staging: rtl8188eu: cleanup comments in update_hw_ht_param
[linux/fpc-iii.git] / mm / oom_kill.c
blob71e3acea781764248161da9d7e80046fe823eb72
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/swap.h>
30 #include <linux/timex.h>
31 #include <linux/jiffies.h>
32 #include <linux/cpuset.h>
33 #include <linux/export.h>
34 #include <linux/notifier.h>
35 #include <linux/memcontrol.h>
36 #include <linux/mempolicy.h>
37 #include <linux/security.h>
38 #include <linux/ptrace.h>
39 #include <linux/freezer.h>
40 #include <linux/ftrace.h>
41 #include <linux/ratelimit.h>
42 #include <linux/kthread.h>
43 #include <linux/init.h>
44 #include <linux/mmu_notifier.h>
46 #include <asm/tlb.h>
47 #include "internal.h"
48 #include "slab.h"
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/oom.h>
53 int sysctl_panic_on_oom;
54 int sysctl_oom_kill_allocating_task;
55 int sysctl_oom_dump_tasks = 1;
58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
60 * from different domains).
62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
63 * and mark_oom_victim
65 DEFINE_MUTEX(oom_lock);
67 static inline bool is_memcg_oom(struct oom_control *oc)
69 return oc->memcg != NULL;
72 #ifdef CONFIG_NUMA
73 /**
74 * oom_cpuset_eligible() - check task eligiblity for kill
75 * @start: task struct of which task to consider
76 * @oc: pointer to struct oom_control
78 * Task eligibility is determined by whether or not a candidate task, @tsk,
79 * shares the same mempolicy nodes as current if it is bound by such a policy
80 * and whether or not it has the same set of allowed cpuset nodes.
82 * This function is assuming oom-killer context and 'current' has triggered
83 * the oom-killer.
85 static bool oom_cpuset_eligible(struct task_struct *start,
86 struct oom_control *oc)
88 struct task_struct *tsk;
89 bool ret = false;
90 const nodemask_t *mask = oc->nodemask;
92 if (is_memcg_oom(oc))
93 return true;
95 rcu_read_lock();
96 for_each_thread(start, tsk) {
97 if (mask) {
99 * If this is a mempolicy constrained oom, tsk's
100 * cpuset is irrelevant. Only return true if its
101 * mempolicy intersects current, otherwise it may be
102 * needlessly killed.
104 ret = mempolicy_nodemask_intersects(tsk, mask);
105 } else {
107 * This is not a mempolicy constrained oom, so only
108 * check the mems of tsk's cpuset.
110 ret = cpuset_mems_allowed_intersects(current, tsk);
112 if (ret)
113 break;
115 rcu_read_unlock();
117 return ret;
119 #else
120 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
122 return true;
124 #endif /* CONFIG_NUMA */
127 * The process p may have detached its own ->mm while exiting or through
128 * use_mm(), but one or more of its subthreads may still have a valid
129 * pointer. Return p, or any of its subthreads with a valid ->mm, with
130 * task_lock() held.
132 struct task_struct *find_lock_task_mm(struct task_struct *p)
134 struct task_struct *t;
136 rcu_read_lock();
138 for_each_thread(p, t) {
139 task_lock(t);
140 if (likely(t->mm))
141 goto found;
142 task_unlock(t);
144 t = NULL;
145 found:
146 rcu_read_unlock();
148 return t;
152 * order == -1 means the oom kill is required by sysrq, otherwise only
153 * for display purposes.
155 static inline bool is_sysrq_oom(struct oom_control *oc)
157 return oc->order == -1;
160 /* return true if the task is not adequate as candidate victim task. */
161 static bool oom_unkillable_task(struct task_struct *p)
163 if (is_global_init(p))
164 return true;
165 if (p->flags & PF_KTHREAD)
166 return true;
167 return false;
171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
172 * than all user memory (LRU pages)
174 static bool is_dump_unreclaim_slabs(void)
176 unsigned long nr_lru;
178 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
179 global_node_page_state(NR_INACTIVE_ANON) +
180 global_node_page_state(NR_ACTIVE_FILE) +
181 global_node_page_state(NR_INACTIVE_FILE) +
182 global_node_page_state(NR_ISOLATED_ANON) +
183 global_node_page_state(NR_ISOLATED_FILE) +
184 global_node_page_state(NR_UNEVICTABLE);
186 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
190 * oom_badness - heuristic function to determine which candidate task to kill
191 * @p: task struct of which task we should calculate
192 * @totalpages: total present RAM allowed for page allocation
194 * The heuristic for determining which task to kill is made to be as simple and
195 * predictable as possible. The goal is to return the highest value for the
196 * task consuming the most memory to avoid subsequent oom failures.
