media: stv06xx: add missing descriptor sanity checks
[linux/fpc-iii.git] / fs / udf / super.c
blob4baa1ca91e9bec364570012d155c4279e76cb4a0
1 /*
2 * super.c
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * http://www.ecma.ch/
15 * http://www.iso.org/
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
27 * HISTORY
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
41 #include "udfdecl.h"
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
61 #include "udf_sb.h"
62 #include "udf_i.h"
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
67 enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
87 enum { UDF_MAX_LINKS = 0xffff };
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
103 struct logicalVolIntegrityDesc *lvid;
104 unsigned int partnum;
105 unsigned int offset;
107 if (!UDF_SB(sb)->s_lvid_bh)
108 return NULL;
109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 partnum = le32_to_cpu(lvid->numOfPartitions);
111 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112 offsetof(struct logicalVolIntegrityDesc, impUse)) /
113 (2 * sizeof(uint32_t)) < partnum) {
114 udf_err(sb, "Logical volume integrity descriptor corrupted "
115 "(numOfPartitions = %u)!\n", partnum);
116 return NULL;
118 /* The offset is to skip freeSpaceTable and sizeTable arrays */
119 offset = partnum * 2 * sizeof(uint32_t);
120 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125 int flags, const char *dev_name, void *data)
127 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
130 static struct file_system_type udf_fstype = {
131 .owner = THIS_MODULE,
132 .name = "udf",
133 .mount = udf_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
137 MODULE_ALIAS_FS("udf");
139 static struct kmem_cache *udf_inode_cachep;
141 static struct inode *udf_alloc_inode(struct super_block *sb)
143 struct udf_inode_info *ei;
144 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145 if (!ei)
146 return NULL;
148 ei->i_unique = 0;
149 ei->i_lenExtents = 0;
150 ei->i_lenStreams = 0;
151 ei->i_next_alloc_block = 0;
152 ei->i_next_alloc_goal = 0;
153 ei->i_strat4096 = 0;
154 ei->i_streamdir = 0;
155 init_rwsem(&ei->i_data_sem);
156 ei->cached_extent.lstart = -1;
157 spin_lock_init(&ei->i_extent_cache_lock);
159 return &ei->vfs_inode;
162 static void udf_free_in_core_inode(struct inode *inode)
164 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
167 static void init_once(void *foo)
169 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
171 ei->i_ext.i_data = NULL;
172 inode_init_once(&ei->vfs_inode);
175 static int __init init_inodecache(void)
177 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 sizeof(struct udf_inode_info),
179 0, (SLAB_RECLAIM_ACCOUNT |
180 SLAB_MEM_SPREAD |
181 SLAB_ACCOUNT),
182 init_once);
183 if (!udf_inode_cachep)
184 return -ENOMEM;
185 return 0;
188 static void destroy_inodecache(void)
191 * Make sure all delayed rcu free inodes are flushed before we
192 * destroy cache.
194 rcu_barrier();
195 kmem_cache_destroy(udf_inode_cachep);
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 .alloc_inode = udf_alloc_inode,
201 .free_inode = udf_free_in_core_inode,
202 .write_inode = udf_write_inode,
203 .evict_inode = udf_evict_inode,
204 .put_super = udf_put_super,
205 .sync_fs = udf_sync_fs,
206 .statfs = udf_statfs,
207 .remount_fs = udf_remount_fs,
208 .show_options = udf_show_options,
211 struct udf_options {
212 unsigned char novrs;
213 unsigned int blocksize;
214 unsigned int session;
215 unsigned int lastblock;
216 unsigned int anchor;
217 unsigned int flags;
218 umode_t umask;
219 kgid_t gid;
220 kuid_t uid;
221 umode_t fmode;
222 umode_t dmode;
223 struct nls_table *nls_map;
226 static int __init init_udf_fs(void)
228 int err;
230 err = init_inodecache();
231 if (err)
232 goto out1;
233 err = register_filesystem(&udf_fstype);
234 if (err)
235 goto out;
237 return 0;
239 out:
240 destroy_inodecache();
242 out1:
243 return err;
246 static void __exit exit_udf_fs(void)
248 unregister_filesystem(&udf_fstype);
249 destroy_inodecache();
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
254 struct udf_sb_info *sbi = UDF_SB(sb);
256 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 if (!sbi->s_partmaps) {
258 sbi->s_partitions = 0;
259 return -ENOMEM;
262 sbi->s_partitions = count;
263 return 0;
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
268 int i;
269 int nr_groups = bitmap->s_nr_groups;
271 for (i = 0; i < nr_groups; i++)
272 brelse(bitmap->s_block_bitmap[i]);
274 kvfree(bitmap);
277 static void udf_free_partition(struct udf_part_map *map)
279 int i;
280 struct udf_meta_data *mdata;
282 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 iput(map->s_uspace.s_table);
284 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 for (i = 0; i < 4; i++)
288 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 mdata = &map->s_type_specific.s_metadata;
291 iput(mdata->s_metadata_fe);
292 mdata->s_metadata_fe = NULL;
294 iput(mdata->s_mirror_fe);
295 mdata->s_mirror_fe = NULL;
297 iput(mdata->s_bitmap_fe);
298 mdata->s_bitmap_fe = NULL;
302 static void udf_sb_free_partitions(struct super_block *sb)
304 struct udf_sb_info *sbi = UDF_SB(sb);
305 int i;
307 if (!sbi->s_partmaps)
308 return;
309 for (i = 0; i < sbi->s_partitions; i++)
310 udf_free_partition(&sbi->s_partmaps[i]);
311 kfree(sbi->s_partmaps);
312 sbi->s_partmaps = NULL;
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
317 struct super_block *sb = root->d_sb;
318 struct udf_sb_info *sbi = UDF_SB(sb);
320 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 seq_puts(seq, ",nostrict");
322 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 seq_puts(seq, ",unhide");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 seq_puts(seq, ",undelete");
328 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 seq_puts(seq, ",noadinicb");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 seq_puts(seq, ",shortad");
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 seq_puts(seq, ",uid=forget");
334 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 seq_puts(seq, ",gid=forget");
336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 if (sbi->s_umask != 0)
341 seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 if (sbi->s_fmode != UDF_INVALID_MODE)
343 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 if (sbi->s_dmode != UDF_INVALID_MODE)
345 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 seq_printf(seq, ",session=%d", sbi->s_session);
348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 if (sbi->s_anchor != 0)
351 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353 seq_puts(seq, ",utf8");
354 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
357 return 0;
361 * udf_parse_options
363 * PURPOSE
364 * Parse mount options.
366 * DESCRIPTION
367 * The following mount options are supported:
369 * gid= Set the default group.
370 * umask= Set the default umask.
371 * mode= Set the default file permissions.
372 * dmode= Set the default directory permissions.
373 * uid= Set the default user.
374 * bs= Set the block size.
375 * unhide Show otherwise hidden files.
376 * undelete Show deleted files in lists.
377 * adinicb Embed data in the inode (default)
378 * noadinicb Don't embed data in the inode
379 * shortad Use short ad's
380 * longad Use long ad's (default)
381 * nostrict Unset strict conformance
382 * iocharset= Set the NLS character set
384 * The remaining are for debugging and disaster recovery:
386 * novrs Skip volume sequence recognition
388 * The following expect a offset from 0.
390 * session= Set the CDROM session (default= last session)
391 * anchor= Override standard anchor location. (default= 256)
392 * volume= Override the VolumeDesc location. (unused)
393 * partition= Override the PartitionDesc location. (unused)
394 * lastblock= Set the last block of the filesystem/
396 * The following expect a offset from the partition root.
398 * fileset= Override the fileset block location. (unused)
399 * rootdir= Override the root directory location. (unused)
400 * WARNING: overriding the rootdir to a non-directory may
401 * yield highly unpredictable results.
403 * PRE-CONDITIONS
404 * options Pointer to mount options string.
405 * uopts Pointer to mount options variable.
407 * POST-CONDITIONS
408 * <return> 1 Mount options parsed okay.
409 * <return> 0 Error parsing mount options.
411 * HISTORY
412 * July 1, 1997 - Andrew E. Mileski
413 * Written, tested, and released.
