1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
19 #include "extent_map.h"
21 #include "transaction.h"
22 #include "print-tree.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
34 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
35 [BTRFS_RAID_RAID10
] = {
38 .devs_max
= 0, /* 0 == as many as possible */
40 .tolerated_failures
= 1,
44 .raid_name
= "raid10",
45 .bg_flag
= BTRFS_BLOCK_GROUP_RAID10
,
46 .mindev_error
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
48 [BTRFS_RAID_RAID1
] = {
53 .tolerated_failures
= 1,
58 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1
,
59 .mindev_error
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
61 [BTRFS_RAID_RAID1C3
] = {
66 .tolerated_failures
= 2,
69 .raid_name
= "raid1c3",
70 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1C3
,
71 .mindev_error
= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET
,
73 [BTRFS_RAID_RAID1C4
] = {
78 .tolerated_failures
= 3,
81 .raid_name
= "raid1c4",
82 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1C4
,
83 .mindev_error
= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET
,
90 .tolerated_failures
= 0,
95 .bg_flag
= BTRFS_BLOCK_GROUP_DUP
,
98 [BTRFS_RAID_RAID0
] = {
103 .tolerated_failures
= 0,
107 .raid_name
= "raid0",
108 .bg_flag
= BTRFS_BLOCK_GROUP_RAID0
,
111 [BTRFS_RAID_SINGLE
] = {
116 .tolerated_failures
= 0,
120 .raid_name
= "single",
124 [BTRFS_RAID_RAID5
] = {
129 .tolerated_failures
= 1,
133 .raid_name
= "raid5",
134 .bg_flag
= BTRFS_BLOCK_GROUP_RAID5
,
135 .mindev_error
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
137 [BTRFS_RAID_RAID6
] = {
142 .tolerated_failures
= 2,
146 .raid_name
= "raid6",
147 .bg_flag
= BTRFS_BLOCK_GROUP_RAID6
,
148 .mindev_error
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
152 const char *btrfs_bg_type_to_raid_name(u64 flags
)
154 const int index
= btrfs_bg_flags_to_raid_index(flags
);
156 if (index
>= BTRFS_NR_RAID_TYPES
)
159 return btrfs_raid_array
[index
].raid_name
;
163 * Fill @buf with textual description of @bg_flags, no more than @size_buf
164 * bytes including terminating null byte.
166 void btrfs_describe_block_groups(u64 bg_flags
, char *buf
, u32 size_buf
)
171 u64 flags
= bg_flags
;
172 u32 size_bp
= size_buf
;
179 #define DESCRIBE_FLAG(flag, desc) \
181 if (flags & (flag)) { \
182 ret = snprintf(bp, size_bp, "%s|", (desc)); \
183 if (ret < 0 || ret >= size_bp) \
191 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA
, "data");
192 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM
, "system");
193 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA
, "metadata");
195 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE
, "single");
196 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
197 DESCRIBE_FLAG(btrfs_raid_array
[i
].bg_flag
,
198 btrfs_raid_array
[i
].raid_name
);
202 ret
= snprintf(bp
, size_bp
, "0x%llx|", flags
);
206 if (size_bp
< size_buf
)
207 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last | */
210 * The text is trimmed, it's up to the caller to provide sufficiently
216 static int init_first_rw_device(struct btrfs_trans_handle
*trans
);
217 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
218 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
219 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
220 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
221 enum btrfs_map_op op
,
222 u64 logical
, u64
*length
,
223 struct btrfs_bio
**bbio_ret
,
224 int mirror_num
, int need_raid_map
);
230 * There are several mutexes that protect manipulation of devices and low-level
231 * structures like chunks but not block groups, extents or files
233 * uuid_mutex (global lock)
234 * ------------------------
235 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
236 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
237 * device) or requested by the device= mount option
239 * the mutex can be very coarse and can cover long-running operations
241 * protects: updates to fs_devices counters like missing devices, rw devices,
242 * seeding, structure cloning, opening/closing devices at mount/umount time
244 * global::fs_devs - add, remove, updates to the global list
246 * does not protect: manipulation of the fs_devices::devices list!
248 * btrfs_device::name - renames (write side), read is RCU
250 * fs_devices::device_list_mutex (per-fs, with RCU)
251 * ------------------------------------------------
252 * protects updates to fs_devices::devices, ie. adding and deleting
254 * simple list traversal with read-only actions can be done with RCU protection
256 * may be used to exclude some operations from running concurrently without any
257 * modifications to the list (see write_all_supers)
261 * protects balance structures (status, state) and context accessed from
262 * several places (internally, ioctl)
266 * protects chunks, adding or removing during allocation, trim or when a new
267 * device is added/removed. Additionally it also protects post_commit_list of
268 * individual devices, since they can be added to the transaction's
269 * post_commit_list only with chunk_mutex held.
273 * a big lock that is held by the cleaner thread and prevents running subvolume
274 * cleaning together with relocation or delayed iputs
287 * Exclusive operations, BTRFS_FS_EXCL_OP
288 * ======================================
290 * Maintains the exclusivity of the following operations that apply to the
291 * whole filesystem and cannot run in parallel.
296 * - Device replace (*)
299 * The device operations (as above) can be in one of the following states:
305 * Only device operations marked with (*) can go into the Paused state for the
308 * - ioctl (only Balance can be Paused through ioctl)
309 * - filesystem remounted as read-only
310 * - filesystem unmounted and mounted as read-only
311 * - system power-cycle and filesystem mounted as read-only
312 * - filesystem or device errors leading to forced read-only
314 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
315 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
316 * A device operation in Paused or Running state can be canceled or resumed
317 * either by ioctl (Balance only) or when remounted as read-write.
318 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
322 DEFINE_MUTEX(uuid_mutex
);
323 static LIST_HEAD(fs_uuids
);
324 struct list_head
* __attribute_const__
btrfs_get_fs_uuids(void)
330 * alloc_fs_devices - allocate struct btrfs_fs_devices
331 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
332 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
334 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
335 * The returned struct is not linked onto any lists and can be destroyed with
336 * kfree() right away.
338 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
,
339 const u8
*metadata_fsid
)
341 struct btrfs_fs_devices
*fs_devs
;
343 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
345 return ERR_PTR(-ENOMEM
);
347 mutex_init(&fs_devs
->device_list_mutex
);
349 INIT_LIST_HEAD(&fs_devs
->devices
);
350 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
351 INIT_LIST_HEAD(&fs_devs
->fs_list
);
353 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
356 memcpy(fs_devs
->metadata_uuid
, metadata_fsid
, BTRFS_FSID_SIZE
);
358 memcpy(fs_devs
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
);
363 void btrfs_free_device(struct btrfs_device
*device
)
365 WARN_ON(!list_empty(&device
->post_commit_list
));
366 rcu_string_free(device
->name
);
367 extent_io_tree_release(&device
->alloc_state
);
368 bio_put(device
->flush_bio
);
372 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
374 struct btrfs_device
*device
;
375 WARN_ON(fs_devices
->opened
);
376 while (!list_empty(&fs_devices
->devices
)) {
377 device
= list_entry(fs_devices
->devices
.next
,
378 struct btrfs_device
, dev_list
);
379 list_del(&device
->dev_list
);
380 btrfs_free_device(device
);
385 void __exit
btrfs_cleanup_fs_uuids(void)
387 struct btrfs_fs_devices
*fs_devices
;
389 while (!list_empty(&fs_uuids
)) {
390 fs_devices
= list_entry(fs_uuids
.next
,
391 struct btrfs_fs_devices
, fs_list
);
392 list_del(&fs_devices
->fs_list
);
393 free_fs_devices(fs_devices
);
398 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
399 * Returned struct is not linked onto any lists and must be destroyed using
402 static struct btrfs_device
*__alloc_device(void)
404 struct btrfs_device
*dev
;
406 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
408 return ERR_PTR(-ENOMEM
);
411 * Preallocate a bio that's always going to be used for flushing device
412 * barriers and matches the device lifespan
414 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
415 if (!dev
->flush_bio
) {
417 return ERR_PTR(-ENOMEM
);
420 INIT_LIST_HEAD(&dev
->dev_list
);
421 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
422 INIT_LIST_HEAD(&dev
->post_commit_list
);
424 atomic_set(&dev
->reada_in_flight
, 0);
425 atomic_set(&dev
->dev_stats_ccnt
, 0);
426 btrfs_device_data_ordered_init(dev
);
427 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
428 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
429 extent_io_tree_init(NULL
, &dev
->alloc_state
, 0, NULL
);
434 static noinline
struct btrfs_fs_devices
*find_fsid(
435 const u8
*fsid
, const u8
*metadata_fsid
)
437 struct btrfs_fs_devices
*fs_devices
;
443 * Handle scanned device having completed its fsid change but
444 * belonging to a fs_devices that was created by first scanning
445 * a device which didn't have its fsid/metadata_uuid changed
446 * at all and the CHANGING_FSID_V2 flag set.
448 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
449 if (fs_devices
->fsid_change
&&
450 memcmp(metadata_fsid
, fs_devices
->fsid
,
451 BTRFS_FSID_SIZE
) == 0 &&
452 memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
453 BTRFS_FSID_SIZE
) == 0) {
458 * Handle scanned device having completed its fsid change but
459 * belonging to a fs_devices that was created by a device that
460 * has an outdated pair of fsid/metadata_uuid and
461 * CHANGING_FSID_V2 flag set.
463 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
464 if (fs_devices
->fsid_change
&&
465 memcmp(fs_devices
->metadata_uuid
,
466 fs_devices
->fsid
, BTRFS_FSID_SIZE
) != 0 &&
467 memcmp(metadata_fsid
, fs_devices
->metadata_uuid
,
468 BTRFS_FSID_SIZE
) == 0) {
474 /* Handle non-split brain cases */
475 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
477 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0
478 && memcmp(metadata_fsid
, fs_devices
->metadata_uuid
,
479 BTRFS_FSID_SIZE
) == 0)
482 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
490 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
491 int flush
, struct block_device
**bdev
,
492 struct buffer_head
**bh
)
496 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
499 ret
= PTR_ERR(*bdev
);
504 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
505 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
507 blkdev_put(*bdev
, flags
);
510 invalidate_bdev(*bdev
);
511 *bh
= btrfs_read_dev_super(*bdev
);
514 blkdev_put(*bdev
, flags
);
526 static bool device_path_matched(const char *path
, struct btrfs_device
*device
)
531 found
= strcmp(rcu_str_deref(device
->name
), path
);
538 * Search and remove all stale (devices which are not mounted) devices.
539 * When both inputs are NULL, it will search and release all stale devices.
540 * path: Optional. When provided will it release all unmounted devices
541 * matching this path only.
542 * skip_dev: Optional. Will skip this device when searching for the stale
544 * Return: 0 for success or if @path is NULL.
545 * -EBUSY if @path is a mounted device.
546 * -ENOENT if @path does not match any device in the list.
548 static int btrfs_free_stale_devices(const char *path
,
549 struct btrfs_device
*skip_device
)
551 struct btrfs_fs_devices
*fs_devices
, *tmp_fs_devices
;
552 struct btrfs_device
*device
, *tmp_device
;
558 list_for_each_entry_safe(fs_devices
, tmp_fs_devices
, &fs_uuids
, fs_list
) {
560 mutex_lock(&fs_devices
->device_list_mutex
);
561 list_for_each_entry_safe(device
, tmp_device
,
562 &fs_devices
->devices
, dev_list
) {
563 if (skip_device
&& skip_device
== device
)
565 if (path
&& !device
->name
)
567 if (path
&& !device_path_matched(path
, device
))
569 if (fs_devices
->opened
) {
570 /* for an already deleted device return 0 */
571 if (path
&& ret
!= 0)
576 /* delete the stale device */
577 fs_devices
->num_devices
--;
578 list_del(&device
->dev_list
);
579 btrfs_free_device(device
);
582 if (fs_devices
->num_devices
== 0)
585 mutex_unlock(&fs_devices
->device_list_mutex
);
587 if (fs_devices
->num_devices
== 0) {
588 btrfs_sysfs_remove_fsid(fs_devices
);
589 list_del(&fs_devices
->fs_list
);
590 free_fs_devices(fs_devices
);
597 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
598 struct btrfs_device
*device
, fmode_t flags
,
601 struct request_queue
*q
;
602 struct block_device
*bdev
;
603 struct buffer_head
*bh
;
604 struct btrfs_super_block
*disk_super
;
613 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
618 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
619 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
620 if (devid
!= device
->devid
)
623 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
626 device
->generation
= btrfs_super_generation(disk_super
);
628 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
629 if (btrfs_super_incompat_flags(disk_super
) &
630 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
) {
632 "BTRFS: Invalid seeding and uuid-changed device detected\n");
636 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
637 fs_devices
->seeding
= true;
639 if (bdev_read_only(bdev
))
640 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
642 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
645 q
= bdev_get_queue(bdev
);
646 if (!blk_queue_nonrot(q
))
647 fs_devices
->rotating
= true;
650 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
651 device
->mode
= flags
;
653 fs_devices
->open_devices
++;
654 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
655 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
656 fs_devices
->rw_devices
++;
657 list_add_tail(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
665 blkdev_put(bdev
, flags
);
671 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
672 * being created with a disk that has already completed its fsid change.
674 static struct btrfs_fs_devices
*find_fsid_inprogress(
675 struct btrfs_super_block
*disk_super
)
677 struct btrfs_fs_devices
*fs_devices
;
679 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
680 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
681 BTRFS_FSID_SIZE
) != 0 &&
682 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
683 BTRFS_FSID_SIZE
) == 0 && !fs_devices
->fsid_change
) {
692 static struct btrfs_fs_devices
*find_fsid_changed(
693 struct btrfs_super_block
*disk_super
)
695 struct btrfs_fs_devices
*fs_devices
;
698 * Handles the case where scanned device is part of an fs that had
699 * multiple successful changes of FSID but curently device didn't
700 * observe it. Meaning our fsid will be different than theirs. We need
701 * to handle two subcases :
702 * 1 - The fs still continues to have different METADATA/FSID uuids.
703 * 2 - The fs is switched back to its original FSID (METADATA/FSID
706 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
708 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
709 BTRFS_FSID_SIZE
) != 0 &&
710 memcmp(fs_devices
->metadata_uuid
, disk_super
->metadata_uuid
,
711 BTRFS_FSID_SIZE
) == 0 &&
712 memcmp(fs_devices
->fsid
, disk_super
->fsid
,
713 BTRFS_FSID_SIZE
) != 0)
716 /* Unchanged UUIDs */
717 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
718 BTRFS_FSID_SIZE
) == 0 &&
719 memcmp(fs_devices
->fsid
, disk_super
->metadata_uuid
,
720 BTRFS_FSID_SIZE
) == 0)
727 static struct btrfs_fs_devices
*find_fsid_reverted_metadata(
728 struct btrfs_super_block
*disk_super
)
730 struct btrfs_fs_devices
*fs_devices
;
733 * Handle the case where the scanned device is part of an fs whose last
734 * metadata UUID change reverted it to the original FSID. At the same
735 * time * fs_devices was first created by another constitutent device
736 * which didn't fully observe the operation. This results in an
737 * btrfs_fs_devices created with metadata/fsid different AND
738 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
739 * fs_devices equal to the FSID of the disk.
741 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
742 if (memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
743 BTRFS_FSID_SIZE
) != 0 &&
744 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
745 BTRFS_FSID_SIZE
) == 0 &&
746 fs_devices
->fsid_change
)
753 * Add new device to list of registered devices
756 * device pointer which was just added or updated when successful
757 * error pointer when failed
759 static noinline
struct btrfs_device
*device_list_add(const char *path
,
760 struct btrfs_super_block
*disk_super
,
761 bool *new_device_added
)
763 struct btrfs_device
*device
;
764 struct btrfs_fs_devices
*fs_devices
= NULL
;
765 struct rcu_string
*name
;
766 u64 found_transid
= btrfs_super_generation(disk_super
);
767 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
768 bool has_metadata_uuid
= (btrfs_super_incompat_flags(disk_super
) &
769 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
);
770 bool fsid_change_in_progress
= (btrfs_super_flags(disk_super
) &
771 BTRFS_SUPER_FLAG_CHANGING_FSID_V2
);
773 if (fsid_change_in_progress
) {
774 if (!has_metadata_uuid
) {
776 * When we have an image which has CHANGING_FSID_V2 set
777 * it might belong to either a filesystem which has
778 * disks with completed fsid change or it might belong
779 * to fs with no UUID changes in effect, handle both.
781 fs_devices
= find_fsid_inprogress(disk_super
);
783 fs_devices
= find_fsid(disk_super
->fsid
, NULL
);
785 fs_devices
= find_fsid_changed(disk_super
);
787 } else if (has_metadata_uuid
) {
788 fs_devices
= find_fsid(disk_super
->fsid
,
789 disk_super
->metadata_uuid
);
791 fs_devices
= find_fsid_reverted_metadata(disk_super
);
793 fs_devices
= find_fsid(disk_super
->fsid
, NULL
);
798 if (has_metadata_uuid
)
799 fs_devices
= alloc_fs_devices(disk_super
->fsid
,
800 disk_super
->metadata_uuid
);
802 fs_devices
= alloc_fs_devices(disk_super
->fsid
, NULL
);
804 if (IS_ERR(fs_devices
))
805 return ERR_CAST(fs_devices
);
807 fs_devices
->fsid_change
= fsid_change_in_progress
;
809 mutex_lock(&fs_devices
->device_list_mutex
);
810 list_add(&fs_devices
->fs_list
, &fs_uuids
);
814 mutex_lock(&fs_devices
->device_list_mutex
);
815 device
= btrfs_find_device(fs_devices
, devid
,
816 disk_super
->dev_item
.uuid
, NULL
, false);
819 * If this disk has been pulled into an fs devices created by
820 * a device which had the CHANGING_FSID_V2 flag then replace the
821 * metadata_uuid/fsid values of the fs_devices.
823 if (fs_devices
->fsid_change
&&
824 found_transid
> fs_devices
->latest_generation
) {
825 memcpy(fs_devices
->fsid
, disk_super
->fsid
,
828 if (has_metadata_uuid
)
829 memcpy(fs_devices
->metadata_uuid
,
830 disk_super
->metadata_uuid
,
833 memcpy(fs_devices
->metadata_uuid
,
834 disk_super
->fsid
, BTRFS_FSID_SIZE
);
836 fs_devices
->fsid_change
= false;
841 if (fs_devices
->opened
) {
842 mutex_unlock(&fs_devices
->device_list_mutex
);
843 return ERR_PTR(-EBUSY
);
846 device
= btrfs_alloc_device(NULL
, &devid
,
847 disk_super
->dev_item
.uuid
);
848 if (IS_ERR(device
)) {
849 mutex_unlock(&fs_devices
->device_list_mutex
);
850 /* we can safely leave the fs_devices entry around */
854 name
= rcu_string_strdup(path
, GFP_NOFS
);
856 btrfs_free_device(device
);
857 mutex_unlock(&fs_devices
->device_list_mutex
);
858 return ERR_PTR(-ENOMEM
);
860 rcu_assign_pointer(device
->name
, name
);
862 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
863 fs_devices
->num_devices
++;
865 device
->fs_devices
= fs_devices
;
866 *new_device_added
= true;
868 if (disk_super
->label
[0])
870 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
871 disk_super
->label
, devid
, found_transid
, path
,
872 current
->comm
, task_pid_nr(current
));
875 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
876 disk_super
->fsid
, devid
, found_transid
, path
,
877 current
->comm
, task_pid_nr(current
));
879 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
881 * When FS is already mounted.
882 * 1. If you are here and if the device->name is NULL that
883 * means this device was missing at time of FS mount.
884 * 2. If you are here and if the device->name is different
885 * from 'path' that means either
886 * a. The same device disappeared and reappeared with
888 * b. The missing-disk-which-was-replaced, has
891 * We must allow 1 and 2a above. But 2b would be a spurious
894 * Further in case of 1 and 2a above, the disk at 'path'
895 * would have missed some transaction when it was away and
896 * in case of 2a the stale bdev has to be updated as well.
897 * 2b must not be allowed at all time.
901 * For now, we do allow update to btrfs_fs_device through the
902 * btrfs dev scan cli after FS has been mounted. We're still
903 * tracking a problem where systems fail mount by subvolume id
904 * when we reject replacement on a mounted FS.
906 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
908 * That is if the FS is _not_ mounted and if you
909 * are here, that means there is more than one
910 * disk with same uuid and devid.We keep the one
911 * with larger generation number or the last-in if
912 * generation are equal.
914 mutex_unlock(&fs_devices
->device_list_mutex
);
915 return ERR_PTR(-EEXIST
);
919 * We are going to replace the device path for a given devid,
920 * make sure it's the same device if the device is mounted
923 struct block_device
*path_bdev
;
925 path_bdev
= lookup_bdev(path
);
926 if (IS_ERR(path_bdev
)) {
927 mutex_unlock(&fs_devices
->device_list_mutex
);
928 return ERR_CAST(path_bdev
);
931 if (device
->bdev
!= path_bdev
) {
933 mutex_unlock(&fs_devices
->device_list_mutex
);
934 btrfs_warn_in_rcu(device
->fs_info
,
935 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
936 disk_super
->fsid
, devid
,
937 rcu_str_deref(device
->name
), path
);
938 return ERR_PTR(-EEXIST
);
941 btrfs_info_in_rcu(device
->fs_info
,
942 "device fsid %pU devid %llu moved old:%s new:%s",
943 disk_super
->fsid
, devid
,
944 rcu_str_deref(device
->name
), path
);
947 name
= rcu_string_strdup(path
, GFP_NOFS
);
949 mutex_unlock(&fs_devices
->device_list_mutex
);
950 return ERR_PTR(-ENOMEM
);
952 rcu_string_free(device
->name
);
953 rcu_assign_pointer(device
->name
, name
);
954 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
955 fs_devices
->missing_devices
--;
956 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
961 * Unmount does not free the btrfs_device struct but would zero
962 * generation along with most of the other members. So just update
963 * it back. We need it to pick the disk with largest generation
966 if (!fs_devices
->opened
) {
967 device
->generation
= found_transid
;
968 fs_devices
->latest_generation
= max_t(u64
, found_transid
,
969 fs_devices
->latest_generation
);
972 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
974 mutex_unlock(&fs_devices
->device_list_mutex
);
978 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
980 struct btrfs_fs_devices
*fs_devices
;
981 struct btrfs_device
*device
;
982 struct btrfs_device
*orig_dev
;
985 fs_devices
= alloc_fs_devices(orig
->fsid
, NULL
);
986 if (IS_ERR(fs_devices
))
989 mutex_lock(&orig
->device_list_mutex
);
990 fs_devices
->total_devices
= orig
->total_devices
;
992 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
993 struct rcu_string
*name
;
995 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
997 if (IS_ERR(device
)) {
998 ret
= PTR_ERR(device
);
1003 * This is ok to do without rcu read locked because we hold the
1004 * uuid mutex so nothing we touch in here is going to disappear.
