media: stv06xx: add missing descriptor sanity checks
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blobbeb6c69cd1e55b7d0fb3089b4822269fb6bce38c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
25 #define BTRFS_ROOT_TRANS_TAG 0
28 * Transaction states and transitions
30 * No running transaction (fs tree blocks are not modified)
31 * |
32 * | To next stage:
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34 * V
35 * Transaction N [[TRANS_STATE_RUNNING]]
36 * |
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
39 * |
40 * | To next stage:
41 * | Call btrfs_commit_transaction() on any trans handle attached to
42 * | transaction N
43 * V
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
45 * |
46 * | Will wait for previous running transaction to completely finish if there
47 * | is one
48 * |
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
54 * |
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
58 * | transaction N+1.
59 * |
60 * | To next stage:
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
63 * V
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65 * |
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
70 * | trees.
71 * |
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
74 * |
75 * | To next stage:
76 * | Until all supporting trees are updated.
77 * V
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
79 * | Transaction N+1
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
82 * | super blocks. |
83 * | |
84 * | At this stage, new transaction is allowed to |
85 * | start. |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
88 * | |
89 * | To next stage: |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
92 * V |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
98 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
99 [TRANS_STATE_RUNNING] = 0U,
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
102 __TRANS_ATTACH |
103 __TRANS_JOIN |
104 __TRANS_JOIN_NOSTART),
105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
106 __TRANS_ATTACH |
107 __TRANS_JOIN |
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
117 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
121 BUG_ON(!list_empty(&transaction->list));
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
126 if (transaction->delayed_refs.pending_csums)
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
137 while (!list_empty(&transaction->deleted_bgs)) {
138 struct btrfs_block_group *cache;
140 cache = list_first_entry(&transaction->deleted_bgs,
141 struct btrfs_block_group,
142 bg_list);
143 list_del_init(&cache->bg_list);
144 btrfs_put_block_group_trimming(cache);
145 btrfs_put_block_group(cache);
147 WARN_ON(!list_empty(&transaction->dev_update_list));
148 kfree(transaction);
152 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 struct btrfs_transaction *cur_trans = trans->transaction;
155 struct btrfs_fs_info *fs_info = trans->fs_info;
156 struct btrfs_root *root, *tmp;
158 down_write(&fs_info->commit_root_sem);
159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
160 dirty_list) {
161 list_del_init(&root->dirty_list);
162 free_extent_buffer(root->commit_root);
163 root->commit_root = btrfs_root_node(root);
164 if (is_fstree(root->root_key.objectid))
165 btrfs_unpin_free_ino(root);
166 extent_io_tree_release(&root->dirty_log_pages);
167 btrfs_qgroup_clean_swapped_blocks(root);
170 /* We can free old roots now. */
171 spin_lock(&cur_trans->dropped_roots_lock);
172 while (!list_empty(&cur_trans->dropped_roots)) {
173 root = list_first_entry(&cur_trans->dropped_roots,
174 struct btrfs_root, root_list);
175 list_del_init(&root->root_list);
176 spin_unlock(&cur_trans->dropped_roots_lock);
177 btrfs_free_log(trans, root);
178 btrfs_drop_and_free_fs_root(fs_info, root);
179 spin_lock(&cur_trans->dropped_roots_lock);
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 up_write(&fs_info->commit_root_sem);
185 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 unsigned int type)
188 if (type & TRANS_EXTWRITERS)
189 atomic_inc(&trans->num_extwriters);
192 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 unsigned int type)
195 if (type & TRANS_EXTWRITERS)
196 atomic_dec(&trans->num_extwriters);
199 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 unsigned int type)
202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
205 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207 return atomic_read(&trans->num_extwriters);
211 * To be called after all the new block groups attached to the transaction
212 * handle have been created (btrfs_create_pending_block_groups()).
214 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216 struct btrfs_fs_info *fs_info = trans->fs_info;
218 if (!trans->chunk_bytes_reserved)
219 return;
221 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 trans->chunk_bytes_reserved);
225 trans->chunk_bytes_reserved = 0;
229 * either allocate a new transaction or hop into the existing one
231 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 unsigned int type)
234 struct btrfs_transaction *cur_trans;
236 spin_lock(&fs_info->trans_lock);
237 loop:
238 /* The file system has been taken offline. No new transactions. */
239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
240 spin_unlock(&fs_info->trans_lock);
241 return -EROFS;
244 cur_trans = fs_info->running_transaction;
245 if (cur_trans) {
246 if (cur_trans->aborted) {
247 spin_unlock(&fs_info->trans_lock);
248 return cur_trans->aborted;
250 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
251 spin_unlock(&fs_info->trans_lock);
252 return -EBUSY;
254 refcount_inc(&cur_trans->use_count);
255 atomic_inc(&cur_trans->num_writers);
256 extwriter_counter_inc(cur_trans, type);
257 spin_unlock(&fs_info->trans_lock);
258 return 0;
260 spin_unlock(&fs_info->trans_lock);
263 * If we are ATTACH, we just want to catch the current transaction,
264 * and commit it. If there is no transaction, just return ENOENT.
266 if (type == TRANS_ATTACH)
267 return -ENOENT;
270 * JOIN_NOLOCK only happens during the transaction commit, so
271 * it is impossible that ->running_transaction is NULL
273 BUG_ON(type == TRANS_JOIN_NOLOCK);
275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
276 if (!cur_trans)
277 return -ENOMEM;
279 spin_lock(&fs_info->trans_lock);
280 if (fs_info->running_transaction) {
282 * someone started a transaction after we unlocked. Make sure
283 * to redo the checks above
285 kfree(cur_trans);
286 goto loop;
287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
288 spin_unlock(&fs_info->trans_lock);
289 kfree(cur_trans);
290 return -EROFS;
293 cur_trans->fs_info = fs_info;
294 atomic_set(&cur_trans->num_writers, 1);
295 extwriter_counter_init(cur_trans, type);
296 init_waitqueue_head(&cur_trans->writer_wait);
297 init_waitqueue_head(&cur_trans->commit_wait);
298 cur_trans->state = TRANS_STATE_RUNNING;
300 * One for this trans handle, one so it will live on until we
301 * commit the transaction.
303 refcount_set(&cur_trans->use_count, 2);
304 cur_trans->flags = 0;
305 cur_trans->start_time = ktime_get_seconds();
307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
311 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
314 * although the tree mod log is per file system and not per transaction,
315 * the log must never go across transaction boundaries.
317 smp_mb();
318 if (!list_empty(&fs_info->tree_mod_seq_list))
319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
322 atomic64_set(&fs_info->tree_mod_seq, 0);
324 spin_lock_init(&cur_trans->delayed_refs.lock);
326 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
327 INIT_LIST_HEAD(&cur_trans->dev_update_list);
328 INIT_LIST_HEAD(&cur_trans->switch_commits);
329 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
330 INIT_LIST_HEAD(&cur_trans->io_bgs);
331 INIT_LIST_HEAD(&cur_trans->dropped_roots);
332 mutex_init(&cur_trans->cache_write_mutex);
333 spin_lock_init(&cur_trans->dirty_bgs_lock);
334 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
335 spin_lock_init(&cur_trans->dropped_roots_lock);
336 list_add_tail(&cur_trans->list, &fs_info->trans_list);
337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
339 fs_info->generation++;
340 cur_trans->transid = fs_info->generation;
341 fs_info->running_transaction = cur_trans;
342 cur_trans->aborted = 0;
343 spin_unlock(&fs_info->trans_lock);
345 return 0;
349 * this does all the record keeping required to make sure that a reference
350 * counted root is properly recorded in a given transaction. This is required
351 * to make sure the old root from before we joined the transaction is deleted
352 * when the transaction commits
354 static int record_root_in_trans(struct btrfs_trans_handle *trans,
355 struct btrfs_root *root,
356 int force)
358 struct btrfs_fs_info *fs_info = root->fs_info;
360 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
361 root->last_trans < trans->transid) || force) {
362 WARN_ON(root == fs_info->extent_root);
363 WARN_ON(!force && root->commit_root != root->node);
366 * see below for IN_TRANS_SETUP usage rules
367 * we have the reloc mutex held now, so there
368 * is only one writer in this function
370 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
372 /* make sure readers find IN_TRANS_SETUP before
373 * they find our root->last_trans update
375 smp_wmb();
377 spin_lock(&fs_info->fs_roots_radix_lock);
378 if (root->last_trans == trans->transid && !force) {
379 spin_unlock(&fs_info->fs_roots_radix_lock);
380 return 0;
382 radix_tree_tag_set(&fs_info->fs_roots_radix,
383 (unsigned long)root->root_key.objectid,
384 BTRFS_ROOT_TRANS_TAG);
385 spin_unlock(&fs_info->fs_roots_radix_lock);
386 root->last_trans = trans->transid;
388 /* this is pretty tricky. We don't want to
389 * take the relocation lock in btrfs_record_root_in_trans
390 * unless we're really doing the first setup for this root in
391 * this transaction.