416 enum {
417 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 Opt_rootdir, Opt_utf8, Opt_iocharset,
422 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 Opt_fmode, Opt_dmode
426 static const match_table_t tokens = {
427 {Opt_novrs, "novrs"},
428 {Opt_nostrict, "nostrict"},
429 {Opt_bs, "bs=%u"},
430 {Opt_unhide, "unhide"},
431 {Opt_undelete, "undelete"},
432 {Opt_noadinicb, "noadinicb"},
433 {Opt_adinicb, "adinicb"},
434 {Opt_shortad, "shortad"},
435 {Opt_longad, "longad"},
436 {Opt_uforget, "uid=forget"},
437 {Opt_uignore, "uid=ignore"},
438 {Opt_gforget, "gid=forget"},
439 {Opt_gignore, "gid=ignore"},
440 {Opt_gid, "gid=%u"},
441 {Opt_uid, "uid=%u"},
442 {Opt_umask, "umask=%o"},
443 {Opt_session, "session=%u"},
444 {Opt_lastblock, "lastblock=%u"},
445 {Opt_anchor, "anchor=%u"},
446 {Opt_volume, "volume=%u"},
447 {Opt_partition, "partition=%u"},
448 {Opt_fileset, "fileset=%u"},
449 {Opt_rootdir, "rootdir=%u"},
450 {Opt_utf8, "utf8"},
451 {Opt_iocharset, "iocharset=%s"},
452 {Opt_fmode, "mode=%o"},
453 {Opt_dmode, "dmode=%o"},
454 {Opt_err, NULL}
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458 bool remount)
460 char *p;
461 int option;
463 uopt->novrs = 0;
464 uopt->session = 0xFFFFFFFF;
465 uopt->lastblock = 0;
466 uopt->anchor = 0;
468 if (!options)
469 return 1;
471 while ((p = strsep(&options, ",")) != NULL) {
472 substring_t args[MAX_OPT_ARGS];
473 int token;
474 unsigned n;
475 if (!*p)
476 continue;
478 token = match_token(p, tokens, args);
479 switch (token) {
480 case Opt_novrs:
481 uopt->novrs = 1;
482 break;
483 case Opt_bs:
484 if (match_int(&args[0], &option))
485 return 0;
486 n = option;
487 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488 return 0;
489 uopt->blocksize = n;
490 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491 break;
492 case Opt_unhide:
493 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494 break;
495 case Opt_undelete:
496 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497 break;
498 case Opt_noadinicb:
499 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500 break;
501 case Opt_adinicb:
502 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503 break;
504 case Opt_shortad:
505 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506 break;
507 case Opt_longad:
508 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509 break;
510 case Opt_gid:
511 if (match_int(args, &option))
512 return 0;
513 uopt->gid = make_kgid(current_user_ns(), option);
514 if (!gid_valid(uopt->gid))
515 return 0;
516 uopt->flags |= (1 << UDF_FLAG_GID_SET);
517 break;
518 case Opt_uid:
519 if (match_int(args, &option))
520 return 0;
521 uopt->uid = make_kuid(current_user_ns(), option);
522 if (!uid_valid(uopt->uid))
523 return 0;
524 uopt->flags |= (1 << UDF_FLAG_UID_SET);
525 break;
526 case Opt_umask:
527 if (match_octal(args, &option))
528 return 0;
529 uopt->umask = option;
530 break;
531 case Opt_nostrict:
532 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533 break;
534 case Opt_session:
535 if (match_int(args, &option))
536 return 0;
537 uopt->session = option;
538 if (!remount)
539 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540 break;
541 case Opt_lastblock:
542 if (match_int(args, &option))
543 return 0;
544 uopt->lastblock = option;
545 if (!remount)
546 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547 break;
548 case Opt_anchor:
549 if (match_int(args, &option))
550 return 0;
551 uopt->anchor = option;
552 break;
553 case Opt_volume:
554 case Opt_partition:
555 case Opt_fileset:
556 case Opt_rootdir:
557 /* Ignored (never implemented properly) */
558 break;
559 case Opt_utf8:
560 uopt->flags |= (1 << UDF_FLAG_UTF8);
561 break;
562 case Opt_iocharset:
563 if (!remount) {
564 if (uopt->nls_map)
565 unload_nls(uopt->nls_map);
567 * load_nls() failure is handled later in
568 * udf_fill_super() after all options are
569 * parsed.
571 uopt->nls_map = load_nls(args[0].from);
572 uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
574 break;
575 case Opt_uforget:
576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 break;
578 case Opt_uignore:
579 case Opt_gignore:
580 /* These options are superseeded by uid=<number> */
581 break;
582 case Opt_gforget:
583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 break;
585 case Opt_fmode:
586 if (match_octal(args, &option))
587 return 0;
588 uopt->fmode = option & 0777;
589 break;
590 case Opt_dmode:
591 if (match_octal(args, &option))
592 return 0;
593 uopt->dmode = option & 0777;
594 break;
595 default:
596 pr_err("bad mount option \"%s\" or missing value\n", p);
597 return 0;
600 return 1;
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
605 struct udf_options uopt;
606 struct udf_sb_info *sbi = UDF_SB(sb);
607 int error = 0;
609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 return -EACCES;
612 sync_filesystem(sb);
614 uopt.flags = sbi->s_flags;
615 uopt.uid = sbi->s_uid;
616 uopt.gid = sbi->s_gid;
617 uopt.umask = sbi->s_umask;
618 uopt.fmode = sbi->s_fmode;
619 uopt.dmode = sbi->s_dmode;
620 uopt.nls_map = NULL;
622 if (!udf_parse_options(options, &uopt, true))
623 return -EINVAL;
625 write_lock(&sbi->s_cred_lock);
626 sbi->s_flags = uopt.flags;
627 sbi->s_uid = uopt.uid;
628 sbi->s_gid = uopt.gid;
629 sbi->s_umask = uopt.umask;
630 sbi->s_fmode = uopt.fmode;
631 sbi->s_dmode = uopt.dmode;
632 write_unlock(&sbi->s_cred_lock);
634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 goto out_unlock;
637 if (*flags & SB_RDONLY)
638 udf_close_lvid(sb);
639 else
640 udf_open_lvid(sb);
642 out_unlock:
643 return error;
647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649 * we found one of NSR descriptors we are looking for.
651 static int identify_vsd(const struct volStructDesc *vsd)
653 int ret = 0;
655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 switch (vsd->structType) {
657 case 0:
658 udf_debug("ISO9660 Boot Record found\n");
659 break;
660 case 1:
661 udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 break;
663 case 2:
664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 break;
666 case 3:
667 udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 break;
669 case 255:
670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 break;
672 default:
673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 break;
676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 ; /* ret = 0 */
678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 ret = 1;
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 ret = 1;
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 ; /* ret = 0 */
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 ; /* ret = 0 */
686 else {
687 /* TEA01 or invalid id : end of volume recognition area */
688 ret = -1;
691 return ret;
695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697 * @return 1 if NSR02 or NSR03 found,
698 * -1 if first sector read error, 0 otherwise
700 static int udf_check_vsd(struct super_block *sb)
702 struct volStructDesc *vsd = NULL;
703 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 int sectorsize;
705 struct buffer_head *bh = NULL;
706 int nsr = 0;
707 struct udf_sb_info *sbi;
709 sbi = UDF_SB(sb);
710 if (sb->s_blocksize < sizeof(struct volStructDesc))
711 sectorsize = sizeof(struct volStructDesc);
712 else
713 sectorsize = sb->s_blocksize;
715 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
717 udf_debug("Starting at sector %u (%lu byte sectors)\n",
718 (unsigned int)(sector >> sb->s_blocksize_bits),
719 sb->s_blocksize);
720 /* Process the sequence (if applicable). The hard limit on the sector
721 * offset is arbitrary, hopefully large enough so that all valid UDF
722 * filesystems will be recognised. There is no mention of an upper
723 * bound to the size of the volume recognition area in the standard.