1006 if (orig_dev
->name
) {
1007 name
= rcu_string_strdup(orig_dev
->name
->str
,
1010 btrfs_free_device(device
);
1014 rcu_assign_pointer(device
->name
, name
);
1017 list_add(&device
->dev_list
, &fs_devices
->devices
);
1018 device
->fs_devices
= fs_devices
;
1019 fs_devices
->num_devices
++;
1021 mutex_unlock(&orig
->device_list_mutex
);
1024 mutex_unlock(&orig
->device_list_mutex
);
1025 free_fs_devices(fs_devices
);
1026 return ERR_PTR(ret
);
1030 * After we have read the system tree and know devids belonging to
1031 * this filesystem, remove the device which does not belong there.
1033 void btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
, int step
)
1035 struct btrfs_device
*device
, *next
;
1036 struct btrfs_device
*latest_dev
= NULL
;
1038 mutex_lock(&uuid_mutex
);
1040 /* This is the initialized path, it is safe to release the devices. */
1041 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
1042 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
1043 &device
->dev_state
)) {
1044 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1045 &device
->dev_state
) &&
1047 device
->generation
> latest_dev
->generation
)) {
1048 latest_dev
= device
;
1053 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
1055 * In the first step, keep the device which has
1056 * the correct fsid and the devid that is used
1057 * for the dev_replace procedure.
1058 * In the second step, the dev_replace state is
1059 * read from the device tree and it is known
1060 * whether the procedure is really active or
1061 * not, which means whether this device is
1062 * used or whether it should be removed.
1064 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1065 &device
->dev_state
)) {
1070 blkdev_put(device
->bdev
, device
->mode
);
1071 device
->bdev
= NULL
;
1072 fs_devices
->open_devices
--;
1074 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1075 list_del_init(&device
->dev_alloc_list
);
1076 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
1077 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1078 &device
->dev_state
))
1079 fs_devices
->rw_devices
--;
1081 list_del_init(&device
->dev_list
);
1082 fs_devices
->num_devices
--;
1083 btrfs_free_device(device
);
1086 if (fs_devices
->seed
) {
1087 fs_devices
= fs_devices
->seed
;
1091 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1093 mutex_unlock(&uuid_mutex
);
1096 static void btrfs_close_bdev(struct btrfs_device
*device
)
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1102 sync_blockdev(device
->bdev
);
1103 invalidate_bdev(device
->bdev
);
1106 blkdev_put(device
->bdev
, device
->mode
);
1109 static void btrfs_close_one_device(struct btrfs_device
*device
)
1111 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
1112 struct btrfs_device
*new_device
;
1113 struct rcu_string
*name
;
1116 fs_devices
->open_devices
--;
1118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1119 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1120 list_del_init(&device
->dev_alloc_list
);
1121 fs_devices
->rw_devices
--;
1124 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1125 fs_devices
->missing_devices
--;
1127 btrfs_close_bdev(device
);
1129 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1131 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1133 /* Safe because we are under uuid_mutex */
1135 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1136 BUG_ON(!name
); /* -ENOMEM */
1137 rcu_assign_pointer(new_device
->name
, name
);
1140 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1141 new_device
->fs_devices
= device
->fs_devices
;
1144 btrfs_free_device(device
);
1147 static int close_fs_devices(struct btrfs_fs_devices
*fs_devices
)
1149 struct btrfs_device
*device
, *tmp
;
1151 if (--fs_devices
->opened
> 0)
1154 mutex_lock(&fs_devices
->device_list_mutex
);
1155 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1156 btrfs_close_one_device(device
);
1158 mutex_unlock(&fs_devices
->device_list_mutex
);
1160 WARN_ON(fs_devices
->open_devices
);
1161 WARN_ON(fs_devices
->rw_devices
);
1162 fs_devices
->opened
= 0;
1163 fs_devices
->seeding
= false;
1168 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1170 struct btrfs_fs_devices
*seed_devices
= NULL
;
1173 mutex_lock(&uuid_mutex
);
1174 ret
= close_fs_devices(fs_devices
);
1175 if (!fs_devices
->opened
) {
1176 seed_devices
= fs_devices
->seed
;
1177 fs_devices
->seed
= NULL
;
1179 mutex_unlock(&uuid_mutex
);
1181 while (seed_devices
) {
1182 fs_devices
= seed_devices
;
1183 seed_devices
= fs_devices
->seed
;
1184 close_fs_devices(fs_devices
);
1185 free_fs_devices(fs_devices
);
1190 static int open_fs_devices(struct btrfs_fs_devices
*fs_devices
,
1191 fmode_t flags
, void *holder
)
1193 struct btrfs_device
*device
;
1194 struct btrfs_device
*latest_dev
= NULL
;
1197 flags
|= FMODE_EXCL
;
1199 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
1200 /* Just open everything we can; ignore failures here */
1201 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1205 device
->generation
> latest_dev
->generation
)
1206 latest_dev
= device
;
1208 if (fs_devices
->open_devices
== 0) {
1212 fs_devices
->opened
= 1;
1213 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1214 fs_devices
->total_rw_bytes
= 0;
1219 static int devid_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1221 struct btrfs_device
*dev1
, *dev2
;
1223 dev1
= list_entry(a
, struct btrfs_device
, dev_list
);
1224 dev2
= list_entry(b
, struct btrfs_device
, dev_list
);
1226 if (dev1
->devid
< dev2
->devid
)
1228 else if (dev1
->devid
> dev2
->devid
)
1233 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1234 fmode_t flags
, void *holder
)
1238 lockdep_assert_held(&uuid_mutex
);
1240 mutex_lock(&fs_devices
->device_list_mutex
);
1241 if (fs_devices
->opened
) {
1242 fs_devices
->opened
++;
1245 list_sort(NULL
, &fs_devices
->devices
, devid_cmp
);
1246 ret
= open_fs_devices(fs_devices
, flags
, holder
);
1248 mutex_unlock(&fs_devices
->device_list_mutex
);
1253 static void btrfs_release_disk_super(struct page
*page
)
1259 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1261 struct btrfs_super_block
**disk_super
)
1266 /* make sure our super fits in the device */
1267 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1270 /* make sure our super fits in the page */
1271 if (sizeof(**disk_super
) > PAGE_SIZE
)
1274 /* make sure our super doesn't straddle pages on disk */
1275 index
= bytenr
>> PAGE_SHIFT
;
1276 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1279 /* pull in the page with our super */
1280 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1283 if (IS_ERR_OR_NULL(*page
))
1288 /* align our pointer to the offset of the super block */
1289 *disk_super
= p
+ offset_in_page(bytenr
);
1291 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1292 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1293 btrfs_release_disk_super(*page
);
1297 if ((*disk_super
)->label
[0] &&
1298 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1299 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1304 int btrfs_forget_devices(const char *path
)
1308 mutex_lock(&uuid_mutex
);
1309 ret
= btrfs_free_stale_devices(strlen(path
) ? path
: NULL
, NULL
);
1310 mutex_unlock(&uuid_mutex
);
1316 * Look for a btrfs signature on a device. This may be called out of the mount path
1317 * and we are not allowed to call set_blocksize during the scan. The superblock
1318 * is read via pagecache
1320 struct btrfs_device
*btrfs_scan_one_device(const char *path
, fmode_t flags
,
1323 struct btrfs_super_block
*disk_super
;
1324 bool new_device_added
= false;
1325 struct btrfs_device
*device
= NULL
;
1326 struct block_device
*bdev
;
1330 lockdep_assert_held(&uuid_mutex
);
1333 * we would like to check all the supers, but that would make
1334 * a btrfs mount succeed after a mkfs from a different FS.
1335 * So, we need to add a special mount option to scan for
1336 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1338 bytenr
= btrfs_sb_offset(0);
1339 flags
|= FMODE_EXCL
;
1341 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1343 return ERR_CAST(bdev
);
1345 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
)) {
1346 device
= ERR_PTR(-EINVAL
);
1347 goto error_bdev_put
;
1350 device
= device_list_add(path
, disk_super
, &new_device_added
);
1351 if (!IS_ERR(device
)) {
1352 if (new_device_added
)
1353 btrfs_free_stale_devices(path
, device
);
1356 btrfs_release_disk_super(page
);
1359 blkdev_put(bdev
, flags
);
1365 * Try to find a chunk that intersects [start, start + len] range and when one
1366 * such is found, record the end of it in *start
1368 static bool contains_pending_extent(struct btrfs_device
*device
, u64
*start
,
1371 u64 physical_start
, physical_end
;
1373 lockdep_assert_held(&device
->fs_info
->chunk_mutex
);
1375 if (!find_first_extent_bit(&device
->alloc_state
, *start
,
1376 &physical_start
, &physical_end
,
1377 CHUNK_ALLOCATED
, NULL
)) {
1379 if (in_range(physical_start
, *start
, len
) ||
1380 in_range(*start
, physical_start
,
1381 physical_end
- physical_start
)) {
1382 *start
= physical_end
+ 1;
1391 * find_free_dev_extent_start - find free space in the specified device
1392 * @device: the device which we search the free space in
1393 * @num_bytes: the size of the free space that we need
1394 * @search_start: the position from which to begin the search
1395 * @start: store the start of the free space.
1396 * @len: the size of the free space. that we find, or the size
1397 * of the max free space if we don't find suitable free space
1399 * this uses a pretty simple search, the expectation is that it is
1400 * called very infrequently and that a given device has a small number
1403 * @start is used to store the start of the free space if we find. But if we
1404 * don't find suitable free space, it will be used to store the start position
1405 * of the max free space.
1407 * @len is used to store the size of the free space that we find.
1408 * But if we don't find suitable free space, it is used to store the size of
1409 * the max free space.
1411 * NOTE: This function will search *commit* root of device tree, and does extra
1412 * check to ensure dev extents are not double allocated.
1413 * This makes the function safe to allocate dev extents but may not report
1414 * correct usable device space, as device extent freed in current transaction
1415 * is not reported as avaiable.
1417 static int find_free_dev_extent_start(struct btrfs_device
*device
,
1418 u64 num_bytes
, u64 search_start
, u64
*start
,
1421 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1422 struct btrfs_root
*root
= fs_info
->dev_root
;
1423 struct btrfs_key key
;
1424 struct btrfs_dev_extent
*dev_extent
;
1425 struct btrfs_path
*path
;
1430 u64 search_end
= device
->total_bytes
;
1433 struct extent_buffer
*l
;
1436 * We don't want to overwrite the superblock on the drive nor any area
1437 * used by the boot loader (grub for example), so we make sure to start
1438 * at an offset of at least 1MB.
1440 search_start
= max_t(u64
, search_start
, SZ_1M
);
1442 path
= btrfs_alloc_path();
1446 max_hole_start
= search_start
;
1450 if (search_start
>= search_end
||
1451 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1456 path
->reada
= READA_FORWARD
;
1457 path
->search_commit_root
= 1;
1458 path
->skip_locking
= 1;
1460 key
.objectid
= device
->devid
;
1461 key
.offset
= search_start
;
1462 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1464 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1468 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1475 slot
= path
->slots
[0];
1476 if (slot
>= btrfs_header_nritems(l
)) {
1477 ret
= btrfs_next_leaf(root
, path
);
1485 btrfs_item_key_to_cpu(l
, &key
, slot
);
1487 if (key
.objectid
< device
->devid
)
1490 if (key
.objectid
> device
->devid
)
1493 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1496 if (key
.offset
> search_start
) {
1497 hole_size
= key
.offset
- search_start
;
1500 * Have to check before we set max_hole_start, otherwise
1501 * we could end up sending back this offset anyway.
1503 if (contains_pending_extent(device
, &search_start
,
1505 if (key
.offset
>= search_start
)
1506 hole_size
= key
.offset
- search_start
;
1511 if (hole_size
> max_hole_size
) {
1512 max_hole_start
= search_start
;
1513 max_hole_size
= hole_size
;
1517 * If this free space is greater than which we need,
1518 * it must be the max free space that we have found
1519 * until now, so max_hole_start must point to the start
1520 * of this free space and the length of this free space
1521 * is stored in max_hole_size. Thus, we return
1522 * max_hole_start and max_hole_size and go back to the
1525 if (hole_size
>= num_bytes
) {
1531 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1532 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1534 if (extent_end
> search_start
)
1535 search_start
= extent_end
;
1542 * At this point, search_start should be the end of
1543 * allocated dev extents, and when shrinking the device,
1544 * search_end may be smaller than search_start.
1546 if (search_end
> search_start
) {
1547 hole_size
= search_end
- search_start
;
1549 if (contains_pending_extent(device
, &search_start
, hole_size
)) {
1550 btrfs_release_path(path
);
1554 if (hole_size
> max_hole_size
) {
1555 max_hole_start
= search_start
;
1556 max_hole_size
= hole_size
;
1561 if (max_hole_size
< num_bytes
)
1567 btrfs_free_path(path
);
1568 *start
= max_hole_start
;
1570 *len
= max_hole_size
;
1574 int find_free_dev_extent(struct btrfs_device
*device
, u64 num_bytes
,
1575 u64
*start
, u64
*len
)
1577 /* FIXME use last free of some kind */
1578 return find_free_dev_extent_start(device
, num_bytes
, 0, start
, len
);
1581 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1582 struct btrfs_device
*device
,
1583 u64 start
, u64
*dev_extent_len
)
1585 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1586 struct btrfs_root
*root
= fs_info
->dev_root
;
1588 struct btrfs_path
*path
;
1589 struct btrfs_key key
;
1590 struct btrfs_key found_key
;
1591 struct extent_buffer
*leaf
= NULL
;
1592 struct btrfs_dev_extent
*extent
= NULL
;
1594 path
= btrfs_alloc_path();
1598 key
.objectid
= device
->devid
;
1600 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1602 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1604 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1605 BTRFS_DEV_EXTENT_KEY
);
1608 leaf
= path
->nodes
[0];
1609 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1610 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1611 struct btrfs_dev_extent
);
1612 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1613 btrfs_dev_extent_length(leaf
, extent
) < start
);
1615 btrfs_release_path(path
);
1617 } else if (ret
== 0) {
1618 leaf
= path
->nodes
[0];
1619 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1620 struct btrfs_dev_extent
);
1622 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1626 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1628 ret
= btrfs_del_item(trans
, root
, path
);
1630 btrfs_handle_fs_error(fs_info
, ret
,
1631 "Failed to remove dev extent item");
1633 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1636 btrfs_free_path(path
);
1640 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1641 struct btrfs_device
*device
,
1642 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1645 struct btrfs_path
*path
;
1646 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1647 struct btrfs_root
*root
= fs_info
->dev_root
;
1648 struct btrfs_dev_extent
*extent
;
1649 struct extent_buffer
*leaf
;
1650 struct btrfs_key key
;
1652 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1653 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1654 path
= btrfs_alloc_path();
1658 key
.objectid
= device
->devid
;
1660 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1661 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1666 leaf
= path
->nodes
[0];
1667 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1668 struct btrfs_dev_extent
);
1669 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1670 BTRFS_CHUNK_TREE_OBJECTID
);
1671 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1672 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1673 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1675 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1676 btrfs_mark_buffer_dirty(leaf
);
1678 btrfs_free_path(path
);
1682 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1684 struct extent_map_tree
*em_tree
;
1685 struct extent_map
*em
;
1689 em_tree
= &fs_info
->mapping_tree
;
1690 read_lock(&em_tree
->lock
);
1691 n
= rb_last(&em_tree
->map
.rb_root
);
1693 em
= rb_entry(n
, struct extent_map
, rb_node
);
1694 ret
= em
->start
+ em
->len
;
1696 read_unlock(&em_tree
->lock
);
1701 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1705 struct btrfs_key key
;
1706 struct btrfs_key found_key
;
1707 struct btrfs_path
*path
;
1709 path
= btrfs_alloc_path();
1713 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1714 key
.type
= BTRFS_DEV_ITEM_KEY
;
1715 key
.offset
= (u64
)-1;
1717 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1723 btrfs_err(fs_info
, "corrupted chunk tree devid -1 matched");
1728 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1729 BTRFS_DEV_ITEMS_OBJECTID
,
1730 BTRFS_DEV_ITEM_KEY
);
1734 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1736 *devid_ret
= found_key
.offset
+ 1;
1740 btrfs_free_path(path
);
1745 * the device information is stored in the chunk root
1746 * the btrfs_device struct should be fully filled in
1748 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1749 struct btrfs_device
*device
)
1752 struct btrfs_path
*path
;
1753 struct btrfs_dev_item
*dev_item
;
1754 struct extent_buffer
*leaf
;
1755 struct btrfs_key key
;
1758 path
= btrfs_alloc_path();
1762 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1763 key
.type
= BTRFS_DEV_ITEM_KEY
;
1764 key
.offset
= device
->devid
;
1766 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->chunk_root
, path
,
1767 &key
, sizeof(*dev_item
));
1771 leaf
= path
->nodes
[0];
1772 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1774 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1775 btrfs_set_device_generation(leaf
, dev_item
, 0);
1776 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1777 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1778 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1779 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1780 btrfs_set_device_total_bytes(leaf
, dev_item
,
1781 btrfs_device_get_disk_total_bytes(device
));
1782 btrfs_set_device_bytes_used(leaf
, dev_item
,
1783 btrfs_device_get_bytes_used(device
));
1784 btrfs_set_device_group(leaf
, dev_item
, 0);
1785 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1786 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1787 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1789 ptr
= btrfs_device_uuid(dev_item
);
1790 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1791 ptr
= btrfs_device_fsid(dev_item
);
1792 write_extent_buffer(leaf
, trans
->fs_info
->fs_devices
->metadata_uuid
,
1793 ptr
, BTRFS_FSID_SIZE
);
1794 btrfs_mark_buffer_dirty(leaf
);
1798 btrfs_free_path(path
);
1803 * Function to update ctime/mtime for a given device path.
1804 * Mainly used for ctime/mtime based probe like libblkid.
1806 static void update_dev_time(const char *path_name
)
1810 filp
= filp_open(path_name
, O_RDWR
, 0);
1813 file_update_time(filp
);
1814 filp_close(filp
, NULL
);
1817 static int btrfs_rm_dev_item(struct btrfs_device
*device
)
1819 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
1821 struct btrfs_path
*path
;
1822 struct btrfs_key key
;
1823 struct btrfs_trans_handle
*trans
;
1825 path
= btrfs_alloc_path();
1829 trans
= btrfs_start_transaction(root
, 0);
1830 if (IS_ERR(trans
)) {
1831 btrfs_free_path(path
);
1832 return PTR_ERR(trans
);
1834 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1835 key
.type
= BTRFS_DEV_ITEM_KEY
;
1836 key
.offset
= device
->devid
;
1838 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1842 btrfs_abort_transaction(trans
, ret
);
1843 btrfs_end_transaction(trans
);
1847 ret
= btrfs_del_item(trans
, root
, path
);
1849 btrfs_abort_transaction(trans
, ret
);
1850 btrfs_end_transaction(trans
);
1854 btrfs_free_path(path
);
1856 ret
= btrfs_commit_transaction(trans
);
1861 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1862 * filesystem. It's up to the caller to adjust that number regarding eg. device
1865 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1873 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1875 all_avail
= fs_info
->avail_data_alloc_bits
|
1876 fs_info
->avail_system_alloc_bits
|
1877 fs_info
->avail_metadata_alloc_bits
;
1878 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1880 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1881 if (!(all_avail
& btrfs_raid_array
[i
].bg_flag
))
1884 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1885 int ret
= btrfs_raid_array
[i
].mindev_error
;
1895 static struct btrfs_device
* btrfs_find_next_active_device(
1896 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1898 struct btrfs_device
*next_device
;
1900 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1901 if (next_device
!= device
&&
1902 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1903 && next_device
->bdev
)
1911 * Helper function to check if the given device is part of s_bdev / latest_bdev
1912 * and replace it with the provided or the next active device, in the context
1913 * where this function called, there should be always be another device (or
1914 * this_dev) which is active.
1916 void __cold
btrfs_assign_next_active_device(struct btrfs_device
*device
,
1917 struct btrfs_device
*this_dev
)
1919 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1920 struct btrfs_device
*next_device
;
1923 next_device
= this_dev
;
1925 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1927 ASSERT(next_device
);
1929 if (fs_info
->sb
->s_bdev
&&
1930 (fs_info
->sb
->s_bdev
== device
->bdev
))
1931 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1933 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1934 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1938 * Return btrfs_fs_devices::num_devices excluding the device that's being
1939 * currently replaced.