393 * Normally we'd use root->last_trans as a flag to decide
394 * if we want to take the expensive mutex.
396 * But, we have to set root->last_trans before we
397 * init the relocation root, otherwise, we trip over warnings
398 * in ctree.c. The solution used here is to flag ourselves
399 * with root IN_TRANS_SETUP. When this is 1, we're still
400 * fixing up the reloc trees and everyone must wait.
402 * When this is zero, they can trust root->last_trans and fly
403 * through btrfs_record_root_in_trans without having to take the
404 * lock. smp_wmb() makes sure that all the writes above are
405 * done before we pop in the zero below
407 btrfs_init_reloc_root(trans, root);
408 smp_mb__before_atomic();
409 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
411 return 0;
415 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
416 struct btrfs_root *root)
418 struct btrfs_fs_info *fs_info = root->fs_info;
419 struct btrfs_transaction *cur_trans = trans->transaction;
421 /* Add ourselves to the transaction dropped list */
422 spin_lock(&cur_trans->dropped_roots_lock);
423 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
424 spin_unlock(&cur_trans->dropped_roots_lock);
426 /* Make sure we don't try to update the root at commit time */
427 spin_lock(&fs_info->fs_roots_radix_lock);
428 radix_tree_tag_clear(&fs_info->fs_roots_radix,
429 (unsigned long)root->root_key.objectid,
430 BTRFS_ROOT_TRANS_TAG);
431 spin_unlock(&fs_info->fs_roots_radix_lock);
434 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
435 struct btrfs_root *root)
437 struct btrfs_fs_info *fs_info = root->fs_info;
439 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
440 return 0;
443 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
444 * and barriers
446 smp_rmb();
447 if (root->last_trans == trans->transid &&
448 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
449 return 0;
451 mutex_lock(&fs_info->reloc_mutex);
452 record_root_in_trans(trans, root, 0);
453 mutex_unlock(&fs_info->reloc_mutex);
455 return 0;
458 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
460 return (trans->state >= TRANS_STATE_COMMIT_START &&
461 trans->state < TRANS_STATE_UNBLOCKED &&
462 !trans->aborted);
465 /* wait for commit against the current transaction to become unblocked
466 * when this is done, it is safe to start a new transaction, but the current
467 * transaction might not be fully on disk.
469 static void wait_current_trans(struct btrfs_fs_info *fs_info)
471 struct btrfs_transaction *cur_trans;
473 spin_lock(&fs_info->trans_lock);
474 cur_trans = fs_info->running_transaction;
475 if (cur_trans && is_transaction_blocked(cur_trans)) {
476 refcount_inc(&cur_trans->use_count);
477 spin_unlock(&fs_info->trans_lock);
479 wait_event(fs_info->transaction_wait,
480 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
481 cur_trans->aborted);
482 btrfs_put_transaction(cur_trans);
483 } else {
484 spin_unlock(&fs_info->trans_lock);
488 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
490 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
491 return 0;
493 if (type == TRANS_START)
494 return 1;
496 return 0;
499 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
501 struct btrfs_fs_info *fs_info = root->fs_info;
503 if (!fs_info->reloc_ctl ||
504 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
505 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
506 root->reloc_root)
507 return false;
509 return true;
512 static struct btrfs_trans_handle *
513 start_transaction(struct btrfs_root *root, unsigned int num_items,
514 unsigned int type, enum btrfs_reserve_flush_enum flush,
515 bool enforce_qgroups)
517 struct btrfs_fs_info *fs_info = root->fs_info;
518 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
519 struct btrfs_trans_handle *h;
520 struct btrfs_transaction *cur_trans;
521 u64 num_bytes = 0;
522 u64 qgroup_reserved = 0;
523 bool reloc_reserved = false;
524 int ret;
526 /* Send isn't supposed to start transactions. */
527 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
529 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
530 return ERR_PTR(-EROFS);
532 if (current->journal_info) {
533 WARN_ON(type & TRANS_EXTWRITERS);
534 h = current->journal_info;
535 refcount_inc(&h->use_count);
536 WARN_ON(refcount_read(&h->use_count) > 2);
537 h->orig_rsv = h->block_rsv;
538 h->block_rsv = NULL;
539 goto got_it;
543 * Do the reservation before we join the transaction so we can do all
544 * the appropriate flushing if need be.
546 if (num_items && root != fs_info->chunk_root) {
547 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
548 u64 delayed_refs_bytes = 0;
550 qgroup_reserved = num_items * fs_info->nodesize;
551 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
552 enforce_qgroups);
553 if (ret)
554 return ERR_PTR(ret);
557 * We want to reserve all the bytes we may need all at once, so
558 * we only do 1 enospc flushing cycle per transaction start. We
559 * accomplish this by simply assuming we'll do 2 x num_items
560 * worth of delayed refs updates in this trans handle, and
561 * refill that amount for whatever is missing in the reserve.
563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
564 if (delayed_refs_rsv->full == 0) {
565 delayed_refs_bytes = num_bytes;
566 num_bytes <<= 1;
570 * Do the reservation for the relocation root creation
572 if (need_reserve_reloc_root(root)) {
573 num_bytes += fs_info->nodesize;
574 reloc_reserved = true;
577 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
578 if (ret)
579 goto reserve_fail;
580 if (delayed_refs_bytes) {
581 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
582 delayed_refs_bytes);
583 num_bytes -= delayed_refs_bytes;
585 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
586 !delayed_refs_rsv->full) {
588 * Some people call with btrfs_start_transaction(root, 0)
589 * because they can be throttled, but have some other mechanism
590 * for reserving space. We still want these guys to refill the
591 * delayed block_rsv so just add 1 items worth of reservation
592 * here.
594 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
595 if (ret)
596 goto reserve_fail;
598 again:
599 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
600 if (!h) {
601 ret = -ENOMEM;
602 goto alloc_fail;
606 * If we are JOIN_NOLOCK we're already committing a transaction and
607 * waiting on this guy, so we don't need to do the sb_start_intwrite
608 * because we're already holding a ref. We need this because we could
609 * have raced in and did an fsync() on a file which can kick a commit
610 * and then we deadlock with somebody doing a freeze.
612 * If we are ATTACH, it means we just want to catch the current
613 * transaction and commit it, so we needn't do sb_start_intwrite().
615 if (type & __TRANS_FREEZABLE)
616 sb_start_intwrite(fs_info->sb);
618 if (may_wait_transaction(fs_info, type))
619 wait_current_trans(fs_info);
621 do {
622 ret = join_transaction(fs_info, type);
623 if (ret == -EBUSY) {
624 wait_current_trans(fs_info);
625 if (unlikely(type == TRANS_ATTACH ||
626 type == TRANS_JOIN_NOSTART))
627 ret = -ENOENT;
629 } while (ret == -EBUSY);
631 if (ret < 0)
632 goto join_fail;
634 cur_trans = fs_info->running_transaction;
636 h->transid = cur_trans->transid;
637 h->transaction = cur_trans;
638 h->root = root;
639 refcount_set(&h->use_count, 1);
640 h->fs_info = root->fs_info;
642 h->type = type;
643 h->can_flush_pending_bgs = true;
644 INIT_LIST_HEAD(&h->new_bgs);
646 smp_mb();
647 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
648 may_wait_transaction(fs_info, type)) {
649 current->journal_info = h;
650 btrfs_commit_transaction(h);
651 goto again;
654 if (num_bytes) {
655 trace_btrfs_space_reservation(fs_info, "transaction",
656 h->transid, num_bytes, 1);
657 h->block_rsv = &fs_info->trans_block_rsv;
658 h->bytes_reserved = num_bytes;
659 h->reloc_reserved = reloc_reserved;
662 got_it:
663 btrfs_record_root_in_trans(h, root);
665 if (!current->journal_info)
666 current->journal_info = h;
667 return h;
669 join_fail:
670 if (type & __TRANS_FREEZABLE)
671 sb_end_intwrite(fs_info->sb);
672 kmem_cache_free(btrfs_trans_handle_cachep, h);
673 alloc_fail:
674 if (num_bytes)
675 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
676 num_bytes);
677 reserve_fail:
678 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
679 return ERR_PTR(ret);
682 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
683 unsigned int num_items)
685 return start_transaction(root, num_items, TRANS_START,
686 BTRFS_RESERVE_FLUSH_ALL, true);
689 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
690 struct btrfs_root *root,
691 unsigned int num_items,
692 int min_factor)
694 struct btrfs_fs_info *fs_info = root->fs_info;
695 struct btrfs_trans_handle *trans;
696 u64 num_bytes;
697 int ret;
700 * We have two callers: unlink and block group removal. The
701 * former should succeed even if we will temporarily exceed
702 * quota and the latter operates on the extent root so
703 * qgroup enforcement is ignored anyway.
