2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
24 #include "free-space-cache.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
30 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
34 struct btrfs_free_space
*info
);
36 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
37 struct btrfs_path
*path
,
41 struct btrfs_key location
;
42 struct btrfs_disk_key disk_key
;
43 struct btrfs_free_space_header
*header
;
44 struct extent_buffer
*leaf
;
45 struct inode
*inode
= NULL
;
48 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
52 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
56 btrfs_release_path(path
);
57 return ERR_PTR(-ENOENT
);
60 leaf
= path
->nodes
[0];
61 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
62 struct btrfs_free_space_header
);
63 btrfs_free_space_key(leaf
, header
, &disk_key
);
64 btrfs_disk_key_to_cpu(&location
, &disk_key
);
65 btrfs_release_path(path
);
67 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
69 return ERR_PTR(-ENOENT
);
72 if (is_bad_inode(inode
)) {
74 return ERR_PTR(-ENOENT
);
77 inode
->i_mapping
->flags
&= ~__GFP_FS
;
82 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
83 struct btrfs_block_group_cache
84 *block_group
, struct btrfs_path
*path
)
86 struct inode
*inode
= NULL
;
88 spin_lock(&block_group
->lock
);
89 if (block_group
->inode
)
90 inode
= igrab(block_group
->inode
);
91 spin_unlock(&block_group
->lock
);
95 inode
= __lookup_free_space_inode(root
, path
,
96 block_group
->key
.objectid
);
100 spin_lock(&block_group
->lock
);
101 if (!btrfs_fs_closing(root
->fs_info
)) {
102 block_group
->inode
= igrab(inode
);
103 block_group
->iref
= 1;
105 spin_unlock(&block_group
->lock
);
110 int __create_free_space_inode(struct btrfs_root
*root
,
111 struct btrfs_trans_handle
*trans
,
112 struct btrfs_path
*path
, u64 ino
, u64 offset
)
114 struct btrfs_key key
;
115 struct btrfs_disk_key disk_key
;
116 struct btrfs_free_space_header
*header
;
117 struct btrfs_inode_item
*inode_item
;
118 struct extent_buffer
*leaf
;
121 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
125 leaf
= path
->nodes
[0];
126 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
127 struct btrfs_inode_item
);
128 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
129 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
130 sizeof(*inode_item
));
131 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
132 btrfs_set_inode_size(leaf
, inode_item
, 0);
133 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
134 btrfs_set_inode_uid(leaf
, inode_item
, 0);
135 btrfs_set_inode_gid(leaf
, inode_item
, 0);
136 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
137 btrfs_set_inode_flags(leaf
, inode_item
, BTRFS_INODE_NOCOMPRESS
|
138 BTRFS_INODE_PREALLOC
| BTRFS_INODE_NODATASUM
);
139 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
140 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
141 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
142 btrfs_mark_buffer_dirty(leaf
);
143 btrfs_release_path(path
);
145 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
149 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
150 sizeof(struct btrfs_free_space_header
));
152 btrfs_release_path(path
);
155 leaf
= path
->nodes
[0];
156 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_free_space_header
);
158 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
159 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
160 btrfs_mark_buffer_dirty(leaf
);
161 btrfs_release_path(path
);
166 int create_free_space_inode(struct btrfs_root
*root
,
167 struct btrfs_trans_handle
*trans
,
168 struct btrfs_block_group_cache
*block_group
,
169 struct btrfs_path
*path
)
174 ret
= btrfs_find_free_objectid(root
, &ino
);
178 return __create_free_space_inode(root
, trans
, path
, ino
,
179 block_group
->key
.objectid
);
182 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
183 struct btrfs_trans_handle
*trans
,
184 struct btrfs_path
*path
,
190 trans
->block_rsv
= root
->orphan_block_rsv
;
191 ret
= btrfs_block_rsv_check(trans
, root
,
192 root
->orphan_block_rsv
,
197 oldsize
= i_size_read(inode
);
198 btrfs_i_size_write(inode
, 0);
199 truncate_pagecache(inode
, oldsize
, 0);
202 * We don't need an orphan item because truncating the free space cache
203 * will never be split across transactions.
205 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
206 0, BTRFS_EXTENT_DATA_KEY
);
212 ret
= btrfs_update_inode(trans
, root
, inode
);
216 static int readahead_cache(struct inode
*inode
)
218 struct file_ra_state
*ra
;
219 unsigned long last_index
;
221 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
225 file_ra_state_init(ra
, inode
->i_mapping
);
226 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
228 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
235 int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
236 struct btrfs_free_space_ctl
*ctl
,
237 struct btrfs_path
*path
, u64 offset
)
239 struct btrfs_free_space_header
*header
;
240 struct extent_buffer
*leaf
;
242 u32
*checksums
= NULL
, *crc
;
243 char *disk_crcs
= NULL
;
244 struct btrfs_key key
;
245 struct list_head bitmaps
;
249 u32 cur_crc
= ~(u32
)0;
251 unsigned long first_page_offset
;
255 INIT_LIST_HEAD(&bitmaps
);
257 /* Nothing in the space cache, goodbye */
258 if (!i_size_read(inode
))
261 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
265 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
269 btrfs_release_path(path
);
276 leaf
= path
->nodes
[0];
277 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
278 struct btrfs_free_space_header
);
279 num_entries
= btrfs_free_space_entries(leaf
, header
);
280 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
281 generation
= btrfs_free_space_generation(leaf
, header
);
282 btrfs_release_path(path
);
284 if (BTRFS_I(inode
)->generation
!= generation
) {
285 printk(KERN_ERR
"btrfs: free space inode generation (%llu) did"
286 " not match free space cache generation (%llu)\n",
287 (unsigned long long)BTRFS_I(inode
)->generation
,
288 (unsigned long long)generation
);
295 /* Setup everything for doing checksumming */
296 num_checksums
= i_size_read(inode
) / PAGE_CACHE_SIZE
;
297 checksums
= crc
= kzalloc(sizeof(u32
) * num_checksums
, GFP_NOFS
);
300 first_page_offset
= (sizeof(u32
) * num_checksums
) + sizeof(u64
);
301 disk_crcs
= kzalloc(first_page_offset
, GFP_NOFS
);
305 ret
= readahead_cache(inode
);
310 struct btrfs_free_space_entry
*entry
;
311 struct btrfs_free_space