724 * The limit will prevent the code to read all the sectors of a
725 * specially crafted image (like a bluray disc full of CD001 sectors),
726 * potentially causing minutes or even hours of uninterruptible I/O
727 * activity. This actually happened with uninitialised SSD partitions
728 * (all 0xFF) before the check for the limit and all valid IDs were
729 * added */
730 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
731 /* Read a block */
732 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
733 if (!bh)
734 break;
736 vsd = (struct volStructDesc *)(bh->b_data +
737 (sector & (sb->s_blocksize - 1)));
738 nsr = identify_vsd(vsd);
739 /* Found NSR or end? */
740 if (nsr) {
741 brelse(bh);
742 break;
745 * Special handling for improperly formatted VRS (e.g., Win10)
746 * where components are separated by 2048 bytes even though
747 * sectors are 4K
749 if (sb->s_blocksize == 4096) {
750 nsr = identify_vsd(vsd + 1);
751 /* Ignore unknown IDs... */
752 if (nsr < 0)
753 nsr = 0;
755 brelse(bh);
758 if (nsr > 0)
759 return 1;
760 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
761 VSD_FIRST_SECTOR_OFFSET)
762 return -1;
763 else
764 return 0;
767 static int udf_verify_domain_identifier(struct super_block *sb,
768 struct regid *ident, char *dname)
770 struct domainEntityIDSuffix *suffix;
772 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774 goto force_ro;
776 if (ident->flags & (1 << ENTITYID_FLAGS_DIRTY)) {
777 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778 dname);
779 goto force_ro;
781 suffix = (struct domainEntityIDSuffix *)ident->identSuffix;
782 if (suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_HARDWRITEPROTECT) ||
783 suffix->flags & (1 << ENTITYIDSUFFIX_FLAGS_SOFTWRITEPROTECT)) {
784 if (!sb_rdonly(sb)) {
785 udf_warn(sb, "Descriptor for %s marked write protected."
786 " Forcing read only mount.\n", dname);
788 goto force_ro;
790 return 0;
792 force_ro:
793 if (!sb_rdonly(sb))
794 return -EACCES;
795 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796 return 0;
799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800 struct kernel_lb_addr *root)
802 int ret;
804 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805 if (ret < 0)
806 return ret;
808 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811 udf_debug("Rootdir at block=%u, partition=%u\n",
812 root->logicalBlockNum, root->partitionReferenceNum);
813 return 0;
816 static int udf_find_fileset(struct super_block *sb,
817 struct kernel_lb_addr *fileset,
818 struct kernel_lb_addr *root)
820 struct buffer_head *bh = NULL;
821 uint16_t ident;
822 int ret;
824 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825 fileset->partitionReferenceNum == 0xFFFF)
826 return -EINVAL;
828 bh = udf_read_ptagged(sb, fileset, 0, &ident);
829 if (!bh)
830 return -EIO;
831 if (ident != TAG_IDENT_FSD) {
832 brelse(bh);
833 return -EINVAL;
836 udf_debug("Fileset at block=%u, partition=%u\n",
837 fileset->logicalBlockNum, fileset->partitionReferenceNum);
839 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841 brelse(bh);
842 return ret;
846 * Load primary Volume Descriptor Sequence
848 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849 * should be tried.
851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 struct primaryVolDesc *pvoldesc;
854 uint8_t *outstr;
855 struct buffer_head *bh;
856 uint16_t ident;
857 int ret = -ENOMEM;
858 struct timestamp *ts;
860 outstr = kmalloc(128, GFP_NOFS);
861 if (!outstr)
862 return -ENOMEM;
864 bh = udf_read_tagged(sb, block, block, &ident);
865 if (!bh) {
866 ret = -EAGAIN;
867 goto out2;
870 if (ident != TAG_IDENT_PVD) {
871 ret = -EIO;
872 goto out_bh;
875 pvoldesc = (struct primaryVolDesc *)bh->b_data;
877 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878 pvoldesc->recordingDateAndTime);
879 ts = &pvoldesc->recordingDateAndTime;
880 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882 ts->minute, le16_to_cpu(ts->typeAndTimezone));
884 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885 if (ret < 0) {
886 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887 pr_warn("incorrect volume identification, setting to "
888 "'InvalidName'\n");
889 } else {
890 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895 if (ret < 0) {
896 ret = 0;
897 goto out_bh;
899 outstr[ret] = 0;
900 udf_debug("volSetIdent[] = '%s'\n", outstr);
902 ret = 0;
903 out_bh:
904 brelse(bh);
905 out2:
906 kfree(outstr);
907 return ret;
910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911 u32 meta_file_loc, u32 partition_ref)
913 struct kernel_lb_addr addr;
914 struct inode *metadata_fe;
916 addr.logicalBlockNum = meta_file_loc;
917 addr.partitionReferenceNum = partition_ref;
919 metadata_fe = udf_iget_special(sb, &addr);
921 if (IS_ERR(metadata_fe)) {
922 udf_warn(sb, "metadata inode efe not found\n");
923 return metadata_fe;
925 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927 iput(metadata_fe);
928 return ERR_PTR(-EIO);
931 return metadata_fe;
934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935 int type1_index)
937 struct udf_sb_info *sbi = UDF_SB(sb);
938 struct udf_part_map *map;
939 struct udf_meta_data *mdata;
940 struct kernel_lb_addr addr;
941 struct inode *fe;
943 map = &sbi->s_partmaps[partition];
944 mdata = &map->s_type_specific.s_metadata;
945 mdata->s_phys_partition_ref = type1_index;
947 /* metadata address */
948 udf_debug("Metadata file location: block = %u part = %u\n",
949 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952 mdata->s_phys_partition_ref);
953 if (IS_ERR(fe)) {
954 /* mirror file entry */
955 udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959 mdata->s_phys_partition_ref);
961 if (IS_ERR(fe)) {
962 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963 return PTR_ERR(fe);
965 mdata->s_mirror_fe = fe;
966 } else
967 mdata->s_metadata_fe = fe;
971 * bitmap file entry
972 * Note:
973 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979 udf_debug("Bitmap file location: block = %u part = %u\n",
980 addr.logicalBlockNum, addr.partitionReferenceNum);
982 fe = udf_iget_special(sb, &addr);
983 if (IS_ERR(fe)) {
984 if (sb_rdonly(sb))
985 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986 else {
987 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988 return PTR_ERR(fe);
990 } else
991 mdata->s_bitmap_fe = fe;
994 udf_debug("udf_load_metadata_files Ok\n");
995 return 0;
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 return DIV_ROUND_UP(map->s_partition_len +
1002 (sizeof(struct spaceBitmapDesc) << 3),
1003 sb->s_blocksize * 8);
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008 struct udf_bitmap *bitmap;
1009 int nr_groups;
1010 int size;
1012 nr_groups = udf_compute_nr_groups(sb, index);
1013 size = sizeof(struct udf_bitmap) +
1014 (sizeof(struct buffer_head *) * nr_groups);
1016 if (size <= PAGE_SIZE)
1017 bitmap = kzalloc(size, GFP_KERNEL);
1018 else
1019 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1021 if (!bitmap)
1022 return NULL;
1024 bitmap->s_nr_groups = nr_groups;
1025 return bitmap;
1028 static int check_partition_desc(struct super_block *sb,
1029 struct partitionDesc *p,
1030 struct udf_part_map *map)
1032 bool umap, utable, fmap, ftable;
1033 struct partitionHeaderDesc *phd;
1035 switch (le32_to_cpu(p->accessType)) {
1036 case PD_ACCESS_TYPE_READ_ONLY:
1037 case PD_ACCESS_TYPE_WRITE_ONCE:
1038 case PD_ACCESS_TYPE_NONE:
1039 goto force_ro;
1042 /* No Partition Header Descriptor? */
1043 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1044 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1045 goto force_ro;
1047 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1048 utable = phd->unallocSpaceTable.extLength;
1049 umap = phd->unallocSpaceBitmap.extLength;
1050 ftable = phd->freedSpaceTable.extLength;
1051 fmap = phd->freedSpaceBitmap.extLength;
1053 /* No allocation info? */
1054 if (!utable && !umap && !ftable && !fmap)
1055 goto force_ro;
1057 /* We don't support blocks that require erasing before overwrite */
1058 if (ftable || fmap)
1059 goto force_ro;
1060 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1061 if (utable && umap)
1062 goto force_ro;
1064 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1065 map->s_partition_type == UDF_VIRTUAL_MAP20)
1066 goto force_ro;
1068 return 0;
1069 force_ro:
1070 if (!sb_rdonly(sb))
1071 return -EACCES;
1072 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1073 return 0;
1076 static int udf_fill_partdesc_info(struct super_block *sb,
1077 struct partitionDesc *p, int p_index)
1079 struct udf_part_map *map;
1080 struct udf_sb_info *sbi = UDF_SB(sb);
1081 struct partitionHeaderDesc *phd;
1082 int err;
1084 map = &sbi->s_partmaps[p_index];
1086 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1087 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1090 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1092 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1093 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1094 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1095 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1096 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1099 p_index, map->s_partition_type,
1100 map->s_partition_root, map->s_partition_len);
1102 err = check_partition_desc(sb, p, map);
1103 if (err)
1104 return err;
1107 * Skip loading allocation info it we cannot ever write to the fs.