705 trans = start_transaction(root, num_items, TRANS_START,
706 BTRFS_RESERVE_FLUSH_ALL, false);
707 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
708 return trans;
710 trans = btrfs_start_transaction(root, 0);
711 if (IS_ERR(trans))
712 return trans;
714 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
715 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
716 num_bytes, min_factor);
717 if (ret) {
718 btrfs_end_transaction(trans);
719 return ERR_PTR(ret);
722 trans->block_rsv = &fs_info->trans_block_rsv;
723 trans->bytes_reserved = num_bytes;
724 trace_btrfs_space_reservation(fs_info, "transaction",
725 trans->transid, num_bytes, 1);
727 return trans;
730 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
732 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
733 true);
736 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
738 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
739 BTRFS_RESERVE_NO_FLUSH, true);
743 * Similar to regular join but it never starts a transaction when none is
744 * running or after waiting for the current one to finish.
746 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
748 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
749 BTRFS_RESERVE_NO_FLUSH, true);
753 * btrfs_attach_transaction() - catch the running transaction
755 * It is used when we want to commit the current the transaction, but
756 * don't want to start a new one.
758 * Note: If this function return -ENOENT, it just means there is no
759 * running transaction. But it is possible that the inactive transaction
760 * is still in the memory, not fully on disk. If you hope there is no
761 * inactive transaction in the fs when -ENOENT is returned, you should
762 * invoke
763 * btrfs_attach_transaction_barrier()
765 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
767 return start_transaction(root, 0, TRANS_ATTACH,
768 BTRFS_RESERVE_NO_FLUSH, true);
772 * btrfs_attach_transaction_barrier() - catch the running transaction
774 * It is similar to the above function, the difference is this one
775 * will wait for all the inactive transactions until they fully
776 * complete.
778 struct btrfs_trans_handle *
779 btrfs_attach_transaction_barrier(struct btrfs_root *root)
781 struct btrfs_trans_handle *trans;
783 trans = start_transaction(root, 0, TRANS_ATTACH,
784 BTRFS_RESERVE_NO_FLUSH, true);
785 if (trans == ERR_PTR(-ENOENT))
786 btrfs_wait_for_commit(root->fs_info, 0);
788 return trans;
791 /* wait for a transaction commit to be fully complete */
792 static noinline void wait_for_commit(struct btrfs_transaction *commit)
794 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
797 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
799 struct btrfs_transaction *cur_trans = NULL, *t;
800 int ret = 0;
802 if (transid) {
803 if (transid <= fs_info->last_trans_committed)
804 goto out;
806 /* find specified transaction */
807 spin_lock(&fs_info->trans_lock);
808 list_for_each_entry(t, &fs_info->trans_list, list) {
809 if (t->transid == transid) {
810 cur_trans = t;
811 refcount_inc(&cur_trans->use_count);
812 ret = 0;
813 break;
815 if (t->transid > transid) {
816 ret = 0;
817 break;
820 spin_unlock(&fs_info->trans_lock);
823 * The specified transaction doesn't exist, or we
824 * raced with btrfs_commit_transaction
826 if (!cur_trans) {
827 if (transid > fs_info->last_trans_committed)
828 ret = -EINVAL;
829 goto out;
831 } else {
832 /* find newest transaction that is committing | committed */
833 spin_lock(&fs_info->trans_lock);
834 list_for_each_entry_reverse(t, &fs_info->trans_list,
835 list) {
836 if (t->state >= TRANS_STATE_COMMIT_START) {
837 if (t->state == TRANS_STATE_COMPLETED)
838 break;
839 cur_trans = t;
840 refcount_inc(&cur_trans->use_count);
841 break;
844 spin_unlock(&fs_info->trans_lock);
845 if (!cur_trans)
846 goto out; /* nothing committing|committed */
849 wait_for_commit(cur_trans);
850 btrfs_put_transaction(cur_trans);
851 out:
852 return ret;
855 void btrfs_throttle(struct btrfs_fs_info *fs_info)
857 wait_current_trans(fs_info);
860 static int should_end_transaction(struct btrfs_trans_handle *trans)
862 struct btrfs_fs_info *fs_info = trans->fs_info;
864 if (btrfs_check_space_for_delayed_refs(fs_info))
865 return 1;
867 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
870 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
872 struct btrfs_transaction *cur_trans = trans->transaction;
874 smp_mb();
875 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
876 cur_trans->delayed_refs.flushing)
877 return 1;
879 return should_end_transaction(trans);
882 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
885 struct btrfs_fs_info *fs_info = trans->fs_info;
887 if (!trans->block_rsv) {
888 ASSERT(!trans->bytes_reserved);
889 return;
892 if (!trans->bytes_reserved)
893 return;
895 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
896 trace_btrfs_space_reservation(fs_info, "transaction",
897 trans->transid, trans->bytes_reserved, 0);
898 btrfs_block_rsv_release(fs_info, trans->block_rsv,
899 trans->bytes_reserved);
900 trans->bytes_reserved = 0;
903 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
904 int throttle)
906 struct btrfs_fs_info *info = trans->fs_info;
907 struct btrfs_transaction *cur_trans = trans->transaction;
908 int err = 0;
910 if (refcount_read(&trans->use_count) > 1) {
911 refcount_dec(&trans->use_count);
912 trans->block_rsv = trans->orig_rsv;
913 return 0;
916 btrfs_trans_release_metadata(trans);
917 trans->block_rsv = NULL;
919 btrfs_create_pending_block_groups(trans);
921 btrfs_trans_release_chunk_metadata(trans);
923 if (trans->type & __TRANS_FREEZABLE)
924 sb_end_intwrite(info->sb);
926 WARN_ON(cur_trans != info->running_transaction);
927 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
928 atomic_dec(&cur_trans->num_writers);
929 extwriter_counter_dec(cur_trans, trans->type);
931 cond_wake_up(&cur_trans->writer_wait);
932 btrfs_put_transaction(cur_trans);
934 if (current->journal_info == trans)
935 current->journal_info = NULL;
937 if (throttle)
938 btrfs_run_delayed_iputs(info);
940 if (trans->aborted ||
941 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
942 wake_up_process(info->transaction_kthread);
943 err = -EIO;
946 kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 return err;
950 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
952 return __btrfs_end_transaction(trans, 0);
955 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
957 return __btrfs_end_transaction(trans, 1);
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
963 * those extents are sent to disk but does not wait on them
965 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966 struct extent_io_tree *dirty_pages, int mark)
968 int err = 0;
969 int werr = 0;
970 struct address_space *mapping = fs_info->btree_inode->i_mapping;
971 struct extent_state *cached_state = NULL;
972 u64 start = 0;
973 u64 end;
975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 mark, &cached_state)) {
978 bool wait_writeback = false;
980 err = convert_extent_bit(dirty_pages, start, end,
981 EXTENT_NEED_WAIT,
982 mark, &cached_state);
984 * convert_extent_bit can return -ENOMEM, which is most of the
985 * time a temporary error. So when it happens, ignore the error
986 * and wait for writeback of this range to finish - because we
987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 * to __btrfs_wait_marked_extents() would not know that
989 * writeback for this range started and therefore wouldn't
990 * wait for it to finish - we don't want to commit a
991 * superblock that points to btree nodes/leafs for which
992 * writeback hasn't finished yet (and without errors).