*e
;
313 unsigned long offset
= 0;
314 unsigned long start_offset
= 0;
317 if (!num_entries
&& !num_bitmaps
)
321 start_offset
= first_page_offset
;
322 offset
= start_offset
;
325 page
= grab_cache_page(inode
->i_mapping
, index
);
329 if (!PageUptodate(page
)) {
330 btrfs_readpage(NULL
, page
);
332 if (!PageUptodate(page
)) {
334 page_cache_release(page
);
335 printk(KERN_ERR
"btrfs: error reading free "
345 memcpy(disk_crcs
, addr
, first_page_offset
);
346 gen
= addr
+ (sizeof(u32
) * num_checksums
);
347 if (*gen
!= BTRFS_I(inode
)->generation
) {
348 printk(KERN_ERR
"btrfs: space cache generation"
349 " (%llu) does not match inode (%llu)\n",
350 (unsigned long long)*gen
,
352 BTRFS_I(inode
)->generation
);
355 page_cache_release(page
);
358 crc
= (u32
*)disk_crcs
;
360 entry
= addr
+ start_offset
;
362 /* First lets check our crc before we do anything fun */
364 cur_crc
= btrfs_csum_data(root
, addr
+ start_offset
, cur_crc
,
365 PAGE_CACHE_SIZE
- start_offset
);
366 btrfs_csum_final(cur_crc
, (char *)&cur_crc
);
367 if (cur_crc
!= *crc
) {
368 printk(KERN_ERR
"btrfs: crc mismatch for page %lu\n",
372 page_cache_release(page
);
382 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
387 page_cache_release(page
);
391 e
->offset
= le64_to_cpu(entry
->offset
);
392 e
->bytes
= le64_to_cpu(entry
->bytes
);
395 kmem_cache_free(btrfs_free_space_cachep
, e
);
397 page_cache_release(page
);
401 if (entry
->type
== BTRFS_FREE_SPACE_EXTENT
) {
402 spin_lock(&ctl
->tree_lock
);
403 ret
= link_free_space(ctl
, e
);
404 spin_unlock(&ctl
->tree_lock
);
406 printk(KERN_ERR
"Duplicate entries in "
407 "free space cache, dumping\n");
410 page_cache_release(page
);
414 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
418 btrfs_free_space_cachep
, e
);
420 page_cache_release(page
);
423 spin_lock(&ctl
->tree_lock
);
424 ret2
= link_free_space(ctl
, e
);
425 ctl
->total_bitmaps
++;
426 ctl
->op
->recalc_thresholds(ctl
);
427 spin_unlock(&ctl
->tree_lock
);
428 list_add_tail(&e
->list
, &bitmaps
);
430 printk(KERN_ERR
"Duplicate entries in "
431 "free space cache, dumping\n");
434 page_cache_release(page
);
440 offset
+= sizeof(struct btrfs_free_space_entry
);
441 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
448 * We read an entry out of this page, we need to move on to the
457 * We add the bitmaps at the end of the entries in order that
458 * the bitmap entries are added to the cache.
460 e
= list_entry(bitmaps
.next
, struct btrfs_free_space
, list
);
461 list_del_init(&e
->list
);
462 memcpy(e
->bitmap
, addr
, PAGE_CACHE_SIZE
);
467 page_cache_release(page
);
477 __btrfs_remove_free_space_cache(ctl
);
481 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
482 struct btrfs_block_group_cache
*block_group
)
484 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
485 struct btrfs_root
*root
= fs_info
->tree_root
;
487 struct btrfs_path
*path
;
490 u64 used
= btrfs_block_group_used(&block_group
->item
);
493 * If we're unmounting then just return, since this does a search on the
494 * normal root and not the commit root and we could deadlock.
496 if (btrfs_fs_closing(fs_info
))
500 * If this block group has been marked to be cleared for one reason or
501 * another then we can't trust the on disk cache, so just return.
503 spin_lock(&block_group
->lock
);
504 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
505 spin_unlock(&block_group
->lock
);
508 spin_unlock(&block_group
->lock
);
510 path
= btrfs_alloc_path();
514 inode
= lookup_free_space_inode(root
, block_group
, path
);
516 btrfs_free_path(path
);
520 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
521 path
, block_group
->key
.objectid
);
522 btrfs_free_path(path
);
526 spin_lock(&ctl
->tree_lock
);
527 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
528 block_group
->bytes_super
));
529 spin_unlock(&ctl
->tree_lock
);
532 __btrfs_remove_free_space_cache(ctl
);
533 printk(KERN_ERR
"block group %llu has an wrong amount of free "
534 "space\n", block_group
->key
.objectid
);
539 /* This cache is bogus, make sure it gets cleared */
540 spin_lock(&block_group
->lock
);
541 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
542 spin_unlock(&block_group
->lock
);
545 printk(KERN_ERR
"btrfs: failed to load free space cache "
546 "for block group %llu\n", block_group
->key
.objectid
);
553 int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
554 struct btrfs_free_space_ctl
*ctl
,
555 struct btrfs_block_group_cache
*block_group
,
556 struct btrfs_trans_handle
*trans
,
557 struct btrfs_path
*path
, u64 offset
)
559 struct btrfs_free_space_header
*header
;
560 struct extent_buffer
*leaf
;
561 struct rb_node
*node
;
562 struct list_head
*pos
, *n
;
565 struct extent_state
*cached_state
= NULL
;
566 struct btrfs_free_cluster
*cluster
= NULL
;
567 struct extent_io_tree
*unpin
= NULL
;
568 struct list_head bitmap_list
;
569 struct btrfs_key key
;
572 u32
*crc
, *checksums
;
573 unsigned long first_page_offset
;
574 int index
= 0, num_pages
= 0;
578 bool next_page
= false;
579 bool out_of_space
= false;
581 INIT_LIST_HEAD(&bitmap_list
);
583 node
= rb_first(&ctl
->free_space_offset
);
587 if (!i_size_read(inode
))
590 num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
593 /* Since the first page has all of our checksums and our generation we
594 * need to calculate the offset into the page that we can start writing
597 first_page_offset
= (sizeof(u32
) * num_pages
) + sizeof(u64
);
599 filemap_write_and_wait(inode
->i_mapping
);
600 btrfs_wait_ordered_range(inode
, inode
->i_size
&
601 ~(root
->sectorsize
- 1), (u64
)-1);
603 /* make sure we don't overflow that first page */
604 if (first_page_offset
+ sizeof(struct btrfs_free_space_entry
) >= PAGE_CACHE_SIZE
) {
605 /* this is really the same as running out of space, where we also return 0 */
606 printk(KERN_CRIT
"Btrfs: free space cache was too big for the crc page\n");
611 /* We need a checksum per page. */
612 crc
= checksums
= kzalloc(sizeof(u32
) * num_pages
, GFP_NOFS
);
616 pages
= kzalloc(sizeof(struct page
*) * num_pages
, GFP_NOFS
);
622 /* Get the cluster for this block_group if it exists */
623 if (block_group
&& !list_empty(&block_group
->cluster_list
))
624 cluster
= list_entry(block_group
->cluster_list
.next
,
625 struct btrfs_free_cluster
,
629 * We shouldn't have switched the pinned extents yet so this is the
632 unpin
= root
->fs_info
->pinned_extents
;
635 * Lock all pages first so we can lock the extent safely.