1108 * This is a correctness thing as we may have decided to force ro mount
1109 * to avoid allocation info we don't support.
1111 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1112 return 0;
1114 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1115 if (phd->unallocSpaceTable.extLength) {
1116 struct kernel_lb_addr loc = {
1117 .logicalBlockNum = le32_to_cpu(
1118 phd->unallocSpaceTable.extPosition),
1119 .partitionReferenceNum = p_index,
1121 struct inode *inode;
1123 inode = udf_iget_special(sb, &loc);
1124 if (IS_ERR(inode)) {
1125 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1126 p_index);
1127 return PTR_ERR(inode);
1129 map->s_uspace.s_table = inode;
1130 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1131 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1132 p_index, map->s_uspace.s_table->i_ino);
1135 if (phd->unallocSpaceBitmap.extLength) {
1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1137 if (!bitmap)
1138 return -ENOMEM;
1139 map->s_uspace.s_bitmap = bitmap;
1140 bitmap->s_extPosition = le32_to_cpu(
1141 phd->unallocSpaceBitmap.extPosition);
1142 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1143 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1144 p_index, bitmap->s_extPosition);
1147 return 0;
1150 static void udf_find_vat_block(struct super_block *sb, int p_index,
1151 int type1_index, sector_t start_block)
1153 struct udf_sb_info *sbi = UDF_SB(sb);
1154 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1155 sector_t vat_block;
1156 struct kernel_lb_addr ino;
1157 struct inode *inode;
1160 * VAT file entry is in the last recorded block. Some broken disks have
1161 * it a few blocks before so try a bit harder...
1163 ino.partitionReferenceNum = type1_index;
1164 for (vat_block = start_block;
1165 vat_block >= map->s_partition_root &&
1166 vat_block >= start_block - 3; vat_block--) {
1167 ino.logicalBlockNum = vat_block - map->s_partition_root;
1168 inode = udf_iget_special(sb, &ino);
1169 if (!IS_ERR(inode)) {
1170 sbi->s_vat_inode = inode;
1171 break;
1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1178 struct udf_sb_info *sbi = UDF_SB(sb);
1179 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1180 struct buffer_head *bh = NULL;
1181 struct udf_inode_info *vati;
1182 uint32_t pos;
1183 struct virtualAllocationTable20 *vat20;
1184 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1185 sb->s_blocksize_bits;
1187 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1188 if (!sbi->s_vat_inode &&
1189 sbi->s_last_block != blocks - 1) {
1190 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1191 (unsigned long)sbi->s_last_block,
1192 (unsigned long)blocks - 1);
1193 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1195 if (!sbi->s_vat_inode)
1196 return -EIO;
1198 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1199 map->s_type_specific.s_virtual.s_start_offset = 0;
1200 map->s_type_specific.s_virtual.s_num_entries =
1201 (sbi->s_vat_inode->i_size - 36) >> 2;
1202 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1203 vati = UDF_I(sbi->s_vat_inode);
1204 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1205 pos = udf_block_map(sbi->s_vat_inode, 0);
1206 bh = sb_bread(sb, pos);
1207 if (!bh)
1208 return -EIO;
1209 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1210 } else {
1211 vat20 = (struct virtualAllocationTable20 *)
1212 vati->i_ext.i_data;
1215 map->s_type_specific.s_virtual.s_start_offset =
1216 le16_to_cpu(vat20->lengthHeader);
1217 map->s_type_specific.s_virtual.s_num_entries =
1218 (sbi->s_vat_inode->i_size -
1219 map->s_type_specific.s_virtual.
1220 s_start_offset) >> 2;
1221 brelse(bh);
1223 return 0;
1227 * Load partition descriptor block
1229 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1230 * sequence.
1232 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1234 struct buffer_head *bh;
1235 struct partitionDesc *p;
1236 struct udf_part_map *map;
1237 struct udf_sb_info *sbi = UDF_SB(sb);
1238 int i, type1_idx;
1239 uint16_t partitionNumber;
1240 uint16_t ident;
1241 int ret;
1243 bh = udf_read_tagged(sb, block, block, &ident);
1244 if (!bh)
1245 return -EAGAIN;
1246 if (ident != TAG_IDENT_PD) {
1247 ret = 0;
1248 goto out_bh;
1251 p = (struct partitionDesc *)bh->b_data;
1252 partitionNumber = le16_to_cpu(p->partitionNumber);
1254 /* First scan for TYPE1 and SPARABLE partitions */
1255 for (i = 0; i < sbi->s_partitions; i++) {
1256 map = &sbi->s_partmaps[i];
1257 udf_debug("Searching map: (%u == %u)\n",
1258 map->s_partition_num, partitionNumber);
1259 if (map->s_partition_num == partitionNumber &&
1260 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1261 map->s_partition_type == UDF_SPARABLE_MAP15))
1262 break;
1265 if (i >= sbi->s_partitions) {
1266 udf_debug("Partition (%u) not found in partition map\n",
1267 partitionNumber);
1268 ret = 0;
1269 goto out_bh;
1272 ret = udf_fill_partdesc_info(sb, p, i);
1273 if (ret < 0)
1274 goto out_bh;
1277 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1278 * PHYSICAL partitions are already set up
1280 type1_idx = i;
1281 map = NULL; /* supress 'maybe used uninitialized' warning */
1282 for (i = 0; i < sbi->s_partitions; i++) {
1283 map = &sbi->s_partmaps[i];
1285 if (map->s_partition_num == partitionNumber &&
1286 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1287 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1288 map->s_partition_type == UDF_METADATA_MAP25))
1289 break;
1292 if (i >= sbi->s_partitions) {
1293 ret = 0;
1294 goto out_bh;
1297 ret = udf_fill_partdesc_info(sb, p, i);
1298 if (ret < 0)
1299 goto out_bh;
1301 if (map->s_partition_type == UDF_METADATA_MAP25) {
1302 ret = udf_load_metadata_files(sb, i, type1_idx);
1303 if (ret < 0) {
1304 udf_err(sb, "error loading MetaData partition map %d\n",
1306 goto out_bh;
1308 } else {
1310 * If we have a partition with virtual map, we don't handle
1311 * writing to it (we overwrite blocks instead of relocating
1312 * them).
1314 if (!sb_rdonly(sb)) {
1315 ret = -EACCES;
1316 goto out_bh;
1318 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1319 ret = udf_load_vat(sb, i, type1_idx);
1320 if (ret < 0)
1321 goto out_bh;
1323 ret = 0;
1324 out_bh:
1325 /* In case loading failed, we handle cleanup in udf_fill_super */
1326 brelse(bh);
1327 return ret;
1330 static int udf_load_sparable_map(struct super_block *sb,
1331 struct udf_part_map *map,
1332 struct sparablePartitionMap *spm)
1334 uint32_t loc;
1335 uint16_t ident;
1336 struct sparingTable *st;
1337 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1338 int i;
1339 struct buffer_head *bh;
1341 map->s_partition_type = UDF_SPARABLE_MAP15;
1342 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1343 if (!is_power_of_2(sdata->s_packet_len)) {
1344 udf_err(sb, "error loading logical volume descriptor: "
1345 "Invalid packet length %u\n",
1346 (unsigned)sdata->s_packet_len);
1347 return -EIO;
1349 if (spm->numSparingTables > 4) {
1350 udf_err(sb, "error loading logical volume descriptor: "
1351 "Too many sparing tables (%d)\n",
1352 (int)spm->numSparingTables);
1353 return -EIO;
1356 for (i = 0; i < spm->numSparingTables; i++) {
1357 loc = le32_to_cpu(spm->locSparingTable[i]);
1358 bh = udf_read_tagged(sb, loc, loc, &ident);
1359 if (!bh)
1360 continue;
1362 st = (struct sparingTable *)bh->b_data;
1363 if (ident != 0 ||
1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 strlen(UDF_ID_SPARING)) ||
1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 sb->s_blocksize) {
1368 brelse(bh);
1369 continue;
1372 sdata->s_spar_map[i] = bh;
1374 map->s_partition_func = udf_get_pblock_spar15;
1375 return 0;
1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 struct kernel_lb_addr *fileset)
1381 struct logicalVolDesc *lvd;
1382 int i, offset;
1383 uint8_t type;
1384 struct udf_sb_info *sbi = UDF_SB(sb);
1385 struct genericPartitionMap *gpm;
1386 uint16_t ident;
1387 struct buffer_head *bh;
1388 unsigned int table_len;
1389 int ret;
1391 bh = udf_read_tagged(sb, block, block, &ident);
1392 if (!bh)
1393 return -EAGAIN;
1394 BUG_ON(ident != TAG_IDENT_LVD);
1395 lvd = (struct logicalVolDesc *)bh->b_data;
1396 table_len = le32_to_cpu(lvd->mapTableLength);
1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 udf_err(sb, "error loading logical volume descriptor: "
1399 "Partition table too long (%u > %lu)\n", table_len,
1400 sb->s_blocksize - sizeof(*lvd));
1401 ret = -EIO;
1402 goto out_bh;
1405 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406 "logical volume");
1407 if (ret)
1408 goto out_bh;
1409 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410 if (ret)
1411 goto out_bh;
1413 for (i = 0, offset = 0;
1414 i < sbi->s_partitions && offset < table_len;
1415 i++, offset += gpm->partitionMapLength) {
1416 struct udf_part_map *map = &sbi->s_partmaps[i];
1417 gpm = (struct genericPartitionMap *)
1418 &(lvd->partitionMaps[offset]);
1419 type = gpm->partitionMapType;
1420 if (type == 1) {
1421 struct genericPartitionMap1 *gpm1 =
1422 (struct genericPartitionMap1 *)gpm;
1423 map->s_partition_type = UDF_TYPE1_MAP15;
1424 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426 map->s_partition_func = NULL;
1427 } else if (type == 2) {
1428 struct udfPartitionMap2 *upm2 =
1429 (struct udfPartitionMap2 *)gpm;
1430 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431 strlen(UDF_ID_VIRTUAL))) {
1432 u16 suf =
1433 le16_to_cpu(((__le16 *)upm2->partIdent.