1941 static u64
btrfs_num_devices(struct btrfs_fs_info
*fs_info
)
1943 u64 num_devices
= fs_info
->fs_devices
->num_devices
;
1945 down_read(&fs_info
->dev_replace
.rwsem
);
1946 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1947 ASSERT(num_devices
> 1);
1950 up_read(&fs_info
->dev_replace
.rwsem
);
1955 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1958 struct btrfs_device
*device
;
1959 struct btrfs_fs_devices
*cur_devices
;
1960 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1964 mutex_lock(&uuid_mutex
);
1966 num_devices
= btrfs_num_devices(fs_info
);
1968 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1972 device
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
);
1974 if (IS_ERR(device
)) {
1975 if (PTR_ERR(device
) == -ENOENT
&&
1976 strcmp(device_path
, "missing") == 0)
1977 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
1979 ret
= PTR_ERR(device
);
1983 if (btrfs_pinned_by_swapfile(fs_info
, device
)) {
1984 btrfs_warn_in_rcu(fs_info
,
1985 "cannot remove device %s (devid %llu) due to active swapfile",
1986 rcu_str_deref(device
->name
), device
->devid
);
1991 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1992 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1996 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1997 fs_info
->fs_devices
->rw_devices
== 1) {
1998 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
2002 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2003 mutex_lock(&fs_info
->chunk_mutex
);
2004 list_del_init(&device
->dev_alloc_list
);
2005 device
->fs_devices
->rw_devices
--;
2006 mutex_unlock(&fs_info
->chunk_mutex
);
2009 mutex_unlock(&uuid_mutex
);
2010 ret
= btrfs_shrink_device(device
, 0);
2011 mutex_lock(&uuid_mutex
);
2016 * TODO: the superblock still includes this device in its num_devices
2017 * counter although write_all_supers() is not locked out. This
2018 * could give a filesystem state which requires a degraded mount.
2020 ret
= btrfs_rm_dev_item(device
);
2024 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2025 btrfs_scrub_cancel_dev(device
);
2028 * the device list mutex makes sure that we don't change
2029 * the device list while someone else is writing out all
2030 * the device supers. Whoever is writing all supers, should
2031 * lock the device list mutex before getting the number of
2032 * devices in the super block (super_copy). Conversely,
2033 * whoever updates the number of devices in the super block
2034 * (super_copy) should hold the device list mutex.
2038 * In normal cases the cur_devices == fs_devices. But in case
2039 * of deleting a seed device, the cur_devices should point to
2040 * its own fs_devices listed under the fs_devices->seed.
2042 cur_devices
= device
->fs_devices
;
2043 mutex_lock(&fs_devices
->device_list_mutex
);
2044 list_del_rcu(&device
->dev_list
);
2046 cur_devices
->num_devices
--;
2047 cur_devices
->total_devices
--;
2048 /* Update total_devices of the parent fs_devices if it's seed */
2049 if (cur_devices
!= fs_devices
)
2050 fs_devices
->total_devices
--;
2052 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2053 cur_devices
->missing_devices
--;
2055 btrfs_assign_next_active_device(device
, NULL
);
2058 cur_devices
->open_devices
--;
2059 /* remove sysfs entry */
2060 btrfs_sysfs_rm_device_link(fs_devices
, device
);
2063 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2064 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2065 mutex_unlock(&fs_devices
->device_list_mutex
);
2068 * at this point, the device is zero sized and detached from
2069 * the devices list. All that's left is to zero out the old
2070 * supers and free the device.
2072 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2073 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2075 btrfs_close_bdev(device
);
2077 btrfs_free_device(device
);
2079 if (cur_devices
->open_devices
== 0) {
2080 while (fs_devices
) {
2081 if (fs_devices
->seed
== cur_devices
) {
2082 fs_devices
->seed
= cur_devices
->seed
;
2085 fs_devices
= fs_devices
->seed
;
2087 cur_devices
->seed
= NULL
;
2088 close_fs_devices(cur_devices
);
2089 free_fs_devices(cur_devices
);
2093 mutex_unlock(&uuid_mutex
);
2097 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2098 mutex_lock(&fs_info
->chunk_mutex
);
2099 list_add(&device
->dev_alloc_list
,
2100 &fs_devices
->alloc_list
);
2101 device
->fs_devices
->rw_devices
++;
2102 mutex_unlock(&fs_info
->chunk_mutex
);
2107 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device
*srcdev
)
2109 struct btrfs_fs_devices
*fs_devices
;
2111 lockdep_assert_held(&srcdev
->fs_info
->fs_devices
->device_list_mutex
);
2114 * in case of fs with no seed, srcdev->fs_devices will point
2115 * to fs_devices of fs_info. However when the dev being replaced is
2116 * a seed dev it will point to the seed's local fs_devices. In short
2117 * srcdev will have its correct fs_devices in both the cases.
2119 fs_devices
= srcdev
->fs_devices
;
2121 list_del_rcu(&srcdev
->dev_list
);
2122 list_del(&srcdev
->dev_alloc_list
);
2123 fs_devices
->num_devices
--;
2124 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2125 fs_devices
->missing_devices
--;
2127 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2128 fs_devices
->rw_devices
--;
2131 fs_devices
->open_devices
--;
2134 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device
*srcdev
)
2136 struct btrfs_fs_info
*fs_info
= srcdev
->fs_info
;
2137 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2139 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2140 /* zero out the old super if it is writable */
2141 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2144 btrfs_close_bdev(srcdev
);
2146 btrfs_free_device(srcdev
);
2148 /* if this is no devs we rather delete the fs_devices */
2149 if (!fs_devices
->num_devices
) {
2150 struct btrfs_fs_devices
*tmp_fs_devices
;
2153 * On a mounted FS, num_devices can't be zero unless it's a
2154 * seed. In case of a seed device being replaced, the replace
2155 * target added to the sprout FS, so there will be no more
2156 * device left under the seed FS.
2158 ASSERT(fs_devices
->seeding
);
2160 tmp_fs_devices
= fs_info
->fs_devices
;
2161 while (tmp_fs_devices
) {
2162 if (tmp_fs_devices
->seed
== fs_devices
) {
2163 tmp_fs_devices
->seed
= fs_devices
->seed
;
2166 tmp_fs_devices
= tmp_fs_devices
->seed
;
2168 fs_devices
->seed
= NULL
;
2169 close_fs_devices(fs_devices
);
2170 free_fs_devices(fs_devices
);
2174 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device
*tgtdev
)
2176 struct btrfs_fs_devices
*fs_devices
= tgtdev
->fs_info
->fs_devices
;
2179 mutex_lock(&fs_devices
->device_list_mutex
);
2181 btrfs_sysfs_rm_device_link(fs_devices
, tgtdev
);
2184 fs_devices
->open_devices
--;
2186 fs_devices
->num_devices
--;
2188 btrfs_assign_next_active_device(tgtdev
, NULL
);
2190 list_del_rcu(&tgtdev
->dev_list
);
2192 mutex_unlock(&fs_devices
->device_list_mutex
);
2195 * The update_dev_time() with in btrfs_scratch_superblocks()
2196 * may lead to a call to btrfs_show_devname() which will try
2197 * to hold device_list_mutex. And here this device
2198 * is already out of device list, so we don't have to hold
2199 * the device_list_mutex lock.
2201 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2203 btrfs_close_bdev(tgtdev
);
2205 btrfs_free_device(tgtdev
);
2208 static struct btrfs_device
*btrfs_find_device_by_path(
2209 struct btrfs_fs_info
*fs_info
, const char *device_path
)
2212 struct btrfs_super_block
*disk_super
;
2215 struct block_device
*bdev
;
2216 struct buffer_head
*bh
;
2217 struct btrfs_device
*device
;
2219 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2220 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2222 return ERR_PTR(ret
);
2223 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2224 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2225 dev_uuid
= disk_super
->dev_item
.uuid
;
2226 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
))
2227 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2228 disk_super
->metadata_uuid
, true);
2230 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2231 disk_super
->fsid
, true);
2235 device
= ERR_PTR(-ENOENT
);
2236 blkdev_put(bdev
, FMODE_READ
);
2241 * Lookup a device given by device id, or the path if the id is 0.
2243 struct btrfs_device
*btrfs_find_device_by_devspec(
2244 struct btrfs_fs_info
*fs_info
, u64 devid
,
2245 const char *device_path
)
2247 struct btrfs_device
*device
;
2250 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
,
2253 return ERR_PTR(-ENOENT
);
2257 if (!device_path
|| !device_path
[0])
2258 return ERR_PTR(-EINVAL
);
2260 if (strcmp(device_path
, "missing") == 0) {
2261 /* Find first missing device */
2262 list_for_each_entry(device
, &fs_info
->fs_devices
->devices
,
2264 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2265 &device
->dev_state
) && !device
->bdev
)
2268 return ERR_PTR(-ENOENT
);
2271 return btrfs_find_device_by_path(fs_info
, device_path
);
2275 * does all the dirty work required for changing file system's UUID.
2277 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2279 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2280 struct btrfs_fs_devices
*old_devices
;
2281 struct btrfs_fs_devices
*seed_devices
;
2282 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2283 struct btrfs_device
*device
;
2286 lockdep_assert_held(&uuid_mutex
);
2287 if (!fs_devices
->seeding
)
2290 seed_devices
= alloc_fs_devices(NULL
, NULL
);
2291 if (IS_ERR(seed_devices
))
2292 return PTR_ERR(seed_devices
);
2294 old_devices
= clone_fs_devices(fs_devices
);
2295 if (IS_ERR(old_devices
)) {
2296 kfree(seed_devices
);
2297 return PTR_ERR(old_devices
);
2300 list_add(&old_devices
->fs_list
, &fs_uuids
);
2302 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2303 seed_devices
->opened
= 1;
2304 INIT_LIST_HEAD(&seed_devices
->devices
);
2305 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2306 mutex_init(&seed_devices
->device_list_mutex
);
2308 mutex_lock(&fs_devices
->device_list_mutex
);
2309 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2311 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2312 device
->fs_devices
= seed_devices
;
2314 mutex_lock(&fs_info
->chunk_mutex
);
2315 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2316 mutex_unlock(&fs_info
->chunk_mutex
);
2318 fs_devices
->seeding
= false;
2319 fs_devices
->num_devices
= 0;
2320 fs_devices
->open_devices
= 0;
2321 fs_devices
->missing_devices
= 0;
2322 fs_devices
->rotating
= false;
2323 fs_devices
->seed
= seed_devices
;
2325 generate_random_uuid(fs_devices
->fsid
);
2326 memcpy(fs_devices
->metadata_uuid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2327 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2328 mutex_unlock(&fs_devices
->device_list_mutex
);
2330 super_flags
= btrfs_super_flags(disk_super
) &
2331 ~BTRFS_SUPER_FLAG_SEEDING
;
2332 btrfs_set_super_flags(disk_super
, super_flags
);
2338 * Store the expected generation for seed devices in device items.
2340 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
)
2342 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2343 struct btrfs_root
*root
= fs_info
->chunk_root
;
2344 struct btrfs_path
*path
;
2345 struct extent_buffer
*leaf
;
2346 struct btrfs_dev_item
*dev_item
;
2347 struct btrfs_device
*device
;
2348 struct btrfs_key key
;
2349 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2350 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2354 path
= btrfs_alloc_path();
2358 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2360 key
.type
= BTRFS_DEV_ITEM_KEY
;
2363 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2367 leaf
= path
->nodes
[0];
2369 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2370 ret
= btrfs_next_leaf(root
, path
);
2375 leaf
= path
->nodes
[0];
2376 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2377 btrfs_release_path(path
);
2381 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2382 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2383 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2386 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2387 struct btrfs_dev_item
);
2388 devid
= btrfs_device_id(leaf
, dev_item
);
2389 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2391 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2393 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2395 BUG_ON(!device
); /* Logic error */
2397 if (device
->fs_devices
->seeding
) {
2398 btrfs_set_device_generation(leaf
, dev_item
,
2399 device
->generation
);
2400 btrfs_mark_buffer_dirty(leaf
);
2408 btrfs_free_path(path
);
2412 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2414 struct btrfs_root
*root
= fs_info
->dev_root
;
2415 struct request_queue
*q
;
2416 struct btrfs_trans_handle
*trans
;
2417 struct btrfs_device
*device
;
2418 struct block_device
*bdev
;
2419 struct super_block
*sb
= fs_info
->sb
;
2420 struct rcu_string
*name
;
2421 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2422 u64 orig_super_total_bytes
;
2423 u64 orig_super_num_devices
;
2424 int seeding_dev
= 0;
2426 bool unlocked
= false;
2428 if (sb_rdonly(sb
) && !fs_devices
->seeding
)
2431 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2432 fs_info
->bdev_holder
);
2434 return PTR_ERR(bdev
);
2436 if (fs_devices
->seeding
) {
2438 down_write(&sb
->s_umount
);
2439 mutex_lock(&uuid_mutex
);
2442 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2444 mutex_lock(&fs_devices
->device_list_mutex
);
2445 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2446 if (device
->bdev
== bdev
) {
2449 &fs_devices
->device_list_mutex
);
2453 mutex_unlock(&fs_devices
->device_list_mutex
);
2455 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2456 if (IS_ERR(device
)) {
2457 /* we can safely leave the fs_devices entry around */
2458 ret
= PTR_ERR(device
);
2462 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2465 goto error_free_device
;
2467 rcu_assign_pointer(device
->name
, name
);
2469 trans
= btrfs_start_transaction(root
, 0);
2470 if (IS_ERR(trans
)) {
2471 ret
= PTR_ERR(trans
);
2472 goto error_free_device
;
2475 q
= bdev_get_queue(bdev
);
2476 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2477 device
->generation
= trans
->transid
;
2478 device
->io_width
= fs_info
->sectorsize
;
2479 device
->io_align
= fs_info
->sectorsize
;
2480 device
->sector_size
= fs_info
->sectorsize
;
2481 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2482 fs_info
->sectorsize
);
2483 device
->disk_total_bytes
= device
->total_bytes
;
2484 device
->commit_total_bytes
= device
->total_bytes
;
2485 device
->fs_info
= fs_info
;
2486 device
->bdev
= bdev
;
2487 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2488 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2489 device
->mode
= FMODE_EXCL
;
2490 device
->dev_stats_valid
= 1;
2491 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2494 sb
->s_flags
&= ~SB_RDONLY
;
2495 ret
= btrfs_prepare_sprout(fs_info
);
2497 btrfs_abort_transaction(trans
, ret
);
2502 device
->fs_devices
= fs_devices
;
2504 mutex_lock(&fs_devices
->device_list_mutex
);
2505 mutex_lock(&fs_info
->chunk_mutex
);
2506 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
2507 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
2508 fs_devices
->num_devices
++;
2509 fs_devices
->open_devices
++;
2510 fs_devices
->rw_devices
++;
2511 fs_devices
->total_devices
++;
2512 fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2514 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2516 if (!blk_queue_nonrot(q
))
2517 fs_devices
->rotating
= true;
2519 orig_super_total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
2520 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2521 round_down(orig_super_total_bytes
+ device
->total_bytes
,
2522 fs_info
->sectorsize
));
2524 orig_super_num_devices
= btrfs_super_num_devices(fs_info
->super_copy
);
2525 btrfs_set_super_num_devices(fs_info
->super_copy
,
2526 orig_super_num_devices
+ 1);
2528 /* add sysfs device entry */
2529 btrfs_sysfs_add_device_link(fs_devices
, device
);
2532 * we've got more storage, clear any full flags on the space
2535 btrfs_clear_space_info_full(fs_info
);
2537 mutex_unlock(&fs_info
->chunk_mutex
);
2538 mutex_unlock(&fs_devices
->device_list_mutex
);
2541 mutex_lock(&fs_info
->chunk_mutex
);
2542 ret
= init_first_rw_device(trans
);
2543 mutex_unlock(&fs_info
->chunk_mutex
);
2545 btrfs_abort_transaction(trans
, ret
);
2550 ret
= btrfs_add_dev_item(trans
, device
);
2552 btrfs_abort_transaction(trans
, ret
);
2557 ret
= btrfs_finish_sprout(trans
);
2559 btrfs_abort_transaction(trans
, ret
);
2563 btrfs_sysfs_update_sprout_fsid(fs_devices
,
2564 fs_info
->fs_devices
->fsid
);
2567 ret
= btrfs_commit_transaction(trans
);
2570 mutex_unlock(&uuid_mutex
);
2571 up_write(&sb
->s_umount
);
2574 if (ret
) /* transaction commit */
2577 ret
= btrfs_relocate_sys_chunks(fs_info
);
2579 btrfs_handle_fs_error(fs_info
, ret
,
2580 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2581 trans
= btrfs_attach_transaction(root
);
2582 if (IS_ERR(trans
)) {
2583 if (PTR_ERR(trans
) == -ENOENT
)
2585 ret
= PTR_ERR(trans
);
2589 ret
= btrfs_commit_transaction(trans
);
2592 /* Update ctime/mtime for libblkid */
2593 update_dev_time(device_path
);
2597 btrfs_sysfs_rm_device_link(fs_devices
, device
);
2598 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2599 mutex_lock(&fs_info
->chunk_mutex
);
2600 list_del_rcu(&device
->dev_list
);
2601 list_del(&device
->dev_alloc_list
);
2602 fs_info
->fs_devices
->num_devices
--;
2603 fs_info
->fs_devices
->open_devices
--;
2604 fs_info
->fs_devices
->rw_devices
--;
2605 fs_info
->fs_devices
->total_devices
--;
2606 fs_info
->fs_devices
->total_rw_bytes
-= device
->total_bytes
;
2607 atomic64_sub(device
->total_bytes
, &fs_info
->free_chunk_space
);
2608 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2609 orig_super_total_bytes
);
2610 btrfs_set_super_num_devices(fs_info
->super_copy
,
2611 orig_super_num_devices
);
2612 mutex_unlock(&fs_info
->chunk_mutex
);
2613 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2616 sb
->s_flags
|= SB_RDONLY
;
2618 btrfs_end_transaction(trans
);
2620 btrfs_free_device(device
);
2622 blkdev_put(bdev
, FMODE_EXCL
);
2623 if (seeding_dev
&& !unlocked
) {
2624 mutex_unlock(&uuid_mutex
);
2625 up_write(&sb
->s_umount
);
2630 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2631 struct btrfs_device
*device
)
2634 struct btrfs_path
*path
;
2635 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2636 struct btrfs_dev_item
*dev_item
;
2637 struct extent_buffer
*leaf
;
2638 struct btrfs_key key
;
2640 path
= btrfs_alloc_path();
2644 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2645 key
.type
= BTRFS_DEV_ITEM_KEY
;
2646 key
.offset
= device
->devid
;
2648 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2657 leaf
= path
->nodes
[0];
2658 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2660 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2661 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2662 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2663 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2664 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2665 btrfs_set_device_total_bytes(leaf
, dev_item
,
2666 btrfs_device_get_disk_total_bytes(device
));
2667 btrfs_set_device_bytes_used(leaf
, dev_item
,
2668 btrfs_device_get_bytes_used(device
));
2669 btrfs_mark_buffer_dirty(leaf
);
2672 btrfs_free_path(path
);
2676 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2677 struct btrfs_device
*device
, u64 new_size
)
2679 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2680 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2684 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2687 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2689 mutex_lock(&fs_info
->chunk_mutex
);
2690 old_total
= btrfs_super_total_bytes(super_copy
);
2691 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2693 if (new_size
<= device
->total_bytes
||
2694 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2695 mutex_unlock(&fs_info
->chunk_mutex
);
2699 btrfs_set_super_total_bytes(super_copy
,
2700 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2701 device
->fs_devices
->total_rw_bytes
+= diff
;
2703 btrfs_device_set_total_bytes(device
, new_size
);
2704 btrfs_device_set_disk_total_bytes(device
, new_size
);
2705 btrfs_clear_space_info_full(device
->fs_info
);
2706 if (list_empty(&device
->post_commit_list
))
2707 list_add_tail(&device
->post_commit_list
,
2708 &trans
->transaction
->dev_update_list
);
2709 mutex_unlock(&fs_info
->chunk_mutex
);
2711 return btrfs_update_device(trans
, device
);
2714 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2716 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2717 struct btrfs_root
*root
= fs_info
->chunk_root
;
2719 struct btrfs_path
*path
;
2720 struct btrfs_key key
;
2722 path
= btrfs_alloc_path();
2726 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2727 key
.offset
= chunk_offset
;
2728 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2730 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2733 else if (ret
> 0) { /* Logic error or corruption */
2734 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2735 "Failed lookup while freeing chunk.");
2740 ret
= btrfs_del_item(trans
, root
, path
);
2742 btrfs_handle_fs_error(fs_info
, ret
,
2743 "Failed to delete chunk item.");
2745 btrfs_free_path(path
);
2749 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2751 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2752 struct btrfs_disk_key
*disk_key
;
2753 struct btrfs_chunk
*chunk
;
2760 struct btrfs_key key
;
2762 mutex_lock(&fs_info
->chunk_mutex
);
2763 array_size
= btrfs_super_sys_array_size(super_copy
);
2765 ptr
= super_copy
->sys_chunk_array
;
2768 while (cur
< array_size
) {
2769 disk_key
= (struct btrfs_disk_key
*)ptr
;
2770 btrfs_disk_key_to_cpu(&key
, disk_key
);
2772 len
= sizeof(*disk_key
);
2774 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2775 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2776 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2777 len
+= btrfs_chunk_item_size(num_stripes
);
2782 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2783 key
.offset
== chunk_offset
) {
2784 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2786 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2792 mutex_unlock(&fs_info
->chunk_mutex
);
2797 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2798 * @logical: Logical block offset in bytes.
2799 * @length: Length of extent in bytes.
2801 * Return: Chunk mapping or ERR_PTR.