637 * NOTE: Because we hold the ref the entire time we're going to write to
638 * the page find_get_page should never fail, so we don't do a check
639 * after find_get_page at this point. Just putting this here so people
640 * know and don't freak out.
642 while (index
< num_pages
) {
643 page
= grab_cache_page(inode
->i_mapping
, index
);
647 for (i
= 0; i
< num_pages
; i
++) {
648 unlock_page(pages
[i
]);
649 page_cache_release(pages
[i
]);
658 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
659 0, &cached_state
, GFP_NOFS
);
662 * When searching for pinned extents, we need to start at our start
666 start
= block_group
->key
.objectid
;
668 /* Write out the extent entries */
670 struct btrfs_free_space_entry
*entry
;
672 unsigned long offset
= 0;
673 unsigned long start_offset
= 0;
678 start_offset
= first_page_offset
;
679 offset
= start_offset
;
682 if (index
>= num_pages
) {
690 entry
= addr
+ start_offset
;
692 memset(addr
, 0, PAGE_CACHE_SIZE
);
693 while (node
&& !next_page
) {
694 struct btrfs_free_space
*e
;
696 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
699 entry
->offset
= cpu_to_le64(e
->offset
);
700 entry
->bytes
= cpu_to_le64(e
->bytes
);
702 entry
->type
= BTRFS_FREE_SPACE_BITMAP
;
703 list_add_tail(&e
->list
, &bitmap_list
);
706 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
708 node
= rb_next(node
);
709 if (!node
&& cluster
) {
710 node
= rb_first(&cluster
->root
);
713 offset
+= sizeof(struct btrfs_free_space_entry
);
714 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
721 * We want to add any pinned extents to our free space cache
722 * so we don't leak the space
724 while (block_group
&& !next_page
&&
725 (start
< block_group
->key
.objectid
+
726 block_group
->key
.offset
)) {
727 ret
= find_first_extent_bit(unpin
, start
, &start
, &end
,
734 /* This pinned extent is out of our range */
735 if (start
>= block_group
->key
.objectid
+
736 block_group
->key
.offset
)
739 len
= block_group
->key
.objectid
+
740 block_group
->key
.offset
- start
;
741 len
= min(len
, end
+ 1 - start
);
744 entry
->offset
= cpu_to_le64(start
);
745 entry
->bytes
= cpu_to_le64(len
);
746 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
749 offset
+= sizeof(struct btrfs_free_space_entry
);
750 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
756 *crc
= btrfs_csum_data(root
, addr
+ start_offset
, *crc
,
757 PAGE_CACHE_SIZE
- start_offset
);
760 btrfs_csum_final(*crc
, (char *)crc
);
763 bytes
+= PAGE_CACHE_SIZE
;
766 } while (node
|| next_page
);
768 /* Write out the bitmaps */
769 list_for_each_safe(pos
, n
, &bitmap_list
) {
771 struct btrfs_free_space
*entry
=
772 list_entry(pos
, struct btrfs_free_space
, list
);
774 if (index
>= num_pages
) {
781 memcpy(addr
, entry
->bitmap
, PAGE_CACHE_SIZE
);
783 *crc
= btrfs_csum_data(root
, addr
, *crc
, PAGE_CACHE_SIZE
);
785 btrfs_csum_final(*crc
, (char *)crc
);
787 bytes
+= PAGE_CACHE_SIZE
;
789 list_del_init(&entry
->list
);
794 btrfs_drop_pages(pages
, num_pages
);
795 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
796 i_size_read(inode
) - 1, &cached_state
,
802 /* Zero out the rest of the pages just to make sure */
803 while (index
< num_pages
) {
808 memset(addr
, 0, PAGE_CACHE_SIZE
);
810 bytes
+= PAGE_CACHE_SIZE
;
814 /* Write the checksums and trans id to the first page */
822 memcpy(addr
, checksums
, sizeof(u32
) * num_pages
);
823 gen
= addr
+ (sizeof(u32
) * num_pages
);
824 *gen
= trans
->transid
;
828 ret
= btrfs_dirty_pages(root
, inode
, pages
, num_pages
, 0,
829 bytes
, &cached_state
);
830 btrfs_drop_pages(pages
, num_pages
);
831 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
832 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
839 BTRFS_I(inode
)->generation
= trans
->transid
;
841 filemap_write_and_wait(inode
->i_mapping
);
843 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
847 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 1, 1);
850 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
851 EXTENT_DIRTY
| EXTENT_DELALLOC
|
852 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, GFP_NOFS
);
855 leaf
= path
->nodes
[0];
857 struct btrfs_key found_key
;
858 BUG_ON(!path
->slots
[0]);
860 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
861 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
862 found_key
.offset
!= offset
) {
864 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
865 EXTENT_DIRTY
| EXTENT_DELALLOC
|
866 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
,
868 btrfs_release_path(path
);
872 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
873 struct btrfs_free_space_header
);
874 btrfs_set_free_space_entries(leaf
, header
, entries
);
875 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
876 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
877 btrfs_mark_buffer_dirty(leaf
);
878 btrfs_release_path(path
);
888 invalidate_inode_pages2_range(inode
->i_mapping
, 0, index
);
889 BTRFS_I(inode
)->generation
= 0;
891 btrfs_update_inode(trans
, root
, inode
);
895 int btrfs_write_out_cache(struct btrfs_root
*root
,
896 struct btrfs_trans_handle
*trans
,
897 struct btrfs_block_group_cache
*block_group
,
898 struct btrfs_path
*path
)
900 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
904 root
= root
->fs_info
->tree_root
;
906 spin_lock(&block_group
->lock
);
907 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
908 spin_unlock(&block_group
->lock
);
911 spin_unlock(&block_group
->lock
);
913 inode
= lookup_free_space_inode(root
, block_group
, path
);
917 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
918 path
, block_group
->key
.objectid
);
920 spin_lock(&block_group
->lock
);
921 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
922 spin_unlock(&block_group
->lock
);
925 printk(KERN_ERR
"btrfs: failed to write free space cace "
926 "for block group %llu\n", block_group
->key
.objectid
);
933 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
936 BUG_ON(offset
< bitmap_start
);
937 offset
-= bitmap_start
;
938 return (unsigned long)(div_u64(offset
, unit
));
941 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
943 return (unsigned long)(div_u64(bytes
, unit
));
946 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
950 u64 bytes_per_bitmap
;
952 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
953 bitmap_start
= offset
- ctl
->start
;
954 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
955 bitmap_start
*= bytes_per_bitmap
;
956 bitmap_start
+= ctl
->start
;
961 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
962 struct rb_node
*node
, int bitmap
)
964 struct rb_node
**p
= &root
->rb_node
;
965 struct rb_node
*parent
= NULL
;
966 struct btrfs_free_space
*info
;
970 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
972 if (offset
< info
->offset
) {
974 } else if (offset
> info
->offset
) {
978 * we could have a bitmap entry and an extent entry
979 * share the same offset. If this is the case, we want
980 * the extent entry to always be found first if we do a
981 * linear search through the tree, since we want to have
982 * the quickest allocation time, and allocating from an
983 * extent is faster than allocating from a bitmap. So
984 * if we're inserting a bitmap and we find an entry at
985 * this offset, we want to go right, or after this entry
986 * logically. If we are inserting an extent and we've
987 * found a bitmap, we want to go left, or before
1006 rb_link_node(node
, parent
, p
);
1007 rb_insert_color(node
, root
);
1013 * searches the tree for the given offset.