1434 identSuffix)[0]);
1435 if (suf < 0x0200) {
1436 map->s_partition_type =
1437 UDF_VIRTUAL_MAP15;
1438 map->s_partition_func =
1439 udf_get_pblock_virt15;
1440 } else {
1441 map->s_partition_type =
1442 UDF_VIRTUAL_MAP20;
1443 map->s_partition_func =
1444 udf_get_pblock_virt20;
1446 } else if (!strncmp(upm2->partIdent.ident,
1447 UDF_ID_SPARABLE,
1448 strlen(UDF_ID_SPARABLE))) {
1449 ret = udf_load_sparable_map(sb, map,
1450 (struct sparablePartitionMap *)gpm);
1451 if (ret < 0)
1452 goto out_bh;
1453 } else if (!strncmp(upm2->partIdent.ident,
1454 UDF_ID_METADATA,
1455 strlen(UDF_ID_METADATA))) {
1456 struct udf_meta_data *mdata =
1457 &map->s_type_specific.s_metadata;
1458 struct metadataPartitionMap *mdm =
1459 (struct metadataPartitionMap *)
1460 &(lvd->partitionMaps[offset]);
1461 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1462 i, type, UDF_ID_METADATA);
1464 map->s_partition_type = UDF_METADATA_MAP25;
1465 map->s_partition_func = udf_get_pblock_meta25;
1467 mdata->s_meta_file_loc =
1468 le32_to_cpu(mdm->metadataFileLoc);
1469 mdata->s_mirror_file_loc =
1470 le32_to_cpu(mdm->metadataMirrorFileLoc);
1471 mdata->s_bitmap_file_loc =
1472 le32_to_cpu(mdm->metadataBitmapFileLoc);
1473 mdata->s_alloc_unit_size =
1474 le32_to_cpu(mdm->allocUnitSize);
1475 mdata->s_align_unit_size =
1476 le16_to_cpu(mdm->alignUnitSize);
1477 if (mdm->flags & 0x01)
1478 mdata->s_flags |= MF_DUPLICATE_MD;
1480 udf_debug("Metadata Ident suffix=0x%x\n",
1481 le16_to_cpu(*(__le16 *)
1482 mdm->partIdent.identSuffix));
1483 udf_debug("Metadata part num=%u\n",
1484 le16_to_cpu(mdm->partitionNum));
1485 udf_debug("Metadata part alloc unit size=%u\n",
1486 le32_to_cpu(mdm->allocUnitSize));
1487 udf_debug("Metadata file loc=%u\n",
1488 le32_to_cpu(mdm->metadataFileLoc));
1489 udf_debug("Mirror file loc=%u\n",
1490 le32_to_cpu(mdm->metadataMirrorFileLoc));
1491 udf_debug("Bitmap file loc=%u\n",
1492 le32_to_cpu(mdm->metadataBitmapFileLoc));
1493 udf_debug("Flags: %d %u\n",
1494 mdata->s_flags, mdm->flags);
1495 } else {
1496 udf_debug("Unknown ident: %s\n",
1497 upm2->partIdent.ident);
1498 continue;
1500 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504 i, map->s_partition_num, type, map->s_volumeseqnum);
1507 if (fileset) {
1508 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510 *fileset = lelb_to_cpu(la->extLocation);
1511 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512 fileset->logicalBlockNum,
1513 fileset->partitionReferenceNum);
1515 if (lvd->integritySeqExt.extLength)
1516 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517 ret = 0;
1519 if (!sbi->s_lvid_bh) {
1520 /* We can't generate unique IDs without a valid LVID */
1521 if (sb_rdonly(sb)) {
1522 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523 } else {
1524 udf_warn(sb, "Damaged or missing LVID, forcing "
1525 "readonly mount\n");
1526 ret = -EACCES;
1529 out_bh:
1530 brelse(bh);
1531 return ret;
1535 * Find the prevailing Logical Volume Integrity Descriptor.
1537 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 struct buffer_head *bh, *final_bh;
1540 uint16_t ident;
1541 struct udf_sb_info *sbi = UDF_SB(sb);
1542 struct logicalVolIntegrityDesc *lvid;
1543 int indirections = 0;
1545 while (++indirections <= UDF_MAX_LVID_NESTING) {
1546 final_bh = NULL;
1547 while (loc.extLength > 0 &&
1548 (bh = udf_read_tagged(sb, loc.extLocation,
1549 loc.extLocation, &ident))) {
1550 if (ident != TAG_IDENT_LVID) {
1551 brelse(bh);
1552 break;
1555 brelse(final_bh);
1556 final_bh = bh;
1558 loc.extLength -= sb->s_blocksize;
1559 loc.extLocation++;
1562 if (!final_bh)
1563 return;
1565 brelse(sbi->s_lvid_bh);
1566 sbi->s_lvid_bh = final_bh;
1568 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1569 if (lvid->nextIntegrityExt.extLength == 0)
1570 return;
1572 loc = leea_to_cpu(lvid->nextIntegrityExt);
1575 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1576 UDF_MAX_LVID_NESTING);
1577 brelse(sbi->s_lvid_bh);
1578 sbi->s_lvid_bh = NULL;
1582 * Step for reallocation of table of partition descriptor sequence numbers.
1583 * Must be power of 2.
1585 #define PART_DESC_ALLOC_STEP 32
1587 struct part_desc_seq_scan_data {
1588 struct udf_vds_record rec;
1589 u32 partnum;
1592 struct desc_seq_scan_data {
1593 struct udf_vds_record vds[VDS_POS_LENGTH];
1594 unsigned int size_part_descs;
1595 unsigned int num_part_descs;
1596 struct part_desc_seq_scan_data *part_descs_loc;
1599 static struct udf_vds_record *handle_partition_descriptor(
1600 struct buffer_head *bh,
1601 struct desc_seq_scan_data *data)
1603 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1604 int partnum;
1605 int i;
1607 partnum = le16_to_cpu(desc->partitionNumber);
1608 for (i = 0; i < data->num_part_descs; i++)
1609 if (partnum == data->part_descs_loc[i].partnum)
1610 return &(data->part_descs_loc[i].rec);
1611 if (data->num_part_descs >= data->size_part_descs) {
1612 struct part_desc_seq_scan_data *new_loc;
1613 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1616 if (!new_loc)
1617 return ERR_PTR(-ENOMEM);
1618 memcpy(new_loc, data->part_descs_loc,
1619 data->size_part_descs * sizeof(*new_loc));
1620 kfree(data->part_descs_loc);
1621 data->part_descs_loc = new_loc;
1622 data->size_part_descs = new_size;
1624 return &(data->part_descs_loc[data->num_part_descs++].rec);
1628 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1629 struct buffer_head *bh, struct desc_seq_scan_data *data)
1631 switch (ident) {
1632 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1633 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1634 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1635 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1636 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1637 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1638 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1639 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1640 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1641 return handle_partition_descriptor(bh, data);
1643 return NULL;
1647 * Process a main/reserve volume descriptor sequence.
