
2140 goto cleanup_transaction
;
2144 extwriter_counter_dec(cur_trans
, trans
->type
);
2146 ret
= btrfs_start_delalloc_flush(trans
);
2148 goto cleanup_transaction
;
2150 ret
= btrfs_run_delayed_items(trans
);
2152 goto cleanup_transaction
;
2154 wait_event(cur_trans
->writer_wait
,
2155 extwriter_counter_read(cur_trans
) == 0);
2157 /* some pending stuffs might be added after the previous flush. */
2158 ret
= btrfs_run_delayed_items(trans
);
2160 goto cleanup_transaction
;
2162 btrfs_wait_delalloc_flush(trans
);
2164 btrfs_scrub_pause(fs_info
);
2166 * Ok now we need to make sure to block out any other joins while we
2167 * commit the transaction. We could have started a join before setting
2168 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2170 spin_lock(&fs_info
->trans_lock
);
2171 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2172 spin_unlock(&fs_info
->trans_lock
);
2173 wait_event(cur_trans
->writer_wait
,
2174 atomic_read(&cur_trans
->num_writers
) == 1);
2176 /* ->aborted might be set after the previous check, so check it */
2177 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2178 ret
= cur_trans
->aborted
;
2179 goto scrub_continue
;
2182 * the reloc mutex makes sure that we stop
2183 * the balancing code from coming in and moving
2184 * extents around in the middle of the commit
2186 mutex_lock(&fs_info
->reloc_mutex
);
2189 * We needn't worry about the delayed items because we will
2190 * deal with them in create_pending_snapshot(), which is the
2191 * core function of the snapshot creation.
2193 ret
= create_pending_snapshots(trans
);
2195 mutex_unlock(&fs_info
->reloc_mutex
);
2196 goto scrub_continue
;
2200 * We insert the dir indexes of the snapshots and update the inode
2201 * of the snapshots' parents after the snapshot creation, so there
2202 * are some delayed items which are not dealt with. Now deal with
2205 * We needn't worry that this operation will corrupt the snapshots,
2206 * because all the tree which are snapshoted will be forced to COW
2207 * the nodes and leaves.
2209 ret
= btrfs_run_delayed_items(trans
);
2211 mutex_unlock(&fs_info
->reloc_mutex
);
2212 goto scrub_continue
;
2215 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2217 mutex_unlock(&fs_info
->reloc_mutex
);
2218 goto scrub_continue
;
2222 * make sure none of the code above managed to slip in a
2225 btrfs_assert_delayed_root_empty(fs_info
);
2227 WARN_ON(cur_trans
!= trans
->transaction
);
2229 /* btrfs_commit_tree_roots is responsible for getting the
2230 * various roots consistent with each other. Every pointer
2231 * in the tree of tree roots has to point to the most up to date
2232 * root for every subvolume and other tree. So, we have to keep
2233 * the tree logging code from jumping in and changing any
2236 * At this point in the commit, there can't be any tree-log
2237 * writers, but a little lower down we drop the trans mutex
2238 * and let new people in. By holding the tree_log_mutex
2239 * from now until after the super is written, we avoid races
2240 * with the tree-log code.
2242 mutex_lock(&fs_info
->tree_log_mutex
);
2244 ret
= commit_fs_roots(trans
);
2246 mutex_unlock(&fs_info
->tree_log_mutex
);
2247 mutex_unlock(&fs_info
->reloc_mutex
);
2248 goto scrub_continue
;
2252 * Since the transaction is done, we can apply the pending changes
2253 * before the next transaction.
2255 btrfs_apply_pending_changes(fs_info
);
2257 /* commit_fs_roots gets rid of all the tree log roots, it is now
2258 * safe to free the root of tree log roots
2260 btrfs_free_log_root_tree(trans
, fs_info
);
2263 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2264 * new delayed refs. Must handle them or qgroup can be wrong.
2266 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2268 mutex_unlock(&fs_info
->tree_log_mutex
);
2269 mutex_unlock(&fs_info
->reloc_mutex
);
2270 goto scrub_continue
;
2274 * Since fs roots are all committed, we can get a quite accurate
2275 * new_roots. So let's do quota accounting.
2277 ret
= btrfs_qgroup_account_extents(trans
);
2279 mutex_unlock(&fs_info
->tree_log_mutex
);
2280 mutex_unlock(&fs_info
->reloc_mutex
);
2281 goto scrub_continue
;
2284 ret
= commit_cowonly_roots(trans
);
2286 mutex_unlock(&fs_info
->tree_log_mutex
);
2287 mutex_unlock(&fs_info
->reloc_mutex
);
2288 goto scrub_continue
;
2292 * The tasks which save the space cache and inode cache may also
2293 * update ->aborted, check it.