993 * We cleanup any entries left in the io tree when committing
994 * the transaction (through extent_io_tree_release()).
996 if (err == -ENOMEM) {
997 err = 0;
998 wait_writeback = true;
1000 if (!err)
1001 err = filemap_fdatawrite_range(mapping, start, end);
1002 if (err)
1003 werr = err;
1004 else if (wait_writeback)
1005 werr = filemap_fdatawait_range(mapping, start, end);
1006 free_extent_state(cached_state);
1007 cached_state = NULL;
1008 cond_resched();
1009 start = end + 1;
1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012 return werr;
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees. This is used to make sure all of
1018 * those extents are on disk for transaction or log commit. We wait
1019 * on all the pages and clear them from the dirty pages state tree
1021 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 struct extent_io_tree *dirty_pages)
1024 int err = 0;
1025 int werr = 0;
1026 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027 struct extent_state *cached_state = NULL;
1028 u64 start = 0;
1029 u64 end;
1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032 EXTENT_NEED_WAIT, &cached_state)) {
1034 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 * When committing the transaction, we'll remove any entries
1036 * left in the io tree. For a log commit, we don't remove them
1037 * after committing the log because the tree can be accessed
1038 * concurrently - we do it only at transaction commit time when
1039 * it's safe to do it (through extent_io_tree_release()).
1041 err = clear_extent_bit(dirty_pages, start, end,
1042 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043 if (err == -ENOMEM)
1044 err = 0;
1045 if (!err)
1046 err = filemap_fdatawait_range(mapping, start, end);
1047 if (err)
1048 werr = err;
1049 free_extent_state(cached_state);
1050 cached_state = NULL;
1051 cond_resched();
1052 start = end + 1;
1054 if (err)
1055 werr = err;
1056 return werr;
1059 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060 struct extent_io_tree *dirty_pages)
1062 bool errors = false;
1063 int err;
1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 errors = true;
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1074 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1076 struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 bool errors = false;
1079 int err;
1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 if ((mark & EXTENT_DIRTY) &&
1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 errors = true;
1088 if ((mark & EXTENT_NEW) &&
1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 errors = true;
1092 if (errors && !err)
1093 err = -EIO;
1094 return err;
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1102 * @trans: transaction whose dirty pages we'd like to write
1104 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1106 int ret;
1107 int ret2;
1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109 struct btrfs_fs_info *fs_info = trans->fs_info;
1110 struct blk_plug plug;
1112 blk_start_plug(&plug);
1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114 blk_finish_plug(&plug);
1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1117 extent_io_tree_release(&trans->transaction->dirty_pages);
1119 if (ret)
1120 return ret;
1121 else if (ret2)
1122 return ret2;
1123 else
1124 return 0;
1128 * this is used to update the root pointer in the tree of tree roots.
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1137 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root)
1140 int ret;
1141 u64 old_root_bytenr;
1142 u64 old_root_used;
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 struct btrfs_root *tree_root = fs_info->tree_root;
1146 old_root_used = btrfs_root_used(&root->root_item);
1148 while (1) {
1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150 if (old_root_bytenr == root->node->start &&
1151 old_root_used == btrfs_root_used(&root->root_item))
1152 break;
1154 btrfs_set_root_node(&root->root_item, root->node);
1155 ret = btrfs_update_root(trans, tree_root,
1156 &root->root_key,
1157 &root->root_item);
1158 if (ret)
1159 return ret;
1161 old_root_used = btrfs_root_used(&root->root_item);
1164 return 0;
1168 * update all the cowonly tree roots on disk
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1174 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1176 struct btrfs_fs_info *fs_info = trans->fs_info;
1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178 struct list_head *io_bgs = &trans->transaction->io_bgs;
1179 struct list_head *next;
1180 struct extent_buffer *eb;
1181 int ret;
1183 eb = btrfs_lock_root_node(fs_info->tree_root);
1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 0, &eb);
1186 btrfs_tree_unlock(eb);
1187 free_extent_buffer(eb);
1189 if (ret)
1190 return ret;
1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193 if (ret)
1194 return ret;
1196 ret = btrfs_run_dev_stats(trans);
1197 if (ret)
1198 return ret;
1199 ret = btrfs_run_dev_replace(trans);
1200 if (ret)
1201 return ret;
1202 ret = btrfs_run_qgroups(trans);
1203 if (ret)
1204 return ret;
1206 ret = btrfs_setup_space_cache(trans);
1207 if (ret)
1208 return ret;
1210 /* run_qgroups might have added some more refs */
1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212 if (ret)
1213 return ret;
1214 again:
1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216 struct btrfs_root *root;
1217 next = fs_info->dirty_cowonly_roots.next;
1218 list_del_init(next);
1219 root = list_entry(next, struct btrfs_root, dirty_list);
1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1222 if (root != fs_info->extent_root)
1223 list_add_tail(&root->dirty_list,
1224 &trans->transaction->switch_commits);
1225 ret = update_cowonly_root(trans, root);
1226 if (ret)
1227 return ret;
1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229 if (ret)
1230 return ret;
1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234 ret = btrfs_write_dirty_block_groups(trans);
1235 if (ret)
1236 return ret;
1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238 if (ret)
1239 return ret;
1242 if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 goto again;
1245 list_add_tail(&fs_info->extent_root->dirty_list,
1246 &trans->transaction->switch_commits);
1248 /* Update dev-replace pointer once everything is committed */
1249 fs_info->dev_replace.committed_cursor_left =
1250 fs_info->dev_replace.cursor_left_last_write_of_item;
1252 return 0;
1256 * dead roots are old snapshots that need to be deleted. This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1260 void btrfs_add_dead_root(struct btrfs_root *root)
1262 struct btrfs_fs_info *fs_info = root->fs_info;
1264 spin_lock(&fs_info->trans_lock);
1265 if (list_empty(&root->root_list))
1266 list_add_tail(&root->root_list, &fs_info->dead_roots);
1267 spin_unlock(&fs_info->trans_lock);
1271 * update all the cowonly tree roots on disk
1273 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1275 struct btrfs_fs_info *fs_info = trans->fs_info;
1276 struct btrfs_root *gang[8];
1277 int i;
1278 int ret;
1279 int err = 0;
1281 spin_lock(&fs_info->fs_roots_radix_lock);
1282 while (1) {
1283 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1284 (void **)gang, 0,
1285 ARRAY_SIZE(gang),
1286 BTRFS_ROOT_TRANS_TAG);
1287 if (ret == 0)
1288 break;
1289 for (i = 0; i < ret; i++) {
1290 struct btrfs_root *root = gang[i];
1291 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1292 (unsigned long)root->root_key.objectid,
1293 BTRFS_ROOT_TRANS_TAG);
1294 spin_unlock(&fs_info->fs_roots_radix_lock);
1296 btrfs_free_log(trans, root);
1297 btrfs_update_reloc_root(trans, root);
1299 btrfs_save_ino_cache(root, trans);
1301 /* see comments in should_cow_block() */
1302 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1303 smp_mb__after_atomic();
1305 if (root->commit_root != root->node) {
1306 list_add_tail(&root->dirty_list,
1307 &trans->transaction->switch_commits);
1308 btrfs_set_root_node(&root->root_item,
1309 root->node);
1312 err = btrfs_update_root(trans, fs_info->tree_root,
1313 &root->root_key,
1314 &root->root_item);
1315 spin_lock(&fs_info->fs_roots_radix_lock);
1316 if (err)
1317 break;
1318 btrfs_qgroup_free_meta_all_pertrans(root);
1321 spin_unlock(&fs_info->fs_roots_radix_lock);
1322 return err;
1326 * defrag a given btree.
1327 * Every leaf in the btree is read and defragged.