1648 * @block First block of first extent of the sequence.
1649 * @lastblock Lastblock of first extent of the sequence.
1650 * @fileset There we store extent containing root fileset
1652 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1653 * sequence
1655 static noinline int udf_process_sequence(
1656 struct super_block *sb,
1657 sector_t block, sector_t lastblock,
1658 struct kernel_lb_addr *fileset)
1660 struct buffer_head *bh = NULL;
1661 struct udf_vds_record *curr;
1662 struct generic_desc *gd;
1663 struct volDescPtr *vdp;
1664 bool done = false;
1665 uint32_t vdsn;
1666 uint16_t ident;
1667 int ret;
1668 unsigned int indirections = 0;
1669 struct desc_seq_scan_data data;
1670 unsigned int i;
1672 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1673 data.size_part_descs = PART_DESC_ALLOC_STEP;
1674 data.num_part_descs = 0;
1675 data.part_descs_loc = kcalloc(data.size_part_descs,
1676 sizeof(*data.part_descs_loc),
1677 GFP_KERNEL);
1678 if (!data.part_descs_loc)
1679 return -ENOMEM;
1682 * Read the main descriptor sequence and find which descriptors
1683 * are in it.
1685 for (; (!done && block <= lastblock); block++) {
1686 bh = udf_read_tagged(sb, block, block, &ident);
1687 if (!bh)
1688 break;
1690 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1691 gd = (struct generic_desc *)bh->b_data;
1692 vdsn = le32_to_cpu(gd->volDescSeqNum);
1693 switch (ident) {
1694 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1695 if (++indirections > UDF_MAX_TD_NESTING) {
1696 udf_err(sb, "too many Volume Descriptor "
1697 "Pointers (max %u supported)\n",
1698 UDF_MAX_TD_NESTING);
1699 brelse(bh);
1700 return -EIO;
1703 vdp = (struct volDescPtr *)bh->b_data;
1704 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1705 lastblock = le32_to_cpu(
1706 vdp->nextVolDescSeqExt.extLength) >>
1707 sb->s_blocksize_bits;
1708 lastblock += block - 1;
1709 /* For loop is going to increment 'block' again */
1710 block--;
1711 break;
1712 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1713 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1714 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1715 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1716 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1717 curr = get_volume_descriptor_record(ident, bh, &data);
1718 if (IS_ERR(curr)) {
1719 brelse(bh);
1720 return PTR_ERR(curr);
1722 /* Descriptor we don't care about? */
1723 if (!curr)
1724 break;
1725 if (vdsn >= curr->volDescSeqNum) {
1726 curr->volDescSeqNum = vdsn;
1727 curr->block = block;
1729 break;
1730 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1731 done = true;
1732 break;
1734 brelse(bh);
1737 * Now read interesting descriptors again and process them
1738 * in a suitable order
1740 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1741 udf_err(sb, "Primary Volume Descriptor not found!\n");
1742 return -EAGAIN;
1744 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1745 if (ret < 0)
1746 return ret;
1748 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1749 ret = udf_load_logicalvol(sb,
1750 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1751 fileset);
1752 if (ret < 0)
1753 return ret;
1756 /* Now handle prevailing Partition Descriptors */
1757 for (i = 0; i < data.num_part_descs; i++) {
1758 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1759 if (ret < 0)
1760 return ret;
1763 return 0;
1767 * Load Volume Descriptor Sequence described by anchor in bh
1769 * Returns <0 on error, 0 on success
1771 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1772 struct kernel_lb_addr *fileset)
1774 struct anchorVolDescPtr *anchor;
1775 sector_t main_s, main_e, reserve_s, reserve_e;
1776 int ret;
1778 anchor = (struct anchorVolDescPtr *)bh->b_data;
1780 /* Locate the main sequence */
1781 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1782 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1783 main_e = main_e >> sb->s_blocksize_bits;
1784 main_e += main_s - 1;
1786 /* Locate the reserve sequence */
1787 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1788 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1789 reserve_e = reserve_e >> sb->s_blocksize_bits;
1790 reserve_e += reserve_s - 1;
1792 /* Process the main & reserve sequences */
1793 /* responsible for finding the PartitionDesc(s) */
1794 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1795 if (ret != -EAGAIN)
1796 return ret;
1797 udf_sb_free_partitions(sb);
1798 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1799 if (ret < 0) {
1800 udf_sb_free_partitions(sb);
1801 /* No sequence was OK, return -EIO */
1802 if (ret == -EAGAIN)
1803 ret = -EIO;
1805 return ret;
1809 * Check whether there is an anchor block in the given block and
1810 * load Volume Descriptor Sequence if so.
1812 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1813 * block
1815 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1816 struct kernel_lb_addr *fileset)
1818 struct buffer_head *bh;
1819 uint16_t ident;
1820 int ret;
1822 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1823 udf_fixed_to_variable(block) >=
1824 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1825 return -EAGAIN;
1827 bh = udf_read_tagged(sb, block, block, &ident);
1828 if (!bh)
1829 return -EAGAIN;
1830 if (ident != TAG_IDENT_AVDP) {
1831 brelse(bh);
1832 return -EAGAIN;
1834 ret = udf_load_sequence(sb, bh, fileset);
1835 brelse(bh);
1836 return ret;
1840 * Search for an anchor volume descriptor pointer.
1842 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1843 * of anchors.
1845 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1846 struct kernel_lb_addr *fileset)
1848 sector_t last[6];
1849 int i;
1850 struct udf_sb_info *sbi = UDF_SB(sb);
1851 int last_count = 0;
1852 int ret;
1854 /* First try user provided anchor */
1855 if (sbi->s_anchor) {
1856 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1857 if (ret != -EAGAIN)
1858 return ret;
1861 * according to spec, anchor is in either:
1862 * block 256
1863 * lastblock-256
1864 * lastblock
1865 * however, if the disc isn't closed, it could be 512.
1867 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1868 if (ret != -EAGAIN)
1869 return ret;
1871 * The trouble is which block is the last one. Drives often misreport
1872 * this so we try various possibilities.
1874 last[last_count++] = *lastblock;
1875 if (*lastblock >= 1)
1876 last[last_count++] = *lastblock - 1;
1877 last[last_count++] = *lastblock + 1;
1878 if (*lastblock >= 2)
1879 last[last_count++] = *lastblock - 2;
1880 if (*lastblock >= 150)
1881 last[last_count++] = *lastblock - 150;
1882 if (*lastblock >= 152)
1883 last[last_count++] = *lastblock - 152;
1885 for (i = 0; i < last_count; i++) {
1886 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1887 sb->s_blocksize_bits)
1888 continue;
1889 ret = udf_check_anchor_block(sb, last[i], fileset);
1890 if (ret != -EAGAIN) {
1891 if (!ret)
1892 *lastblock = last[i];
1893 return ret;
1895 if (last[i] < 256)
1896 continue;
1897 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1898 if (ret != -EAGAIN) {
1899 if (!ret)
1900 *lastblock = last[i];
1901 return ret;
1905 /* Finally try block 512 in case media is open */
1906 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1910 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1911 * area specified by it. The function expects sbi->s_lastblock to be the last
1912 * block on the media.
1914 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1915 * was not found.
1917 static int udf_find_anchor(struct super_block *sb,
1918 struct kernel_lb_addr *fileset)
1920 struct udf_sb_info *sbi = UDF_SB(sb);
1921 sector_t lastblock = sbi->s_last_block;
1922 int ret;
1924 ret = udf_scan_anchors(sb, &lastblock, fileset);
1925 if (ret != -EAGAIN)
1926 goto out;
1928 /* No anchor found? Try VARCONV conversion of block numbers */
1929 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1930 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1931 /* Firstly, we try to not convert number of the last block */
1932 ret = udf_scan_anchors(sb, &lastblock, fileset);
1933 if (ret != -EAGAIN)
1934 goto out;
1936 lastblock = sbi->s_last_block;
1937 /* Secondly, we try with converted number of the last block */
1938 ret = udf_scan_anchors(sb, &lastblock, fileset);
1939 if (ret < 0) {
1940 /* VARCONV didn't help. Clear it. */
1941 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1943 out:
1944 if (ret == 0)
1945 sbi->s_last_block = lastblock;
1946 return ret;
1950 * Check Volume Structure Descriptor, find Anchor block and load Volume
1951 * Descriptor Sequence.