1015 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1016 * want a section that has at least bytes size and comes at or after the given
1019 static struct btrfs_free_space
*
1020 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1021 u64 offset
, int bitmap_only
, int fuzzy
)
1023 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1024 struct btrfs_free_space
*entry
, *prev
= NULL
;
1026 /* find entry that is closest to the 'offset' */
1033 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1036 if (offset
< entry
->offset
)
1038 else if (offset
> entry
->offset
)
1051 * bitmap entry and extent entry may share same offset,
1052 * in that case, bitmap entry comes after extent entry.
1057 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1058 if (entry
->offset
!= offset
)
1061 WARN_ON(!entry
->bitmap
);
1064 if (entry
->bitmap
) {
1066 * if previous extent entry covers the offset,
1067 * we should return it instead of the bitmap entry
1069 n
= &entry
->offset_index
;
1074 prev
= rb_entry(n
, struct btrfs_free_space
,
1076 if (!prev
->bitmap
) {
1077 if (prev
->offset
+ prev
->bytes
> offset
)
1089 /* find last entry before the 'offset' */
1091 if (entry
->offset
> offset
) {
1092 n
= rb_prev(&entry
->offset_index
);
1094 entry
= rb_entry(n
, struct btrfs_free_space
,
1096 BUG_ON(entry
->offset
> offset
);
1105 if (entry
->bitmap
) {
1106 n
= &entry
->offset_index
;
1111 prev
= rb_entry(n
, struct btrfs_free_space
,
1113 if (!prev
->bitmap
) {
1114 if (prev
->offset
+ prev
->bytes
> offset
)
1119 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1121 } else if (entry
->offset
+ entry
->bytes
> offset
)
1128 if (entry
->bitmap
) {
1129 if (entry
->offset
+ BITS_PER_BITMAP
*
1133 if (entry
->offset
+ entry
->bytes
> offset
)
1137 n
= rb_next(&entry
->offset_index
);
1140 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1146 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1147 struct btrfs_free_space
*info
)
1149 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1150 ctl
->free_extents
--;
1153 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1154 struct btrfs_free_space
*info
)
1156 __unlink_free_space(ctl
, info
);
1157 ctl
->free_space
-= info
->bytes
;
1160 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1161 struct btrfs_free_space
*info
)
1165 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1166 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1167 &info
->offset_index
, (info
->bitmap
!= NULL
));
1171 ctl
->free_space
+= info
->bytes
;
1172 ctl
->free_extents
++;
1176 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1178 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1182 u64 size
= block_group
->key
.offset
;
1183 u64 bytes_per_bg
= BITS_PER_BITMAP
* block_group
->sectorsize
;
1184 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1186 BUG_ON(ctl
->total_bitmaps
> max_bitmaps
);
1189 * The goal is to keep the total amount of memory used per 1gb of space
1190 * at or below 32k, so we need to adjust how much memory we allow to be
1191 * used by extent based free space tracking
1193 if (size
< 1024 * 1024 * 1024)
1194 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1196 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1197 div64_u64(size
, 1024 * 1024 * 1024);
1200 * we want to account for 1 more bitmap than what we have so we can make
1201 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1202 * we add more bitmaps.
1204 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1206 if (bitmap_bytes
>= max_bytes
) {
1207 ctl
->extents_thresh
= 0;
1212 * we want the extent entry threshold to always be at most 1/2 the maxw
1213 * bytes we can have, or whatever is less than that.
1215 extent_bytes
= max_bytes
- bitmap_bytes
;
1216 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1218 ctl
->extents_thresh
=
1219 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1222 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1223 struct btrfs_free_space
*info
, u64 offset
,
1226 unsigned long start
, count
;
1228 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1229 count
= bytes_to_bits(bytes
, ctl
->unit
);
1230 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1232 bitmap_clear(info
->bitmap
, start
, count
);
1234 info
->bytes
-= bytes
;
1235 ctl
->free_space
-= bytes
;
1238 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1239 struct btrfs_free_space
*info
, u64 offset
,
1242 unsigned long start
, count
;
1244 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1245 count
= bytes_to_bits(bytes
, ctl
->unit
);
1246 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1248 bitmap_set(info
->bitmap
, start
, count
);
1250 info
->bytes
+= bytes
;
1251 ctl
->free_space
+= bytes
;
1254 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1255 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1258 unsigned long found_bits
= 0;
1259 unsigned long bits
, i
;
1260 unsigned long next_zero
;
1262 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1263 max_t(u64
, *offset
, bitmap_info
->offset
));
1264 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1266 for (i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
);
1267 i
< BITS_PER_BITMAP
;
1268 i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1269 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1270 BITS_PER_BITMAP
, i
);
1271 if ((next_zero
- i
) >= bits
) {
1272 found_bits
= next_zero
- i
;
1279 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1280 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1287 static struct btrfs_free_space
*
1288 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
)
1290 struct btrfs_free_space
*entry
;
1291 struct rb_node
*node
;
1294 if (!ctl
->free_space_offset
.rb_node
)
1297 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1301 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1302 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1303 if (entry
->bytes
< *bytes
)
1306 if (entry
->bitmap
) {
1307 ret
= search_bitmap(ctl
, entry
, offset
, bytes
);
1313 *offset
= entry
->offset
;
1314 *bytes
= entry
->bytes
;
1321 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1322 struct btrfs_free_space
*info
, u64 offset
)
1324 info
->offset
= offset_to_bitmap(ctl
, offset
);
1326 link_free_space(ctl
, info
);
1327 ctl
->total_bitmaps
++;
1329 ctl
->op
->recalc_thresholds(ctl
);
1332 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1333 struct btrfs_free_space
*bitmap_info
)
1335 unlink_free_space(ctl
, bitmap_info
);
1336 kfree(bitmap_info
->bitmap
);
1337 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1338 ctl
->total_bitmaps
--;
1339 ctl
->op
->recalc_thresholds(ctl
);
1342 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1343 struct btrfs_free_space
*bitmap_info
,
1344 u64
*offset
, u64
*bytes
)
1347 u64 search_start
, search_bytes
;
1351 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1354 * XXX - this can go away after a few releases.
1356 * since the only user of btrfs_remove_free_space is the tree logging
1357 * stuff, and the only way to test that is under crash conditions, we
1358 * want to have this debug stuff here just in case somethings not
1359 * working. Search the bitmap for the space we are trying to use to
1360 * make sure its actually there. If its not there then we need to stop
1361 * because something has gone wrong.