198 unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
200 long points;
201 long adj;
203 if (oom_unkillable_task(p))
204 return 0;
206 p = find_lock_task_mm(p);
207 if (!p)
208 return 0;
211 * Do not even consider tasks which are explicitly marked oom
212 * unkillable or have been already oom reaped or the are in
213 * the middle of vfork
215 adj = (long)p->signal->oom_score_adj;
216 if (adj == OOM_SCORE_ADJ_MIN ||
217 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
218 in_vfork(p)) {
219 task_unlock(p);
220 return 0;
224 * The baseline for the badness score is the proportion of RAM that each
225 * task's rss, pagetable and swap space use.
227 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
228 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
229 task_unlock(p);
231 /* Normalize to oom_score_adj units */
232 adj *= totalpages / 1000;
233 points += adj;
236 * Never return 0 for an eligible task regardless of the root bonus and
237 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
239 return points > 0 ? points : 1;
242 static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
250 * Determine the type of allocation constraint.
252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 high_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
306 return CONSTRAINT_NONE;
309 static int oom_evaluate_task(struct task_struct *task, void *arg)
311 struct oom_control *oc = arg;
312 unsigned long points;
314 if (oom_unkillable_task(task))
315 goto next;
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 goto next;
330 goto abort;
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
337 if (oom_task_origin(task)) {
338 points = ULONG_MAX;
339 goto select;
342 points = oom_badness(task, oc->totalpages);
343 if (!points || points < oc->chosen_points)
344 goto next;
346 select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352 next:
353 return 0;
354 abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
365 static void select_bad_process(struct oom_control *oc)
367 if (is_memcg_oom(oc))
368 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
369 else {
370 struct task_struct *p;
372 rcu_read_lock();
373 for_each_process(p)
374 if (oom_evaluate_task(p, oc))
375 break;
376 rcu_read_unlock();
380 static int dump_task(struct task_struct *p, void *arg)
382 struct oom_control *oc = arg;
383 struct task_struct *task;
385 if (oom_unkillable_task(p))
386 return 0;
388 /* p may not have freeable memory in nodemask */
389 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
390 return 0;
392 task = find_lock_task_mm(p);
393 if (!task) {
395 * This is a kthread or all of p's threads have already
396 * detached their mm's. There's no need to report
397 * them; they can't be oom killed anyway.
399 return 0;
402 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
403 task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 mm_pgtables_bytes(task->mm),
406 get_mm_counter(task->mm, MM_SWAPENTS),
407 task->signal->oom_score_adj, task->comm);
408 task_unlock(task);
410 return 0;
414 * dump_tasks - dump current memory state of all system tasks
415 * @oc: pointer to struct oom_control
417 * Dumps the current memory state of all eligible tasks. Tasks not in the same
418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
419 * are not shown.
420 * State information includes task's pid, uid, tgid, vm size, rss,
421 * pgtables_bytes, swapents, oom_score_adj value, and name.
423 static void dump_tasks(struct oom_control *oc)
425 pr_info("Tasks state (memory values in pages):\n");
426 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
428 if (is_memcg_oom(oc))
429 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
430 else {
431 struct task_struct *p;
433 rcu_read_lock();
434 for_each_process(p)
435 dump_task(p, oc);
436 rcu_read_unlock();
440 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
442 /* one line summary of the oom killer context. */
443 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
444 oom_constraint_text[oc->constraint],
445 nodemask_pr_args(oc->nodemask));
446 cpuset_print_current_mems_allowed();
447 mem_cgroup_print_oom_context(oc->memcg, victim);
448 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
449 from_kuid(&init_user_ns, task_uid(victim)));
452 static void dump_header(struct oom_control *oc, struct task_struct *p)
454 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
455 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
456 current->signal->oom_score_adj);
457 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
458 pr_warn("COMPACTION is disabled!!!\n");
460 dump_stack();
461 if (is_memcg_oom(oc))
462 mem_cgroup_print_oom_meminfo(oc->memcg);
463 else {
464 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
465 if (is_dump_unreclaim_slabs())
466 dump_unreclaimable_slab();
468 if (sysctl_oom_dump_tasks)
469 dump_tasks(oc);
470 if (p)
471 dump_oom_summary(oc, p);
475 * Number of OOM victims in flight
477 static atomic_t oom_victims = ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
480 static bool oom_killer_disabled __read_mostly;
482 #define K(x) ((x) << (PAGE_SHIFT-10))
485 * task->mm can be NULL if the task is the exited group leader. So to
486 * determine whether the task is using a particular mm, we examine all the
487 * task's threads: if one of those is using this mm then this task was also
488 * using it.