1953 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1954 * block was not found.
1956 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1957 int silent, struct kernel_lb_addr *fileset)
1959 struct udf_sb_info *sbi = UDF_SB(sb);
1960 int nsr = 0;
1961 int ret;
1963 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1964 if (!silent)
1965 udf_warn(sb, "Bad block size\n");
1966 return -EINVAL;
1968 sbi->s_last_block = uopt->lastblock;
1969 if (!uopt->novrs) {
1970 /* Check that it is NSR02 compliant */
1971 nsr = udf_check_vsd(sb);
1972 if (!nsr) {
1973 if (!silent)
1974 udf_warn(sb, "No VRS found\n");
1975 return -EINVAL;
1977 if (nsr == -1)
1978 udf_debug("Failed to read sector at offset %d. "
1979 "Assuming open disc. Skipping validity "
1980 "check\n", VSD_FIRST_SECTOR_OFFSET);
1981 if (!sbi->s_last_block)
1982 sbi->s_last_block = udf_get_last_block(sb);
1983 } else {
1984 udf_debug("Validity check skipped because of novrs option\n");
1987 /* Look for anchor block and load Volume Descriptor Sequence */
1988 sbi->s_anchor = uopt->anchor;
1989 ret = udf_find_anchor(sb, fileset);
1990 if (ret < 0) {
1991 if (!silent && ret == -EAGAIN)
1992 udf_warn(sb, "No anchor found\n");
1993 return ret;
1995 return 0;
1998 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2000 struct timespec64 ts;
2002 ktime_get_real_ts64(&ts);
2003 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2004 lvid->descTag.descCRC = cpu_to_le16(
2005 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2006 le16_to_cpu(lvid->descTag.descCRCLength)));
2007 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2010 static void udf_open_lvid(struct super_block *sb)
2012 struct udf_sb_info *sbi = UDF_SB(sb);
2013 struct buffer_head *bh = sbi->s_lvid_bh;
2014 struct logicalVolIntegrityDesc *lvid;
2015 struct logicalVolIntegrityDescImpUse *lvidiu;
2017 if (!bh)
2018 return;
2019 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2020 lvidiu = udf_sb_lvidiu(sb);
2021 if (!lvidiu)
2022 return;
2024 mutex_lock(&sbi->s_alloc_mutex);
2025 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2026 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2027 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2028 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2029 else
2030 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2032 udf_finalize_lvid(lvid);
2033 mark_buffer_dirty(bh);
2034 sbi->s_lvid_dirty = 0;
2035 mutex_unlock(&sbi->s_alloc_mutex);
2036 /* Make opening of filesystem visible on the media immediately */
2037 sync_dirty_buffer(bh);
2040 static void udf_close_lvid(struct super_block *sb)
2042 struct udf_sb_info *sbi = UDF_SB(sb);
2043 struct buffer_head *bh = sbi->s_lvid_bh;
2044 struct logicalVolIntegrityDesc *lvid;
2045 struct logicalVolIntegrityDescImpUse *lvidiu;
2047 if (!bh)
2048 return;
2049 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2050 lvidiu = udf_sb_lvidiu(sb);
2051 if (!lvidiu)
2052 return;
2054 mutex_lock(&sbi->s_alloc_mutex);
2055 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2056 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2057 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2058 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2059 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2060 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2061 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2062 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2063 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2064 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2067 * We set buffer uptodate unconditionally here to avoid spurious
2068 * warnings from mark_buffer_dirty() when previous EIO has marked
2069 * the buffer as !uptodate
2071 set_buffer_uptodate(bh);
2072 udf_finalize_lvid(lvid);
2073 mark_buffer_dirty(bh);
2074 sbi->s_lvid_dirty = 0;
2075 mutex_unlock(&sbi->s_alloc_mutex);
2076 /* Make closing of filesystem visible on the media immediately */
2077 sync_dirty_buffer(bh);
2080 u64 lvid_get_unique_id(struct super_block *sb)
2082 struct buffer_head *bh;
2083 struct udf_sb_info *sbi = UDF_SB(sb);
2084 struct logicalVolIntegrityDesc *lvid;
2085 struct logicalVolHeaderDesc *lvhd;
2086 u64 uniqueID;
2087 u64 ret;
2089 bh = sbi->s_lvid_bh;
2090 if (!bh)
2091 return 0;
2093 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2094 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2096 mutex_lock(&sbi->s_alloc_mutex);
2097 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2098 if (!(++uniqueID & 0xFFFFFFFF))
2099 uniqueID += 16;
2100 lvhd->uniqueID = cpu_to_le64(uniqueID);
2101 udf_updated_lvid(sb);
2102 mutex_unlock(&sbi->s_alloc_mutex);
2104 return ret;
2107 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2109 int ret = -EINVAL;
2110 struct inode *inode = NULL;
2111 struct udf_options uopt;
2112 struct kernel_lb_addr rootdir, fileset;
2113 struct udf_sb_info *sbi;
2114 bool lvid_open = false;
2116 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2117 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2118 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2119 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2120 uopt.umask = 0;
2121 uopt.fmode = UDF_INVALID_MODE;
2122 uopt.dmode = UDF_INVALID_MODE;
2123 uopt.nls_map = NULL;
2125 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2126 if (!sbi)
2127 return -ENOMEM;
2129 sb->s_fs_info = sbi;
2131 mutex_init(&sbi->s_alloc_mutex);
2133 if (!udf_parse_options((char *)options, &uopt, false))
2134 goto parse_options_failure;
2136 if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2137 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2138 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2139 goto parse_options_failure;
2141 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2142 uopt.nls_map = load_nls_default();
2143 if (!uopt.nls_map)
2144 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2145 else
2146 udf_debug("Using default NLS map\n");
2148 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2149 uopt.flags |= (1 << UDF_FLAG_UTF8);
2151 fileset.logicalBlockNum = 0xFFFFFFFF;
2152 fileset.partitionReferenceNum = 0xFFFF;
2154 sbi->s_flags = uopt.flags;
2155 sbi->s_uid = uopt.uid;
2156 sbi->s_gid = uopt.gid;
2157 sbi->s_umask = uopt.umask;
2158 sbi->s_fmode = uopt.fmode;
2159 sbi->s_dmode = uopt.dmode;
2160 sbi->s_nls_map = uopt.nls_map;
2161 rwlock_init(&sbi->s_cred_lock);
2163 if (uopt.session == 0xFFFFFFFF)
2164 sbi->s_session = udf_get_last_session(sb);
2165 else
2166 sbi->s_session = uopt.session;
2168 udf_debug("Multi-session=%d\n", sbi->s_session);
2170 /* Fill in the rest of the superblock */
2171 sb->s_op = &udf_sb_ops;
2172 sb->s_export_op = &udf_export_ops;
2174 sb->s_magic = UDF_SUPER_MAGIC;
2175 sb->s_time_gran = 1000;
2177 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2178 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2179 } else {
2180 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2181 while (uopt.blocksize <= 4096) {
2182 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183 if (ret < 0) {
2184 if (!silent && ret != -EACCES) {
2185 pr_notice("Scanning with blocksize %u failed\n",
2186 uopt.blocksize);
2188 brelse(sbi->s_lvid_bh);
2189 sbi->s_lvid_bh = NULL;
2191 * EACCES is special - we want to propagate to
2192 * upper layers that we cannot handle RW mount.