2803 struct extent_map
*btrfs_get_chunk_map(struct btrfs_fs_info
*fs_info
,
2804 u64 logical
, u64 length
)
2806 struct extent_map_tree
*em_tree
;
2807 struct extent_map
*em
;
2809 em_tree
= &fs_info
->mapping_tree
;
2810 read_lock(&em_tree
->lock
);
2811 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2812 read_unlock(&em_tree
->lock
);
2815 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2817 return ERR_PTR(-EINVAL
);
2820 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2822 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2823 logical
, length
, em
->start
, em
->start
+ em
->len
);
2824 free_extent_map(em
);
2825 return ERR_PTR(-EINVAL
);
2828 /* callers are responsible for dropping em's ref. */
2832 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2834 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2835 struct extent_map
*em
;
2836 struct map_lookup
*map
;
2837 u64 dev_extent_len
= 0;
2839 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2841 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
2844 * This is a logic error, but we don't want to just rely on the
2845 * user having built with ASSERT enabled, so if ASSERT doesn't
2846 * do anything we still error out.
2851 map
= em
->map_lookup
;
2852 mutex_lock(&fs_info
->chunk_mutex
);
2853 check_system_chunk(trans
, map
->type
);
2854 mutex_unlock(&fs_info
->chunk_mutex
);
2857 * Take the device list mutex to prevent races with the final phase of
2858 * a device replace operation that replaces the device object associated
2859 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2861 mutex_lock(&fs_devices
->device_list_mutex
);
2862 for (i
= 0; i
< map
->num_stripes
; i
++) {
2863 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2864 ret
= btrfs_free_dev_extent(trans
, device
,
2865 map
->stripes
[i
].physical
,
2868 mutex_unlock(&fs_devices
->device_list_mutex
);
2869 btrfs_abort_transaction(trans
, ret
);
2873 if (device
->bytes_used
> 0) {
2874 mutex_lock(&fs_info
->chunk_mutex
);
2875 btrfs_device_set_bytes_used(device
,
2876 device
->bytes_used
- dev_extent_len
);
2877 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2878 btrfs_clear_space_info_full(fs_info
);
2879 mutex_unlock(&fs_info
->chunk_mutex
);
2882 ret
= btrfs_update_device(trans
, device
);
2884 mutex_unlock(&fs_devices
->device_list_mutex
);
2885 btrfs_abort_transaction(trans
, ret
);
2889 mutex_unlock(&fs_devices
->device_list_mutex
);
2891 ret
= btrfs_free_chunk(trans
, chunk_offset
);
2893 btrfs_abort_transaction(trans
, ret
);
2897 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2899 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2900 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2902 btrfs_abort_transaction(trans
, ret
);
2907 ret
= btrfs_remove_block_group(trans
, chunk_offset
, em
);
2909 btrfs_abort_transaction(trans
, ret
);
2915 free_extent_map(em
);
2919 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2921 struct btrfs_root
*root
= fs_info
->chunk_root
;
2922 struct btrfs_trans_handle
*trans
;
2926 * Prevent races with automatic removal of unused block groups.
2927 * After we relocate and before we remove the chunk with offset
2928 * chunk_offset, automatic removal of the block group can kick in,
2929 * resulting in a failure when calling btrfs_remove_chunk() below.
2931 * Make sure to acquire this mutex before doing a tree search (dev
2932 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2933 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2934 * we release the path used to search the chunk/dev tree and before
2935 * the current task acquires this mutex and calls us.
2937 lockdep_assert_held(&fs_info
->delete_unused_bgs_mutex
);
2939 /* step one, relocate all the extents inside this chunk */
2940 btrfs_scrub_pause(fs_info
);
2941 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2942 btrfs_scrub_continue(fs_info
);
2946 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2948 if (IS_ERR(trans
)) {
2949 ret
= PTR_ERR(trans
);
2950 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2955 * step two, delete the device extents and the
2956 * chunk tree entries
2958 ret
= btrfs_remove_chunk(trans
, chunk_offset
);
2959 btrfs_end_transaction(trans
);
2963 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2965 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2966 struct btrfs_path
*path
;
2967 struct extent_buffer
*leaf
;
2968 struct btrfs_chunk
*chunk
;
2969 struct btrfs_key key
;
2970 struct btrfs_key found_key
;
2972 bool retried
= false;
2976 path
= btrfs_alloc_path();
2981 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2982 key
.offset
= (u64
)-1;
2983 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2986 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
2987 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2989 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2992 BUG_ON(ret
== 0); /* Corruption */
2994 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2997 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3003 leaf
= path
->nodes
[0];
3004 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3006 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3007 struct btrfs_chunk
);
3008 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3009 btrfs_release_path(path
);
3011 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3012 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3018 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3020 if (found_key
.offset
== 0)
3022 key
.offset
= found_key
.offset
- 1;
3025 if (failed
&& !retried
) {
3029 } else if (WARN_ON(failed
&& retried
)) {
3033 btrfs_free_path(path
);
3038 * return 1 : allocate a data chunk successfully,
3039 * return <0: errors during allocating a data chunk,
3040 * return 0 : no need to allocate a data chunk.
3042 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3045 struct btrfs_block_group
*cache
;
3049 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3051 chunk_type
= cache
->flags
;
3052 btrfs_put_block_group(cache
);
3054 if (!(chunk_type
& BTRFS_BLOCK_GROUP_DATA
))
3057 spin_lock(&fs_info
->data_sinfo
->lock
);
3058 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3059 spin_unlock(&fs_info
->data_sinfo
->lock
);
3062 struct btrfs_trans_handle
*trans
;
3065 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3067 return PTR_ERR(trans
);
3069 ret
= btrfs_force_chunk_alloc(trans
, BTRFS_BLOCK_GROUP_DATA
);
3070 btrfs_end_transaction(trans
);
3079 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3080 struct btrfs_balance_control
*bctl
)
3082 struct btrfs_root
*root
= fs_info
->tree_root
;
3083 struct btrfs_trans_handle
*trans
;
3084 struct btrfs_balance_item
*item
;
3085 struct btrfs_disk_balance_args disk_bargs
;
3086 struct btrfs_path
*path
;
3087 struct extent_buffer
*leaf
;
3088 struct btrfs_key key
;
3091 path
= btrfs_alloc_path();
3095 trans
= btrfs_start_transaction(root
, 0);
3096 if (IS_ERR(trans
)) {
3097 btrfs_free_path(path
);
3098 return PTR_ERR(trans
);
3101 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3102 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3105 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3110 leaf
= path
->nodes
[0];
3111 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3113 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3115 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3116 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3117 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3118 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3119 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3120 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3122 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3124 btrfs_mark_buffer_dirty(leaf
);
3126 btrfs_free_path(path
);
3127 err
= btrfs_commit_transaction(trans
);
3133 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3135 struct btrfs_root
*root
= fs_info
->tree_root
;
3136 struct btrfs_trans_handle
*trans
;
3137 struct btrfs_path
*path
;
3138 struct btrfs_key key
;
3141 path
= btrfs_alloc_path();
3145 trans
= btrfs_start_transaction(root
, 0);
3146 if (IS_ERR(trans
)) {
3147 btrfs_free_path(path
);
3148 return PTR_ERR(trans
);
3151 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3152 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3155 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3163 ret
= btrfs_del_item(trans
, root
, path
);
3165 btrfs_free_path(path
);
3166 err
= btrfs_commit_transaction(trans
);
3173 * This is a heuristic used to reduce the number of chunks balanced on
3174 * resume after balance was interrupted.
3176 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3179 * Turn on soft mode for chunk types that were being converted.
3181 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3182 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3183 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3184 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3185 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3186 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3189 * Turn on usage filter if is not already used. The idea is
3190 * that chunks that we have already balanced should be
3191 * reasonably full. Don't do it for chunks that are being
3192 * converted - that will keep us from relocating unconverted
3193 * (albeit full) chunks.
3195 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3196 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3197 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3198 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3199 bctl
->data
.usage
= 90;
3201 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3202 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3203 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3204 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3205 bctl
->sys
.usage
= 90;
3207 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3208 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3209 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3210 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3211 bctl
->meta
.usage
= 90;
3216 * Clear the balance status in fs_info and delete the balance item from disk.
3218 static void reset_balance_state(struct btrfs_fs_info
*fs_info
)
3220 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3223 BUG_ON(!fs_info
->balance_ctl
);
3225 spin_lock(&fs_info
->balance_lock
);
3226 fs_info
->balance_ctl
= NULL
;
3227 spin_unlock(&fs_info
->balance_lock
);
3230 ret
= del_balance_item(fs_info
);
3232 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3236 * Balance filters. Return 1 if chunk should be filtered out
3237 * (should not be balanced).
3239 static int chunk_profiles_filter(u64 chunk_type
,
3240 struct btrfs_balance_args
*bargs
)
3242 chunk_type
= chunk_to_extended(chunk_type
) &
3243 BTRFS_EXTENDED_PROFILE_MASK
;
3245 if (bargs
->profiles
& chunk_type
)
3251 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3252 struct btrfs_balance_args
*bargs
)
3254 struct btrfs_block_group
*cache
;
3256 u64 user_thresh_min
;
3257 u64 user_thresh_max
;
3260 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3261 chunk_used
= cache
->used
;
3263 if (bargs
->usage_min
== 0)
3264 user_thresh_min
= 0;
3266 user_thresh_min
= div_factor_fine(cache
->length
,
3269 if (bargs
->usage_max
== 0)
3270 user_thresh_max
= 1;
3271 else if (bargs
->usage_max
> 100)
3272 user_thresh_max
= cache
->length
;
3274 user_thresh_max
= div_factor_fine(cache
->length
,
3277 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3280 btrfs_put_block_group(cache
);
3284 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3285 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3287 struct btrfs_block_group
*cache
;
3288 u64 chunk_used
, user_thresh
;
3291 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3292 chunk_used
= cache
->used
;
3294 if (bargs
->usage_min
== 0)
3296 else if (bargs
->usage
> 100)
3297 user_thresh
= cache
->length
;
3299 user_thresh
= div_factor_fine(cache
->length
, bargs
->usage
);
3301 if (chunk_used
< user_thresh
)
3304 btrfs_put_block_group(cache
);
3308 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3309 struct btrfs_chunk
*chunk
,
3310 struct btrfs_balance_args
*bargs
)
3312 struct btrfs_stripe
*stripe
;
3313 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3316 for (i
= 0; i
< num_stripes
; i
++) {
3317 stripe
= btrfs_stripe_nr(chunk
, i
);
3318 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3325 static u64
calc_data_stripes(u64 type
, int num_stripes
)
3327 const int index
= btrfs_bg_flags_to_raid_index(type
);
3328 const int ncopies
= btrfs_raid_array
[index
].ncopies
;
3329 const int nparity
= btrfs_raid_array
[index
].nparity
;
3332 return num_stripes
- nparity
;
3334 return num_stripes
/ ncopies
;
3337 /* [pstart, pend) */
3338 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3339 struct btrfs_chunk
*chunk
,
3340 struct btrfs_balance_args
*bargs
)
3342 struct btrfs_stripe
*stripe
;
3343 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3350 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3353 type
= btrfs_chunk_type(leaf
, chunk
);
3354 factor
= calc_data_stripes(type
, num_stripes
);
3356 for (i
= 0; i
< num_stripes
; i
++) {
3357 stripe
= btrfs_stripe_nr(chunk
, i
);
3358 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3361 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3362 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3363 stripe_length
= div_u64(stripe_length
, factor
);
3365 if (stripe_offset
< bargs
->pend
&&
3366 stripe_offset
+ stripe_length
> bargs
->pstart
)
3373 /* [vstart, vend) */
3374 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3375 struct btrfs_chunk
*chunk
,
3377 struct btrfs_balance_args
*bargs
)
3379 if (chunk_offset
< bargs
->vend
&&
3380 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3381 /* at least part of the chunk is inside this vrange */
3387 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3388 struct btrfs_chunk
*chunk
,
3389 struct btrfs_balance_args
*bargs
)
3391 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3393 if (bargs
->stripes_min
<= num_stripes
3394 && num_stripes
<= bargs
->stripes_max
)
3400 static int chunk_soft_convert_filter(u64 chunk_type
,
3401 struct btrfs_balance_args
*bargs
)
3403 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3406 chunk_type
= chunk_to_extended(chunk_type
) &
3407 BTRFS_EXTENDED_PROFILE_MASK
;
3409 if (bargs
->target
== chunk_type
)
3415 static int should_balance_chunk(struct extent_buffer
*leaf
,
3416 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3418 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3419 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3420 struct btrfs_balance_args
*bargs
= NULL
;
3421 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3424 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3425 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3429 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3430 bargs
= &bctl
->data
;
3431 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3433 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3434 bargs
= &bctl
->meta
;
3436 /* profiles filter */
3437 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3438 chunk_profiles_filter(chunk_type
, bargs
)) {
3443 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3444 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3446 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3447 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3452 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3453 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3457 /* drange filter, makes sense only with devid filter */
3458 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3459 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3464 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3465 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3469 /* stripes filter */
3470 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3471 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3475 /* soft profile changing mode */
3476 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3477 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3482 * limited by count, must be the last filter
3484 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3485 if (bargs
->limit
== 0)
3489 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3491 * Same logic as the 'limit' filter; the minimum cannot be
3492 * determined here because we do not have the global information
3493 * about the count of all chunks that satisfy the filters.
3495 if (bargs
->limit_max
== 0)
3504 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3506 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3507 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3509 struct btrfs_chunk
*chunk
;
3510 struct btrfs_path
*path
= NULL
;
3511 struct btrfs_key key
;
3512 struct btrfs_key found_key
;
3513 struct extent_buffer
*leaf
;
3516 int enospc_errors
= 0;
3517 bool counting
= true;
3518 /* The single value limit and min/max limits use the same bytes in the */
3519 u64 limit_data
= bctl
->data
.limit
;
3520 u64 limit_meta
= bctl
->meta
.limit
;
3521 u64 limit_sys
= bctl
->sys
.limit
;
3525 int chunk_reserved
= 0;
3527 path
= btrfs_alloc_path();
3533 /* zero out stat counters */
3534 spin_lock(&fs_info
->balance_lock
);
3535 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3536 spin_unlock(&fs_info
->balance_lock
);
3540 * The single value limit and min/max limits use the same bytes
3543 bctl
->data
.limit
= limit_data
;
3544 bctl
->meta
.limit
= limit_meta
;
3545 bctl
->sys
.limit
= limit_sys
;
3547 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3548 key
.offset
= (u64
)-1;
3549 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3552 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3553 atomic_read(&fs_info
->balance_cancel_req
)) {
3558 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3559 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3561 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3566 * this shouldn't happen, it means the last relocate
3570 BUG(); /* FIXME break ? */
3572 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3573 BTRFS_CHUNK_ITEM_KEY
);
3575 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3580 leaf
= path
->nodes
[0];
3581 slot
= path
->slots
[0];
3582 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3584 if (found_key
.objectid
!= key
.objectid
) {
3585 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3589 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3590 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3593 spin_lock(&fs_info
->balance_lock
);
3594 bctl
->stat
.considered
++;
3595 spin_unlock(&fs_info
->balance_lock
);
3598 ret
= should_balance_chunk(leaf
, chunk
, found_key
.offset
);
3600 btrfs_release_path(path
);
3602 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3607 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3608 spin_lock(&fs_info
->balance_lock
);
3609 bctl
->stat
.expected
++;
3610 spin_unlock(&fs_info
->balance_lock
);
3612 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3614 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3616 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3623 * Apply limit_min filter, no need to check if the LIMITS
3624 * filter is used, limit_min is 0 by default
3626 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3627 count_data
< bctl
->data
.limit_min
)
3628 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3629 count_meta
< bctl
->meta
.limit_min
)
3630 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3631 count_sys
< bctl
->sys
.limit_min
)) {
3632 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3636 if (!chunk_reserved
) {
3638 * We may be relocating the only data chunk we have,
3639 * which could potentially end up with losing data's
3640 * raid profile, so lets allocate an empty one in
3643 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3646 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3648 } else if (ret
== 1) {
3653 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3654 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3655 if (ret
== -ENOSPC
) {
3657 } else if (ret
== -ETXTBSY
) {
3659 "skipping relocation of block group %llu due to active swapfile",
3665 spin_lock(&fs_info
->balance_lock
);
3666 bctl
->stat
.completed
++;
3667 spin_unlock(&fs_info
->balance_lock
);
3670 if (found_key
.offset
== 0)
3672 key
.offset
= found_key
.offset
- 1;
3676 btrfs_release_path(path
);
3681 btrfs_free_path(path
);
3682 if (enospc_errors
) {
3683 btrfs_info(fs_info
, "%d enospc errors during balance",
3693 * alloc_profile_is_valid - see if a given profile is valid and reduced
3694 * @flags: profile to validate
3695 * @extended: if true @flags is treated as an extended profile
3697 static int alloc_profile_is_valid(u64 flags
, int extended
)
3699 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3700 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3702 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3704 /* 1) check that all other bits are zeroed */
3708 /* 2) see if profile is reduced */
3710 return !extended
; /* "0" is valid for usual profiles */
3712 return has_single_bit_set(flags
);
3715 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3717 /* cancel requested || normal exit path */
3718 return atomic_read(&fs_info
->balance_cancel_req
) ||
3719 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3720 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3723 /* Non-zero return value signifies invalidity */
3724 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3727 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3728 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3729 (bctl_arg
->target
& ~allowed
)));
3733 * Fill @buf with textual description of balance filter flags @bargs, up to
3734 * @size_buf including the terminating null. The output may be trimmed if it
3735 * does not fit into the provided buffer.
3737 static void describe_balance_args(struct btrfs_balance_args
*bargs
, char *buf
,
3741 u32 size_bp
= size_buf
;
3743 u64 flags
= bargs
->flags
;
3744 char tmp_buf
[128] = {'\0'};
3749 #define CHECK_APPEND_NOARG(a) \
3751 ret = snprintf(bp, size_bp, (a)); \
3752 if (ret < 0 || ret >= size_bp) \
3753 goto out_overflow; \
3758 #define CHECK_APPEND_1ARG(a, v1) \
3760 ret = snprintf(bp, size_bp, (a), (v1)); \
3761 if (ret < 0 || ret >= size_bp) \
3762 goto out_overflow; \
3767 #define CHECK_APPEND_2ARG(a, v1, v2) \
3769 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3770 if (ret < 0 || ret >= size_bp) \
3771 goto out_overflow; \
3776 if (flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3777 CHECK_APPEND_1ARG("convert=%s,",
3778 btrfs_bg_type_to_raid_name(bargs
->target
));
3780 if (flags
& BTRFS_BALANCE_ARGS_SOFT
)
3781 CHECK_APPEND_NOARG("soft,");
3783 if (flags
& BTRFS_BALANCE_ARGS_PROFILES
) {
3784 btrfs_describe_block_groups(bargs
->profiles
, tmp_buf
,
3786 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf
);
3789 if (flags
& BTRFS_BALANCE_ARGS_USAGE
)
3790 CHECK_APPEND_1ARG("usage=%llu,", bargs
->usage
);
3792 if (flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
)
3793 CHECK_APPEND_2ARG("usage=%u..%u,",
3794 bargs
->usage_min
, bargs
->usage_max
);
3796 if (flags
& BTRFS_BALANCE_ARGS_DEVID
)
3797 CHECK_APPEND_1ARG("devid=%llu,", bargs
->devid
);
3799 if (flags
& BTRFS_BALANCE_ARGS_DRANGE
)
3800 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3801 bargs
->pstart
, bargs
->pend
);
3803 if (flags
& BTRFS_BALANCE_ARGS_VRANGE
)
3804 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3805 bargs
->vstart
, bargs
->vend
);
3807 if (flags
& BTRFS_BALANCE_ARGS_LIMIT
)
3808 CHECK_APPEND_1ARG("limit=%llu,", bargs
->limit
);
3810 if (flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)
3811 CHECK_APPEND_2ARG("limit=%u..%u,",
3812 bargs
->limit_min
, bargs
->limit_max
);
3814 if (flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
)
3815 CHECK_APPEND_2ARG("stripes=%u..%u,",
3816 bargs
->stripes_min
, bargs
->stripes_max
);
3818 #undef CHECK_APPEND_2ARG
3819 #undef CHECK_APPEND_1ARG
3820 #undef CHECK_APPEND_NOARG
3824 if (size_bp
< size_buf
)
3825 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last , */
3830 static void describe_balance_start_or_resume(struct btrfs_fs_info
*fs_info
)
3832 u32 size_buf
= 1024;
3833 char tmp_buf
[192] = {'\0'};
3836 u32 size_bp
= size_buf
;
3838 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3840 buf
= kzalloc(size_buf
, GFP_KERNEL
);
3846 #define CHECK_APPEND_1ARG(a, v1) \
3848 ret = snprintf(bp, size_bp, (a), (v1)); \
3849 if (ret < 0 || ret >= size_bp) \
3850 goto out_overflow; \
3855 if (bctl
->flags
& BTRFS_BALANCE_FORCE
)
3856 CHECK_APPEND_1ARG("%s", "-f ");
3858 if (bctl
->flags
& BTRFS_BALANCE_DATA
) {
3859 describe_balance_args(&bctl
->data
, tmp_buf
, sizeof(tmp_buf
));
3860 CHECK_APPEND_1ARG("-d%s ", tmp_buf
);
3863 if (bctl
->flags
& BTRFS_BALANCE_METADATA
) {
3864 describe_balance_args(&bctl
->meta
, tmp_buf
, sizeof(tmp_buf
));
3865 CHECK_APPEND_1ARG("-m%s ", tmp_buf
);
3868 if (bctl
->flags
& BTRFS_BALANCE_SYSTEM
) {
3869 describe_balance_args(&bctl
->sys
, tmp_buf
, sizeof(tmp_buf
));
3870 CHECK_APPEND_1ARG("-s%s ", tmp_buf
);
3873 #undef CHECK_APPEND_1ARG
3877 if (size_bp
< size_buf
)
3878 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last " " */
3879 btrfs_info(fs_info
, "balance: %s %s",
3880 (bctl
->flags
& BTRFS_BALANCE_RESUME
) ?
