net_sched: minor netns related cleanup
[linux/fpc-iii.git] / fs / ubifs / io.c
blobe589fedaf1ef747f7b5fe702065a48007d0fd5db
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 as published by
9 * the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc., 51
18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Authors: Artem Bityutskiy (Битюцкий Артём)
21 * Adrian Hunter
22 * Zoltan Sogor
26 * This file implements UBIFS I/O subsystem which provides various I/O-related
27 * helper functions (reading/writing/checking/validating nodes) and implements
28 * write-buffering support. Write buffers help to save space which otherwise
29 * would have been wasted for padding to the nearest minimal I/O unit boundary.
30 * Instead, data first goes to the write-buffer and is flushed when the
31 * buffer is full or when it is not used for some time (by timer). This is
32 * similar to the mechanism is used by JFFS2.
34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35 * mutexes defined inside these objects. Since sometimes upper-level code
36 * has to lock the write-buffer (e.g. journal space reservation code), many
37 * functions related to write-buffers have "nolock" suffix which means that the
38 * caller has to lock the write-buffer before calling this function.
40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41 * aligned, UBIFS starts the next node from the aligned address, and the padded
42 * bytes may contain any rubbish. In other words, UBIFS does not put padding
43 * bytes in those small gaps. Common headers of nodes store real node lengths,
44 * not aligned lengths. Indexing nodes also store real lengths in branches.
46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47 * uses padding nodes or padding bytes, if the padding node does not fit.
49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50 * every time they are read from the flash media.
53 #include <linux/crc32.h>
54 #include "ubifs.h"
56 /**
57 * ubifs_ro_mode - switch UBIFS to read read-only mode.
58 * @c: UBIFS file-system description object
59 * @err: error code which is the reason of switching to R/O mode
61 void ubifs_ro_mode(struct ubifs_info *c, int err)
63 if (!c->ro_media) {
64 c->ro_media = 1;
65 c->no_chk_data_crc = 0;
66 ubifs_warn("switched to read-only mode, error %d", err);
67 dbg_dump_stack();
71 /**
72 * ubifs_check_node - check node.
73 * @c: UBIFS file-system description object
74 * @buf: node to check
75 * @lnum: logical eraseblock number
76 * @offs: offset within the logical eraseblock
77 * @quiet: print no messages
78 * @must_chk_crc: indicates whether to always check the CRC
80 * This function checks node magic number and CRC checksum. This function also
81 * validates node length to prevent UBIFS from becoming crazy when an attacker
82 * feeds it a file-system image with incorrect nodes. For example, too large
83 * node length in the common header could cause UBIFS to read memory outside of
84 * allocated buffer when checking the CRC checksum.
86 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
87 * true, which is controlled by corresponding UBIFS mount option. However, if
88 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
89 * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
90 * ignored and CRC is checked.
92 * This function returns zero in case of success and %-EUCLEAN in case of bad
93 * CRC or magic.
95 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
96 int offs, int quiet, int must_chk_crc)
98 int err = -EINVAL, type, node_len;
99 uint32_t crc, node_crc, magic;
100 const struct ubifs_ch *ch = buf;
102 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
103 ubifs_assert(!(offs & 7) && offs < c->leb_size);
105 magic = le32_to_cpu(ch->magic);
106 if (magic != UBIFS_NODE_MAGIC) {
107 if (!quiet)
108 ubifs_err("bad magic %#08x, expected %#08x",
109 magic, UBIFS_NODE_MAGIC);
110 err = -EUCLEAN;
111 goto out;
114 type = ch->node_type;
115 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
116 if (!quiet)
117 ubifs_err("bad node type %d", type);
118 goto out;
121 node_len = le32_to_cpu(ch->len);
122 if (node_len + offs > c->leb_size)
123 goto out_len;
125 if (c->ranges[type].max_len == 0) {
126 if (node_len != c->ranges[type].len)
127 goto out_len;
128 } else if (node_len < c->ranges[type].min_len ||
129 node_len > c->ranges[type].max_len)
130 goto out_len;
132 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
133 c->no_chk_data_crc)
134 return 0;
136 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
137 node_crc = le32_to_cpu(ch->crc);
138 if (crc != node_crc) {
139 if (!quiet)
140 ubifs_err("bad CRC: calculated %#08x, read %#08x",
141 crc, node_crc);
142 err = -EUCLEAN;
143 goto out;
146 return 0;
148 out_len:
149 if (!quiet)
150 ubifs_err("bad node length %d", node_len);
151 out:
152 if (!quiet) {
153 ubifs_err("bad node at LEB %d:%d", lnum, offs);
154 dbg_dump_node(c, buf);
155 dbg_dump_stack();
157 return err;
161 * ubifs_pad - pad flash space.