2194 if (ret == -EACCES)
2195 break;
2196 } else
2197 break;
2199 uopt.blocksize <<= 1;
2202 if (ret < 0) {
2203 if (ret == -EAGAIN) {
2204 udf_warn(sb, "No partition found (1)\n");
2205 ret = -EINVAL;
2207 goto error_out;
2210 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2212 if (sbi->s_lvid_bh) {
2213 struct logicalVolIntegrityDescImpUse *lvidiu =
2214 udf_sb_lvidiu(sb);
2215 uint16_t minUDFReadRev;
2216 uint16_t minUDFWriteRev;
2218 if (!lvidiu) {
2219 ret = -EINVAL;
2220 goto error_out;
2222 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2223 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2224 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2225 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2226 minUDFReadRev,
2227 UDF_MAX_READ_VERSION);
2228 ret = -EINVAL;
2229 goto error_out;
2230 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2231 if (!sb_rdonly(sb)) {
2232 ret = -EACCES;
2233 goto error_out;
2235 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2238 sbi->s_udfrev = minUDFWriteRev;
2240 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2241 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2242 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2243 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2246 if (!sbi->s_partitions) {
2247 udf_warn(sb, "No partition found (2)\n");
2248 ret = -EINVAL;
2249 goto error_out;
2252 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2253 UDF_PART_FLAG_READ_ONLY) {
2254 if (!sb_rdonly(sb)) {
2255 ret = -EACCES;
2256 goto error_out;
2258 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2261 ret = udf_find_fileset(sb, &fileset, &rootdir);
2262 if (ret < 0) {
2263 udf_warn(sb, "No fileset found\n");
2264 goto error_out;
2267 if (!silent) {
2268 struct timestamp ts;
2269 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2270 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2271 sbi->s_volume_ident,
2272 le16_to_cpu(ts.year), ts.month, ts.day,
2273 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2275 if (!sb_rdonly(sb)) {
2276 udf_open_lvid(sb);
2277 lvid_open = true;
2280 /* Assign the root inode */
2281 /* assign inodes by physical block number */
2282 /* perhaps it's not extensible enough, but for now ... */
2283 inode = udf_iget(sb, &rootdir);
2284 if (IS_ERR(inode)) {
2285 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2286 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2287 ret = PTR_ERR(inode);
2288 goto error_out;
2291 /* Allocate a dentry for the root inode */
2292 sb->s_root = d_make_root(inode);
2293 if (!sb->s_root) {
2294 udf_err(sb, "Couldn't allocate root dentry\n");
2295 ret = -ENOMEM;
2296 goto error_out;
2298 sb->s_maxbytes = MAX_LFS_FILESIZE;
2299 sb->s_max_links = UDF_MAX_LINKS;
2300 return 0;
2302 error_out:
2303 iput(sbi->s_vat_inode);
2304 parse_options_failure:
2305 if (uopt.nls_map)
2306 unload_nls(uopt.nls_map);
2307 if (lvid_open)
2308 udf_close_lvid(sb);
2309 brelse(sbi->s_lvid_bh);
2310 udf_sb_free_partitions(sb);
2311 kfree(sbi);
2312 sb->s_fs_info = NULL;
2314 return ret;
2317 void _udf_err(struct super_block *sb, const char *function,
2318 const char *fmt, ...)
2320 struct va_format vaf;
2321 va_list args;
2323 va_start(args, fmt);
2325 vaf.fmt = fmt;
2326 vaf.va = &args;
2328 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330 va_end(args);
2333 void _udf_warn(struct super_block *sb, const char *function,
2334 const char *fmt, ...)
2336 struct va_format vaf;
2337 va_list args;
2339 va_start(args, fmt);
2341 vaf.fmt = fmt;
2342 vaf.va = &args;
2344 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346 va_end(args);
2349 static void udf_put_super(struct super_block *sb)
2351 struct udf_sb_info *sbi;
2353 sbi = UDF_SB(sb);
2355 iput(sbi->s_vat_inode);
2356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2357 unload_nls(sbi->s_nls_map);
2358 if (!sb_rdonly(sb))
2359 udf_close_lvid(sb);
2360 brelse(sbi->s_lvid_bh);
2361 udf_sb_free_partitions(sb);
2362 mutex_destroy(&sbi->s_alloc_mutex);
2363 kfree(sb->s_fs_info);
2364 sb->s_fs_info = NULL;
2367 static int udf_sync_fs(struct super_block *sb, int wait)
2369 struct udf_sb_info *sbi = UDF_SB(sb);
2371 mutex_lock(&sbi->s_alloc_mutex);
2372 if (sbi->s_lvid_dirty) {
2373 struct buffer_head *bh = sbi->s_lvid_bh;
2374 struct logicalVolIntegrityDesc *lvid;
2376 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2377 udf_finalize_lvid(lvid);
2380 * Blockdevice will be synced later so we don't have to submit
2381 * the buffer for IO
2383 mark_buffer_dirty(bh);
2384 sbi->s_lvid_dirty = 0;
2386 mutex_unlock(&sbi->s_alloc_mutex);
2388 return 0;
2391 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 struct super_block *sb = dentry->d_sb;
2394 struct udf_sb_info *sbi = UDF_SB(sb);
2395 struct logicalVolIntegrityDescImpUse *lvidiu;
2396 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398 lvidiu = udf_sb_lvidiu(sb);
2399 buf->f_type = UDF_SUPER_MAGIC;
2400 buf->f_bsize = sb->s_blocksize;
2401 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2402 buf->f_bfree = udf_count_free(sb);
2403 buf->f_bavail = buf->f_bfree;
2404 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2405 le32_to_cpu(lvidiu->numDirs)) : 0)
2406 + buf->f_bfree;
2407 buf->f_ffree = buf->f_bfree;
2408 buf->f_namelen = UDF_NAME_LEN;
2409 buf->f_fsid.val[0] = (u32)id;
2410 buf->f_fsid.val[1] = (u32)(id >> 32);
2412 return 0;
2415 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2416 struct udf_bitmap *bitmap)
2418 struct buffer_head *bh = NULL;
2419 unsigned int accum = 0;
2420 int index;
2421 udf_pblk_t block = 0, newblock;
2422 struct kernel_lb_addr loc;
2423 uint32_t bytes;
2424 uint8_t *ptr;
2425 uint16_t ident;
2426 struct spaceBitmapDesc *bm;
2428 loc.logicalBlockNum = bitmap->s_extPosition;
2429 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2430 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2432 if (!bh) {
2433 udf_err(sb, "udf_count_free failed\n");
2434 goto out;
2435 } else if (ident != TAG_IDENT_SBD) {
2436 brelse(bh);
2437 udf_err(sb, "udf_count_free failed\n");
2438 goto out;
2441 bm = (struct spaceBitmapDesc *)bh->b_data;
2442 bytes = le32_to_cpu(bm->numOfBytes);
2443 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2444 ptr = (uint8_t *)bh->b_data;
2446 while (bytes > 0) {
2447 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2448 accum += bitmap_weight((const unsigned long *)(ptr + index),
2449 cur_bytes * 8);
2450 bytes -= cur_bytes;
2451 if (bytes) {
2452 brelse(bh);
2453 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2454 bh = udf_tread(sb, newblock);
2455 if (!bh) {
2456 udf_debug("read failed\n");
2457 goto out;
2459 index = 0;
2460 ptr = (uint8_t *)bh->b_data;
2463 brelse(bh);
2464 out:
2465 return accum;
2468 static unsigned int udf_count_free_table(struct super_block *sb,
2469 struct inode *table)
2471 unsigned int accum = 0;
2472 uint32_t elen;
2473 struct kernel_lb_addr eloc;
2474 int8_t etype;
2475 struct extent_position epos;
2477 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2478 epos.block = UDF_I(table)->i_location;
2479 epos.offset = sizeof(struct unallocSpaceEntry);
2480 epos.bh = NULL;
2482 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2483 accum += (elen >> table->i_sb->s_blocksize_bits);
2485 brelse(epos.bh);
2486 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2488 return accum;
2491 static unsigned int udf_count_free(struct super_block *sb)
2493 unsigned int accum = 0;
2494 struct udf_sb_info *sbi = UDF_SB(sb);
2495 struct udf_part_map *map;
2496 unsigned int part = sbi->s_partition;
2497 int ptype = sbi->s_partmaps[part].s_partition_type;
2499 if (ptype == UDF_METADATA_MAP25) {
2500 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2501 s_phys_partition_ref;
2502 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2504 * Filesystems with VAT are append-only and we cannot write to
2505 * them. Let's just report 0 here.
2507 return 0;
2510 if (sbi->s_lvid_bh) {
2511 struct logicalVolIntegrityDesc *lvid =
2512 (struct logicalVolIntegrityDesc *)
2513 sbi->s_lvid_bh->b_data;
2514 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2515 accum = le32_to_cpu(
2516 lvid->freeSpaceTable[part]);
2517 if (accum == 0xFFFFFFFF)
2518 accum = 0;
2522 if (accum)
2523 return accum;
2525 map = &sbi->s_partmaps[part];
2526 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2527 accum += udf_count_free_bitmap(sb,
2528 map->s_uspace.s_bitmap);
2530 if (accum)
2531 return accum;
2533 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2534 accum += udf_count_free_table(sb,
2535 map->s_uspace.s_table);
2537 return accum;
2540 MODULE_AUTHOR("Ben Fennema");
2541 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2542 MODULE_LICENSE("GPL");
2543 module_init(init_udf_fs)
2544 module_exit(exit_udf_fs)