1363 search_start
= *offset
;
1364 search_bytes
= *bytes
;
1365 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1366 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1367 BUG_ON(ret
< 0 || search_start
!= *offset
);
1369 if (*offset
> bitmap_info
->offset
&& *offset
+ *bytes
> end
) {
1370 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, end
- *offset
+ 1);
1371 *bytes
-= end
- *offset
+ 1;
1373 } else if (*offset
>= bitmap_info
->offset
&& *offset
+ *bytes
<= end
) {
1374 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, *bytes
);
1379 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1380 if (!bitmap_info
->bytes
)
1381 free_bitmap(ctl
, bitmap_info
);
1384 * no entry after this bitmap, but we still have bytes to
1385 * remove, so something has gone wrong.
1390 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1394 * if the next entry isn't a bitmap we need to return to let the
1395 * extent stuff do its work.
1397 if (!bitmap_info
->bitmap
)
1401 * Ok the next item is a bitmap, but it may not actually hold
1402 * the information for the rest of this free space stuff, so
1403 * look for it, and if we don't find it return so we can try
1404 * everything over again.
1406 search_start
= *offset
;
1407 search_bytes
= *bytes
;
1408 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1410 if (ret
< 0 || search_start
!= *offset
)
1414 } else if (!bitmap_info
->bytes
)
1415 free_bitmap(ctl
, bitmap_info
);
1420 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1421 struct btrfs_free_space
*info
)
1423 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1426 * If we are below the extents threshold then we can add this as an
1427 * extent, and don't have to deal with the bitmap
1429 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1431 * If this block group has some small extents we don't want to
1432 * use up all of our free slots in the cache with them, we want
1433 * to reserve them to larger extents, however if we have plent
1434 * of cache left then go ahead an dadd them, no sense in adding
1435 * the overhead of a bitmap if we don't have to.
1437 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1438 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1446 * some block groups are so tiny they can't be enveloped by a bitmap, so
1447 * don't even bother to create a bitmap for this
1449 if (BITS_PER_BITMAP
* block_group
->sectorsize
>
1450 block_group
->key
.offset
)
1456 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1457 struct btrfs_free_space
*info
)
1459 struct btrfs_free_space
*bitmap_info
;
1461 u64 bytes
, offset
, end
;
1464 bytes
= info
->bytes
;
1465 offset
= info
->offset
;
1467 if (!ctl
->op
->use_bitmap(ctl
, info
))
1471 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1478 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1480 if (offset
>= bitmap_info
->offset
&& offset
+ bytes
> end
) {
1481 bitmap_set_bits(ctl
, bitmap_info
, offset
, end
- offset
);
1482 bytes
-= end
- offset
;
1485 } else if (offset
>= bitmap_info
->offset
&& offset
+ bytes
<= end
) {
1486 bitmap_set_bits(ctl
, bitmap_info
, offset
, bytes
);
1499 if (info
&& info
->bitmap
) {
1500 add_new_bitmap(ctl
, info
, offset
);
1505 spin_unlock(&ctl
->tree_lock
);
1507 /* no pre-allocated info, allocate a new one */
1509 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1512 spin_lock(&ctl
->tree_lock
);
1518 /* allocate the bitmap */
1519 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1520 spin_lock(&ctl
->tree_lock
);
1521 if (!info
->bitmap
) {
1531 kfree(info
->bitmap
);
1532 kmem_cache_free(btrfs_free_space_cachep
, info
);
1538 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1539 struct btrfs_free_space
*info
, bool update_stat
)
1541 struct btrfs_free_space
*left_info
;
1542 struct btrfs_free_space
*right_info
;
1543 bool merged
= false;
1544 u64 offset
= info
->offset
;
1545 u64 bytes
= info
->bytes
;
1548 * first we want to see if there is free space adjacent to the range we
1549 * are adding, if there is remove that struct and add a new one to
1550 * cover the entire range
1552 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1553 if (right_info
&& rb_prev(&right_info
->offset_index
))
1554 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1555 struct btrfs_free_space
, offset_index
);
1557 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1559 if (right_info
&& !right_info
->bitmap
) {
1561 unlink_free_space(ctl
, right_info
);
1563 __unlink_free_space(ctl
, right_info
);
1564 info
->bytes
+= right_info
->bytes
;
1565 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1569 if (left_info
&& !left_info
->bitmap
&&
1570 left_info
->offset
+ left_info
->bytes
== offset
) {
1572 unlink_free_space(ctl
, left_info
);
1574 __unlink_free_space(ctl
, left_info
);
1575 info
->offset
= left_info
->offset
;
1576 info
->bytes
+= left_info
->bytes
;
1577 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1584 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1585 u64 offset
, u64 bytes
)
1587 struct btrfs_free_space
*info
;
1590 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1594 info
->offset
= offset
;
1595 info
->bytes
= bytes
;
1597 spin_lock(&ctl
->tree_lock
);
1599 if (try_merge_free_space(ctl
, info
, true))
1603 * There was no extent directly to the left or right of this new
1604 * extent then we know we're going to have to allocate a new extent, so
1605 * before we do that see if we need to drop this into a bitmap
1607 ret
= insert_into_bitmap(ctl
, info
);
1615 ret
= link_free_space(ctl
, info
);
1617 kmem_cache_free(btrfs_free_space_cachep
, info
);
1619 spin_unlock(&ctl
->tree_lock
);
1622 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1623 BUG_ON(ret
== -EEXIST
);
1629 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1630 u64 offset
, u64 bytes
)
1632 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1633 struct btrfs_free_space
*info
;
1634 struct btrfs_free_space
*next_info
= NULL
;
1637 spin_lock(&ctl
->tree_lock
);
1640 info
= tree_search_offset(ctl
, offset
, 0, 0);
1643 * oops didn't find an extent that matched the space we wanted
1644 * to remove, look for a bitmap instead
1646 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1654 if (info
->bytes
< bytes
&& rb_next(&info
->offset_index
)) {
1656 next_info
= rb_entry(rb_next(&info
->offset_index
),
1657 struct btrfs_free_space
,
1660 if (next_info
->bitmap
)
1661 end
= next_info
->offset
+
1662 BITS_PER_BITMAP
* ctl
->unit
- 1;
1664 end
= next_info
->offset
+ next_info
->bytes
;
1666 if (next_info
->bytes
< bytes
||
1667 next_info
->offset
> offset
|| offset
> end
) {