1329 int btrfs_defrag_root(struct btrfs_root *root)
1331 struct btrfs_fs_info *info = root->fs_info;
1332 struct btrfs_trans_handle *trans;
1333 int ret;
1335 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1336 return 0;
1338 while (1) {
1339 trans = btrfs_start_transaction(root, 0);
1340 if (IS_ERR(trans))
1341 return PTR_ERR(trans);
1343 ret = btrfs_defrag_leaves(trans, root);
1345 btrfs_end_transaction(trans);
1346 btrfs_btree_balance_dirty(info);
1347 cond_resched();
1349 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1350 break;
1352 if (btrfs_defrag_cancelled(info)) {
1353 btrfs_debug(info, "defrag_root cancelled");
1354 ret = -EAGAIN;
1355 break;
1358 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1359 return ret;
1363 * Do all special snapshot related qgroup dirty hack.
1365 * Will do all needed qgroup inherit and dirty hack like switch commit
1366 * roots inside one transaction and write all btree into disk, to make
1367 * qgroup works.
1369 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *src,
1371 struct btrfs_root *parent,
1372 struct btrfs_qgroup_inherit *inherit,
1373 u64 dst_objectid)
1375 struct btrfs_fs_info *fs_info = src->fs_info;
1376 int ret;
1379 * Save some performance in the case that qgroups are not
1380 * enabled. If this check races with the ioctl, rescan will
1381 * kick in anyway.
1383 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1384 return 0;
1387 * Ensure dirty @src will be committed. Or, after coming
1388 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1389 * recorded root will never be updated again, causing an outdated root
1390 * item.
1392 record_root_in_trans(trans, src, 1);
1395 * We are going to commit transaction, see btrfs_commit_transaction()
1396 * comment for reason locking tree_log_mutex
1398 mutex_lock(&fs_info->tree_log_mutex);
1400 ret = commit_fs_roots(trans);
1401 if (ret)
1402 goto out;
1403 ret = btrfs_qgroup_account_extents(trans);
1404 if (ret < 0)
1405 goto out;
1407 /* Now qgroup are all updated, we can inherit it to new qgroups */
1408 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1409 inherit);
1410 if (ret < 0)
1411 goto out;
1414 * Now we do a simplified commit transaction, which will:
1415 * 1) commit all subvolume and extent tree
1416 * To ensure all subvolume and extent tree have a valid
1417 * commit_root to accounting later insert_dir_item()
1418 * 2) write all btree blocks onto disk
1419 * This is to make sure later btree modification will be cowed
1420 * Or commit_root can be populated and cause wrong qgroup numbers
1421 * In this simplified commit, we don't really care about other trees
1422 * like chunk and root tree, as they won't affect qgroup.
1423 * And we don't write super to avoid half committed status.
1425 ret = commit_cowonly_roots(trans);
1426 if (ret)
1427 goto out;
1428 switch_commit_roots(trans);
1429 ret = btrfs_write_and_wait_transaction(trans);
1430 if (ret)
1431 btrfs_handle_fs_error(fs_info, ret,
1432 "Error while writing out transaction for qgroup");
1434 out:
1435 mutex_unlock(&fs_info->tree_log_mutex);
1438 * Force parent root to be updated, as we recorded it before so its
1439 * last_trans == cur_transid.
1440 * Or it won't be committed again onto disk after later
1441 * insert_dir_item()
1443 if (!ret)
1444 record_root_in_trans(trans, parent, 1);
1445 return ret;
1449 * new snapshots need to be created at a very specific time in the
1450 * transaction commit. This does the actual creation.
1452 * Note:
1453 * If the error which may affect the commitment of the current transaction
1454 * happens, we should return the error number. If the error which just affect
1455 * the creation of the pending snapshots, just return 0.
1457 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1458 struct btrfs_pending_snapshot *pending)
1461 struct btrfs_fs_info *fs_info = trans->fs_info;
1462 struct btrfs_key key;
1463 struct btrfs_root_item *new_root_item;
1464 struct btrfs_root *tree_root = fs_info->tree_root;
1465 struct btrfs_root *root = pending->root;
1466 struct btrfs_root *parent_root;
1467 struct btrfs_block_rsv *rsv;
1468 struct inode *parent_inode;
1469 struct btrfs_path *path;
1470 struct btrfs_dir_item *dir_item;
1471 struct dentry *dentry;
1472 struct extent_buffer *tmp;
1473 struct extent_buffer *old;
1474 struct timespec64 cur_time;
1475 int ret = 0;
1476 u64 to_reserve = 0;
1477 u64 index = 0;
1478 u64 objectid;
1479 u64 root_flags;
1480 uuid_le new_uuid;
1482 ASSERT(pending->path);
1483 path = pending->path;
1485 ASSERT(pending->root_item);
1486 new_root_item = pending->root_item;
1488 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1489 if (pending->error)
1490 goto no_free_objectid;
1493 * Make qgroup to skip current new snapshot's qgroupid, as it is
1494 * accounted by later btrfs_qgroup_inherit().
1496 btrfs_set_skip_qgroup(trans, objectid);
1498 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500 if (to_reserve > 0) {
1501 pending->error = btrfs_block_rsv_add(root,
1502 &pending->block_rsv,
1503 to_reserve,
1504 BTRFS_RESERVE_NO_FLUSH);
1505 if (pending->error)
1506 goto clear_skip_qgroup;
1509 key.objectid = objectid;
1510 key.offset = (u64)-1;
1511 key.type = BTRFS_ROOT_ITEM_KEY;
1513 rsv = trans->block_rsv;
1514 trans->block_rsv = &pending->block_rsv;
1515 trans->bytes_reserved = trans->block_rsv->reserved;
1516 trace_btrfs_space_reservation(fs_info, "transaction",
1517 trans->transid,
1518 trans->bytes_reserved, 1);
1519 dentry = pending->dentry;
1520 parent_inode = pending->dir;
1521 parent_root = BTRFS_I(parent_inode)->root;
1522 record_root_in_trans(trans, parent_root, 0);
1524 cur_time = current_time(parent_inode);
1527 * insert the directory item
1529 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1530 BUG_ON(ret); /* -ENOMEM */
1532 /* check if there is a file/dir which has the same name. */
1533 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1534 btrfs_ino(BTRFS_I(parent_inode)),
1535 dentry->d_name.name,
1536 dentry->d_name.len, 0);
1537 if (dir_item != NULL && !IS_ERR(dir_item)) {
1538 pending->error = -EEXIST;
1539 goto dir_item_existed;
1540 } else if (IS_ERR(dir_item)) {
1541 ret = PTR_ERR(dir_item);
1542 btrfs_abort_transaction(trans, ret);
1543 goto fail;
1545 btrfs_release_path(path);
1548 * pull in the delayed directory update
1549 * and the delayed inode item
1550 * otherwise we corrupt the FS during
1551 * snapshot
1553 ret = btrfs_run_delayed_items(trans);
1554 if (ret) { /* Transaction aborted */
1555 btrfs_abort_transaction(trans, ret);
1556 goto fail;
1559 record_root_in_trans(trans, root, 0);
1560 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1561 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1562 btrfs_check_and_init_root_item(new_root_item);
1564 root_flags = btrfs_root_flags(new_root_item);
1565 if (pending->readonly)
1566 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1567 else
1568 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1569 btrfs_set_root_flags(new_root_item, root_flags);
1571 btrfs_set_root_generation_v2(new_root_item,
1572 trans->transid);
1573 uuid_le_gen(&new_uuid);
1574 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 BTRFS_UUID_SIZE);
1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 memset(new_root_item->received_uuid, 0,
1579 sizeof(new_root_item->received_uuid));
1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 btrfs_set_root_stransid(new_root_item, 0);
1583 btrfs_set_root_rtransid(new_root_item, 0);
1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587 btrfs_set_root_otransid(new_root_item, trans->transid);
1589 old = btrfs_lock_root_node(root);
1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591 if (ret) {
1592 btrfs_tree_unlock(old);
1593 free_extent_buffer(old);
1594 btrfs_abort_transaction(trans, ret);
1595 goto fail;
1598 btrfs_set_lock_blocking_write(old);
1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601 /* clean up in any case */
1602 btrfs_tree_unlock(old);
1603 free_extent_buffer(old);
1604 if (ret) {
1605 btrfs_abort_transaction(trans, ret);
1606 goto fail;
1608 /* see comments in should_cow_block() */
1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610 smp_wmb();
1612 btrfs_set_root_node(new_root_item, tmp);
1613 /* record when the snapshot was created in key.offset */
1614 key.offset = trans->transid;
1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616 btrfs_tree_unlock(tmp);
1617 free_extent_buffer(tmp);
1618 if (ret) {
1619 btrfs_abort_transaction(trans, ret);
1620 goto fail;
1624 * insert root back/forward references
1626 ret = btrfs_add_root_ref(trans, objectid,
1627 parent_root->root_key.objectid,
1628 btrfs_ino(BTRFS_I(parent_inode)), index,
1629 dentry->d_name.name, dentry->d_name.len);
1630 if (ret) {
1631 btrfs_abort_transaction(trans, ret);
1632 goto fail;
1635 key.offset = (u64)-1;
1636 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1637 if (IS_ERR(pending->snap)) {
1638 ret = PTR_ERR(pending->snap);
1639 btrfs_abort_transaction(trans, ret);
1640 goto fail;
1643 ret = btrfs_reloc_post_snapshot(trans, pending);
1644 if (ret) {
1645 btrfs_abort_transaction(trans, ret);
1646 goto fail;
1649 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1650 if (ret) {
1651 btrfs_abort_transaction(trans, ret);
1652 goto fail;
1656 * Do special qgroup accounting for snapshot, as we do some qgroup
1657 * snapshot hack to do fast snapshot.