162 * @c: UBIFS file-system description object
163 * @buf: buffer to put padding to
164 * @pad: how many bytes to pad
166 * The flash media obliges us to write only in chunks of %c->min_io_size and
167 * when we have to write less data we add padding node to the write-buffer and
168 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
169 * media is being scanned. If the amount of wasted space is not enough to fit a
170 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
171 * pattern (%UBIFS_PADDING_BYTE).
173 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
174 * used.
176 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
178 uint32_t crc;
180 ubifs_assert(pad >= 0 && !(pad & 7));
182 if (pad >= UBIFS_PAD_NODE_SZ) {
183 struct ubifs_ch *ch = buf;
184 struct ubifs_pad_node *pad_node = buf;
186 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
187 ch->node_type = UBIFS_PAD_NODE;
188 ch->group_type = UBIFS_NO_NODE_GROUP;
189 ch->padding[0] = ch->padding[1] = 0;
190 ch->sqnum = 0;
191 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
192 pad -= UBIFS_PAD_NODE_SZ;
193 pad_node->pad_len = cpu_to_le32(pad);
194 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
195 ch->crc = cpu_to_le32(crc);
196 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
197 } else if (pad > 0)
198 /* Too little space, padding node won't fit */
199 memset(buf, UBIFS_PADDING_BYTE, pad);
203 * next_sqnum - get next sequence number.
204 * @c: UBIFS file-system description object
206 static unsigned long long next_sqnum(struct ubifs_info *c)
208 unsigned long long sqnum;
210 spin_lock(&c->cnt_lock);
211 sqnum = ++c->max_sqnum;
212 spin_unlock(&c->cnt_lock);
214 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
215 if (sqnum >= SQNUM_WATERMARK) {
216 ubifs_err("sequence number overflow %llu, end of life",
217 sqnum);
218 ubifs_ro_mode(c, -EINVAL);
220 ubifs_warn("running out of sequence numbers, end of life soon");
223 return sqnum;
227 * ubifs_prepare_node - prepare node to be written to flash.
228 * @c: UBIFS file-system description object
229 * @node: the node to pad
230 * @len: node length
231 * @pad: if the buffer has to be padded
233 * This function prepares node at @node to be written to the media - it
234 * calculates node CRC, fills the common header, and adds proper padding up to
235 * the next minimum I/O unit if @pad is not zero.
237 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
239 uint32_t crc;
240 struct ubifs_ch *ch = node;
241 unsigned long long sqnum = next_sqnum(c);
243 ubifs_assert(len >= UBIFS_CH_SZ);
245 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
246 ch->len = cpu_to_le32(len);
247 ch->group_type = UBIFS_NO_NODE_GROUP;
248 ch->sqnum = cpu_to_le64(sqnum);
249 ch->padding[0] = ch->padding[1] = 0;
250 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
251 ch->crc = cpu_to_le32(crc);
253 if (pad) {
254 len = ALIGN(len, 8);
255 pad = ALIGN(len, c->min_io_size) - len;
256 ubifs_pad(c, node + len, pad);
261 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
262 * @c: UBIFS file-system description object
263 * @node: the node to pad
264 * @len: node length
265 * @last: indicates the last node of the group
267 * This function prepares node at @node to be written to the media - it
268 * calculates node CRC and fills the common header.
270 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
272 uint32_t crc;
273 struct ubifs_ch *ch = node;
274 unsigned long long sqnum = next_sqnum(c);
276 ubifs_assert(len >= UBIFS_CH_SZ);
278 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
279 ch->len = cpu_to_le32(len);
280 if (last)
281 ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
282 else
283 ch->group_type = UBIFS_IN_NODE_GROUP;
284 ch->sqnum = cpu_to_le64(sqnum);
285 ch->padding[0] = ch->padding[1] = 0;
286 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
287 ch->crc = cpu_to_le32(crc);
291 * wbuf_timer_callback - write-buffer timer callback function.