1668 printk(KERN_CRIT
"Found free space at %llu, size %llu,"
1669 " trying to use %llu\n",
1670 (unsigned long long)info
->offset
,
1671 (unsigned long long)info
->bytes
,
1672 (unsigned long long)bytes
);
1681 if (info
->bytes
== bytes
) {
1682 unlink_free_space(ctl
, info
);
1684 kfree(info
->bitmap
);
1685 ctl
->total_bitmaps
--;
1687 kmem_cache_free(btrfs_free_space_cachep
, info
);
1691 if (!info
->bitmap
&& info
->offset
== offset
) {
1692 unlink_free_space(ctl
, info
);
1693 info
->offset
+= bytes
;
1694 info
->bytes
-= bytes
;
1695 link_free_space(ctl
, info
);
1699 if (!info
->bitmap
&& info
->offset
<= offset
&&
1700 info
->offset
+ info
->bytes
>= offset
+ bytes
) {
1701 u64 old_start
= info
->offset
;
1703 * we're freeing space in the middle of the info,
1704 * this can happen during tree log replay
1706 * first unlink the old info and then
1707 * insert it again after the hole we're creating
1709 unlink_free_space(ctl
, info
);
1710 if (offset
+ bytes
< info
->offset
+ info
->bytes
) {
1711 u64 old_end
= info
->offset
+ info
->bytes
;
1713 info
->offset
= offset
+ bytes
;
1714 info
->bytes
= old_end
- info
->offset
;
1715 ret
= link_free_space(ctl
, info
);
1720 /* the hole we're creating ends at the end
1721 * of the info struct, just free the info
1723 kmem_cache_free(btrfs_free_space_cachep
, info
);
1725 spin_unlock(&ctl
->tree_lock
);
1727 /* step two, insert a new info struct to cover
1728 * anything before the hole
1730 ret
= btrfs_add_free_space(block_group
, old_start
,
1731 offset
- old_start
);
1736 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1741 spin_unlock(&ctl
->tree_lock
);
1746 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1749 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1750 struct btrfs_free_space
*info
;
1754 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
1755 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1756 if (info
->bytes
>= bytes
)
1758 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1759 (unsigned long long)info
->offset
,
1760 (unsigned long long)info
->bytes
,
1761 (info
->bitmap
) ? "yes" : "no");
1763 printk(KERN_INFO
"block group has cluster?: %s\n",
1764 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
1765 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
1769 static struct btrfs_free_space_op free_space_op
= {
1770 .recalc_thresholds
= recalculate_thresholds
,
1771 .use_bitmap
= use_bitmap
,
1774 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
1776 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1778 spin_lock_init(&ctl
->tree_lock
);
1779 ctl
->unit
= block_group
->sectorsize
;
1780 ctl
->start
= block_group
->key
.objectid
;
1781 ctl
->private = block_group
;
1782 ctl
->op
= &free_space_op
;
1785 * we only want to have 32k of ram per block group for keeping
1786 * track of free space, and if we pass 1/2 of that we want to
1787 * start converting things over to using bitmaps
1789 ctl
->extents_thresh
= ((1024 * 32) / 2) /
1790 sizeof(struct btrfs_free_space
);
1794 * for a given cluster, put all of its extents back into the free
1795 * space cache. If the block group passed doesn't match the block group
1796 * pointed to by the cluster, someone else raced in and freed the
1797 * cluster already. In that case, we just return without changing anything
1800 __btrfs_return_cluster_to_free_space(
1801 struct btrfs_block_group_cache
*block_group
,
1802 struct btrfs_free_cluster
*cluster
)
1804 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1805 struct btrfs_free_space
*entry
;
1806 struct rb_node
*node
;
1808 spin_lock(&cluster
->lock
);
1809 if (cluster
->block_group
!= block_group
)
1812 cluster
->block_group
= NULL
;
1813 cluster
->window_start
= 0;
1814 list_del_init(&cluster
->block_group_list
);
1816 node
= rb_first(&cluster
->root
);
1820 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1821 node
= rb_next(&entry
->offset_index
);
1822 rb_erase(&entry
->offset_index
, &cluster
->root
);
1824 bitmap
= (entry
->bitmap
!= NULL
);
1826 try_merge_free_space(ctl
, entry
, false);
1827 tree_insert_offset(&ctl
->free_space_offset
,
1828 entry
->offset
, &entry
->offset_index
, bitmap
);
1830 cluster
->root
= RB_ROOT
;
1833 spin_unlock(&cluster
->lock
);
1834 btrfs_put_block_group(block_group
);
1838 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl
*ctl
)
1840 struct btrfs_free_space
*info
;
1841 struct rb_node
*node
;
1843 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
1844 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1845 unlink_free_space(ctl
, info
);
1846 kfree(info
->bitmap
);
1847 kmem_cache_free(btrfs_free_space_cachep
, info
);
1848 if (need_resched()) {
1849 spin_unlock(&ctl
->tree_lock
);
1851 spin_lock(&ctl
->tree_lock
);
1856 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
1858 spin_lock(&ctl
->tree_lock
);
1859 __btrfs_remove_free_space_cache_locked(ctl
);
1860 spin_unlock(&ctl
->tree_lock
);
1863 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
1865 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1866 struct btrfs_free_cluster
*cluster
;
1867 struct list_head
*head
;
1869 spin_lock(&ctl
->tree_lock
);
1870 while ((head
= block_group
->cluster_list
.next
) !=
1871 &block_group
->cluster_list
) {
1872 cluster
= list_entry(head
, struct btrfs_free_cluster
,
1875 WARN_ON(cluster
->block_group
!= block_group
);
1876 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1877 if (need_resched()) {
1878 spin_unlock(&ctl
->tree_lock
);
1880 spin_lock(&ctl
->tree_lock
);
1883 __btrfs_remove_free_space_cache_locked(ctl
);
1884 spin_unlock(&ctl
->tree_lock
);
1888 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
1889 u64 offset
, u64 bytes
, u64 empty_size
)
1891 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1892 struct btrfs_free_space
*entry
= NULL
;
1893 u64 bytes_search
= bytes
+ empty_size
;
1896 spin_lock(&ctl
->tree_lock
);
1897 entry
= find_free_space(ctl
, &offset
, &bytes_search
);
1902 if (entry
->bitmap
) {
1903 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
1905 free_bitmap(ctl
, entry
);
1907 unlink_free_space(ctl
, entry
);
1908 entry
->offset
+= bytes
;
1909 entry
->bytes
-= bytes
;
1911 kmem_cache_free(btrfs_free_space_cachep
, entry
);
1913 link_free_space(ctl
, entry
);
1917 spin_unlock(&ctl
->tree_lock
);
1923 * given a cluster, put all of its extents back into the free space
1924 * cache. If a block group is passed, this function will only free
1925 * a cluster that belongs to the passed block group.
1927 * Otherwise, it'll get a reference on the block group pointed to by the
1928 * cluster and remove the cluster from it.