3881 "resume" : "start", buf
);
3887 * Should be called with balance mutexe held
3889 int btrfs_balance(struct btrfs_fs_info
*fs_info
,
3890 struct btrfs_balance_control
*bctl
,
3891 struct btrfs_ioctl_balance_args
*bargs
)
3893 u64 meta_target
, data_target
;
3899 bool reducing_redundancy
;
3902 if (btrfs_fs_closing(fs_info
) ||
3903 atomic_read(&fs_info
->balance_pause_req
) ||
3904 atomic_read(&fs_info
->balance_cancel_req
)) {
3909 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3910 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3914 * In case of mixed groups both data and meta should be picked,
3915 * and identical options should be given for both of them.
3917 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3918 if (mixed
&& (bctl
->flags
& allowed
)) {
3919 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3920 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3921 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3923 "balance: mixed groups data and metadata options must be the same");
3930 * rw_devices will not change at the moment, device add/delete/replace
3931 * are excluded by EXCL_OP
3933 num_devices
= fs_info
->fs_devices
->rw_devices
;
3936 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3937 * special bit for it, to make it easier to distinguish. Thus we need
3938 * to set it manually, or balance would refuse the profile.
3940 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
3941 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++)
3942 if (num_devices
>= btrfs_raid_array
[i
].devs_min
)
3943 allowed
|= btrfs_raid_array
[i
].bg_flag
;
3945 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3947 "balance: invalid convert data profile %s",
3948 btrfs_bg_type_to_raid_name(bctl
->data
.target
));
3952 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3954 "balance: invalid convert metadata profile %s",
3955 btrfs_bg_type_to_raid_name(bctl
->meta
.target
));
3959 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3961 "balance: invalid convert system profile %s",
3962 btrfs_bg_type_to_raid_name(bctl
->sys
.target
));
3968 * Allow to reduce metadata or system integrity only if force set for
3969 * profiles with redundancy (copies, parity)
3972 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++) {
3973 if (btrfs_raid_array
[i
].ncopies
>= 2 ||
3974 btrfs_raid_array
[i
].tolerated_failures
>= 1)
3975 allowed
|= btrfs_raid_array
[i
].bg_flag
;
3978 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3980 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3981 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3982 !(bctl
->sys
.target
& allowed
)) ||
3983 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3984 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3985 !(bctl
->meta
.target
& allowed
)))
3986 reducing_redundancy
= true;
3988 reducing_redundancy
= false;
3990 /* if we're not converting, the target field is uninitialized */
3991 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3992 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3993 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3994 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3995 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3997 if (reducing_redundancy
) {
3998 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
4000 "balance: force reducing metadata redundancy");
4003 "balance: reduces metadata redundancy, use --force if you want this");
4009 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
4010 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
4012 "balance: metadata profile %s has lower redundancy than data profile %s",
4013 btrfs_bg_type_to_raid_name(meta_target
),
4014 btrfs_bg_type_to_raid_name(data_target
));
4017 if (fs_info
->send_in_progress
) {
4018 btrfs_warn_rl(fs_info
,
4019 "cannot run balance while send operations are in progress (%d in progress)",
4020 fs_info
->send_in_progress
);
4025 ret
= insert_balance_item(fs_info
, bctl
);
4026 if (ret
&& ret
!= -EEXIST
)
4029 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
4030 BUG_ON(ret
== -EEXIST
);
4031 BUG_ON(fs_info
->balance_ctl
);
4032 spin_lock(&fs_info
->balance_lock
);
4033 fs_info
->balance_ctl
= bctl
;
4034 spin_unlock(&fs_info
->balance_lock
);
4036 BUG_ON(ret
!= -EEXIST
);
4037 spin_lock(&fs_info
->balance_lock
);
4038 update_balance_args(bctl
);
4039 spin_unlock(&fs_info
->balance_lock
);
4042 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4043 set_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4044 describe_balance_start_or_resume(fs_info
);
4045 mutex_unlock(&fs_info
->balance_mutex
);
4047 ret
= __btrfs_balance(fs_info
);
4049 mutex_lock(&fs_info
->balance_mutex
);
4050 if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_pause_req
))
4051 btrfs_info(fs_info
, "balance: paused");
4052 else if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_cancel_req
))
4053 btrfs_info(fs_info
, "balance: canceled");
4055 btrfs_info(fs_info
, "balance: ended with status: %d", ret
);
4057 clear_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4060 memset(bargs
, 0, sizeof(*bargs
));
4061 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
4064 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
4065 balance_need_close(fs_info
)) {
4066 reset_balance_state(fs_info
);
4067 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4070 wake_up(&fs_info
->balance_wait_q
);
4074 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
4075 reset_balance_state(fs_info
);
4078 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4083 static int balance_kthread(void *data
)
4085 struct btrfs_fs_info
*fs_info
= data
;
4088 mutex_lock(&fs_info
->balance_mutex
);
4089 if (fs_info
->balance_ctl
)
4090 ret
= btrfs_balance(fs_info
, fs_info
->balance_ctl
, NULL
);
4091 mutex_unlock(&fs_info
->balance_mutex
);
4096 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4098 struct task_struct
*tsk
;
4100 mutex_lock(&fs_info
->balance_mutex
);
4101 if (!fs_info
->balance_ctl
) {
4102 mutex_unlock(&fs_info
->balance_mutex
);
4105 mutex_unlock(&fs_info
->balance_mutex
);
4107 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4108 btrfs_info(fs_info
, "balance: resume skipped");
4113 * A ro->rw remount sequence should continue with the paused balance
4114 * regardless of who pauses it, system or the user as of now, so set
4117 spin_lock(&fs_info
->balance_lock
);
4118 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
4119 spin_unlock(&fs_info
->balance_lock
);
4121 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4122 return PTR_ERR_OR_ZERO(tsk
);
4125 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4127 struct btrfs_balance_control
*bctl
;
4128 struct btrfs_balance_item
*item
;
4129 struct btrfs_disk_balance_args disk_bargs
;
4130 struct btrfs_path
*path
;
4131 struct extent_buffer
*leaf
;
4132 struct btrfs_key key
;
4135 path
= btrfs_alloc_path();
4139 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4140 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4143 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4146 if (ret
> 0) { /* ret = -ENOENT; */
4151 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4157 leaf
= path
->nodes
[0];
4158 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4160 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4161 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4163 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4164 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4165 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4166 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4167 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4168 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4171 * This should never happen, as the paused balance state is recovered
4172 * during mount without any chance of other exclusive ops to collide.
4174 * This gives the exclusive op status to balance and keeps in paused
4175 * state until user intervention (cancel or umount). If the ownership
4176 * cannot be assigned, show a message but do not fail. The balance
4177 * is in a paused state and must have fs_info::balance_ctl properly
4180 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
4182 "balance: cannot set exclusive op status, resume manually");
4184 mutex_lock(&fs_info
->balance_mutex
);
4185 BUG_ON(fs_info
->balance_ctl
);
4186 spin_lock(&fs_info
->balance_lock
);
4187 fs_info
->balance_ctl
= bctl
;
4188 spin_unlock(&fs_info
->balance_lock
);
4189 mutex_unlock(&fs_info
->balance_mutex
);
4191 btrfs_free_path(path
);
4195 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4199 mutex_lock(&fs_info
->balance_mutex
);
4200 if (!fs_info
->balance_ctl
) {
4201 mutex_unlock(&fs_info
->balance_mutex
);
4205 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4206 atomic_inc(&fs_info
->balance_pause_req
);
4207 mutex_unlock(&fs_info
->balance_mutex
);
4209 wait_event(fs_info
->balance_wait_q
,
4210 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4212 mutex_lock(&fs_info
->balance_mutex
);
4213 /* we are good with balance_ctl ripped off from under us */
4214 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4215 atomic_dec(&fs_info
->balance_pause_req
);
4220 mutex_unlock(&fs_info
->balance_mutex
);
4224 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4226 mutex_lock(&fs_info
->balance_mutex
);
4227 if (!fs_info
->balance_ctl
) {
4228 mutex_unlock(&fs_info
->balance_mutex
);
4233 * A paused balance with the item stored on disk can be resumed at
4234 * mount time if the mount is read-write. Otherwise it's still paused
4235 * and we must not allow cancelling as it deletes the item.
4237 if (sb_rdonly(fs_info
->sb
)) {
4238 mutex_unlock(&fs_info
->balance_mutex
);
4242 atomic_inc(&fs_info
->balance_cancel_req
);
4244 * if we are running just wait and return, balance item is
4245 * deleted in btrfs_balance in this case
4247 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4248 mutex_unlock(&fs_info
->balance_mutex
);
4249 wait_event(fs_info
->balance_wait_q
,
4250 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4251 mutex_lock(&fs_info
->balance_mutex
);
4253 mutex_unlock(&fs_info
->balance_mutex
);
4255 * Lock released to allow other waiters to continue, we'll
4256 * reexamine the status again.
4258 mutex_lock(&fs_info
->balance_mutex
);
4260 if (fs_info
->balance_ctl
) {
4261 reset_balance_state(fs_info
);
4262 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4263 btrfs_info(fs_info
, "balance: canceled");
4267 BUG_ON(fs_info
->balance_ctl
||
4268 test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4269 atomic_dec(&fs_info
->balance_cancel_req
);
4270 mutex_unlock(&fs_info
->balance_mutex
);
4274 static int btrfs_uuid_scan_kthread(void *data
)
4276 struct btrfs_fs_info
*fs_info
= data
;
4277 struct btrfs_root
*root
= fs_info
->tree_root
;
4278 struct btrfs_key key
;
4279 struct btrfs_path
*path
= NULL
;
4281 struct extent_buffer
*eb
;
4283 struct btrfs_root_item root_item
;
4285 struct btrfs_trans_handle
*trans
= NULL
;
4287 path
= btrfs_alloc_path();
4294 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4298 ret
= btrfs_search_forward(root
, &key
, path
,
4299 BTRFS_OLDEST_GENERATION
);
4306 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4307 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4308 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4309 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4312 eb
= path
->nodes
[0];
4313 slot
= path
->slots
[0];
4314 item_size
= btrfs_item_size_nr(eb
, slot
);
4315 if (item_size
< sizeof(root_item
))
4318 read_extent_buffer(eb
, &root_item
,
4319 btrfs_item_ptr_offset(eb
, slot
),
4320 (int)sizeof(root_item
));
4321 if (btrfs_root_refs(&root_item
) == 0)
4324 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4325 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4329 btrfs_release_path(path
);
4331 * 1 - subvol uuid item
4332 * 1 - received_subvol uuid item
4334 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4335 if (IS_ERR(trans
)) {
4336 ret
= PTR_ERR(trans
);
4344 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4345 ret
= btrfs_uuid_tree_add(trans
, root_item
.uuid
,
4346 BTRFS_UUID_KEY_SUBVOL
,
4349 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4355 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4356 ret
= btrfs_uuid_tree_add(trans
,
4357 root_item
.received_uuid
,
4358 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4361 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4369 ret
= btrfs_end_transaction(trans
);
4375 btrfs_release_path(path
);
4376 if (key
.offset
< (u64
)-1) {
4378 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4380 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4381 } else if (key
.objectid
< (u64
)-1) {
4383 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4392 btrfs_free_path(path
);
4393 if (trans
&& !IS_ERR(trans
))
4394 btrfs_end_transaction(trans
);
4396 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4398 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4399 up(&fs_info
->uuid_tree_rescan_sem
);
4404 * Callback for btrfs_uuid_tree_iterate().
4406 * 0 check succeeded, the entry is not outdated.
4407 * < 0 if an error occurred.
4408 * > 0 if the check failed, which means the caller shall remove the entry.
4410 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4411 u8
*uuid
, u8 type
, u64 subid
)
4413 struct btrfs_key key
;
4415 struct btrfs_root
*subvol_root
;
4417 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4418 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4421 key
.objectid
= subid
;
4422 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4423 key
.offset
= (u64
)-1;
4424 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4425 if (IS_ERR(subvol_root
)) {
4426 ret
= PTR_ERR(subvol_root
);
4433 case BTRFS_UUID_KEY_SUBVOL
:
4434 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4437 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4438 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4448 static int btrfs_uuid_rescan_kthread(void *data
)
4450 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4454 * 1st step is to iterate through the existing UUID tree and
4455 * to delete all entries that contain outdated data.
4456 * 2nd step is to add all missing entries to the UUID tree.
4458 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4460 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4461 up(&fs_info
->uuid_tree_rescan_sem
);
4464 return btrfs_uuid_scan_kthread(data
);
4467 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4469 struct btrfs_trans_handle
*trans
;
4470 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4471 struct btrfs_root
*uuid_root
;
4472 struct task_struct
*task
;
4479 trans
= btrfs_start_transaction(tree_root
, 2);
4481 return PTR_ERR(trans
);
4483 uuid_root
= btrfs_create_tree(trans
, BTRFS_UUID_TREE_OBJECTID
);
4484 if (IS_ERR(uuid_root
)) {
4485 ret
= PTR_ERR(uuid_root
);
4486 btrfs_abort_transaction(trans
, ret
);
4487 btrfs_end_transaction(trans
);
4491 fs_info
->uuid_root
= uuid_root
;
4493 ret
= btrfs_commit_transaction(trans
);
4497 down(&fs_info
->uuid_tree_rescan_sem
);
4498 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4500 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4501 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4502 up(&fs_info
->uuid_tree_rescan_sem
);
4503 return PTR_ERR(task
);
4509 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4511 struct task_struct
*task
;
4513 down(&fs_info
->uuid_tree_rescan_sem
);
4514 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4516 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4517 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4518 up(&fs_info
->uuid_tree_rescan_sem
);
4519 return PTR_ERR(task
);
4526 * shrinking a device means finding all of the device extents past
4527 * the new size, and then following the back refs to the chunks.
4528 * The chunk relocation code actually frees the device extent
4530 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4532 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4533 struct btrfs_root
*root
= fs_info
->dev_root
;
4534 struct btrfs_trans_handle
*trans
;
4535 struct btrfs_dev_extent
*dev_extent
= NULL
;
4536 struct btrfs_path
*path
;
4542 bool retried
= false;
4543 struct extent_buffer
*l
;
4544 struct btrfs_key key
;
4545 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4546 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4547 u64 old_size
= btrfs_device_get_total_bytes(device
);
4551 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4553 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4555 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4558 path
= btrfs_alloc_path();
4562 path
->reada
= READA_BACK
;
4564 trans
= btrfs_start_transaction(root
, 0);
4565 if (IS_ERR(trans
)) {
4566 btrfs_free_path(path
);
4567 return PTR_ERR(trans
);
4570 mutex_lock(&fs_info
->chunk_mutex
);
4572 btrfs_device_set_total_bytes(device
, new_size
);
4573 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4574 device
->fs_devices
->total_rw_bytes
-= diff
;
4575 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4579 * Once the device's size has been set to the new size, ensure all
4580 * in-memory chunks are synced to disk so that the loop below sees them
4581 * and relocates them accordingly.
4583 if (contains_pending_extent(device
, &start
, diff
)) {
4584 mutex_unlock(&fs_info
->chunk_mutex
);
4585 ret
= btrfs_commit_transaction(trans
);
4589 mutex_unlock(&fs_info
->chunk_mutex
);
4590 btrfs_end_transaction(trans
);
4594 key
.objectid
= device
->devid
;
4595 key
.offset
= (u64
)-1;
4596 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4599 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4600 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4602 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4606 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4608 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4613 btrfs_release_path(path
);
4618 slot
= path
->slots
[0];
4619 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4621 if (key
.objectid
!= device
->devid
) {
4622 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4623 btrfs_release_path(path
);
4627 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4628 length
= btrfs_dev_extent_length(l
, dev_extent
);
4630 if (key
.offset
+ length
<= new_size
) {
4631 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4632 btrfs_release_path(path
);
4636 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4637 btrfs_release_path(path
);
4640 * We may be relocating the only data chunk we have,
4641 * which could potentially end up with losing data's
4642 * raid profile, so lets allocate an empty one in
4645 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4647 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4651 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4652 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4653 if (ret
== -ENOSPC
) {
4656 if (ret
== -ETXTBSY
) {
4658 "could not shrink block group %llu due to active swapfile",
4663 } while (key
.offset
-- > 0);
4665 if (failed
&& !retried
) {
4669 } else if (failed
&& retried
) {
4674 /* Shrinking succeeded, else we would be at "done". */
4675 trans
= btrfs_start_transaction(root
, 0);
4676 if (IS_ERR(trans
)) {
4677 ret
= PTR_ERR(trans
);
4681 mutex_lock(&fs_info
->chunk_mutex
);
4682 btrfs_device_set_disk_total_bytes(device
, new_size
);
4683 if (list_empty(&device
->post_commit_list
))
4684 list_add_tail(&device
->post_commit_list
,
4685 &trans
->transaction
->dev_update_list
);
4687 WARN_ON(diff
> old_total
);
4688 btrfs_set_super_total_bytes(super_copy
,
4689 round_down(old_total
- diff
, fs_info
->sectorsize
));
4690 mutex_unlock(&fs_info
->chunk_mutex
);
4692 /* Now btrfs_update_device() will change the on-disk size. */
4693 ret
= btrfs_update_device(trans
, device
);
4695 btrfs_abort_transaction(trans
, ret
);
4696 btrfs_end_transaction(trans
);
4698 ret
= btrfs_commit_transaction(trans
);
4701 btrfs_free_path(path
);
4703 mutex_lock(&fs_info
->chunk_mutex
);
4704 btrfs_device_set_total_bytes(device
, old_size
);
4705 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4706 device
->fs_devices
->total_rw_bytes
+= diff
;
4707 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4708 mutex_unlock(&fs_info
->chunk_mutex
);
4713 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4714 struct btrfs_key
*key
,
4715 struct btrfs_chunk
*chunk
, int item_size
)
4717 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4718 struct btrfs_disk_key disk_key
;
4722 mutex_lock(&fs_info
->chunk_mutex
);
4723 array_size
= btrfs_super_sys_array_size(super_copy
);
4724 if (array_size
+ item_size
+ sizeof(disk_key
)
4725 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4726 mutex_unlock(&fs_info
->chunk_mutex
);
4730 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4731 btrfs_cpu_key_to_disk(&disk_key
, key
);
4732 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4733 ptr
+= sizeof(disk_key
);
4734 memcpy(ptr
, chunk
, item_size
);
4735 item_size
+= sizeof(disk_key
);
4736 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4737 mutex_unlock(&fs_info
->chunk_mutex
);
4743 * sort the devices in descending order by max_avail, total_avail
4745 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4747 const struct btrfs_device_info
*di_a
= a
;
4748 const struct btrfs_device_info
*di_b
= b
;
4750 if (di_a
->max_avail
> di_b
->max_avail
)
4752 if (di_a
->max_avail
< di_b
->max_avail
)
4754 if (di_a
->total_avail
> di_b
->total_avail
)
4756 if (di_a
->total_avail
< di_b
->total_avail
)
4761 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4763 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4766 btrfs_set_fs_incompat(info
, RAID56
);
4769 static void check_raid1c34_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4771 if (!(type
& (BTRFS_BLOCK_GROUP_RAID1C3
| BTRFS_BLOCK_GROUP_RAID1C4
)))
4774 btrfs_set_fs_incompat(info
, RAID1C34
);
4777 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4778 u64 start
, u64 type
)
4780 struct btrfs_fs_info
*info
= trans
->fs_info
;
4781 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4782 struct btrfs_device
*device
;
4783 struct map_lookup
*map
= NULL
;
4784 struct extent_map_tree
*em_tree
;
4785 struct extent_map
*em
;
4786 struct btrfs_device_info
*devices_info
= NULL
;
4788 int num_stripes
; /* total number of stripes to allocate */
4789 int data_stripes
; /* number of stripes that count for
4791 int sub_stripes
; /* sub_stripes info for map */
4792 int dev_stripes
; /* stripes per dev */
4793 int devs_max
; /* max devs to use */
4794 int devs_min
; /* min devs needed */
4795 int devs_increment
; /* ndevs has to be a multiple of this */
4796 int ncopies
; /* how many copies to data has */
4797 int nparity
; /* number of stripes worth of bytes to
4798 store parity information */
4800 u64 max_stripe_size
;
4809 BUG_ON(!alloc_profile_is_valid(type
, 0));
4811 if (list_empty(&fs_devices
->alloc_list
)) {
4812 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4813 btrfs_debug(info
, "%s: no writable device", __func__
);
4817 index
= btrfs_bg_flags_to_raid_index(type
);
4819 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4820 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4821 devs_max
= btrfs_raid_array
[index
].devs_max
;
4823 devs_max
= BTRFS_MAX_DEVS(info
);
4824 devs_min
= btrfs_raid_array
[index
].devs_min
;
4825 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4826 ncopies
= btrfs_raid_array
[index
].ncopies
;
4827 nparity
= btrfs_raid_array
[index
].nparity
;
4829 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4830 max_stripe_size
= SZ_1G
;
4831 max_chunk_size
= BTRFS_MAX_DATA_CHUNK_SIZE
;
4832 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4833 /* for larger filesystems, use larger metadata chunks */
4834 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4835 max_stripe_size
= SZ_1G
;
4837 max_stripe_size
= SZ_256M
;
4838 max_chunk_size
= max_stripe_size
;
4839 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4840 max_stripe_size
= SZ_32M
;
4841 max_chunk_size
= 2 * max_stripe_size
;
4842 devs_max
= min_t(int, devs_max
, BTRFS_MAX_DEVS_SYS_CHUNK
);
4844 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4849 /* We don't want a chunk larger than 10% of writable space */
4850 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4853 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4859 * in the first pass through the devices list, we gather information
4860 * about the available holes on each device.