292 * @data: timer data (write-buffer descriptor)
294 * This function is called when the write-buffer timer expires.
296 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
298 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
300 dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
301 wbuf->need_sync = 1;
302 wbuf->c->need_wbuf_sync = 1;
303 ubifs_wake_up_bgt(wbuf->c);
304 return HRTIMER_NORESTART;
308 * new_wbuf_timer - start new write-buffer timer.
309 * @wbuf: write-buffer descriptor
311 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
313 ubifs_assert(!hrtimer_active(&wbuf->timer));
315 if (wbuf->no_timer)
316 return;
317 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
318 dbg_jhead(wbuf->jhead),
319 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
320 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
321 USEC_PER_SEC));
322 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
323 HRTIMER_MODE_REL);
327 * cancel_wbuf_timer - cancel write-buffer timer.
328 * @wbuf: write-buffer descriptor
330 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
332 if (wbuf->no_timer)
333 return;
334 wbuf->need_sync = 0;
335 hrtimer_cancel(&wbuf->timer);
339 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
340 * @wbuf: write-buffer to synchronize
342 * This function synchronizes write-buffer @buf and returns zero in case of
343 * success or a negative error code in case of failure.
345 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
347 struct ubifs_info *c = wbuf->c;
348 int err, dirt;
350 cancel_wbuf_timer_nolock(wbuf);
351 if (!wbuf->used || wbuf->lnum == -1)
352 /* Write-buffer is empty or not seeked */
353 return 0;
355 dbg_io("LEB %d:%d, %d bytes, jhead %s",
356 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
357 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
358 ubifs_assert(!(wbuf->avail & 7));
359 ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
361 if (c->ro_media)
362 return -EROFS;
364 ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
365 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
366 c->min_io_size, wbuf->dtype);
367 if (err) {
368 ubifs_err("cannot write %d bytes to LEB %d:%d",
369 c->min_io_size, wbuf->lnum, wbuf->offs);
370 dbg_dump_stack();
371 return err;
374 dirt = wbuf->avail;
376 spin_lock(&wbuf->lock);
377 wbuf->offs += c->min_io_size;
378 wbuf->avail = c->min_io_size;
379 wbuf->used = 0;
380 wbuf->next_ino = 0;
381 spin_unlock(&wbuf->lock);
383 if (wbuf->sync_callback)
384 err = wbuf->sync_callback(c, wbuf->lnum,
385 c->leb_size - wbuf->offs, dirt);
386 return err;
390 * ubifs_wbuf_seek_nolock - seek write-buffer.
391 * @wbuf: write-buffer
392 * @lnum: logical eraseblock number to seek to
393 * @offs: logical eraseblock offset to seek to
394 * @dtype: data type
396 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
397 * The write-buffer is synchronized if it is not empty. Returns zero in case of
398 * success and a negative error code in case of failure.
400 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
401 int dtype)
403 const struct ubifs_info *c = wbuf->c;
405 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
406 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
407 ubifs_assert(offs >= 0 && offs <= c->leb_size);
408 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
409 ubifs_assert(lnum != wbuf->lnum);
411 if (wbuf->used > 0) {
412 int err = ubifs_wbuf_sync_nolock(wbuf);
414 if (err)
415 return err;
418 spin_lock(&wbuf->lock);
419 wbuf->lnum = lnum;
420 wbuf->offs = offs;
421 wbuf->avail = c->min_io_size;
422 wbuf->used = 0;
423 spin_unlock(&wbuf->lock);
424 wbuf->dtype = dtype;
426 return 0;
430 * ubifs_bg_wbufs_sync - synchronize write-buffers.
431 * @c: UBIFS file-system description object
433 * This function is called by background thread to synchronize write-buffers.
434 * Returns zero in case of success and a negative error code in case of
435 * failure.
437 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
439 int err, i;
441 if (!c->need_wbuf_sync)
442 return 0;
443 c->need_wbuf_sync = 0;
445 if (c->ro_media) {
446 err = -EROFS;
447 goto out_timers;
450 dbg_io("synchronize");
451 for (i = 0; i < c->jhead_cnt; i++) {
452 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
454 cond_resched();
457 * If the mutex is locked then wbuf is being changed, so
458 * synchronization is not necessary.
