1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/swap.h>
30 #include <linux/timex.h>
31 #include <linux/jiffies.h>
32 #include <linux/cpuset.h>
33 #include <linux/export.h>
34 #include <linux/notifier.h>
35 #include <linux/memcontrol.h>
36 #include <linux/mempolicy.h>
37 #include <linux/security.h>
38 #include <linux/ptrace.h>
39 #include <linux/freezer.h>
40 #include <linux/ftrace.h>
41 #include <linux/ratelimit.h>
42 #include <linux/kthread.h>
43 #include <linux/init.h>
44 #include <linux/mmu_notifier.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/oom.h>
53 int sysctl_panic_on_oom
;
54 int sysctl_oom_kill_allocating_task
;
55 int sysctl_oom_dump_tasks
= 1;
58 * Serializes oom killer invocations (out_of_memory()) from all contexts to
59 * prevent from over eager oom killing (e.g. when the oom killer is invoked
60 * from different domains).
62 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65 DEFINE_MUTEX(oom_lock
);
67 static inline bool is_memcg_oom(struct oom_control
*oc
)
69 return oc
->memcg
!= NULL
;
74 * oom_cpuset_eligible() - check task eligiblity for kill
75 * @start: task struct of which task to consider
76 * @oc: pointer to struct oom_control
78 * Task eligibility is determined by whether or not a candidate task, @tsk,
79 * shares the same mempolicy nodes as current if it is bound by such a policy
80 * and whether or not it has the same set of allowed cpuset nodes.
82 * This function is assuming oom-killer context and 'current' has triggered
85 static bool oom_cpuset_eligible(struct task_struct
*start
,
86 struct oom_control
*oc
)
88 struct task_struct
*tsk
;
90 const nodemask_t
*mask
= oc
->nodemask
;
96 for_each_thread(start
, tsk
) {
99 * If this is a mempolicy constrained oom, tsk's
100 * cpuset is irrelevant. Only return true if its
101 * mempolicy intersects current, otherwise it may be
104 ret
= mempolicy_nodemask_intersects(tsk
, mask
);
107 * This is not a mempolicy constrained oom, so only
108 * check the mems of tsk's cpuset.
110 ret
= cpuset_mems_allowed_intersects(current
, tsk
);
120 static bool oom_cpuset_eligible(struct task_struct
*tsk
, struct oom_control
*oc
)
124 #endif /* CONFIG_NUMA */
127 * The process p may have detached its own ->mm while exiting or through
128 * use_mm(), but one or more of its subthreads may still have a valid
129 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 struct task_struct
*find_lock_task_mm(struct task_struct
*p
)
134 struct task_struct
*t
;
138 for_each_thread(p
, t
) {
152 * order == -1 means the oom kill is required by sysrq, otherwise only
153 * for display purposes.
155 static inline bool is_sysrq_oom(struct oom_control
*oc
)
157 return oc
->order
== -1;
160 /* return true if the task is not adequate as candidate victim task. */
161 static bool oom_unkillable_task(struct task_struct
*p
)
163 if (is_global_init(p
))
165 if (p
->flags
& PF_KTHREAD
)
171 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
172 * than all user memory (LRU pages)
174 static bool is_dump_unreclaim_slabs(void)
176 unsigned long nr_lru
;
178 nr_lru
= global_node_page_state(NR_ACTIVE_ANON
) +
179 global_node_page_state(NR_INACTIVE_ANON
) +
180 global_node_page_state(NR_ACTIVE_FILE
) +
181 global_node_page_state(NR_INACTIVE_FILE
) +
182 global_node_page_state(NR_ISOLATED_ANON
) +
183 global_node_page_state(NR_ISOLATED_FILE
) +
184 global_node_page_state(NR_UNEVICTABLE
);
186 return (global_node_page_state(NR_SLAB_UNRECLAIMABLE
) > nr_lru
);
190 * oom_badness - heuristic function to determine which candidate task to kill
191 * @p: task struct of which task we should calculate
192 * @totalpages: total present RAM allowed for page allocation
194 * The heuristic for determining which task to kill is made to be as simple and
195 * predictable as possible. The goal is to return the highest value for the
196 * task consuming the most memory to avoid subsequent oom failures.