4863 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4867 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4869 "BTRFS: read-only device in alloc_list\n");
4873 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4874 &device
->dev_state
) ||
4875 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4878 if (device
->total_bytes
> device
->bytes_used
)
4879 total_avail
= device
->total_bytes
- device
->bytes_used
;
4883 /* If there is no space on this device, skip it. */
4884 if (total_avail
== 0)
4887 ret
= find_free_dev_extent(device
,
4888 max_stripe_size
* dev_stripes
,
4889 &dev_offset
, &max_avail
);
4890 if (ret
&& ret
!= -ENOSPC
)
4894 max_avail
= max_stripe_size
* dev_stripes
;
4896 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
) {
4897 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4899 "%s: devid %llu has no free space, have=%llu want=%u",
4900 __func__
, device
->devid
, max_avail
,
4901 BTRFS_STRIPE_LEN
* dev_stripes
);
4905 if (ndevs
== fs_devices
->rw_devices
) {
4906 WARN(1, "%s: found more than %llu devices\n",
4907 __func__
, fs_devices
->rw_devices
);
4910 devices_info
[ndevs
].dev_offset
= dev_offset
;
4911 devices_info
[ndevs
].max_avail
= max_avail
;
4912 devices_info
[ndevs
].total_avail
= total_avail
;
4913 devices_info
[ndevs
].dev
= device
;
4918 * now sort the devices by hole size / available space
4920 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4921 btrfs_cmp_device_info
, NULL
);
4924 * Round down to number of usable stripes, devs_increment can be any
4925 * number so we can't use round_down()
4927 ndevs
-= ndevs
% devs_increment
;
4929 if (ndevs
< devs_min
) {
4931 if (btrfs_test_opt(info
, ENOSPC_DEBUG
)) {
4933 "%s: not enough devices with free space: have=%d minimum required=%d",
4934 __func__
, ndevs
, devs_min
);
4939 ndevs
= min(ndevs
, devs_max
);
4942 * The primary goal is to maximize the number of stripes, so use as
4943 * many devices as possible, even if the stripes are not maximum sized.
4945 * The DUP profile stores more than one stripe per device, the
4946 * max_avail is the total size so we have to adjust.
4948 stripe_size
= div_u64(devices_info
[ndevs
- 1].max_avail
, dev_stripes
);
4949 num_stripes
= ndevs
* dev_stripes
;
4952 * this will have to be fixed for RAID1 and RAID10 over
4955 data_stripes
= (num_stripes
- nparity
) / ncopies
;
4958 * Use the number of data stripes to figure out how big this chunk
4959 * is really going to be in terms of logical address space,
4960 * and compare that answer with the max chunk size. If it's higher,
4961 * we try to reduce stripe_size.
4963 if (stripe_size
* data_stripes
> max_chunk_size
) {
4965 * Reduce stripe_size, round it up to a 16MB boundary again and
4966 * then use it, unless it ends up being even bigger than the
4967 * previous value we had already.
4969 stripe_size
= min(round_up(div_u64(max_chunk_size
,
4970 data_stripes
), SZ_16M
),
4974 /* align to BTRFS_STRIPE_LEN */
4975 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4977 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4982 map
->num_stripes
= num_stripes
;
4984 for (i
= 0; i
< ndevs
; ++i
) {
4985 for (j
= 0; j
< dev_stripes
; ++j
) {
4986 int s
= i
* dev_stripes
+ j
;
4987 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4988 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4992 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4993 map
->io_align
= BTRFS_STRIPE_LEN
;
4994 map
->io_width
= BTRFS_STRIPE_LEN
;
4996 map
->sub_stripes
= sub_stripes
;
4998 chunk_size
= stripe_size
* data_stripes
;
5000 trace_btrfs_chunk_alloc(info
, map
, start
, chunk_size
);
5002 em
= alloc_extent_map();
5008 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
5009 em
->map_lookup
= map
;
5011 em
->len
= chunk_size
;
5012 em
->block_start
= 0;
5013 em
->block_len
= em
->len
;
5014 em
->orig_block_len
= stripe_size
;
5016 em_tree
= &info
->mapping_tree
;
5017 write_lock(&em_tree
->lock
);
5018 ret
= add_extent_mapping(em_tree
, em
, 0);
5020 write_unlock(&em_tree
->lock
);
5021 free_extent_map(em
);
5024 write_unlock(&em_tree
->lock
);
5026 ret
= btrfs_make_block_group(trans
, 0, type
, start
, chunk_size
);
5028 goto error_del_extent
;
5030 for (i
= 0; i
< map
->num_stripes
; i
++) {
5031 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
5033 btrfs_device_set_bytes_used(dev
, dev
->bytes_used
+ stripe_size
);
5034 if (list_empty(&dev
->post_commit_list
))
5035 list_add_tail(&dev
->post_commit_list
,
5036 &trans
->transaction
->dev_update_list
);
5039 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
5041 free_extent_map(em
);
5042 check_raid56_incompat_flag(info
, type
);
5043 check_raid1c34_incompat_flag(info
, type
);
5045 kfree(devices_info
);
5049 write_lock(&em_tree
->lock
);
5050 remove_extent_mapping(em_tree
, em
);
5051 write_unlock(&em_tree
->lock
);
5053 /* One for our allocation */
5054 free_extent_map(em
);
5055 /* One for the tree reference */
5056 free_extent_map(em
);
5058 kfree(devices_info
);
5062 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
5063 u64 chunk_offset
, u64 chunk_size
)
5065 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5066 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5067 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
5068 struct btrfs_key key
;
5069 struct btrfs_device
*device
;
5070 struct btrfs_chunk
*chunk
;
5071 struct btrfs_stripe
*stripe
;
5072 struct extent_map
*em
;
5073 struct map_lookup
*map
;
5080 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
5084 map
= em
->map_lookup
;
5085 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
5086 stripe_size
= em
->orig_block_len
;
5088 chunk
= kzalloc(item_size
, GFP_NOFS
);
5095 * Take the device list mutex to prevent races with the final phase of
5096 * a device replace operation that replaces the device object associated
5097 * with the map's stripes, because the device object's id can change
5098 * at any time during that final phase of the device replace operation
5099 * (dev-replace.c:btrfs_dev_replace_finishing()).
5101 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5102 for (i
= 0; i
< map
->num_stripes
; i
++) {
5103 device
= map
->stripes
[i
].dev
;
5104 dev_offset
= map
->stripes
[i
].physical
;
5106 ret
= btrfs_update_device(trans
, device
);
5109 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5110 dev_offset
, stripe_size
);
5115 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5119 stripe
= &chunk
->stripe
;
5120 for (i
= 0; i
< map
->num_stripes
; i
++) {
5121 device
= map
->stripes
[i
].dev
;
5122 dev_offset
= map
->stripes
[i
].physical
;
5124 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5125 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5126 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5129 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5131 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5132 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5133 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5134 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5135 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5136 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5137 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5138 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5139 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5141 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5142 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5143 key
.offset
= chunk_offset
;
5145 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5146 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5148 * TODO: Cleanup of inserted chunk root in case of
5151 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5156 free_extent_map(em
);
5161 * Chunk allocation falls into two parts. The first part does work
5162 * that makes the new allocated chunk usable, but does not do any operation
5163 * that modifies the chunk tree. The second part does the work that
5164 * requires modifying the chunk tree. This division is important for the
5165 * bootstrap process of adding storage to a seed btrfs.
5167 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
, u64 type
)
5171 lockdep_assert_held(&trans
->fs_info
->chunk_mutex
);
5172 chunk_offset
= find_next_chunk(trans
->fs_info
);
5173 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5176 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
)
5178 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5180 u64 sys_chunk_offset
;
5184 chunk_offset
= find_next_chunk(fs_info
);
5185 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5186 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5190 sys_chunk_offset
= find_next_chunk(fs_info
);
5191 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5192 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5196 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5198 const int index
= btrfs_bg_flags_to_raid_index(map
->type
);
5200 return btrfs_raid_array
[index
].tolerated_failures
;
5203 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5205 struct extent_map
*em
;
5206 struct map_lookup
*map
;
5211 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
5215 map
= em
->map_lookup
;
5216 for (i
= 0; i
< map
->num_stripes
; i
++) {
5217 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5218 &map
->stripes
[i
].dev
->dev_state
)) {
5222 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5223 &map
->stripes
[i
].dev
->dev_state
)) {
5230 * If the number of missing devices is larger than max errors,
5231 * we can not write the data into that chunk successfully, so
5234 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5237 free_extent_map(em
);
5241 void btrfs_mapping_tree_free(struct extent_map_tree
*tree
)
5243 struct extent_map
*em
;
5246 write_lock(&tree
->lock
);
5247 em
= lookup_extent_mapping(tree
, 0, (u64
)-1);
5249 remove_extent_mapping(tree
, em
);
5250 write_unlock(&tree
->lock
);
5254 free_extent_map(em
);
5255 /* once for the tree */
5256 free_extent_map(em
);
5260 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5262 struct extent_map
*em
;
5263 struct map_lookup
*map
;
5266 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5269 * We could return errors for these cases, but that could get
5270 * ugly and we'd probably do the same thing which is just not do
5271 * anything else and exit, so return 1 so the callers don't try
5272 * to use other copies.
5276 map
= em
->map_lookup
;
5277 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1_MASK
))
5278 ret
= map
->num_stripes
;
5279 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5280 ret
= map
->sub_stripes
;
5281 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5283 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5285 * There could be two corrupted data stripes, we need
5286 * to loop retry in order to rebuild the correct data.
5288 * Fail a stripe at a time on every retry except the
5289 * stripe under reconstruction.
5291 ret
= map
->num_stripes
;
5294 free_extent_map(em
);
5296 down_read(&fs_info
->dev_replace
.rwsem
);
5297 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5298 fs_info
->dev_replace
.tgtdev
)
5300 up_read(&fs_info
->dev_replace
.rwsem
);
5305 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5308 struct extent_map
*em
;
5309 struct map_lookup
*map
;
5310 unsigned long len
= fs_info
->sectorsize
;
5312 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5314 if (!WARN_ON(IS_ERR(em
))) {
5315 map
= em
->map_lookup
;
5316 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5317 len
= map
->stripe_len
* nr_data_stripes(map
);
5318 free_extent_map(em
);
5323 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5325 struct extent_map
*em
;
5326 struct map_lookup
*map
;
5329 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5331 if(!WARN_ON(IS_ERR(em
))) {
5332 map
= em
->map_lookup
;
5333 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5335 free_extent_map(em
);
5340 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5341 struct map_lookup
*map
, int first
,
5342 int dev_replace_is_ongoing
)
5346 int preferred_mirror
;
5348 struct btrfs_device
*srcdev
;
5351 (BTRFS_BLOCK_GROUP_RAID1_MASK
| BTRFS_BLOCK_GROUP_RAID10
)));
5353 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5354 num_stripes
= map
->sub_stripes
;
5356 num_stripes
= map
->num_stripes
;
5358 preferred_mirror
= first
+ current
->pid
% num_stripes
;
5360 if (dev_replace_is_ongoing
&&
5361 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5362 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5363 srcdev
= fs_info
->dev_replace
.srcdev
;
5368 * try to avoid the drive that is the source drive for a
5369 * dev-replace procedure, only choose it if no other non-missing
5370 * mirror is available
5372 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5373 if (map
->stripes
[preferred_mirror
].dev
->bdev
&&
5374 (tolerance
|| map
->stripes
[preferred_mirror
].dev
!= srcdev
))
5375 return preferred_mirror
;
5376 for (i
= first
; i
< first
+ num_stripes
; i
++) {
5377 if (map
->stripes
[i
].dev
->bdev
&&
5378 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5383 /* we couldn't find one that doesn't fail. Just return something
5384 * and the io error handling code will clean up eventually
5386 return preferred_mirror
;
5389 static inline int parity_smaller(u64 a
, u64 b
)
5394 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5395 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5397 struct btrfs_bio_stripe s
;
5404 for (i
= 0; i
< num_stripes
- 1; i
++) {
5405 if (parity_smaller(bbio
->raid_map
[i
],
5406 bbio
->raid_map
[i
+1])) {
5407 s
= bbio
->stripes
[i
];
5408 l
= bbio
->raid_map
[i
];
5409 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5410 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5411 bbio
->stripes
[i
+1] = s
;
5412 bbio
->raid_map
[i
+1] = l
;
5420 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5422 struct btrfs_bio
*bbio
= kzalloc(
5423 /* the size of the btrfs_bio */
5424 sizeof(struct btrfs_bio
) +
5425 /* plus the variable array for the stripes */
5426 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5427 /* plus the variable array for the tgt dev */
5428 sizeof(int) * (real_stripes
) +
5430 * plus the raid_map, which includes both the tgt dev
5433 sizeof(u64
) * (total_stripes
),
5434 GFP_NOFS
|__GFP_NOFAIL
);
5436 atomic_set(&bbio
->error
, 0);
5437 refcount_set(&bbio
->refs
, 1);
5442 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5444 WARN_ON(!refcount_read(&bbio
->refs
));
5445 refcount_inc(&bbio
->refs
);
5448 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5452 if (refcount_dec_and_test(&bbio
->refs
))
5456 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5458 * Please note that, discard won't be sent to target device of device
5461 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5462 u64 logical
, u64
*length_ret
,
5463 struct btrfs_bio
**bbio_ret
)
5465 struct extent_map
*em
;
5466 struct map_lookup
*map
;
5467 struct btrfs_bio
*bbio
;
5468 u64 length
= *length_ret
;
5472 u64 stripe_end_offset
;
5479 u32 sub_stripes
= 0;
5480 u64 stripes_per_dev
= 0;
5481 u32 remaining_stripes
= 0;
5482 u32 last_stripe
= 0;
5486 /* discard always return a bbio */
5489 em
= btrfs_get_chunk_map(fs_info
, logical
, length
);
5493 map
= em
->map_lookup
;
5494 /* we don't discard raid56 yet */
5495 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5500 offset
= logical
- em
->start
;
5501 length
= min_t(u64
, em
->start
+ em
->len
- logical
, length
);
5502 *length_ret
= length
;
5504 stripe_len
= map
->stripe_len
;
5506 * stripe_nr counts the total number of stripes we have to stride
5507 * to get to this block
5509 stripe_nr
= div64_u64(offset
, stripe_len
);
5511 /* stripe_offset is the offset of this block in its stripe */
5512 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5514 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5515 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5516 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5517 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5520 * after this, stripe_nr is the number of stripes on this
5521 * device we have to walk to find the data, and stripe_index is
5522 * the number of our device in the stripe array
5526 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5527 BTRFS_BLOCK_GROUP_RAID10
)) {
5528 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5531 sub_stripes
= map
->sub_stripes
;
5533 factor
= map
->num_stripes
/ sub_stripes
;
5534 num_stripes
= min_t(u64
, map
->num_stripes
,
5535 sub_stripes
* stripe_cnt
);
5536 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5537 stripe_index
*= sub_stripes
;
5538 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5539 &remaining_stripes
);
5540 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5541 last_stripe
*= sub_stripes
;
5542 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1_MASK
|
5543 BTRFS_BLOCK_GROUP_DUP
)) {
5544 num_stripes
= map
->num_stripes
;
5546 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5550 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5556 for (i
= 0; i
< num_stripes
; i
++) {
5557 bbio
->stripes
[i
].physical
=
5558 map
->stripes
[stripe_index
].physical
+
5559 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5560 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5562 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5563 BTRFS_BLOCK_GROUP_RAID10
)) {
5564 bbio
->stripes
[i
].length
= stripes_per_dev
*
5567 if (i
/ sub_stripes
< remaining_stripes
)
5568 bbio
->stripes
[i
].length
+=
5572 * Special for the first stripe and
5575 * |-------|...|-------|
5579 if (i
< sub_stripes
)
5580 bbio
->stripes
[i
].length
-=
5583 if (stripe_index
>= last_stripe
&&
5584 stripe_index
<= (last_stripe
+
5586 bbio
->stripes
[i
].length
-=
5589 if (i
== sub_stripes
- 1)
5592 bbio
->stripes
[i
].length
= length
;
5596 if (stripe_index
== map
->num_stripes
) {
5603 bbio
->map_type
= map
->type
;
5604 bbio
->num_stripes
= num_stripes
;
5606 free_extent_map(em
);
5611 * In dev-replace case, for repair case (that's the only case where the mirror
5612 * is selected explicitly when calling btrfs_map_block), blocks left of the
5613 * left cursor can also be read from the target drive.
5615 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5617 * For READ, it also needs to be supported using the same mirror number.
5619 * If the requested block is not left of the left cursor, EIO is returned. This
5620 * can happen because btrfs_num_copies() returns one more in the dev-replace
5623 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5624 u64 logical
, u64 length
,
5625 u64 srcdev_devid
, int *mirror_num
,
5628 struct btrfs_bio
*bbio
= NULL
;
5630 int index_srcdev
= 0;
5632 u64 physical_of_found
= 0;
5636 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5637 logical
, &length
, &bbio
, 0, 0);
5639 ASSERT(bbio
== NULL
);
5643 num_stripes
= bbio
->num_stripes
;
5644 if (*mirror_num
> num_stripes
) {
5646 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5647 * that means that the requested area is not left of the left
5650 btrfs_put_bbio(bbio
);
5655 * process the rest of the function using the mirror_num of the source
5656 * drive. Therefore look it up first. At the end, patch the device
5657 * pointer to the one of the target drive.
5659 for (i
= 0; i
< num_stripes
; i
++) {
5660 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5664 * In case of DUP, in order to keep it simple, only add the
5665 * mirror with the lowest physical address
5668 physical_of_found
<= bbio
->stripes
[i
].physical
)
5673 physical_of_found
= bbio
->stripes
[i
].physical
;
5676 btrfs_put_bbio(bbio
);
5682 *mirror_num
= index_srcdev
+ 1;
5683 *physical
= physical_of_found
;
5687 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5688 struct btrfs_bio
**bbio_ret
,
5689 struct btrfs_dev_replace
*dev_replace
,
5690 int *num_stripes_ret
, int *max_errors_ret
)
5692 struct btrfs_bio
*bbio
= *bbio_ret
;
5693 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5694 int tgtdev_indexes
= 0;
5695 int num_stripes
= *num_stripes_ret
;
5696 int max_errors
= *max_errors_ret
;
5699 if (op
== BTRFS_MAP_WRITE
) {
5700 int index_where_to_add
;
5703 * duplicate the write operations while the dev replace
5704 * procedure is running. Since the copying of the old disk to
5705 * the new disk takes place at run time while the filesystem is
5706 * mounted writable, the regular write operations to the old
5707 * disk have to be duplicated to go to the new disk as well.
5709 * Note that device->missing is handled by the caller, and that
5710 * the write to the old disk is already set up in the stripes
5713 index_where_to_add
= num_stripes
;
5714 for (i
= 0; i
< num_stripes
; i
++) {
5715 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5716 /* write to new disk, too */
5717 struct btrfs_bio_stripe
*new =
5718 bbio
->stripes
+ index_where_to_add
;
5719 struct btrfs_bio_stripe
*old
=
5722 new->physical
= old
->physical
;
5723 new->length
= old
->length
;
5724 new->dev
= dev_replace
->tgtdev
;
5725 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5726 index_where_to_add
++;
5731 num_stripes
= index_where_to_add
;
5732 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5733 int index_srcdev
= 0;
5735 u64 physical_of_found
= 0;
5738 * During the dev-replace procedure, the target drive can also
5739 * be used to read data in case it is needed to repair a corrupt
5740 * block elsewhere. This is possible if the requested area is
5741 * left of the left cursor. In this area, the target drive is a
5742 * full copy of the source drive.
5744 for (i
= 0; i
< num_stripes
; i
++) {
5745 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5747 * In case of DUP, in order to keep it simple,
5748 * only add the mirror with the lowest physical
5752 physical_of_found
<=
5753 bbio
->stripes
[i
].physical
)
5757 physical_of_found
= bbio
->stripes
[i
].physical
;
5761 struct btrfs_bio_stripe
*tgtdev_stripe
=
5762 bbio
->stripes
+ num_stripes
;
5764 tgtdev_stripe
->physical
= physical_of_found
;
5765 tgtdev_stripe
->length
=
5766 bbio
->stripes
[index_srcdev
].length
;
5767 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5768 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5775 *num_stripes_ret
= num_stripes
;
5776 *max_errors_ret
= max_errors
;
5777 bbio
->num_tgtdevs
= tgtdev_indexes
;
5781 static bool need_full_stripe(enum btrfs_map_op op
)
5783 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5787 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5788 * tuple. This information is used to calculate how big a
5789 * particular bio can get before it straddles a stripe.