1658 * To co-operate with that hack, we do hack again.
1659 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661 ret = qgroup_account_snapshot(trans, root, parent_root,
1662 pending->inherit, objectid);
1663 if (ret < 0)
1664 goto fail;
1666 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1667 dentry->d_name.len, BTRFS_I(parent_inode),
1668 &key, BTRFS_FT_DIR, index);
1669 /* We have check then name at the beginning, so it is impossible. */
1670 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1671 if (ret) {
1672 btrfs_abort_transaction(trans, ret);
1673 goto fail;
1676 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1677 dentry->d_name.len * 2);
1678 parent_inode->i_mtime = parent_inode->i_ctime =
1679 current_time(parent_inode);
1680 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1681 if (ret) {
1682 btrfs_abort_transaction(trans, ret);
1683 goto fail;
1685 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1686 objectid);
1687 if (ret) {
1688 btrfs_abort_transaction(trans, ret);
1689 goto fail;
1691 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1692 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1693 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1694 objectid);
1695 if (ret && ret != -EEXIST) {
1696 btrfs_abort_transaction(trans, ret);
1697 goto fail;
1701 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1702 if (ret) {
1703 btrfs_abort_transaction(trans, ret);
1704 goto fail;
1707 fail:
1708 pending->error = ret;
1709 dir_item_existed:
1710 trans->block_rsv = rsv;
1711 trans->bytes_reserved = 0;
1712 clear_skip_qgroup:
1713 btrfs_clear_skip_qgroup(trans);
1714 no_free_objectid:
1715 kfree(new_root_item);
1716 pending->root_item = NULL;
1717 btrfs_free_path(path);
1718 pending->path = NULL;
1720 return ret;
1724 * create all the snapshots we've scheduled for creation
1726 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1728 struct btrfs_pending_snapshot *pending, *next;
1729 struct list_head *head = &trans->transaction->pending_snapshots;
1730 int ret = 0;
1732 list_for_each_entry_safe(pending, next, head, list) {
1733 list_del(&pending->list);
1734 ret = create_pending_snapshot(trans, pending);
1735 if (ret)
1736 break;
1738 return ret;
1741 static void update_super_roots(struct btrfs_fs_info *fs_info)
1743 struct btrfs_root_item *root_item;
1744 struct btrfs_super_block *super;
1746 super = fs_info->super_copy;
1748 root_item = &fs_info->chunk_root->root_item;
1749 super->chunk_root = root_item->bytenr;
1750 super->chunk_root_generation = root_item->generation;
1751 super->chunk_root_level = root_item->level;
1753 root_item = &fs_info->tree_root->root_item;
1754 super->root = root_item->bytenr;
1755 super->generation = root_item->generation;
1756 super->root_level = root_item->level;
1757 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1758 super->cache_generation = root_item->generation;
1759 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1760 super->uuid_tree_generation = root_item->generation;
1763 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1765 struct btrfs_transaction *trans;
1766 int ret = 0;
1768 spin_lock(&info->trans_lock);
1769 trans = info->running_transaction;
1770 if (trans)
1771 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1772 spin_unlock(&info->trans_lock);
1773 return ret;
1776 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1778 struct btrfs_transaction *trans;
1779 int ret = 0;
1781 spin_lock(&info->trans_lock);
1782 trans = info->running_transaction;
1783 if (trans)
1784 ret = is_transaction_blocked(trans);
1785 spin_unlock(&info->trans_lock);
1786 return ret;
1790 * wait for the current transaction commit to start and block subsequent
1791 * transaction joins
1793 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1794 struct btrfs_transaction *trans)
1796 wait_event(fs_info->transaction_blocked_wait,
1797 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
1801 * wait for the current transaction to start and then become unblocked.
1802 * caller holds ref.
1804 static void wait_current_trans_commit_start_and_unblock(
1805 struct btrfs_fs_info *fs_info,
1806 struct btrfs_transaction *trans)
1808 wait_event(fs_info->transaction_wait,
1809 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
1813 * commit transactions asynchronously. once btrfs_commit_transaction_async
1814 * returns, any subsequent transaction will not be allowed to join.
1816 struct btrfs_async_commit {
1817 struct btrfs_trans_handle *newtrans;
1818 struct work_struct work;
1821 static void do_async_commit(struct work_struct *work)
1823 struct btrfs_async_commit *ac =
1824 container_of(work, struct btrfs_async_commit, work);
1827 * We've got freeze protection passed with the transaction.
1828 * Tell lockdep about it.
1830 if (ac->newtrans->type & __TRANS_FREEZABLE)
1831 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1833 current->journal_info = ac->newtrans;
1835 btrfs_commit_transaction(ac->newtrans);
1836 kfree(ac);
1839 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1840 int wait_for_unblock)
1842 struct btrfs_fs_info *fs_info = trans->fs_info;
1843 struct btrfs_async_commit *ac;
1844 struct btrfs_transaction *cur_trans;
1846 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1847 if (!ac)
1848 return -ENOMEM;
1850 INIT_WORK(&ac->work, do_async_commit);
1851 ac->newtrans = btrfs_join_transaction(trans->root);
1852 if (IS_ERR(ac->newtrans)) {
1853 int err = PTR_ERR(ac->newtrans);
1854 kfree(ac);
1855 return err;
1858 /* take transaction reference */
1859 cur_trans = trans->transaction;
1860 refcount_inc(&cur_trans->use_count);
1862 btrfs_end_transaction(trans);
1865 * Tell lockdep we've released the freeze rwsem, since the
1866 * async commit thread will be the one to unlock it.
1868 if (ac->newtrans->type & __TRANS_FREEZABLE)
1869 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1871 schedule_work(&ac->work);
1873 /* wait for transaction to start and unblock */
1874 if (wait_for_unblock)
1875 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1876 else
1877 wait_current_trans_commit_start(fs_info, cur_trans);
1879 if (current->journal_info == trans)
1880 current->journal_info = NULL;
1882 btrfs_put_transaction(cur_trans);
1883 return 0;
1887 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1889 struct btrfs_fs_info *fs_info = trans->fs_info;
1890 struct btrfs_transaction *cur_trans = trans->transaction;
1892 WARN_ON(refcount_read(&trans->use_count) > 1);
1894 btrfs_abort_transaction(trans, err);
1896 spin_lock(&fs_info->trans_lock);
1899 * If the transaction is removed from the list, it means this
1900 * transaction has been committed successfully, so it is impossible
1901 * to call the cleanup function.