198 unsigned long oom_badness(struct task_struct
*p
, unsigned long totalpages
)
203 if (oom_unkillable_task(p
))
206 p
= find_lock_task_mm(p
);
211 * Do not even consider tasks which are explicitly marked oom
212 * unkillable or have been already oom reaped or the are in
213 * the middle of vfork
215 adj
= (long)p
->signal
->oom_score_adj
;
216 if (adj
== OOM_SCORE_ADJ_MIN
||
217 test_bit(MMF_OOM_SKIP
, &p
->mm
->flags
) ||
224 * The baseline for the badness score is the proportion of RAM that each
225 * task's rss, pagetable and swap space use.
227 points
= get_mm_rss(p
->mm
) + get_mm_counter(p
->mm
, MM_SWAPENTS
) +
228 mm_pgtables_bytes(p
->mm
) / PAGE_SIZE
;
231 /* Normalize to oom_score_adj units */
232 adj
*= totalpages
/ 1000;
236 * Never return 0 for an eligible task regardless of the root bonus and
237 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
239 return points
> 0 ? points
: 1;
242 static const char * const oom_constraint_text
[] = {
243 [CONSTRAINT_NONE
] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET
] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY
] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG
] = "CONSTRAINT_MEMCG",
250 * Determine the type of allocation constraint.
252 static enum oom_constraint
constrained_alloc(struct oom_control
*oc
)
256 enum zone_type high_zoneidx
= gfp_zone(oc
->gfp_mask
);
257 bool cpuset_limited
= false;
260 if (is_memcg_oom(oc
)) {
261 oc
->totalpages
= mem_cgroup_get_max(oc
->memcg
) ?: 1;
262 return CONSTRAINT_MEMCG
;
265 /* Default to all available memory */
266 oc
->totalpages
= totalram_pages() + total_swap_pages
;
268 if (!IS_ENABLED(CONFIG_NUMA
))
269 return CONSTRAINT_NONE
;
272 return CONSTRAINT_NONE
;
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
278 if (oc
->gfp_mask
& __GFP_THISNODE
)
279 return CONSTRAINT_NONE
;
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
287 !nodes_subset(node_states
[N_MEMORY
], *oc
->nodemask
)) {
288 oc
->totalpages
= total_swap_pages
;
289 for_each_node_mask(nid
, *oc
->nodemask
)
290 oc
->totalpages
+= node_present_pages(nid
);
291 return CONSTRAINT_MEMORY_POLICY
;
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone
, z
, oc
->zonelist
,
296 high_zoneidx
, oc
->nodemask
)
297 if (!cpuset_zone_allowed(zone
, oc
->gfp_mask
))
298 cpuset_limited
= true;
300 if (cpuset_limited
) {
301 oc
->totalpages
= total_swap_pages
;
302 for_each_node_mask(nid
, cpuset_current_mems_allowed
)
303 oc
->totalpages
+= node_present_pages(nid
);
304 return CONSTRAINT_CPUSET
;
306 return CONSTRAINT_NONE
;
309 static int oom_evaluate_task(struct task_struct
*task
, void *arg
)
311 struct oom_control
*oc
= arg
;
312 unsigned long points
;
314 if (oom_unkillable_task(task
))
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc
) && !oom_cpuset_eligible(task
, oc
))
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
327 if (!is_sysrq_oom(oc
) && tsk_is_oom_victim(task
)) {
328 if (test_bit(MMF_OOM_SKIP
, &task
->signal
->oom_mm
->flags
))
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
337 if (oom_task_origin(task
)) {
342 points
= oom_badness(task
, oc
->totalpages
);
343 if (!points
|| points
< oc
->chosen_points
)
348 put_task_struct(oc
->chosen
);
349 get_task_struct(task
);
351 oc
->chosen_points
= points
;
356 put_task_struct(oc
->chosen
);
357 oc
->chosen
= (void *)-1UL;
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
365 static void select_bad_process(struct oom_control
*oc
)
367 if (is_memcg_oom(oc
))
368 mem_cgroup_scan_tasks(oc
->memcg
, oom_evaluate_task
, oc
);
370 struct task_struct
*p
;
374 if (oom_evaluate_task(p
, oc
))
380 static int dump_task(struct task_struct
*p
, void *arg
)
382 struct oom_control
*oc
= arg
;
383 struct task_struct
*task
;
385 if (oom_unkillable_task(p
))
388 /* p may not have freeable memory in nodemask */
389 if (!is_memcg_oom(oc
) && !oom_cpuset_eligible(p
, oc
))
392 task
= find_lock_task_mm(p
);
395 * This is a kthread or all of p's threads have already
396 * detached their mm's. There's no need to report
397 * them; they can't be oom killed anyway.