460 if (mutex_is_locked(&wbuf->io_mutex))
461 continue;
463 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
464 if (!wbuf->need_sync) {
465 mutex_unlock(&wbuf->io_mutex);
466 continue;
469 err = ubifs_wbuf_sync_nolock(wbuf);
470 mutex_unlock(&wbuf->io_mutex);
471 if (err) {
472 ubifs_err("cannot sync write-buffer, error %d", err);
473 ubifs_ro_mode(c, err);
474 goto out_timers;
478 return 0;
480 out_timers:
481 /* Cancel all timers to prevent repeated errors */
482 for (i = 0; i < c->jhead_cnt; i++) {
483 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
485 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
486 cancel_wbuf_timer_nolock(wbuf);
487 mutex_unlock(&wbuf->io_mutex);
489 return err;
493 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
494 * @wbuf: write-buffer
495 * @buf: node to write
496 * @len: node length
498 * This function writes data to flash via write-buffer @wbuf. This means that
499 * the last piece of the node won't reach the flash media immediately if it
500 * does not take whole minimal I/O unit. Instead, the node will sit in RAM
501 * until the write-buffer is synchronized (e.g., by timer).
503 * This function returns zero in case of success and a negative error code in
504 * case of failure. If the node cannot be written because there is no more
505 * space in this logical eraseblock, %-ENOSPC is returned.
507 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
509 struct ubifs_info *c = wbuf->c;
510 int err, written, n, aligned_len = ALIGN(len, 8), offs;
512 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
513 dbg_ntype(((struct ubifs_ch *)buf)->node_type),
514 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
515 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
516 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
517 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
518 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
519 ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
521 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
522 err = -ENOSPC;
523 goto out;
526 cancel_wbuf_timer_nolock(wbuf);
528 if (c->ro_media)
529 return -EROFS;
531 if (aligned_len <= wbuf->avail) {
533 * The node is not very large and fits entirely within
534 * write-buffer.
536 memcpy(wbuf->buf + wbuf->used, buf, len);
538 if (aligned_len == wbuf->avail) {
539 dbg_io("flush jhead %s wbuf to LEB %d:%d",
540 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
541 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
542 wbuf->offs, c->min_io_size,
543 wbuf->dtype);
544 if (err)
545 goto out;
547 spin_lock(&wbuf->lock);
548 wbuf->offs += c->min_io_size;
549 wbuf->avail = c->min_io_size;
550 wbuf->used = 0;
551 wbuf->next_ino = 0;
552 spin_unlock(&wbuf->lock);
553 } else {
554 spin_lock(&wbuf->lock);
555 wbuf->avail -= aligned_len;
556 wbuf->used += aligned_len;
557 spin_unlock(&wbuf->lock);
560 goto exit;
564 * The node is large enough and does not fit entirely within current
565 * minimal I/O unit. We have to fill and flush write-buffer and switch
566 * to the next min. I/O unit.
568 dbg_io("flush jhead %s wbuf to LEB %d:%d",
569 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
570 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
571 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
572 c->min_io_size, wbuf->dtype);
573 if (err)
574 goto out;
576 offs = wbuf->offs + c->min_io_size;
577 len -= wbuf->avail;
578 aligned_len -= wbuf->avail;
579 written = wbuf->avail;
582 * The remaining data may take more whole min. I/O units, so write the
583 * remains multiple to min. I/O unit size directly to the flash media.
584 * We align node length to 8-byte boundary because we anyway flash wbuf
585 * if the remaining space is less than 8 bytes.
587 n = aligned_len >> c->min_io_shift;
588 if (n) {
589 n <<= c->min_io_shift;
590 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
591 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
592 wbuf->dtype);
593 if (err)
594 goto out;
595 offs += n;
596 aligned_len -= n;
597 len -= n;
598 written += n;
601 spin_lock(&wbuf->lock);
602 if (aligned_len)
604 * And now we have what's left and what does not take whole
605 * min. I/O unit, so write it to the write-buffer and we are
606 * done.