1903 BUG_ON(list_empty(&cur_trans->list));
1905 list_del_init(&cur_trans->list);
1906 if (cur_trans == fs_info->running_transaction) {
1907 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1908 spin_unlock(&fs_info->trans_lock);
1909 wait_event(cur_trans->writer_wait,
1910 atomic_read(&cur_trans->num_writers) == 1);
1912 spin_lock(&fs_info->trans_lock);
1914 spin_unlock(&fs_info->trans_lock);
1916 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1918 spin_lock(&fs_info->trans_lock);
1919 if (cur_trans == fs_info->running_transaction)
1920 fs_info->running_transaction = NULL;
1921 spin_unlock(&fs_info->trans_lock);
1923 if (trans->type & __TRANS_FREEZABLE)
1924 sb_end_intwrite(fs_info->sb);
1925 btrfs_put_transaction(cur_trans);
1926 btrfs_put_transaction(cur_trans);
1928 trace_btrfs_transaction_commit(trans->root);
1930 if (current->journal_info == trans)
1931 current->journal_info = NULL;
1932 btrfs_scrub_cancel(fs_info);
1934 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1938 * Release reserved delayed ref space of all pending block groups of the
1939 * transaction and remove them from the list
1941 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1943 struct btrfs_fs_info *fs_info = trans->fs_info;
1944 struct btrfs_block_group *block_group, *tmp;
1946 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1947 btrfs_delayed_refs_rsv_release(fs_info, 1);
1948 list_del_init(&block_group->bg_list);
1952 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1954 struct btrfs_fs_info *fs_info = trans->fs_info;
1957 * We use writeback_inodes_sb here because if we used
1958 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 * Currently are holding the fs freeze lock, if we do an async flush
1960 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 * wait for the fs freeze lock. Using the direct flushing we benefit
1962 * from already being in a transaction and our join_transaction doesn't
1963 * have to re-take the fs freeze lock.
1965 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1966 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1967 } else {
1968 struct btrfs_pending_snapshot *pending;
1969 struct list_head *head = &trans->transaction->pending_snapshots;
1972 * Flush dellaloc for any root that is going to be snapshotted.
1973 * This is done to avoid a corrupted version of files, in the
1974 * snapshots, that had both buffered and direct IO writes (even
1975 * if they were done sequentially) due to an unordered update of
1976 * the inode's size on disk.
1978 list_for_each_entry(pending, head, list) {
1979 int ret;
1981 ret = btrfs_start_delalloc_snapshot(pending->root);
1982 if (ret)
1983 return ret;
1986 return 0;
1989 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1991 struct btrfs_fs_info *fs_info = trans->fs_info;
1993 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1994 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1995 } else {
1996 struct btrfs_pending_snapshot *pending;
1997 struct list_head *head = &trans->transaction->pending_snapshots;
2000 * Wait for any dellaloc that we started previously for the roots
2001 * that are going to be snapshotted. This is to avoid a corrupted
2002 * version of files in the snapshots that had both buffered and
2003 * direct IO writes (even if they were done sequentially).
2005 list_for_each_entry(pending, head, list)
2006 btrfs_wait_ordered_extents(pending->root,
2007 U64_MAX, 0, U64_MAX);
2011 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2013 struct btrfs_fs_info *fs_info = trans->fs_info;
2014 struct btrfs_transaction *cur_trans = trans->transaction;
2015 struct btrfs_transaction *prev_trans = NULL;
2016 int ret;
2018 ASSERT(refcount_read(&trans->use_count) == 1);
2021 * Some places just start a transaction to commit it. We need to make
2022 * sure that if this commit fails that the abort code actually marks the
2023 * transaction as failed, so set trans->dirty to make the abort code do
2024 * the right thing.
2026 trans->dirty = true;
2028 /* Stop the commit early if ->aborted is set */
2029 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2030 ret = cur_trans->aborted;
2031 btrfs_end_transaction(trans);
2032 return ret;
2035 btrfs_trans_release_metadata(trans);
2036 trans->block_rsv = NULL;
2038 /* make a pass through all the delayed refs we have so far
2039 * any runnings procs may add more while we are here
2041 ret = btrfs_run_delayed_refs(trans, 0);
2042 if (ret) {
2043 btrfs_end_transaction(trans);
2044 return ret;
2047 cur_trans = trans->transaction;
2050 * set the flushing flag so procs in this transaction have to
2051 * start sending their work down.
2053 cur_trans->delayed_refs.flushing = 1;
2054 smp_wmb();
2056 btrfs_create_pending_block_groups(trans);
2058 ret = btrfs_run_delayed_refs(trans, 0);
2059 if (ret) {
2060 btrfs_end_transaction(trans);
2061 return ret;
2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2065 int run_it = 0;
2067 /* this mutex is also taken before trying to set
2068 * block groups readonly. We need to make sure
2069 * that nobody has set a block group readonly
2070 * after a extents from that block group have been
2071 * allocated for cache files. btrfs_set_block_group_ro
2072 * will wait for the transaction to commit if it
2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 * only one process starts all the block group IO. It wouldn't
2077 * hurt to have more than one go through, but there's no
2078 * real advantage to it either.
2080 mutex_lock(&fs_info->ro_block_group_mutex);
2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2082 &cur_trans->flags))
2083 run_it = 1;
2084 mutex_unlock(&fs_info->ro_block_group_mutex);
2086 if (run_it) {
2087 ret = btrfs_start_dirty_block_groups(trans);
2088 if (ret) {
2089 btrfs_end_transaction(trans);
2090 return ret;
2095 spin_lock(&fs_info->trans_lock);
2096 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2097 spin_unlock(&fs_info->trans_lock);
2098 refcount_inc(&cur_trans->use_count);
2099 ret = btrfs_end_transaction(trans);
2101 wait_for_commit(cur_trans);
2103 if (unlikely(cur_trans->aborted))
2104 ret = cur_trans->aborted;
2106 btrfs_put_transaction(cur_trans);
2108 return ret;
2111 cur_trans->state = TRANS_STATE_COMMIT_START;
2112 wake_up(&fs_info->transaction_blocked_wait);
2114 if (cur_trans->list.prev != &fs_info->trans_list) {
2115 prev_trans = list_entry(cur_trans->list.prev,
2116 struct btrfs_transaction, list);
2117 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2118 refcount_inc(&prev_trans->use_count);
2119 spin_unlock(&fs_info->trans_lock);
2121 wait_for_commit(prev_trans);
2122 ret = prev_trans->aborted;
2124 btrfs_put_transaction(prev_trans);
2125 if (ret)
2126 goto cleanup_transaction;
2127 } else {
2128 spin_unlock(&fs_info->trans_lock);
2130 } else {
2131 spin_unlock(&fs_info->trans_lock);
2133 * The previous transaction was aborted and was already removed
2134 * from the list of transactions at fs_info->trans_list. So we
2135 * abort to prevent writing a new superblock that reflects a
2136 * corrupt state (pointing to trees with unwritten nodes/leafs).
2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2139 ret = -EROFS;
2140 goto cleanup_transaction;
2144 extwriter_counter_dec(cur_trans, trans->type);
2146 ret = btrfs_start_delalloc_flush(trans);
2147 if (ret)
2148 goto cleanup_transaction;
2150 ret = btrfs_run_delayed_items(trans);
2151 if (ret)
2152 goto cleanup_transaction;
2154 wait_event(cur_trans->writer_wait,
2155 extwriter_counter_read(cur_trans) == 0);
2157 /* some pending stuffs might be added after the previous flush. */
2158 ret = btrfs_run_delayed_items(trans);
2159 if (ret)
2160 goto cleanup_transaction;
2162 btrfs_wait_delalloc_flush(trans);
2164 btrfs_scrub_pause(fs_info);
2166 * Ok now we need to make sure to block out any other joins while we
2167 * commit the transaction. We could have started a join before setting
2168 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2170 spin_lock(&fs_info->trans_lock);
2171 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2172 spin_unlock(&fs_info->trans_lock);
2173 wait_event(cur_trans->writer_wait,
2174 atomic_read(&cur_trans->num_writers) == 1);
2176 /* ->aborted might be set after the previous check, so check it */
2177 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2178 ret = cur_trans->aborted;
2179 goto scrub_continue;
2182 * the reloc mutex makes sure that we stop
2183 * the balancing code from coming in and moving
2184 * extents around in the middle of the commit
2186 mutex_lock(&fs_info->reloc_mutex);
2189 * We needn't worry about the delayed items because we will
2190 * deal with them in create_pending_snapshot(), which is the
2191 * core function of the snapshot creation.
2193 ret = create_pending_snapshots(trans);
2194 if (ret) {
2195 mutex_unlock(&fs_info->reloc_mutex);
2196 goto scrub_continue;
2200 * We insert the dir indexes of the snapshots and update the inode
2201 * of the snapshots' parents after the snapshot creation, so there
2202 * are some delayed items which are not dealt with. Now deal with
2203 * them.