402 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
403 task
->pid
, from_kuid(&init_user_ns
, task_uid(task
)),
404 task
->tgid
, task
->mm
->total_vm
, get_mm_rss(task
->mm
),
405 mm_pgtables_bytes(task
->mm
),
406 get_mm_counter(task
->mm
, MM_SWAPENTS
),
407 task
->signal
->oom_score_adj
, task
->comm
);
414 * dump_tasks - dump current memory state of all system tasks
415 * @oc: pointer to struct oom_control
417 * Dumps the current memory state of all eligible tasks. Tasks not in the same
418 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420 * State information includes task's pid, uid, tgid, vm size, rss,
421 * pgtables_bytes, swapents, oom_score_adj value, and name.
423 static void dump_tasks(struct oom_control
*oc
)
425 pr_info("Tasks state (memory values in pages):\n");
426 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
428 if (is_memcg_oom(oc
))
429 mem_cgroup_scan_tasks(oc
->memcg
, dump_task
, oc
);
431 struct task_struct
*p
;
440 static void dump_oom_summary(struct oom_control
*oc
, struct task_struct
*victim
)
442 /* one line summary of the oom killer context. */
443 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
444 oom_constraint_text
[oc
->constraint
],
445 nodemask_pr_args(oc
->nodemask
));
446 cpuset_print_current_mems_allowed();
447 mem_cgroup_print_oom_context(oc
->memcg
, victim
);
448 pr_cont(",task=%s,pid=%d,uid=%d\n", victim
->comm
, victim
->pid
,
449 from_kuid(&init_user_ns
, task_uid(victim
)));
452 static void dump_header(struct oom_control
*oc
, struct task_struct
*p
)
454 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
455 current
->comm
, oc
->gfp_mask
, &oc
->gfp_mask
, oc
->order
,
456 current
->signal
->oom_score_adj
);
457 if (!IS_ENABLED(CONFIG_COMPACTION
) && oc
->order
)
458 pr_warn("COMPACTION is disabled!!!\n");
461 if (is_memcg_oom(oc
))
462 mem_cgroup_print_oom_meminfo(oc
->memcg
);
464 show_mem(SHOW_MEM_FILTER_NODES
, oc
->nodemask
);
465 if (is_dump_unreclaim_slabs())
466 dump_unreclaimable_slab();
468 if (sysctl_oom_dump_tasks
)
471 dump_oom_summary(oc
, p
);
475 * Number of OOM victims in flight
477 static atomic_t oom_victims
= ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait
);
480 static bool oom_killer_disabled __read_mostly
;
482 #define K(x) ((x) << (PAGE_SHIFT-10))
485 * task->mm can be NULL if the task is the exited group leader. So to
486 * determine whether the task is using a particular mm, we examine all the
487 * task's threads: if one of those is using this mm then this task was also
490 bool process_shares_mm(struct task_struct
*p
, struct mm_struct
*mm
)
492 struct task_struct
*t
;
494 for_each_thread(p
, t
) {
495 struct mm_struct
*t_mm
= READ_ONCE(t
->mm
);
504 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
505 * victim (if that is possible) to help the OOM killer to move on.
507 static struct task_struct
*oom_reaper_th
;
508 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait
);
509 static struct task_struct
*oom_reaper_list
;
510 static DEFINE_SPINLOCK(oom_reaper_lock
);
512 bool __oom_reap_task_mm(struct mm_struct
*mm
)
514 struct vm_area_struct
*vma
;
518 * Tell all users of get_user/copy_from_user etc... that the content
519 * is no longer stable. No barriers really needed because unmapping
520 * should imply barriers already and the reader would hit a page fault
521 * if it stumbled over a reaped memory.
523 set_bit(MMF_UNSTABLE
, &mm
->flags
);
525 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
526 if (!can_madv_lru_vma(vma
))
530 * Only anonymous pages have a good chance to be dropped
531 * without additional steps which we cannot afford as we
534 * We do not even care about fs backed pages because all
535 * which are reclaimable have already been reclaimed and
536 * we do not want to block exit_mmap by keeping mm ref
537 * count elevated without a good reason.