608 memcpy(wbuf->buf, buf + written, len);
610 wbuf->offs = offs;
611 wbuf->used = aligned_len;
612 wbuf->avail = c->min_io_size - aligned_len;
613 wbuf->next_ino = 0;
614 spin_unlock(&wbuf->lock);
616 exit:
617 if (wbuf->sync_callback) {
618 int free = c->leb_size - wbuf->offs - wbuf->used;
620 err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
621 if (err)
622 goto out;
625 if (wbuf->used)
626 new_wbuf_timer_nolock(wbuf);
628 return 0;
630 out:
631 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
632 len, wbuf->lnum, wbuf->offs, err);
633 dbg_dump_node(c, buf);
634 dbg_dump_stack();
635 dbg_dump_leb(c, wbuf->lnum);
636 return err;
640 * ubifs_write_node - write node to the media.
641 * @c: UBIFS file-system description object
642 * @buf: the node to write
643 * @len: node length
644 * @lnum: logical eraseblock number
645 * @offs: offset within the logical eraseblock
646 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
648 * This function automatically fills node magic number, assigns sequence
649 * number, and calculates node CRC checksum. The length of the @buf buffer has
650 * to be aligned to the minimal I/O unit size. This function automatically
651 * appends padding node and padding bytes if needed. Returns zero in case of
652 * success and a negative error code in case of failure.
654 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
655 int offs, int dtype)
657 int err, buf_len = ALIGN(len, c->min_io_size);
659 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
660 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
661 buf_len);
662 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
663 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
665 if (c->ro_media)
666 return -EROFS;
668 ubifs_prepare_node(c, buf, len, 1);
669 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
670 if (err) {
671 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
672 buf_len, lnum, offs, err);
673 dbg_dump_node(c, buf);
674 dbg_dump_stack();
677 return err;
681 * ubifs_read_node_wbuf - read node from the media or write-buffer.
682 * @wbuf: wbuf to check for un-written data
683 * @buf: buffer to read to
684 * @type: node type
685 * @len: node length
686 * @lnum: logical eraseblock number
687 * @offs: offset within the logical eraseblock
689 * This function reads a node of known type and length, checks it and stores
690 * in @buf. If the node partially or fully sits in the write-buffer, this
691 * function takes data from the buffer, otherwise it reads the flash media.
692 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
693 * error code in case of failure.
695 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
696 int lnum, int offs)
698 const struct ubifs_info *c = wbuf->c;
699 int err, rlen, overlap;
700 struct ubifs_ch *ch = buf;
702 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
703 dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
704 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
705 ubifs_assert(!(offs & 7) && offs < c->leb_size);
706 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
708 spin_lock(&wbuf->lock);
709 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
710 if (!overlap) {
711 /* We may safely unlock the write-buffer and read the data */
712 spin_unlock(&wbuf->lock);
713 return ubifs_read_node(c, buf, type, len, lnum, offs);
716 /* Don't read under wbuf */
717 rlen = wbuf->offs - offs;
718 if (rlen < 0)
719 rlen = 0;
721 /* Copy the rest from the write-buffer */
722 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
723 spin_unlock(&wbuf->lock);
725 if (rlen > 0) {
726 /* Read everything that goes before write-buffer */
727 err = ubi_read(c->ubi, lnum, buf, offs, rlen);
728 if (err && err != -EBADMSG) {
729 ubifs_err("failed to read node %d from LEB %d:%d, "
730 "error %d", type, lnum, offs, err);
731 dbg_dump_stack();
732 return err;
736 if (type != ch->node_type) {
737 ubifs_err("bad node type (%d but expected %d)",
738 ch->node_type, type);
739 goto out;
742 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
743 if (err) {
744 ubifs_err("expected node type %d", type);
745 return err;
748 rlen = le32_to_cpu(ch->len);
749 if (rlen != len) {
750 ubifs_err("bad node length %d, expected %d", rlen, len);
751 goto out;
754 return 0;
756 out:
757 ubifs_err("bad node at LEB %d:%d", lnum, offs);
758 dbg_dump_node(c, buf);
759 dbg_dump_stack();
760 return -EINVAL;
764 * ubifs_read_node - read node.
765 * @c: UBIFS file-system description object
766 * @buf: buffer to read to
767 * @type: node type
768 * @len: node length (not aligned)
769 * @lnum: logical eraseblock number
770 * @offs: offset within the logical eraseblock
772 * This function reads a node of known type and and length, checks it and
773 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
774 * and a negative error code in case of failure.