490 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
492 struct task_struct *t;
494 for_each_thread(p, t) {
495 struct mm_struct *t_mm = READ_ONCE(t->mm);
496 if (t_mm)
497 return t_mm == mm;
499 return false;
502 #ifdef CONFIG_MMU
504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
505 * victim (if that is possible) to help the OOM killer to move on.
507 static struct task_struct *oom_reaper_th;
508 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
509 static struct task_struct *oom_reaper_list;
510 static DEFINE_SPINLOCK(oom_reaper_lock);
512 bool __oom_reap_task_mm(struct mm_struct *mm)
514 struct vm_area_struct *vma;
515 bool ret = true;
518 * Tell all users of get_user/copy_from_user etc... that the content
519 * is no longer stable. No barriers really needed because unmapping
520 * should imply barriers already and the reader would hit a page fault
521 * if it stumbled over a reaped memory.
523 set_bit(MMF_UNSTABLE, &mm->flags);
525 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
526 if (!can_madv_lru_vma(vma))
527 continue;
530 * Only anonymous pages have a good chance to be dropped
531 * without additional steps which we cannot afford as we
532 * are OOM already.
534 * We do not even care about fs backed pages because all
535 * which are reclaimable have already been reclaimed and
536 * we do not want to block exit_mmap by keeping mm ref
537 * count elevated without a good reason.
539 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
540 struct mmu_notifier_range range;
541 struct mmu_gather tlb;
543 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
544 vma, mm, vma->vm_start,
545 vma->vm_end);
546 tlb_gather_mmu(&tlb, mm, range.start, range.end);
547 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
548 tlb_finish_mmu(&tlb, range.start, range.end);
549 ret = false;
550 continue;
552 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
553 mmu_notifier_invalidate_range_end(&range);
554 tlb_finish_mmu(&tlb, range.start, range.end);
558 return ret;
562 * Reaps the address space of the give task.
564 * Returns true on success and false if none or part of the address space
565 * has been reclaimed and the caller should retry later.
567 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
569 bool ret = true;
571 if (!down_read_trylock(&mm->mmap_sem)) {
572 trace_skip_task_reaping(tsk->pid);
573 return false;
577 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
578 * work on the mm anymore. The check for MMF_OOM_SKIP must run
579 * under mmap_sem for reading because it serializes against the
580 * down_write();up_write() cycle in exit_mmap().
582 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
583 trace_skip_task_reaping(tsk->pid);
584 goto out_unlock;
587 trace_start_task_reaping(tsk->pid);
589 /* failed to reap part of the address space. Try again later */
590 ret = __oom_reap_task_mm(mm);
591 if (!ret)
592 goto out_finish;
594 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
595 task_pid_nr(tsk), tsk->comm,
596 K(get_mm_counter(mm, MM_ANONPAGES)),
597 K(get_mm_counter(mm, MM_FILEPAGES)),
598 K(get_mm_counter(mm, MM_SHMEMPAGES)));
599 out_finish:
600 trace_finish_task_reaping(tsk->pid);
601 out_unlock:
602 up_read(&mm->mmap_sem);
604 return ret;
607 #define MAX_OOM_REAP_RETRIES 10
608 static void oom_reap_task(struct task_struct *tsk)
610 int attempts = 0;
611 struct mm_struct *mm = tsk->signal->oom_mm;
613 /* Retry the down_read_trylock(mmap_sem) a few times */
614 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
615 schedule_timeout_idle(HZ/10);
617 if (attempts <= MAX_OOM_REAP_RETRIES ||
618 test_bit(MMF_OOM_SKIP, &mm->flags))
619 goto done;
621 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
622 task_pid_nr(tsk), tsk->comm);
623 debug_show_all_locks();
625 done:
626 tsk->oom_reaper_list = NULL;
629 * Hide this mm from OOM killer because it has been either reaped or
630 * somebody can't call up_write(mmap_sem).