5791 * @fs_info - the filesystem
5792 * @logical - address that we want to figure out the geometry of
5793 * @len - the length of IO we are going to perform, starting at @logical
5794 * @op - type of operation - write or read
5795 * @io_geom - pointer used to return values
5797 * Returns < 0 in case a chunk for the given logical address cannot be found,
5798 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5800 int btrfs_get_io_geometry(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5801 u64 logical
, u64 len
, struct btrfs_io_geometry
*io_geom
)
5803 struct extent_map
*em
;
5804 struct map_lookup
*map
;
5809 u64 raid56_full_stripe_start
= (u64
)-1;
5813 ASSERT(op
!= BTRFS_MAP_DISCARD
);
5815 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5819 map
= em
->map_lookup
;
5820 /* Offset of this logical address in the chunk */
5821 offset
= logical
- em
->start
;
5822 /* Len of a stripe in a chunk */
5823 stripe_len
= map
->stripe_len
;
5824 /* Stripe wher this block falls in */
5825 stripe_nr
= div64_u64(offset
, stripe_len
);
5826 /* Offset of stripe in the chunk */
5827 stripe_offset
= stripe_nr
* stripe_len
;
5828 if (offset
< stripe_offset
) {
5830 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5831 stripe_offset
, offset
, em
->start
, logical
, stripe_len
);
5836 /* stripe_offset is the offset of this block in its stripe */
5837 stripe_offset
= offset
- stripe_offset
;
5838 data_stripes
= nr_data_stripes(map
);
5840 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5841 u64 max_len
= stripe_len
- stripe_offset
;
5844 * In case of raid56, we need to know the stripe aligned start
5846 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5847 unsigned long full_stripe_len
= stripe_len
* data_stripes
;
5848 raid56_full_stripe_start
= offset
;
5851 * Allow a write of a full stripe, but make sure we
5852 * don't allow straddling of stripes
5854 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5856 raid56_full_stripe_start
*= full_stripe_len
;
5859 * For writes to RAID[56], allow a full stripeset across
5860 * all disks. For other RAID types and for RAID[56]
5861 * reads, just allow a single stripe (on a single disk).
5863 if (op
== BTRFS_MAP_WRITE
) {
5864 max_len
= stripe_len
* data_stripes
-
5865 (offset
- raid56_full_stripe_start
);
5868 len
= min_t(u64
, em
->len
- offset
, max_len
);
5870 len
= em
->len
- offset
;
5874 io_geom
->offset
= offset
;
5875 io_geom
->stripe_len
= stripe_len
;
5876 io_geom
->stripe_nr
= stripe_nr
;
5877 io_geom
->stripe_offset
= stripe_offset
;
5878 io_geom
->raid56_stripe_offset
= raid56_full_stripe_start
;
5882 free_extent_map(em
);
5886 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5887 enum btrfs_map_op op
,
5888 u64 logical
, u64
*length
,
5889 struct btrfs_bio
**bbio_ret
,
5890 int mirror_num
, int need_raid_map
)
5892 struct extent_map
*em
;
5893 struct map_lookup
*map
;
5903 int tgtdev_indexes
= 0;
5904 struct btrfs_bio
*bbio
= NULL
;
5905 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5906 int dev_replace_is_ongoing
= 0;
5907 int num_alloc_stripes
;
5908 int patch_the_first_stripe_for_dev_replace
= 0;
5909 u64 physical_to_patch_in_first_stripe
= 0;
5910 u64 raid56_full_stripe_start
= (u64
)-1;
5911 struct btrfs_io_geometry geom
;
5915 if (op
== BTRFS_MAP_DISCARD
)
5916 return __btrfs_map_block_for_discard(fs_info
, logical
,
5919 ret
= btrfs_get_io_geometry(fs_info
, op
, logical
, *length
, &geom
);
5923 em
= btrfs_get_chunk_map(fs_info
, logical
, *length
);
5924 ASSERT(!IS_ERR(em
));
5925 map
= em
->map_lookup
;
5928 stripe_len
= geom
.stripe_len
;
5929 stripe_nr
= geom
.stripe_nr
;
5930 stripe_offset
= geom
.stripe_offset
;
5931 raid56_full_stripe_start
= geom
.raid56_stripe_offset
;
5932 data_stripes
= nr_data_stripes(map
);
5934 down_read(&dev_replace
->rwsem
);
5935 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5937 * Hold the semaphore for read during the whole operation, write is
5938 * requested at commit time but must wait.
5940 if (!dev_replace_is_ongoing
)
5941 up_read(&dev_replace
->rwsem
);
5943 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5944 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5945 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5946 dev_replace
->srcdev
->devid
,
5948 &physical_to_patch_in_first_stripe
);
5952 patch_the_first_stripe_for_dev_replace
= 1;
5953 } else if (mirror_num
> map
->num_stripes
) {
5959 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5960 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5962 if (!need_full_stripe(op
))
5964 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1_MASK
) {
5965 if (need_full_stripe(op
))
5966 num_stripes
= map
->num_stripes
;
5967 else if (mirror_num
)
5968 stripe_index
= mirror_num
- 1;
5970 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5971 dev_replace_is_ongoing
);
5972 mirror_num
= stripe_index
+ 1;
5975 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5976 if (need_full_stripe(op
)) {
5977 num_stripes
= map
->num_stripes
;
5978 } else if (mirror_num
) {
5979 stripe_index
= mirror_num
- 1;
5984 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5985 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5987 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5988 stripe_index
*= map
->sub_stripes
;
5990 if (need_full_stripe(op
))
5991 num_stripes
= map
->sub_stripes
;
5992 else if (mirror_num
)
5993 stripe_index
+= mirror_num
- 1;
5995 int old_stripe_index
= stripe_index
;
5996 stripe_index
= find_live_mirror(fs_info
, map
,
5998 dev_replace_is_ongoing
);
5999 mirror_num
= stripe_index
- old_stripe_index
+ 1;
6002 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6003 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
6004 /* push stripe_nr back to the start of the full stripe */
6005 stripe_nr
= div64_u64(raid56_full_stripe_start
,
6006 stripe_len
* data_stripes
);
6008 /* RAID[56] write or recovery. Return all stripes */
6009 num_stripes
= map
->num_stripes
;
6010 max_errors
= nr_parity_stripes(map
);
6012 *length
= map
->stripe_len
;
6017 * Mirror #0 or #1 means the original data block.
6018 * Mirror #2 is RAID5 parity block.
6019 * Mirror #3 is RAID6 Q block.
6021 stripe_nr
= div_u64_rem(stripe_nr
,
6022 data_stripes
, &stripe_index
);
6024 stripe_index
= data_stripes
+ mirror_num
- 2;
6026 /* We distribute the parity blocks across stripes */
6027 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
6029 if (!need_full_stripe(op
) && mirror_num
<= 1)
6034 * after this, stripe_nr is the number of stripes on this
6035 * device we have to walk to find the data, and stripe_index is
6036 * the number of our device in the stripe array
6038 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6040 mirror_num
= stripe_index
+ 1;
6042 if (stripe_index
>= map
->num_stripes
) {
6044 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6045 stripe_index
, map
->num_stripes
);
6050 num_alloc_stripes
= num_stripes
;
6051 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
6052 if (op
== BTRFS_MAP_WRITE
)
6053 num_alloc_stripes
<<= 1;
6054 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
6055 num_alloc_stripes
++;
6056 tgtdev_indexes
= num_stripes
;
6059 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
6064 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
6065 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
6067 /* build raid_map */
6068 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
6069 (need_full_stripe(op
) || mirror_num
> 1)) {
6073 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
6074 sizeof(struct btrfs_bio_stripe
) *
6076 sizeof(int) * tgtdev_indexes
);
6078 /* Work out the disk rotation on this stripe-set */
6079 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
6081 /* Fill in the logical address of each stripe */
6082 tmp
= stripe_nr
* data_stripes
;
6083 for (i
= 0; i
< data_stripes
; i
++)
6084 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
6085 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
6087 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
6088 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
6089 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
6094 for (i
= 0; i
< num_stripes
; i
++) {
6095 bbio
->stripes
[i
].physical
=
6096 map
->stripes
[stripe_index
].physical
+
6098 stripe_nr
* map
->stripe_len
;
6099 bbio
->stripes
[i
].dev
=
6100 map
->stripes
[stripe_index
].dev
;
6104 if (need_full_stripe(op
))
6105 max_errors
= btrfs_chunk_max_errors(map
);
6108 sort_parity_stripes(bbio
, num_stripes
);
6110 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
6111 need_full_stripe(op
)) {
6112 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
6117 bbio
->map_type
= map
->type
;
6118 bbio
->num_stripes
= num_stripes
;
6119 bbio
->max_errors
= max_errors
;
6120 bbio
->mirror_num
= mirror_num
;
6123 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6124 * mirror_num == num_stripes + 1 && dev_replace target drive is
6125 * available as a mirror
6127 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
6128 WARN_ON(num_stripes
> 1);
6129 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
6130 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
6131 bbio
->mirror_num
= map
->num_stripes
+ 1;
6134 if (dev_replace_is_ongoing
) {
6135 lockdep_assert_held(&dev_replace
->rwsem
);
6136 /* Unlock and let waiting writers proceed */
6137 up_read(&dev_replace
->rwsem
);
6139 free_extent_map(em
);
6143 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6144 u64 logical
, u64
*length
,
6145 struct btrfs_bio
**bbio_ret
, int mirror_num
)
6147 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
6151 /* For Scrub/replace */
6152 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6153 u64 logical
, u64
*length
,
6154 struct btrfs_bio
**bbio_ret
)
6156 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6159 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
, u64 chunk_start
,
6160 u64 physical
, u64
**logical
, int *naddrs
, int *stripe_len
)
6162 struct extent_map
*em
;
6163 struct map_lookup
*map
;
6171 em
= btrfs_get_chunk_map(fs_info
, chunk_start
, 1);
6175 map
= em
->map_lookup
;
6177 rmap_len
= map
->stripe_len
;
6179 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
6180 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
6181 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
6182 length
= div_u64(length
, map
->num_stripes
);
6183 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6184 length
= div_u64(length
, nr_data_stripes(map
));
6185 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6188 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6189 BUG_ON(!buf
); /* -ENOMEM */
6191 for (i
= 0; i
< map
->num_stripes
; i
++) {
6192 if (map
->stripes
[i
].physical
> physical
||
6193 map
->stripes
[i
].physical
+ length
<= physical
)
6196 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6197 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6199 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6200 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6201 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6202 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6203 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6204 } /* else if RAID[56], multiply by nr_data_stripes().
6205 * Alternatively, just use rmap_len below instead of
6206 * map->stripe_len */
6208 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6209 WARN_ON(nr
>= map
->num_stripes
);
6210 for (j
= 0; j
< nr
; j
++) {
6211 if (buf
[j
] == bytenr
)
6215 WARN_ON(nr
>= map
->num_stripes
);
6222 *stripe_len
= rmap_len
;
6224 free_extent_map(em
);
6228 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6230 bio
->bi_private
= bbio
->private;
6231 bio
->bi_end_io
= bbio
->end_io
;
6234 btrfs_put_bbio(bbio
);
6237 static void btrfs_end_bio(struct bio
*bio
)
6239 struct btrfs_bio
*bbio
= bio
->bi_private
;
6240 int is_orig_bio
= 0;
6242 if (bio
->bi_status
) {
6243 atomic_inc(&bbio
->error
);
6244 if (bio
->bi_status
== BLK_STS_IOERR
||
6245 bio
->bi_status
== BLK_STS_TARGET
) {
6246 unsigned int stripe_index
=
6247 btrfs_io_bio(bio
)->stripe_index
;
6248 struct btrfs_device
*dev
;
6250 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6251 dev
= bbio
->stripes
[stripe_index
].dev
;
6253 if (bio_op(bio
) == REQ_OP_WRITE
)
6254 btrfs_dev_stat_inc_and_print(dev
,
6255 BTRFS_DEV_STAT_WRITE_ERRS
);
6256 else if (!(bio
->bi_opf
& REQ_RAHEAD
))
6257 btrfs_dev_stat_inc_and_print(dev
,
6258 BTRFS_DEV_STAT_READ_ERRS
);
6259 if (bio
->bi_opf
& REQ_PREFLUSH
)
6260 btrfs_dev_stat_inc_and_print(dev
,
6261 BTRFS_DEV_STAT_FLUSH_ERRS
);
6266 if (bio
== bbio
->orig_bio
)
6269 btrfs_bio_counter_dec(bbio
->fs_info
);
6271 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6274 bio
= bbio
->orig_bio
;
6277 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6278 /* only send an error to the higher layers if it is
6279 * beyond the tolerance of the btrfs bio
6281 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6282 bio
->bi_status
= BLK_STS_IOERR
;
6285 * this bio is actually up to date, we didn't
6286 * go over the max number of errors
6288 bio
->bi_status
= BLK_STS_OK
;
6291 btrfs_end_bbio(bbio
, bio
);
6292 } else if (!is_orig_bio
) {
6297 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6298 u64 physical
, int dev_nr
)
6300 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6301 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6303 bio
->bi_private
= bbio
;
6304 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6305 bio
->bi_end_io
= btrfs_end_bio
;
6306 bio
->bi_iter
.bi_sector
= physical
>> 9;
6307 btrfs_debug_in_rcu(fs_info
,
6308 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6309 bio_op(bio
), bio
->bi_opf
, (u64
)bio
->bi_iter
.bi_sector
,
6310 (u_long
)dev
->bdev
->bd_dev
, rcu_str_deref(dev
->name
), dev
->devid
,
6311 bio
->bi_iter
.bi_size
);
6312 bio_set_dev(bio
, dev
->bdev
);
6314 btrfs_bio_counter_inc_noblocked(fs_info
);
6316 btrfsic_submit_bio(bio
);
6319 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6321 atomic_inc(&bbio
->error
);
6322 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6323 /* Should be the original bio. */
6324 WARN_ON(bio
!= bbio
->orig_bio
);
6326 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6327 bio
->bi_iter
.bi_sector
= logical
>> 9;
6328 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6329 bio
->bi_status
= BLK_STS_IOERR
;
6331 bio
->bi_status
= BLK_STS_OK
;
6332 btrfs_end_bbio(bbio
, bio
);
6336 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6339 struct btrfs_device
*dev
;
6340 struct bio
*first_bio
= bio
;
6341 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6347 struct btrfs_bio
*bbio
= NULL
;
6349 length
= bio
->bi_iter
.bi_size
;
6350 map_length
= length
;
6352 btrfs_bio_counter_inc_blocked(fs_info
);
6353 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6354 &map_length
, &bbio
, mirror_num
, 1);
6356 btrfs_bio_counter_dec(fs_info
);
6357 return errno_to_blk_status(ret
);
6360 total_devs
= bbio
->num_stripes
;
6361 bbio
->orig_bio
= first_bio
;
6362 bbio
->private = first_bio
->bi_private
;
6363 bbio
->end_io
= first_bio
->bi_end_io
;
6364 bbio
->fs_info
= fs_info
;
6365 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6367 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6368 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6369 /* In this case, map_length has been set to the length of
6370 a single stripe; not the whole write */
6371 if (bio_op(bio
) == REQ_OP_WRITE
) {
6372 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6375 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6376 map_length
, mirror_num
, 1);
6379 btrfs_bio_counter_dec(fs_info
);
6380 return errno_to_blk_status(ret
);
6383 if (map_length
< length
) {
6385 "mapping failed logical %llu bio len %llu len %llu",
6386 logical
, length
, map_length
);
6390 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6391 dev
= bbio
->stripes
[dev_nr
].dev
;
6392 if (!dev
|| !dev
->bdev
|| test_bit(BTRFS_DEV_STATE_MISSING
,
6394 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6395 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6396 bbio_error(bbio
, first_bio
, logical
);
6400 if (dev_nr
< total_devs
- 1)
6401 bio
= btrfs_bio_clone(first_bio
);
6405 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6408 btrfs_bio_counter_dec(fs_info
);
6413 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6416 * If devid and uuid are both specified, the match must be exact, otherwise
6417 * only devid is used.
6419 * If @seed is true, traverse through the seed devices.
6421 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_devices
*fs_devices
,
6422 u64 devid
, u8
*uuid
, u8
*fsid
,
6425 struct btrfs_device
*device
;
6427 while (fs_devices
) {
6429 !memcmp(fs_devices
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
)) {
6430 list_for_each_entry(device
, &fs_devices
->devices
,
6432 if (device
->devid
== devid
&&
6433 (!uuid
|| memcmp(device
->uuid
, uuid
,
6434 BTRFS_UUID_SIZE
) == 0))
6439 fs_devices
= fs_devices
->seed
;
6446 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6447 u64 devid
, u8
*dev_uuid
)
6449 struct btrfs_device
*device
;
6451 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6455 list_add(&device
->dev_list
, &fs_devices
->devices
);
6456 device
->fs_devices
= fs_devices
;
6457 fs_devices
->num_devices
++;
6459 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6460 fs_devices
->missing_devices
++;
6466 * btrfs_alloc_device - allocate struct btrfs_device
6467 * @fs_info: used only for generating a new devid, can be NULL if
6468 * devid is provided (i.e. @devid != NULL).
6469 * @devid: a pointer to devid for this device. If NULL a new devid
6471 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6474 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6475 * on error. Returned struct is not linked onto any lists and must be
6476 * destroyed with btrfs_free_device.
6478 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6482 struct btrfs_device
*dev
;
6485 if (WARN_ON(!devid
&& !fs_info
))
6486 return ERR_PTR(-EINVAL
);
6488 dev
= __alloc_device();
6497 ret
= find_next_devid(fs_info
, &tmp
);
6499 btrfs_free_device(dev
);
6500 return ERR_PTR(ret
);
6506 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6508 generate_random_uuid(dev
->uuid
);
6513 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6514 u64 devid
, u8
*uuid
, bool error
)
6517 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6520 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6524 static u64
calc_stripe_length(u64 type
, u64 chunk_len
, int num_stripes
)
6526 int index
= btrfs_bg_flags_to_raid_index(type
);
6527 int ncopies
= btrfs_raid_array
[index
].ncopies
;
6530 switch (type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
6531 case BTRFS_BLOCK_GROUP_RAID5
:
6532 data_stripes
= num_stripes
- 1;
6534 case BTRFS_BLOCK_GROUP_RAID6
:
6535 data_stripes
= num_stripes
- 2;
6538 data_stripes
= num_stripes
/ ncopies
;
6541 return div_u64(chunk_len
, data_stripes
);
6544 static int read_one_chunk(struct btrfs_key
*key
, struct extent_buffer
*leaf
,
6545 struct btrfs_chunk
*chunk
)
6547 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6548 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
6549 struct map_lookup
*map
;
6550 struct extent_map
*em
;
6554 u8 uuid
[BTRFS_UUID_SIZE
];
6559 logical
= key
->offset
;
6560 length
= btrfs_chunk_length(leaf
, chunk
);
6561 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6564 * Only need to verify chunk item if we're reading from sys chunk array,
6565 * as chunk item in tree block is already verified by tree-checker.
6567 if (leaf
->start
== BTRFS_SUPER_INFO_OFFSET
) {
6568 ret
= btrfs_check_chunk_valid(leaf
, chunk
, logical
);
6573 read_lock(&map_tree
->lock
);
6574 em
= lookup_extent_mapping(map_tree
, logical
, 1);
6575 read_unlock(&map_tree
->lock
);
6577 /* already mapped? */
6578 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6579 free_extent_map(em
);
6582 free_extent_map(em
);
6585 em
= alloc_extent_map();
6588 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6590 free_extent_map(em
);
6594 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6595 em
->map_lookup
= map
;
6596 em
->start
= logical
;
6599 em
->block_start
= 0;
6600 em
->block_len
= em
->len
;
6602 map
->num_stripes
= num_stripes
;
6603 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6604 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6605 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6606 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6607 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6608 map
->verified_stripes
= 0;
6609 em
->orig_block_len
= calc_stripe_length(map
->type
, em
->len
,
6611 for (i
= 0; i
< num_stripes
; i
++) {
6612 map
->stripes
[i
].physical
=
6613 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6614 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6615 read_extent_buffer(leaf
, uuid
, (unsigned long)
6616 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6618 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
->fs_devices
,
6619 devid
, uuid
, NULL
, true);
6620 if (!map
->stripes
[i
].dev
&&
6621 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6622 free_extent_map(em
);
6623 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6626 if (!map
->stripes
[i
].dev
) {
6627 map
->stripes
[i
].dev
=
6628 add_missing_dev(fs_info
->fs_devices
, devid
,
6630 if (IS_ERR(map
->stripes
[i
].dev
)) {
6631 free_extent_map(em
);
6633 "failed to init missing dev %llu: %ld",
6634 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6635 return PTR_ERR(map
->stripes
[i
].dev
);
6637 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6639 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6640 &(map
->stripes
[i
].dev
->dev_state
));
6644 write_lock(&map_tree
->lock
);
6645 ret
= add_extent_mapping(map_tree
, em
, 0);
6646 write_unlock(&map_tree
->lock
);
6649 "failed to add chunk map, start=%llu len=%llu: %d",
6650 em
->start
, em
->len
, ret
);
6652 free_extent_map(em
);
6657 static void fill_device_from_item(struct extent_buffer
*leaf
,
6658 struct btrfs_dev_item
*dev_item
,
6659 struct btrfs_device
*device
)
6663 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6664 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6665 device
->total_bytes
= device
->disk_total_bytes
;
6666 device
->commit_total_bytes
= device
->disk_total_bytes
;
6667 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6668 device
->commit_bytes_used
= device
->bytes_used
;
6669 device
->type
= btrfs_device_type(leaf
, dev_item
);
6670 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6671 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6672 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6673 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6674 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6676 ptr
= btrfs_device_uuid(dev_item
);
6677 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6680 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6683 struct btrfs_fs_devices
*fs_devices
;
6686 lockdep_assert_held(&uuid_mutex
);
6689 fs_devices
= fs_info
->fs_devices
->seed
;
6690 while (fs_devices
) {
6691 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6694 fs_devices
= fs_devices
->seed
;
6697 fs_devices
= find_fsid(fsid
, NULL
);
6699 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6700 return ERR_PTR(-ENOENT
);
6702 fs_devices
= alloc_fs_devices(fsid
, NULL
);
6703 if (IS_ERR(fs_devices
))
6706 fs_devices
->seeding
= true;
6707 fs_devices
->opened
= 1;
6711 fs_devices
= clone_fs_devices(fs_devices
);
6712 if (IS_ERR(fs_devices
))
6715 ret
= open_fs_devices(fs_devices
, FMODE_READ
, fs_info
->bdev_holder
);
6717 free_fs_devices(fs_devices
);
6718 fs_devices
= ERR_PTR(ret
);
6722 if (!fs_devices
->seeding
) {
6723 close_fs_devices(fs_devices
);
6724 free_fs_devices(fs_devices
);
6725 fs_devices
= ERR_PTR(-EINVAL
);
6729 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6730 fs_info
->fs_devices
->seed
= fs_devices
;
6735 static int read_one_dev(struct extent_buffer
*leaf
,
6736 struct btrfs_dev_item
*dev_item
)
6738 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6739 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6740 struct btrfs_device
*device
;
6743 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6744 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6746 devid
= btrfs_device_id(leaf
, dev_item
);
6747 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6749 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6752 if (memcmp(fs_uuid
, fs_devices
->metadata_uuid
, BTRFS_FSID_SIZE
)) {
6753 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6754 if (IS_ERR(fs_devices
))
6755 return PTR_ERR(fs_devices
);
6758 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
6761 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6762 btrfs_report_missing_device(fs_info
, devid
,
6767 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6768 if (IS_ERR(device
)) {
6770 "failed to add missing dev %llu: %ld",
6771 devid
, PTR_ERR(device
));
6772 return PTR_ERR(device
);
6774 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6776 if (!device
->bdev
) {
6777 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6778 btrfs_report_missing_device(fs_info
,
6779 devid
, dev_uuid
, true);
6782 btrfs_report_missing_device(fs_info
, devid
,
6786 if (!device
->bdev
&&
6787 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6789 * this happens when a device that was properly setup
6790 * in the device info lists suddenly goes bad.