776 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
777 int lnum, int offs)
779 int err, l;
780 struct ubifs_ch *ch = buf;
782 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
783 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
784 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
785 ubifs_assert(!(offs & 7) && offs < c->leb_size);
786 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
788 err = ubi_read(c->ubi, lnum, buf, offs, len);
789 if (err && err != -EBADMSG) {
790 ubifs_err("cannot read node %d from LEB %d:%d, error %d",
791 type, lnum, offs, err);
792 return err;
795 if (type != ch->node_type) {
796 ubifs_err("bad node type (%d but expected %d)",
797 ch->node_type, type);
798 goto out;
801 err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
802 if (err) {
803 ubifs_err("expected node type %d", type);
804 return err;
807 l = le32_to_cpu(ch->len);
808 if (l != len) {
809 ubifs_err("bad node length %d, expected %d", l, len);
810 goto out;
813 return 0;
815 out:
816 ubifs_err("bad node at LEB %d:%d", lnum, offs);
817 dbg_dump_node(c, buf);
818 dbg_dump_stack();
819 return -EINVAL;
823 * ubifs_wbuf_init - initialize write-buffer.
824 * @c: UBIFS file-system description object
825 * @wbuf: write-buffer to initialize
827 * This function initializes write-buffer. Returns zero in case of success
828 * %-ENOMEM in case of failure.
830 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
832 size_t size;
834 wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
835 if (!wbuf->buf)
836 return -ENOMEM;
838 size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
839 wbuf->inodes = kmalloc(size, GFP_KERNEL);
840 if (!wbuf->inodes) {
841 kfree(wbuf->buf);
842 wbuf->buf = NULL;
843 return -ENOMEM;
846 wbuf->used = 0;
847 wbuf->lnum = wbuf->offs = -1;
848 wbuf->avail = c->min_io_size;
849 wbuf->dtype = UBI_UNKNOWN;
850 wbuf->sync_callback = NULL;
851 mutex_init(&wbuf->io_mutex);
852 spin_lock_init(&wbuf->lock);
853 wbuf->c = c;
854 wbuf->next_ino = 0;
856 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
857 wbuf->timer.function = wbuf_timer_callback_nolock;
858 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
859 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
860 wbuf->delta *= 1000000000ULL;
861 ubifs_assert(wbuf->delta <= ULONG_MAX);
862 return 0;
866 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
867 * @wbuf: the write-buffer where to add
868 * @inum: the inode number
870 * This function adds an inode number to the inode array of the write-buffer.
872 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
874 if (!wbuf->buf)
875 /* NOR flash or something similar */
876 return;
878 spin_lock(&wbuf->lock);
879 if (wbuf->used)
880 wbuf->inodes[wbuf->next_ino++] = inum;
881 spin_unlock(&wbuf->lock);
885 * wbuf_has_ino - returns if the wbuf contains data from the inode.
886 * @wbuf: the write-buffer
887 * @inum: the inode number
889 * This function returns with %1 if the write-buffer contains some data from the
890 * given inode otherwise it returns with %0.
892 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
894 int i, ret = 0;
896 spin_lock(&wbuf->lock);
897 for (i = 0; i < wbuf->next_ino; i++)
898 if (inum == wbuf->inodes[i]) {
899 ret = 1;
900 break;
902 spin_unlock(&wbuf->lock);
904 return ret;
908 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
909 * @c: UBIFS file-system description object
910 * @inode: inode to synchronize
912 * This function synchronizes write-buffers which contain nodes belonging to
913 * @inode. Returns zero in case of success and a negative error code in case of
914 * failure.
916 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
918 int i, err = 0;
920 for (i = 0; i < c->jhead_cnt; i++) {
921 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
923 if (i == GCHD)
925 * GC head is special, do not look at it. Even if the
926 * head contains something related to this inode, it is
927 * a _copy_ of corresponding on-flash node which sits
928 * somewhere else.
930 continue;
932 if (!wbuf_has_ino(wbuf, inode->i_ino))
933 continue;
935 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
936 if (wbuf_has_ino(wbuf, inode->i_ino))
937 err = ubifs_wbuf_sync_nolock(wbuf);
938 mutex_unlock(&wbuf->io_mutex);
940 if (err) {
941 ubifs_ro_mode(c, err);
942 return err;
945 return 0;