2295 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2296 ret
= cur_trans
->aborted
;
2297 mutex_unlock(&fs_info
->tree_log_mutex
);
2298 mutex_unlock(&fs_info
->reloc_mutex
);
2299 goto scrub_continue
;
2302 btrfs_prepare_extent_commit(fs_info
);
2304 cur_trans
= fs_info
->running_transaction
;
2306 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2307 fs_info
->tree_root
->node
);
2308 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2309 &cur_trans
->switch_commits
);
2311 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2312 fs_info
->chunk_root
->node
);
2313 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2314 &cur_trans
->switch_commits
);
2316 switch_commit_roots(trans
);
2318 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2319 ASSERT(list_empty(&cur_trans
->io_bgs
));
2320 update_super_roots(fs_info
);
2322 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2323 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2324 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2325 sizeof(*fs_info
->super_copy
));
2327 btrfs_commit_device_sizes(cur_trans
);
2329 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2330 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2332 btrfs_trans_release_chunk_metadata(trans
);
2334 spin_lock(&fs_info
->trans_lock
);
2335 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2336 fs_info
->running_transaction
= NULL
;
2337 spin_unlock(&fs_info
->trans_lock
);
2338 mutex_unlock(&fs_info
->reloc_mutex
);
2340 wake_up(&fs_info
->transaction_wait
);
2342 ret
= btrfs_write_and_wait_transaction(trans
);
2344 btrfs_handle_fs_error(fs_info
, ret
,
2345 "Error while writing out transaction");
2346 mutex_unlock(&fs_info
->tree_log_mutex
);
2347 goto scrub_continue
;
2350 ret
= write_all_supers(fs_info
, 0);
2352 * the super is written, we can safely allow the tree-loggers
2353 * to go about their business
2355 mutex_unlock(&fs_info
->tree_log_mutex
);
2357 goto scrub_continue
;
2359 btrfs_finish_extent_commit(trans
);
2361 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2362 btrfs_clear_space_info_full(fs_info
);
2364 fs_info
->last_trans_committed
= cur_trans
->transid
;
2366 * We needn't acquire the lock here because there is no other task
2367 * which can change it.
2369 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2370 wake_up(&cur_trans
->commit_wait
);
2371 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
);
2373 spin_lock(&fs_info
->trans_lock
);
2374 list_del_init(&cur_trans
->list
);
2375 spin_unlock(&fs_info
->trans_lock
);
2377 btrfs_put_transaction(cur_trans
);
2378 btrfs_put_transaction(cur_trans
);
2380 if (trans
->type
& __TRANS_FREEZABLE
)
2381 sb_end_intwrite(fs_info
->sb
);
2383 trace_btrfs_transaction_commit(trans
->root
);
2385 btrfs_scrub_continue(fs_info
);
2387 if (current
->journal_info
== trans
)
2388 current
->journal_info
= NULL
;
2390 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2395 btrfs_scrub_continue(fs_info
);
2396 cleanup_transaction
:
2397 btrfs_trans_release_metadata(trans
);
2398 btrfs_cleanup_pending_block_groups(trans
);
2399 btrfs_trans_release_chunk_metadata(trans
);
2400 trans
->block_rsv
= NULL
;
2401 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2402 if (current
->journal_info
== trans
)
2403 current
->journal_info
= NULL
;
2404 cleanup_transaction(trans
, ret
);
2410 * return < 0 if error
2411 * 0 if there are no more dead_roots at the time of call
2412 * 1 there are more to be processed, call me again
2414 * The return value indicates there are certainly more snapshots to delete, but
2415 * if there comes a new one during processing, it may return 0. We don't mind,
2416 * because btrfs_commit_super will poke cleaner thread and it will process it a
2417 * few seconds later.
2419 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2422 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2424 spin_lock(&fs_info
->trans_lock
);
2425 if (list_empty(&fs_info
->dead_roots
)) {
2426 spin_unlock(&fs_info
->trans_lock
);
2429 root
= list_first_entry(&fs_info
->dead_roots
,
2430 struct btrfs_root
, root_list
);
2431 list_del_init(&root
->root_list
);
2432 spin_unlock(&fs_info
->trans_lock
);
2434 btrfs_debug(fs_info
, "cleaner removing %llu", root
->root_key
.objectid
);
2436 btrfs_kill_all_delayed_nodes(root
);
2438 if (btrfs_header_backref_rev(root
->node
) <
2439 BTRFS_MIXED_BACKREF_REV
)
2440 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2442 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2444 return (ret
< 0) ? 0 : 1;
2447 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2452 prev
= xchg(&fs_info
->pending_changes
, 0);
2456 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2458 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2461 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2463 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2466 bit
= 1 << BTRFS_PENDING_COMMIT
;
2468 btrfs_debug(fs_info
, "pending commit done");
2473 "unknown pending changes left 0x%lx, ignoring", prev
);