1930 int btrfs_return_cluster_to_free_space(
1931 struct btrfs_block_group_cache
*block_group
,
1932 struct btrfs_free_cluster
*cluster
)
1934 struct btrfs_free_space_ctl
*ctl
;
1937 /* first, get a safe pointer to the block group */
1938 spin_lock(&cluster
->lock
);
1940 block_group
= cluster
->block_group
;
1942 spin_unlock(&cluster
->lock
);
1945 } else if (cluster
->block_group
!= block_group
) {
1946 /* someone else has already freed it don't redo their work */
1947 spin_unlock(&cluster
->lock
);
1950 atomic_inc(&block_group
->count
);
1951 spin_unlock(&cluster
->lock
);
1953 ctl
= block_group
->free_space_ctl
;
1955 /* now return any extents the cluster had on it */
1956 spin_lock(&ctl
->tree_lock
);
1957 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1958 spin_unlock(&ctl
->tree_lock
);
1960 /* finally drop our ref */
1961 btrfs_put_block_group(block_group
);
1965 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
1966 struct btrfs_free_cluster
*cluster
,
1967 struct btrfs_free_space
*entry
,
1968 u64 bytes
, u64 min_start
)
1970 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1972 u64 search_start
= cluster
->window_start
;
1973 u64 search_bytes
= bytes
;
1976 search_start
= min_start
;
1977 search_bytes
= bytes
;
1979 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
1984 bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
1990 * given a cluster, try to allocate 'bytes' from it, returns 0
1991 * if it couldn't find anything suitably large, or a logical disk offset
1992 * if things worked out
1994 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
1995 struct btrfs_free_cluster
*cluster
, u64 bytes
,
1998 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1999 struct btrfs_free_space
*entry
= NULL
;
2000 struct rb_node
*node
;
2003 spin_lock(&cluster
->lock
);
2004 if (bytes
> cluster
->max_size
)
2007 if (cluster
->block_group
!= block_group
)
2010 node
= rb_first(&cluster
->root
);
2014 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2016 if (entry
->bytes
< bytes
||
2017 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2018 node
= rb_next(&entry
->offset_index
);
2021 entry
= rb_entry(node
, struct btrfs_free_space
,
2026 if (entry
->bitmap
) {
2027 ret
= btrfs_alloc_from_bitmap(block_group
,
2028 cluster
, entry
, bytes
,
2031 node
= rb_next(&entry
->offset_index
);
2034 entry
= rb_entry(node
, struct btrfs_free_space
,
2040 ret
= entry
->offset
;
2042 entry
->offset
+= bytes
;
2043 entry
->bytes
-= bytes
;
2046 if (entry
->bytes
== 0)
2047 rb_erase(&entry
->offset_index
, &cluster
->root
);
2051 spin_unlock(&cluster
->lock
);
2056 spin_lock(&ctl
->tree_lock
);
2058 ctl
->free_space
-= bytes
;
2059 if (entry
->bytes
== 0) {
2060 ctl
->free_extents
--;
2061 if (entry
->bitmap
) {
2062 kfree(entry
->bitmap
);
2063 ctl
->total_bitmaps
--;
2064 ctl
->op
->recalc_thresholds(ctl
);
2066 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2069 spin_unlock(&ctl
->tree_lock
);
2074 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2075 struct btrfs_free_space
*entry
,
2076 struct btrfs_free_cluster
*cluster
,
2077 u64 offset
, u64 bytes
, u64 min_bytes
)
2079 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2080 unsigned long next_zero
;
2082 unsigned long search_bits
;
2083 unsigned long total_bits
;
2084 unsigned long found_bits
;
2085 unsigned long start
= 0;
2086 unsigned long total_found
= 0;
2090 i
= offset_to_bit(entry
->offset
, block_group
->sectorsize
,
2091 max_t(u64
, offset
, entry
->offset
));
2092 search_bits
= bytes_to_bits(bytes
, block_group
->sectorsize
);
2093 total_bits
= bytes_to_bits(min_bytes
, block_group
->sectorsize
);
2097 for (i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
);
2098 i
< BITS_PER_BITMAP
;
2099 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
2100 next_zero
= find_next_zero_bit(entry
->bitmap
,
2101 BITS_PER_BITMAP
, i
);
2102 if (next_zero
- i
>= search_bits
) {
2103 found_bits
= next_zero
- i
;
2117 total_found
+= found_bits
;
2119 if (cluster
->max_size
< found_bits
* block_group
->sectorsize
)
2120 cluster
->max_size
= found_bits
* block_group
->sectorsize
;
2122 if (total_found
< total_bits
) {
2123 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, next_zero
);
2124 if (i
- start
> total_bits
* 2) {
2126 cluster
->max_size
= 0;
2132 cluster
->window_start
= start
* block_group
->sectorsize
+
2134 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2135 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2136 &entry
->offset_index
, 1);
2143 * This searches the block group for just extents to fill the cluster with.
2145 static int setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2146 struct btrfs_free_cluster
*cluster
,
2147 u64 offset
, u64 bytes
, u64 min_bytes
)
2149 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2150 struct btrfs_free_space
*first
= NULL
;
2151 struct btrfs_free_space
*entry
= NULL
;
2152 struct btrfs_free_space
*prev
= NULL
;
2153 struct btrfs_free_space
*last
;
2154 struct rb_node
*node
;
2158 u64 max_gap
= 128 * 1024;
2160 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2165 * We don't want bitmaps, so just move along until we find a normal
2168 while (entry
->bitmap
) {
2169 node
= rb_next(&entry
->offset_index
);
2172 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2175 window_start
= entry
->offset
;
2176 window_free
= entry
->bytes
;
2177 max_extent
= entry
->bytes
;
2182 while (window_free
<= min_bytes
) {
2183 node
= rb_next(&entry
->offset_index
);
2186 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2191 * we haven't filled the empty size and the window is
2192 * very large. reset and try again
2194 if (entry
->offset
- (prev
->offset
+ prev
->bytes
) > max_gap
||
2195 entry
->offset
- window_start
> (min_bytes
* 2)) {
2197 window_start
= entry
->offset
;
2198 window_free
= entry
->bytes
;
2200 max_extent
= entry
->bytes
;
2203 window_free
+= entry
->bytes
;
2204 if (entry
->bytes
> max_extent
)
2205 max_extent
= entry
->bytes
;
2210 cluster
->window_start
= first
->offset
;
2212 node
= &first
->offset_index
;
2215 * now we've found our entries, pull them out of the free space
2216 * cache and put them into the cluster rbtree
2221 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2222 node
= rb_next(&entry
->offset_index
);
2226 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2227 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2228 &entry
->offset_index
, 0);
2230 } while (node
&& entry
!= last
);
2232 cluster
->max_size
= max_extent
;
2238 * This specifically looks for bitmaps that may work in the cluster, we assume
2239 * that we have already failed to find extents that will work.