632 set_bit(MMF_OOM_SKIP, &mm->flags);
634 /* Drop a reference taken by wake_oom_reaper */
635 put_task_struct(tsk);
638 static int oom_reaper(void *unused)
640 while (true) {
641 struct task_struct *tsk = NULL;
643 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
644 spin_lock(&oom_reaper_lock);
645 if (oom_reaper_list != NULL) {
646 tsk = oom_reaper_list;
647 oom_reaper_list = tsk->oom_reaper_list;
649 spin_unlock(&oom_reaper_lock);
651 if (tsk)
652 oom_reap_task(tsk);
655 return 0;
658 static void wake_oom_reaper(struct task_struct *tsk)
660 /* mm is already queued? */
661 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
662 return;
664 get_task_struct(tsk);
666 spin_lock(&oom_reaper_lock);
667 tsk->oom_reaper_list = oom_reaper_list;
668 oom_reaper_list = tsk;
669 spin_unlock(&oom_reaper_lock);
670 trace_wake_reaper(tsk->pid);
671 wake_up(&oom_reaper_wait);
674 static int __init oom_init(void)
676 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
677 return 0;
679 subsys_initcall(oom_init)
680 #else
681 static inline void wake_oom_reaper(struct task_struct *tsk)
684 #endif /* CONFIG_MMU */
687 * mark_oom_victim - mark the given task as OOM victim
688 * @tsk: task to mark
690 * Has to be called with oom_lock held and never after
691 * oom has been disabled already.
693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
694 * under task_lock or operate on the current).
696 static void mark_oom_victim(struct task_struct *tsk)
698 struct mm_struct *mm = tsk->mm;
700 WARN_ON(oom_killer_disabled);
701 /* OOM killer might race with memcg OOM */
702 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
703 return;
705 /* oom_mm is bound to the signal struct life time. */
706 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
707 mmgrab(tsk->signal->oom_mm);
708 set_bit(MMF_OOM_VICTIM, &mm->flags);
712 * Make sure that the task is woken up from uninterruptible sleep
713 * if it is frozen because OOM killer wouldn't be able to free
714 * any memory and livelock. freezing_slow_path will tell the freezer
715 * that TIF_MEMDIE tasks should be ignored.
717 __thaw_task(tsk);
718 atomic_inc(&oom_victims);
719 trace_mark_victim(tsk->pid);
723 * exit_oom_victim - note the exit of an OOM victim
725 void exit_oom_victim(void)
727 clear_thread_flag(TIF_MEMDIE);
729 if (!atomic_dec_return(&oom_victims))
730 wake_up_all(&oom_victims_wait);
734 * oom_killer_enable - enable OOM killer
736 void oom_killer_enable(void)
738 oom_killer_disabled = false;
739 pr_info("OOM killer enabled.\n");
743 * oom_killer_disable - disable OOM killer
744 * @timeout: maximum timeout to wait for oom victims in jiffies
746 * Forces all page allocations to fail rather than trigger OOM killer.
747 * Will block and wait until all OOM victims are killed or the given
748 * timeout expires.
750 * The function cannot be called when there are runnable user tasks because
751 * the userspace would see unexpected allocation failures as a result. Any
752 * new usage of this function should be consulted with MM people.
754 * Returns true if successful and false if the OOM killer cannot be
755 * disabled.
757 bool oom_killer_disable(signed long timeout)
759 signed long ret;
762 * Make sure to not race with an ongoing OOM killer. Check that the
763 * current is not killed (possibly due to sharing the victim's memory).
765 if (mutex_lock_killable(&oom_lock))
766 return false;
767 oom_killer_disabled = true;
768 mutex_unlock(&oom_lock);
770 ret = wait_event_interruptible_timeout(oom_victims_wait,
771 !atomic_read(&oom_victims), timeout);
772 if (ret <= 0) {
773 oom_killer_enable();
774 return false;
776 pr_info("OOM killer disabled.\n");
778 return true;
781 static inline bool __task_will_free_mem(struct task_struct *task)
783 struct signal_struct *sig = task->signal;
786 * A coredumping process may sleep for an extended period in exit_mm(),
787 * so the oom killer cannot assume that the process will promptly exit
788 * and release memory.
790 if (sig->flags & SIGNAL_GROUP_COREDUMP)
791 return false;
793 if (sig->flags & SIGNAL_GROUP_EXIT)
794 return true;
796 if (thread_group_empty(task) && (task->flags & PF_EXITING))
797 return true;
799 return false;
803 * Checks whether the given task is dying or exiting and likely to
804 * release its address space. This means that all threads and processes
805 * sharing the same mm have to be killed or exiting.
806 * Caller has to make sure that task->mm is stable (hold task_lock or
807 * it operates on the current).