6791 * device->bdev is NULL, and so we have to set
6792 * device->missing to one here
6794 device
->fs_devices
->missing_devices
++;
6795 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6798 /* Move the device to its own fs_devices */
6799 if (device
->fs_devices
!= fs_devices
) {
6800 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6801 &device
->dev_state
));
6803 list_move(&device
->dev_list
, &fs_devices
->devices
);
6804 device
->fs_devices
->num_devices
--;
6805 fs_devices
->num_devices
++;
6807 device
->fs_devices
->missing_devices
--;
6808 fs_devices
->missing_devices
++;
6810 device
->fs_devices
= fs_devices
;
6814 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6815 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6816 if (device
->generation
!=
6817 btrfs_device_generation(leaf
, dev_item
))
6821 fill_device_from_item(leaf
, dev_item
, device
);
6822 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6823 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6824 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6825 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6826 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6827 &fs_info
->free_chunk_space
);
6833 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6835 struct btrfs_root
*root
= fs_info
->tree_root
;
6836 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6837 struct extent_buffer
*sb
;
6838 struct btrfs_disk_key
*disk_key
;
6839 struct btrfs_chunk
*chunk
;
6841 unsigned long sb_array_offset
;
6848 struct btrfs_key key
;
6850 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6852 * This will create extent buffer of nodesize, superblock size is
6853 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6854 * overallocate but we can keep it as-is, only the first page is used.
6856 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6859 set_extent_buffer_uptodate(sb
);
6860 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6862 * The sb extent buffer is artificial and just used to read the system array.
6863 * set_extent_buffer_uptodate() call does not properly mark all it's
6864 * pages up-to-date when the page is larger: extent does not cover the
6865 * whole page and consequently check_page_uptodate does not find all
6866 * the page's extents up-to-date (the hole beyond sb),
6867 * write_extent_buffer then triggers a WARN_ON.
6869 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6870 * but sb spans only this function. Add an explicit SetPageUptodate call
6871 * to silence the warning eg. on PowerPC 64.
6873 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6874 SetPageUptodate(sb
->pages
[0]);
6876 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6877 array_size
= btrfs_super_sys_array_size(super_copy
);
6879 array_ptr
= super_copy
->sys_chunk_array
;
6880 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6883 while (cur_offset
< array_size
) {
6884 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6885 len
= sizeof(*disk_key
);
6886 if (cur_offset
+ len
> array_size
)
6887 goto out_short_read
;
6889 btrfs_disk_key_to_cpu(&key
, disk_key
);
6892 sb_array_offset
+= len
;
6895 if (key
.type
!= BTRFS_CHUNK_ITEM_KEY
) {
6897 "unexpected item type %u in sys_array at offset %u",
6898 (u32
)key
.type
, cur_offset
);
6903 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6905 * At least one btrfs_chunk with one stripe must be present,
6906 * exact stripe count check comes afterwards
6908 len
= btrfs_chunk_item_size(1);
6909 if (cur_offset
+ len
> array_size
)
6910 goto out_short_read
;
6912 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6915 "invalid number of stripes %u in sys_array at offset %u",
6916 num_stripes
, cur_offset
);
6921 type
= btrfs_chunk_type(sb
, chunk
);
6922 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6924 "invalid chunk type %llu in sys_array at offset %u",
6930 len
= btrfs_chunk_item_size(num_stripes
);
6931 if (cur_offset
+ len
> array_size
)
6932 goto out_short_read
;
6934 ret
= read_one_chunk(&key
, sb
, chunk
);
6939 sb_array_offset
+= len
;
6942 clear_extent_buffer_uptodate(sb
);
6943 free_extent_buffer_stale(sb
);
6947 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6949 clear_extent_buffer_uptodate(sb
);
6950 free_extent_buffer_stale(sb
);
6955 * Check if all chunks in the fs are OK for read-write degraded mount
6957 * If the @failing_dev is specified, it's accounted as missing.
6959 * Return true if all chunks meet the minimal RW mount requirements.
6960 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6962 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
6963 struct btrfs_device
*failing_dev
)
6965 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
6966 struct extent_map
*em
;
6970 read_lock(&map_tree
->lock
);
6971 em
= lookup_extent_mapping(map_tree
, 0, (u64
)-1);
6972 read_unlock(&map_tree
->lock
);
6973 /* No chunk at all? Return false anyway */
6979 struct map_lookup
*map
;
6984 map
= em
->map_lookup
;
6986 btrfs_get_num_tolerated_disk_barrier_failures(
6988 for (i
= 0; i
< map
->num_stripes
; i
++) {
6989 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6991 if (!dev
|| !dev
->bdev
||
6992 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
6993 dev
->last_flush_error
)
6995 else if (failing_dev
&& failing_dev
== dev
)
6998 if (missing
> max_tolerated
) {
7001 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7002 em
->start
, missing
, max_tolerated
);
7003 free_extent_map(em
);
7007 next_start
= extent_map_end(em
);
7008 free_extent_map(em
);
7010 read_lock(&map_tree
->lock
);
7011 em
= lookup_extent_mapping(map_tree
, next_start
,
7012 (u64
)(-1) - next_start
);
7013 read_unlock(&map_tree
->lock
);
7019 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
7021 struct btrfs_root
*root
= fs_info
->chunk_root
;
7022 struct btrfs_path
*path
;
7023 struct extent_buffer
*leaf
;
7024 struct btrfs_key key
;
7025 struct btrfs_key found_key
;
7030 path
= btrfs_alloc_path();
7035 * uuid_mutex is needed only if we are mounting a sprout FS
7036 * otherwise we don't need it.
7038 mutex_lock(&uuid_mutex
);
7039 mutex_lock(&fs_info
->chunk_mutex
);
7042 * Read all device items, and then all the chunk items. All
7043 * device items are found before any chunk item (their object id
7044 * is smaller than the lowest possible object id for a chunk
7045 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7047 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
7050 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7054 leaf
= path
->nodes
[0];
7055 slot
= path
->slots
[0];
7056 if (slot
>= btrfs_header_nritems(leaf
)) {
7057 ret
= btrfs_next_leaf(root
, path
);
7064 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7065 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
7066 struct btrfs_dev_item
*dev_item
;
7067 dev_item
= btrfs_item_ptr(leaf
, slot
,
7068 struct btrfs_dev_item
);
7069 ret
= read_one_dev(leaf
, dev_item
);
7073 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7074 struct btrfs_chunk
*chunk
;
7075 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7076 ret
= read_one_chunk(&found_key
, leaf
, chunk
);
7084 * After loading chunk tree, we've got all device information,
7085 * do another round of validation checks.
7087 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7089 "super_num_devices %llu mismatch with num_devices %llu found here",
7090 btrfs_super_num_devices(fs_info
->super_copy
),
7095 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7096 fs_info
->fs_devices
->total_rw_bytes
) {
7098 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7099 btrfs_super_total_bytes(fs_info
->super_copy
),
7100 fs_info
->fs_devices
->total_rw_bytes
);
7106 mutex_unlock(&fs_info
->chunk_mutex
);
7107 mutex_unlock(&uuid_mutex
);
7109 btrfs_free_path(path
);
7113 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7115 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7116 struct btrfs_device
*device
;
7118 while (fs_devices
) {
7119 mutex_lock(&fs_devices
->device_list_mutex
);
7120 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7121 device
->fs_info
= fs_info
;
7122 mutex_unlock(&fs_devices
->device_list_mutex
);
7124 fs_devices
= fs_devices
->seed
;
7128 static u64
btrfs_dev_stats_value(const struct extent_buffer
*eb
,
7129 const struct btrfs_dev_stats_item
*ptr
,
7134 read_extent_buffer(eb
, &val
,
7135 offsetof(struct btrfs_dev_stats_item
, values
) +
7136 ((unsigned long)ptr
) + (index
* sizeof(u64
)),
7141 static void btrfs_set_dev_stats_value(struct extent_buffer
*eb
,
7142 struct btrfs_dev_stats_item
*ptr
,
7145 write_extent_buffer(eb
, &val
,
7146 offsetof(struct btrfs_dev_stats_item
, values
) +
7147 ((unsigned long)ptr
) + (index
* sizeof(u64
)),
7151 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7153 struct btrfs_key key
;
7154 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7155 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7156 struct extent_buffer
*eb
;
7159 struct btrfs_device
*device
;
7160 struct btrfs_path
*path
= NULL
;
7163 path
= btrfs_alloc_path();
7167 mutex_lock(&fs_devices
->device_list_mutex
);
7168 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7170 struct btrfs_dev_stats_item
*ptr
;
7172 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7173 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7174 key
.offset
= device
->devid
;
7175 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7177 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7178 btrfs_dev_stat_set(device
, i
, 0);
7179 device
->dev_stats_valid
= 1;
7180 btrfs_release_path(path
);
7183 slot
= path
->slots
[0];
7184 eb
= path
->nodes
[0];
7185 item_size
= btrfs_item_size_nr(eb
, slot
);
7187 ptr
= btrfs_item_ptr(eb
, slot
,
7188 struct btrfs_dev_stats_item
);
7190 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7191 if (item_size
>= (1 + i
) * sizeof(__le64
))
7192 btrfs_dev_stat_set(device
, i
,
7193 btrfs_dev_stats_value(eb
, ptr
, i
));
7195 btrfs_dev_stat_set(device
, i
, 0);
7198 device
->dev_stats_valid
= 1;
7199 btrfs_dev_stat_print_on_load(device
);
7200 btrfs_release_path(path
);
7202 mutex_unlock(&fs_devices
->device_list_mutex
);
7204 btrfs_free_path(path
);
7205 return ret
< 0 ? ret
: 0;
7208 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7209 struct btrfs_device
*device
)
7211 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7212 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7213 struct btrfs_path
*path
;
7214 struct btrfs_key key
;
7215 struct extent_buffer
*eb
;
7216 struct btrfs_dev_stats_item
*ptr
;
7220 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7221 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7222 key
.offset
= device
->devid
;
7224 path
= btrfs_alloc_path();
7227 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7229 btrfs_warn_in_rcu(fs_info
,
7230 "error %d while searching for dev_stats item for device %s",
7231 ret
, rcu_str_deref(device
->name
));
7236 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7237 /* need to delete old one and insert a new one */
7238 ret
= btrfs_del_item(trans
, dev_root
, path
);
7240 btrfs_warn_in_rcu(fs_info
,
7241 "delete too small dev_stats item for device %s failed %d",
7242 rcu_str_deref(device
->name
), ret
);
7249 /* need to insert a new item */
7250 btrfs_release_path(path
);
7251 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7252 &key
, sizeof(*ptr
));
7254 btrfs_warn_in_rcu(fs_info
,
7255 "insert dev_stats item for device %s failed %d",
7256 rcu_str_deref(device
->name
), ret
);
7261 eb
= path
->nodes
[0];
7262 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7263 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7264 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7265 btrfs_dev_stat_read(device
, i
));
7266 btrfs_mark_buffer_dirty(eb
);
7269 btrfs_free_path(path
);
7274 * called from commit_transaction. Writes all changed device stats to disk.
7276 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
)
7278 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7279 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7280 struct btrfs_device
*device
;
7284 mutex_lock(&fs_devices
->device_list_mutex
);
7285 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7286 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7287 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7292 * There is a LOAD-LOAD control dependency between the value of
7293 * dev_stats_ccnt and updating the on-disk values which requires
7294 * reading the in-memory counters. Such control dependencies
7295 * require explicit read memory barriers.
7297 * This memory barriers pairs with smp_mb__before_atomic in
7298 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7299 * barrier implied by atomic_xchg in
7300 * btrfs_dev_stats_read_and_reset
7304 ret
= update_dev_stat_item(trans
, device
);
7306 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7308 mutex_unlock(&fs_devices
->device_list_mutex
);
7313 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7315 btrfs_dev_stat_inc(dev
, index
);
7316 btrfs_dev_stat_print_on_error(dev
);
7319 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7321 if (!dev
->dev_stats_valid
)
7323 btrfs_err_rl_in_rcu(dev
->fs_info
,
7324 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7325 rcu_str_deref(dev
->name
),
7326 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7327 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7328 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7329 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7330 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7333 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7337 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7338 if (btrfs_dev_stat_read(dev
, i
) != 0)
7340 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7341 return; /* all values == 0, suppress message */
7343 btrfs_info_in_rcu(dev
->fs_info
,
7344 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7345 rcu_str_deref(dev
->name
),
7346 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7347 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7348 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7349 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7350 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7353 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7354 struct btrfs_ioctl_get_dev_stats
*stats
)
7356 struct btrfs_device
*dev
;
7357 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7360 mutex_lock(&fs_devices
->device_list_mutex
);
7361 dev
= btrfs_find_device(fs_info
->fs_devices
, stats
->devid
, NULL
, NULL
,
7363 mutex_unlock(&fs_devices
->device_list_mutex
);
7366 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7368 } else if (!dev
->dev_stats_valid
) {
7369 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7371 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7372 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7373 if (stats
->nr_items
> i
)
7375 btrfs_dev_stat_read_and_reset(dev
, i
);
7377 btrfs_dev_stat_set(dev
, i
, 0);
7379 btrfs_info(fs_info
, "device stats zeroed by %s (%d)",
7380 current
->comm
, task_pid_nr(current
));
7382 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7383 if (stats
->nr_items
> i
)
7384 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7386 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7387 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7391 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7393 struct buffer_head
*bh
;
7394 struct btrfs_super_block
*disk_super
;
7400 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7403 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7406 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7408 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7409 set_buffer_dirty(bh
);
7410 sync_dirty_buffer(bh
);
7414 /* Notify udev that device has changed */
7415 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7417 /* Update ctime/mtime for device path for libblkid */
7418 update_dev_time(device_path
);
7422 * Update the size and bytes used for each device where it changed. This is
7423 * delayed since we would otherwise get errors while writing out the
7426 * Must be invoked during transaction commit.
7428 void btrfs_commit_device_sizes(struct btrfs_transaction
*trans
)
7430 struct btrfs_device
*curr
, *next
;
7432 ASSERT(trans
->state
== TRANS_STATE_COMMIT_DOING
);
7434 if (list_empty(&trans
->dev_update_list
))
7438 * We don't need the device_list_mutex here. This list is owned by the
7439 * transaction and the transaction must complete before the device is
7442 mutex_lock(&trans
->fs_info
->chunk_mutex
);
7443 list_for_each_entry_safe(curr
, next
, &trans
->dev_update_list
,
7445 list_del_init(&curr
->post_commit_list
);
7446 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7447 curr
->commit_bytes_used
= curr
->bytes_used
;
7449 mutex_unlock(&trans
->fs_info
->chunk_mutex
);
7452 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7454 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7455 while (fs_devices
) {
7456 fs_devices
->fs_info
= fs_info
;
7457 fs_devices
= fs_devices
->seed
;
7461 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7463 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7464 while (fs_devices
) {
7465 fs_devices
->fs_info
= NULL
;
7466 fs_devices
= fs_devices
->seed
;
7471 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7473 int btrfs_bg_type_to_factor(u64 flags
)
7475 const int index
= btrfs_bg_flags_to_raid_index(flags
);
7477 return btrfs_raid_array
[index
].ncopies
;
7482 static int verify_one_dev_extent(struct btrfs_fs_info
*fs_info
,
7483 u64 chunk_offset
, u64 devid
,
7484 u64 physical_offset
, u64 physical_len
)
7486 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7487 struct extent_map
*em
;
7488 struct map_lookup
*map
;
7489 struct btrfs_device
*dev
;
7495 read_lock(&em_tree
->lock
);
7496 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
7497 read_unlock(&em_tree
->lock
);
7501 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7502 physical_offset
, devid
);
7507 map
= em
->map_lookup
;
7508 stripe_len
= calc_stripe_length(map
->type
, em
->len
, map
->num_stripes
);
7509 if (physical_len
!= stripe_len
) {
7511 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7512 physical_offset
, devid
, em
->start
, physical_len
,
7518 for (i
= 0; i
< map
->num_stripes
; i
++) {
7519 if (map
->stripes
[i
].dev
->devid
== devid
&&
7520 map
->stripes
[i
].physical
== physical_offset
) {
7522 if (map
->verified_stripes
>= map
->num_stripes
) {
7524 "too many dev extents for chunk %llu found",
7529 map
->verified_stripes
++;
7535 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7536 physical_offset
, devid
);
7540 /* Make sure no dev extent is beyond device bondary */
7541 dev
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
7543 btrfs_err(fs_info
, "failed to find devid %llu", devid
);
7548 /* It's possible this device is a dummy for seed device */
7549 if (dev
->disk_total_bytes
== 0) {
7550 dev
= btrfs_find_device(fs_info
->fs_devices
->seed
, devid
, NULL
,
7553 btrfs_err(fs_info
, "failed to find seed devid %llu",
7560 if (physical_offset
+ physical_len
> dev
->disk_total_bytes
) {
7562 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7563 devid
, physical_offset
, physical_len
,
7564 dev
->disk_total_bytes
);
7569 free_extent_map(em
);
7573 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info
*fs_info
)
7575 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7576 struct extent_map
*em
;
7577 struct rb_node
*node
;
7580 read_lock(&em_tree
->lock
);
7581 for (node
= rb_first_cached(&em_tree
->map
); node
; node
= rb_next(node
)) {
7582 em
= rb_entry(node
, struct extent_map
, rb_node
);
7583 if (em
->map_lookup
->num_stripes
!=
7584 em
->map_lookup
->verified_stripes
) {
7586 "chunk %llu has missing dev extent, have %d expect %d",
7587 em
->start
, em
->map_lookup
->verified_stripes
,
7588 em
->map_lookup
->num_stripes
);
7594 read_unlock(&em_tree
->lock
);
7599 * Ensure that all dev extents are mapped to correct chunk, otherwise
7600 * later chunk allocation/free would cause unexpected behavior.
7602 * NOTE: This will iterate through the whole device tree, which should be of
7603 * the same size level as the chunk tree. This slightly increases mount time.
7605 int btrfs_verify_dev_extents(struct btrfs_fs_info
*fs_info
)
7607 struct btrfs_path
*path
;
7608 struct btrfs_root
*root
= fs_info
->dev_root
;
7609 struct btrfs_key key
;
7611 u64 prev_dev_ext_end
= 0;
7615 key
.type
= BTRFS_DEV_EXTENT_KEY
;
7618 path
= btrfs_alloc_path();
7622 path
->reada
= READA_FORWARD
;
7623 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7627 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
7628 ret
= btrfs_next_item(root
, path
);
7631 /* No dev extents at all? Not good */
7638 struct extent_buffer
*leaf
= path
->nodes
[0];
7639 struct btrfs_dev_extent
*dext
;
7640 int slot
= path
->slots
[0];
7642 u64 physical_offset
;
7646 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7647 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
7649 devid
= key
.objectid
;
7650 physical_offset
= key
.offset
;
7652 dext
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dev_extent
);
7653 chunk_offset
= btrfs_dev_extent_chunk_offset(leaf
, dext
);
7654 physical_len
= btrfs_dev_extent_length(leaf
, dext
);
7656 /* Check if this dev extent overlaps with the previous one */
7657 if (devid
== prev_devid
&& physical_offset
< prev_dev_ext_end
) {
7659 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7660 devid
, physical_offset
, prev_dev_ext_end
);
7665 ret
= verify_one_dev_extent(fs_info
, chunk_offset
, devid
,
7666 physical_offset
, physical_len
);
7670 prev_dev_ext_end
= physical_offset
+ physical_len
;
7672 ret
= btrfs_next_item(root
, path
);
7681 /* Ensure all chunks have corresponding dev extents */
7682 ret
= verify_chunk_dev_extent_mapping(fs_info
);
7684 btrfs_free_path(path
);
7689 * Check whether the given block group or device is pinned by any inode being
7690 * used as a swapfile.
7692 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info
*fs_info
, void *ptr
)
7694 struct btrfs_swapfile_pin
*sp
;
7695 struct rb_node
*node
;
7697 spin_lock(&fs_info
->swapfile_pins_lock
);
7698 node
= fs_info
->swapfile_pins
.rb_node
;
7700 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
7702 node
= node
->rb_left
;
7703 else if (ptr
> sp
->ptr
)
7704 node
= node
->rb_right
;
7708 spin_unlock(&fs_info
->swapfile_pins_lock
);
7709 return node
!= NULL
;