2241 static int setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2242 struct btrfs_free_cluster
*cluster
,
2243 u64 offset
, u64 bytes
, u64 min_bytes
)
2245 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2246 struct btrfs_free_space
*entry
;
2247 struct rb_node
*node
;
2250 if (ctl
->total_bitmaps
== 0)
2253 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
), 0, 1);
2257 node
= &entry
->offset_index
;
2259 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2260 node
= rb_next(&entry
->offset_index
);
2263 if (entry
->bytes
< min_bytes
)
2265 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2267 } while (ret
&& node
);
2273 * here we try to find a cluster of blocks in a block group. The goal
2274 * is to find at least bytes free and up to empty_size + bytes free.
2275 * We might not find them all in one contiguous area.
2277 * returns zero and sets up cluster if things worked out, otherwise
2278 * it returns -enospc
2280 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2281 struct btrfs_root
*root
,
2282 struct btrfs_block_group_cache
*block_group
,
2283 struct btrfs_free_cluster
*cluster
,
2284 u64 offset
, u64 bytes
, u64 empty_size
)
2286 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2290 /* for metadata, allow allocates with more holes */
2291 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2292 min_bytes
= bytes
+ empty_size
;
2293 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2295 * we want to do larger allocations when we are
2296 * flushing out the delayed refs, it helps prevent
2297 * making more work as we go along.
2299 if (trans
->transaction
->delayed_refs
.flushing
)
2300 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 1);
2302 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 4);
2304 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2306 spin_lock(&ctl
->tree_lock
);
2309 * If we know we don't have enough space to make a cluster don't even
2310 * bother doing all the work to try and find one.
2312 if (ctl
->free_space
< min_bytes
) {
2313 spin_unlock(&ctl
->tree_lock
);
2317 spin_lock(&cluster
->lock
);
2319 /* someone already found a cluster, hooray */
2320 if (cluster
->block_group
) {
2325 ret
= setup_cluster_no_bitmap(block_group
, cluster
, offset
, bytes
,
2328 ret
= setup_cluster_bitmap(block_group
, cluster
, offset
,
2332 atomic_inc(&block_group
->count
);
2333 list_add_tail(&cluster
->block_group_list
,
2334 &block_group
->cluster_list
);
2335 cluster
->block_group
= block_group
;
2338 spin_unlock(&cluster
->lock
);
2339 spin_unlock(&ctl
->tree_lock
);
2345 * simple code to zero out a cluster
2347 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2349 spin_lock_init(&cluster
->lock
);
2350 spin_lock_init(&cluster
->refill_lock
);
2351 cluster
->root
= RB_ROOT
;
2352 cluster
->max_size
= 0;
2353 INIT_LIST_HEAD(&cluster
->block_group_list
);
2354 cluster
->block_group
= NULL
;
2357 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2358 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2360 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2361 struct btrfs_free_space
*entry
= NULL
;
2362 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2364 u64 actually_trimmed
;
2369 while (start
< end
) {
2370 spin_lock(&ctl
->tree_lock
);
2372 if (ctl
->free_space
< minlen
) {
2373 spin_unlock(&ctl
->tree_lock
);
2377 entry
= tree_search_offset(ctl
, start
, 0, 1);
2379 entry
= tree_search_offset(ctl
,
2380 offset_to_bitmap(ctl
, start
),
2383 if (!entry
|| entry
->offset
>= end
) {
2384 spin_unlock(&ctl
->tree_lock
);
2388 if (entry
->bitmap
) {
2389 ret
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2392 spin_unlock(&ctl
->tree_lock
);
2395 bytes
= min(bytes
, end
- start
);
2396 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2397 if (entry
->bytes
== 0)
2398 free_bitmap(ctl
, entry
);
2400 start
= entry
->offset
+ BITS_PER_BITMAP
*
2401 block_group
->sectorsize
;
2402 spin_unlock(&ctl
->tree_lock
);
2407 start
= entry
->offset
;
2408 bytes
= min(entry
->bytes
, end
- start
);
2409 unlink_free_space(ctl
, entry
);
2410 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2413 spin_unlock(&ctl
->tree_lock
);
2415 if (bytes
>= minlen
) {
2417 update_ret
= btrfs_update_reserved_bytes(block_group
,
2420 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2425 btrfs_add_free_space(block_group
, start
, bytes
);
2427 btrfs_update_reserved_bytes(block_group
,
2432 *trimmed
+= actually_trimmed
;
2437 if (fatal_signal_pending(current
)) {
2449 * Find the left-most item in the cache tree, and then return the
2450 * smallest inode number in the item.
2452 * Note: the returned inode number may not be the smallest one in
2453 * the tree, if the left-most item is a bitmap.
2455 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2457 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2458 struct btrfs_free_space
*entry
= NULL
;
2461 spin_lock(&ctl
->tree_lock
);
2463 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2466 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2467 struct btrfs_free_space
, offset_index
);
2469 if (!entry
->bitmap
) {
2470 ino
= entry
->offset
;
2472 unlink_free_space(ctl
, entry
);
2476 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2478 link_free_space(ctl
, entry
);
2484 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2488 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2489 if (entry
->bytes
== 0)
2490 free_bitmap(ctl
, entry
);
2493 spin_unlock(&ctl
->tree_lock
);
2498 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2499 struct btrfs_path
*path
)
2501 struct inode
*inode
= NULL
;
2503 spin_lock(&root
->cache_lock
);
2504 if (root
->cache_inode
)
2505 inode
= igrab(root
->cache_inode
);
2506 spin_unlock(&root
->cache_lock
);
2510 inode
= __lookup_free_space_inode(root
, path
, 0);
2514 spin_lock(&root
->cache_lock
);
2515 if (!btrfs_fs_closing(root
->fs_info
))
2516 root
->cache_inode
= igrab(inode
);
2517 spin_unlock(&root
->cache_lock
);
2522 int create_free_ino_inode(struct btrfs_root
*root
,
2523 struct btrfs_trans_handle
*trans
,
2524 struct btrfs_path
*path
)
2526 return __create_free_space_inode(root
, trans
, path
,
2527 BTRFS_FREE_INO_OBJECTID
, 0);
2530 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2532 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2533 struct btrfs_path
*path
;
2534 struct inode
*inode
;
2536 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2538 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2542 * If we're unmounting then just return, since this does a search on the
2543 * normal root and not the commit root and we could deadlock.
2545 if (btrfs_fs_closing(fs_info
))
2548 path
= btrfs_alloc_path();
2552 inode
= lookup_free_ino_inode(root
, path
);
2556 if (root_gen
!= BTRFS_I(inode
)->generation
)
2559 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2562 printk(KERN_ERR
"btrfs: failed to load free ino cache for "
2563 "root %llu\n", root
->root_key
.objectid
);
2567 btrfs_free_path(path
);
2571 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2572 struct btrfs_trans_handle
*trans
,
2573 struct btrfs_path
*path
)
2575 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2576 struct inode
*inode
;
2579 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2582 inode
= lookup_free_ino_inode(root
, path
);
2586 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2588 printk(KERN_ERR
"btrfs: failed to write free ino cache "
2589 "for root %llu\n", root
->root_key
.objectid
);