809 static bool task_will_free_mem(struct task_struct *task)
811 struct mm_struct *mm = task->mm;
812 struct task_struct *p;
813 bool ret = true;
816 * Skip tasks without mm because it might have passed its exit_mm and
817 * exit_oom_victim. oom_reaper could have rescued that but do not rely
818 * on that for now. We can consider find_lock_task_mm in future.
820 if (!mm)
821 return false;
823 if (!__task_will_free_mem(task))
824 return false;
827 * This task has already been drained by the oom reaper so there are
828 * only small chances it will free some more
830 if (test_bit(MMF_OOM_SKIP, &mm->flags))
831 return false;
833 if (atomic_read(&mm->mm_users) <= 1)
834 return true;
837 * Make sure that all tasks which share the mm with the given tasks
838 * are dying as well to make sure that a) nobody pins its mm and
839 * b) the task is also reapable by the oom reaper.
841 rcu_read_lock();
842 for_each_process(p) {
843 if (!process_shares_mm(p, mm))
844 continue;
845 if (same_thread_group(task, p))
846 continue;
847 ret = __task_will_free_mem(p);
848 if (!ret)
849 break;
851 rcu_read_unlock();
853 return ret;
856 static void __oom_kill_process(struct task_struct *victim, const char *message)
858 struct task_struct *p;
859 struct mm_struct *mm;
860 bool can_oom_reap = true;
862 p = find_lock_task_mm(victim);
863 if (!p) {
864 put_task_struct(victim);
865 return;
866 } else if (victim != p) {
867 get_task_struct(p);
868 put_task_struct(victim);
869 victim = p;
872 /* Get a reference to safely compare mm after task_unlock(victim) */
873 mm = victim->mm;
874 mmgrab(mm);
876 /* Raise event before sending signal: task reaper must see this */
877 count_vm_event(OOM_KILL);
878 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
881 * We should send SIGKILL before granting access to memory reserves
882 * in order to prevent the OOM victim from depleting the memory
883 * reserves from the user space under its control.
885 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
886 mark_oom_victim(victim);
887 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
888 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
889 K(get_mm_counter(mm, MM_ANONPAGES)),
890 K(get_mm_counter(mm, MM_FILEPAGES)),
891 K(get_mm_counter(mm, MM_SHMEMPAGES)),
892 from_kuid(&init_user_ns, task_uid(victim)),
893 mm_pgtables_bytes(mm), victim->signal->oom_score_adj);
894 task_unlock(victim);
897 * Kill all user processes sharing victim->mm in other thread groups, if
898 * any. They don't get access to memory reserves, though, to avoid
899 * depletion of all memory. This prevents mm->mmap_sem livelock when an
900 * oom killed thread cannot exit because it requires the semaphore and
901 * its contended by another thread trying to allocate memory itself.
902 * That thread will now get access to memory reserves since it has a
903 * pending fatal signal.
905 rcu_read_lock();
906 for_each_process(p) {
907 if (!process_shares_mm(p, mm))
908 continue;
909 if (same_thread_group(p, victim))
910 continue;
911 if (is_global_init(p)) {
912 can_oom_reap = false;
913 set_bit(MMF_OOM_SKIP, &mm->flags);
914 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
915 task_pid_nr(victim), victim->comm,
916 task_pid_nr(p), p->comm);
917 continue;
920 * No use_mm() user needs to read from the userspace so we are
921 * ok to reap it.
923 if (unlikely(p->flags & PF_KTHREAD))
924 continue;
925 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
927 rcu_read_unlock();
929 if (can_oom_reap)
930 wake_oom_reaper(victim);
932 mmdrop(mm);
933 put_task_struct(victim);
935 #undef K
938 * Kill provided task unless it's secured by setting
939 * oom_score_adj to OOM_SCORE_ADJ_MIN.
941 static int oom_kill_memcg_member(struct task_struct *task, void *message)
943 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
944 !is_global_init(task)) {
945 get_task_struct(task);
946 __oom_kill_process(task, message);
948 return 0;
951 static void oom_kill_process(struct oom_control *oc, const char *message)
953 struct task_struct *victim = oc->chosen;
954 struct mem_cgroup *oom_group;
955 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
956 DEFAULT_RATELIMIT_BURST);
959 * If the task is already exiting, don't alarm the sysadmin or kill
960 * its children or threads, just give it access to memory reserves
961 * so it can die quickly
963 task_lock(victim);
964 if (task_will_free_mem(victim)) {
965 mark_oom_victim(victim);
966 wake_oom_reaper(victim);
967 task_unlock(victim);
968 put_task_struct(victim);
969 return;
971 task_unlock(victim);
973 if (__ratelimit(&oom_rs))
974 dump_header(oc, victim);
977 * Do we need to kill the entire memory cgroup?