2205 * We needn't worry that this operation will corrupt the snapshots,
2206 * because all the tree which are snapshoted will be forced to COW
2207 * the nodes and leaves.
2209 ret = btrfs_run_delayed_items(trans);
2210 if (ret) {
2211 mutex_unlock(&fs_info->reloc_mutex);
2212 goto scrub_continue;
2215 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2216 if (ret) {
2217 mutex_unlock(&fs_info->reloc_mutex);
2218 goto scrub_continue;
2222 * make sure none of the code above managed to slip in a
2223 * delayed item
2225 btrfs_assert_delayed_root_empty(fs_info);
2227 WARN_ON(cur_trans != trans->transaction);
2229 /* btrfs_commit_tree_roots is responsible for getting the
2230 * various roots consistent with each other. Every pointer
2231 * in the tree of tree roots has to point to the most up to date
2232 * root for every subvolume and other tree. So, we have to keep
2233 * the tree logging code from jumping in and changing any
2234 * of the trees.
2236 * At this point in the commit, there can't be any tree-log
2237 * writers, but a little lower down we drop the trans mutex
2238 * and let new people in. By holding the tree_log_mutex
2239 * from now until after the super is written, we avoid races
2240 * with the tree-log code.
2242 mutex_lock(&fs_info->tree_log_mutex);
2244 ret = commit_fs_roots(trans);
2245 if (ret) {
2246 mutex_unlock(&fs_info->tree_log_mutex);
2247 mutex_unlock(&fs_info->reloc_mutex);
2248 goto scrub_continue;
2252 * Since the transaction is done, we can apply the pending changes
2253 * before the next transaction.
2255 btrfs_apply_pending_changes(fs_info);
2257 /* commit_fs_roots gets rid of all the tree log roots, it is now
2258 * safe to free the root of tree log roots
2260 btrfs_free_log_root_tree(trans, fs_info);
2263 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2264 * new delayed refs. Must handle them or qgroup can be wrong.
2266 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2267 if (ret) {
2268 mutex_unlock(&fs_info->tree_log_mutex);
2269 mutex_unlock(&fs_info->reloc_mutex);
2270 goto scrub_continue;
2274 * Since fs roots are all committed, we can get a quite accurate
2275 * new_roots. So let's do quota accounting.
2277 ret = btrfs_qgroup_account_extents(trans);
2278 if (ret < 0) {
2279 mutex_unlock(&fs_info->tree_log_mutex);
2280 mutex_unlock(&fs_info->reloc_mutex);
2281 goto scrub_continue;
2284 ret = commit_cowonly_roots(trans);
2285 if (ret) {
2286 mutex_unlock(&fs_info->tree_log_mutex);
2287 mutex_unlock(&fs_info->reloc_mutex);
2288 goto scrub_continue;
2292 * The tasks which save the space cache and inode cache may also
2293 * update ->aborted, check it.
2295 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2296 ret = cur_trans->aborted;
2297 mutex_unlock(&fs_info->tree_log_mutex);
2298 mutex_unlock(&fs_info->reloc_mutex);
2299 goto scrub_continue;
2302 btrfs_prepare_extent_commit(fs_info);
2304 cur_trans = fs_info->running_transaction;
2306 btrfs_set_root_node(&fs_info->tree_root->root_item,
2307 fs_info->tree_root->node);
2308 list_add_tail(&fs_info->tree_root->dirty_list,
2309 &cur_trans->switch_commits);
2311 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2312 fs_info->chunk_root->node);
2313 list_add_tail(&fs_info->chunk_root->dirty_list,
2314 &cur_trans->switch_commits);
2316 switch_commit_roots(trans);
2318 ASSERT(list_empty(&cur_trans->dirty_bgs));
2319 ASSERT(list_empty(&cur_trans->io_bgs));
2320 update_super_roots(fs_info);
2322 btrfs_set_super_log_root(fs_info->super_copy, 0);
2323 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2324 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2325 sizeof(*fs_info->super_copy));
2327 btrfs_commit_device_sizes(cur_trans);
2329 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2330 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2332 btrfs_trans_release_chunk_metadata(trans);
2334 spin_lock(&fs_info->trans_lock);
2335 cur_trans->state = TRANS_STATE_UNBLOCKED;
2336 fs_info->running_transaction = NULL;
2337 spin_unlock(&fs_info->trans_lock);
2338 mutex_unlock(&fs_info->reloc_mutex);
2340 wake_up(&fs_info->transaction_wait);
2342 ret = btrfs_write_and_wait_transaction(trans);
2343 if (ret) {
2344 btrfs_handle_fs_error(fs_info, ret,
2345 "Error while writing out transaction");
2346 mutex_unlock(&fs_info->tree_log_mutex);
2347 goto scrub_continue;
2350 ret = write_all_supers(fs_info, 0);
2352 * the super is written, we can safely allow the tree-loggers
2353 * to go about their business
2355 mutex_unlock(&fs_info->tree_log_mutex);
2356 if (ret)
2357 goto scrub_continue;
2359 btrfs_finish_extent_commit(trans);
2361 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2362 btrfs_clear_space_info_full(fs_info);
2364 fs_info->last_trans_committed = cur_trans->transid;
2366 * We needn't acquire the lock here because there is no other task
2367 * which can change it.
2369 cur_trans->state = TRANS_STATE_COMPLETED;
2370 wake_up(&cur_trans->commit_wait);
2371 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
2373 spin_lock(&fs_info->trans_lock);
2374 list_del_init(&cur_trans->list);
2375 spin_unlock(&fs_info->trans_lock);
2377 btrfs_put_transaction(cur_trans);
2378 btrfs_put_transaction(cur_trans);
2380 if (trans->type & __TRANS_FREEZABLE)
2381 sb_end_intwrite(fs_info->sb);
2383 trace_btrfs_transaction_commit(trans->root);
2385 btrfs_scrub_continue(fs_info);
2387 if (current->journal_info == trans)
2388 current->journal_info = NULL;
2390 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2392 return ret;
2394 scrub_continue:
2395 btrfs_scrub_continue(fs_info);
2396 cleanup_transaction:
2397 btrfs_trans_release_metadata(trans);
2398 btrfs_cleanup_pending_block_groups(trans);
2399 btrfs_trans_release_chunk_metadata(trans);
2400 trans->block_rsv = NULL;
2401 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2402 if (current->journal_info == trans)
2403 current->journal_info = NULL;
2404 cleanup_transaction(trans, ret);
2406 return ret;
2410 * return < 0 if error
2411 * 0 if there are no more dead_roots at the time of call
2412 * 1 there are more to be processed, call me again
2414 * The return value indicates there are certainly more snapshots to delete, but
2415 * if there comes a new one during processing, it may return 0. We don't mind,
2416 * because btrfs_commit_super will poke cleaner thread and it will process it a
2417 * few seconds later.
2419 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2421 int ret;
2422 struct btrfs_fs_info *fs_info = root->fs_info;
2424 spin_lock(&fs_info->trans_lock);
2425 if (list_empty(&fs_info->dead_roots)) {
2426 spin_unlock(&fs_info->trans_lock);
2427 return 0;
2429 root = list_first_entry(&fs_info->dead_roots,
2430 struct btrfs_root, root_list);
2431 list_del_init(&root->root_list);
2432 spin_unlock(&fs_info->trans_lock);
2434 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2436 btrfs_kill_all_delayed_nodes(root);
2438 if (btrfs_header_backref_rev(root->node) <
2439 BTRFS_MIXED_BACKREF_REV)
2440 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2441 else
2442 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2444 return (ret < 0) ? 0 : 1;
2447 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2449 unsigned long prev;
2450 unsigned long bit;
2452 prev = xchg(&fs_info->pending_changes, 0);
2453 if (!prev)
2454 return;
2456 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2457 if (prev & bit)
2458 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459 prev &= ~bit;
2461 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2462 if (prev & bit)
2463 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2464 prev &= ~bit;
2466 bit = 1 << BTRFS_PENDING_COMMIT;
2467 if (prev & bit)
2468 btrfs_debug(fs_info, "pending commit done");
2469 prev &= ~bit;
2471 if (prev)
2472 btrfs_warn(fs_info,
2473 "unknown pending changes left 0x%lx, ignoring", prev);