978 * Or even one of the ancestor memory cgroups?
979 * Check this out before killing the victim task.
981 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
983 __oom_kill_process(victim, message);
986 * If necessary, kill all tasks in the selected memory cgroup.
988 if (oom_group) {
989 mem_cgroup_print_oom_group(oom_group);
990 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
991 (void*)message);
992 mem_cgroup_put(oom_group);
997 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
999 static void check_panic_on_oom(struct oom_control *oc)
1001 if (likely(!sysctl_panic_on_oom))
1002 return;
1003 if (sysctl_panic_on_oom != 2) {
1005 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006 * does not panic for cpuset, mempolicy, or memcg allocation
1007 * failures.
1009 if (oc->constraint != CONSTRAINT_NONE)
1010 return;
1012 /* Do not panic for oom kills triggered by sysrq */
1013 if (is_sysrq_oom(oc))
1014 return;
1015 dump_header(oc, NULL);
1016 panic("Out of memory: %s panic_on_oom is enabled\n",
1017 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1020 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1022 int register_oom_notifier(struct notifier_block *nb)
1024 return blocking_notifier_chain_register(&oom_notify_list, nb);
1026 EXPORT_SYMBOL_GPL(register_oom_notifier);
1028 int unregister_oom_notifier(struct notifier_block *nb)
1030 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1032 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1035 * out_of_memory - kill the "best" process when we run out of memory
1036 * @oc: pointer to struct oom_control
1038 * If we run out of memory, we have the choice between either
1039 * killing a random task (bad), letting the system crash (worse)
1040 * OR try to be smart about which process to kill. Note that we
1041 * don't have to be perfect here, we just have to be good.
1043 bool out_of_memory(struct oom_control *oc)
1045 unsigned long freed = 0;
1047 if (oom_killer_disabled)
1048 return false;
1050 if (!is_memcg_oom(oc)) {
1051 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1052 if (freed > 0)
1053 /* Got some memory back in the last second. */
1054 return true;
1058 * If current has a pending SIGKILL or is exiting, then automatically
1059 * select it. The goal is to allow it to allocate so that it may
1060 * quickly exit and free its memory.
1062 if (task_will_free_mem(current)) {
1063 mark_oom_victim(current);
1064 wake_oom_reaper(current);
1065 return true;
1069 * The OOM killer does not compensate for IO-less reclaim.
1070 * pagefault_out_of_memory lost its gfp context so we have to
1071 * make sure exclude 0 mask - all other users should have at least
1072 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1075 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1076 return true;
1079 * Check if there were limitations on the allocation (only relevant for
1080 * NUMA and memcg) that may require different handling.
1082 oc->constraint = constrained_alloc(oc);
1083 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1084 oc->nodemask = NULL;
1085 check_panic_on_oom(oc);
1087 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1088 current->mm && !oom_unkillable_task(current) &&
1089 oom_cpuset_eligible(current, oc) &&
1090 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1091 get_task_struct(current);
1092 oc->chosen = current;
1093 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1094 return true;
1097 select_bad_process(oc);
1098 /* Found nothing?!?! */
1099 if (!oc->chosen) {
1100 dump_header(oc, NULL);
1101 pr_warn("Out of memory and no killable processes...\n");
1103 * If we got here due to an actual allocation at the
1104 * system level, we cannot survive this and will enter
1105 * an endless loop in the allocator. Bail out now.
1107 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1108 panic("System is deadlocked on memory\n");
1110 if (oc->chosen && oc->chosen != (void *)-1UL)
1111 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1112 "Memory cgroup out of memory");
1113 return !!oc->chosen;
1117 * The pagefault handler calls here because it is out of memory, so kill a
1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119 * killing is already in progress so do nothing.
1121 void pagefault_out_of_memory(void)
1123 struct oom_control oc = {
1124 .zonelist = NULL,
1125 .nodemask = NULL,
1126 .memcg = NULL,
1127 .gfp_mask = 0,
1128 .order = 0,
1131 if (mem_cgroup_oom_synchronize(true))
1132 return;
1134 if (!mutex_trylock(&oom_lock))
1135 return;
1136 out_of_memory(&oc);
1137 mutex_unlock(&oom_lock);