539 if (vma_is_anonymous(vma
) || !(vma
->vm_flags
& VM_SHARED
)) {
540 struct mmu_notifier_range range
;
541 struct mmu_gather tlb
;
543 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0,
544 vma
, mm
, vma
->vm_start
,
546 tlb_gather_mmu(&tlb
, mm
, range
.start
, range
.end
);
547 if (mmu_notifier_invalidate_range_start_nonblock(&range
)) {
548 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
552 unmap_page_range(&tlb
, vma
, range
.start
, range
.end
, NULL
);
553 mmu_notifier_invalidate_range_end(&range
);
554 tlb_finish_mmu(&tlb
, range
.start
, range
.end
);
562 * Reaps the address space of the give task.
564 * Returns true on success and false if none or part of the address space
565 * has been reclaimed and the caller should retry later.
567 static bool oom_reap_task_mm(struct task_struct
*tsk
, struct mm_struct
*mm
)
571 if (!down_read_trylock(&mm
->mmap_sem
)) {
572 trace_skip_task_reaping(tsk
->pid
);
577 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
578 * work on the mm anymore. The check for MMF_OOM_SKIP must run
579 * under mmap_sem for reading because it serializes against the
580 * down_write();up_write() cycle in exit_mmap().
582 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
)) {
583 trace_skip_task_reaping(tsk
->pid
);
587 trace_start_task_reaping(tsk
->pid
);
589 /* failed to reap part of the address space. Try again later */
590 ret
= __oom_reap_task_mm(mm
);
594 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
595 task_pid_nr(tsk
), tsk
->comm
,
596 K(get_mm_counter(mm
, MM_ANONPAGES
)),
597 K(get_mm_counter(mm
, MM_FILEPAGES
)),
598 K(get_mm_counter(mm
, MM_SHMEMPAGES
)));
600 trace_finish_task_reaping(tsk
->pid
);
602 up_read(&mm
->mmap_sem
);
607 #define MAX_OOM_REAP_RETRIES 10
608 static void oom_reap_task(struct task_struct
*tsk
)
611 struct mm_struct
*mm
= tsk
->signal
->oom_mm
;
613 /* Retry the down_read_trylock(mmap_sem) a few times */
614 while (attempts
++ < MAX_OOM_REAP_RETRIES
&& !oom_reap_task_mm(tsk
, mm
))
615 schedule_timeout_idle(HZ
/10);
617 if (attempts
<= MAX_OOM_REAP_RETRIES
||
618 test_bit(MMF_OOM_SKIP
, &mm
->flags
))
621 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
622 task_pid_nr(tsk
), tsk
->comm
);
623 debug_show_all_locks();
626 tsk
->oom_reaper_list
= NULL
;
629 * Hide this mm from OOM killer because it has been either reaped or
630 * somebody can't call up_write(mmap_sem).
632 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
634 /* Drop a reference taken by wake_oom_reaper */
635 put_task_struct(tsk
);
638 static int oom_reaper(void *unused
)
641 struct task_struct
*tsk
= NULL
;
643 wait_event_freezable(oom_reaper_wait
, oom_reaper_list
!= NULL
);
644 spin_lock(&oom_reaper_lock
);
645 if (oom_reaper_list
!= NULL
) {
646 tsk
= oom_reaper_list
;
647 oom_reaper_list
= tsk
->oom_reaper_list
;
649 spin_unlock(&oom_reaper_lock
);
658 static void wake_oom_reaper(struct task_struct
*tsk
)
660 /* mm is already queued? */
661 if (test_and_set_bit(MMF_OOM_REAP_QUEUED
, &tsk
->signal
->oom_mm
->flags
))
664 get_task_struct(tsk
);
666 spin_lock(&oom_reaper_lock
);
667 tsk
->oom_reaper_list
= oom_reaper_list
;
668 oom_reaper_list
= tsk
;
669 spin_unlock(&oom_reaper_lock
);
670 trace_wake_reaper(tsk
->pid
);
671 wake_up(&oom_reaper_wait
);
674 static int __init
oom_init(void)
676 oom_reaper_th
= kthread_run(oom_reaper
, NULL
, "oom_reaper");
679 subsys_initcall(oom_init
)
681 static inline void wake_oom_reaper(struct task_struct
*tsk
)
684 #endif /* CONFIG_MMU */
687 * mark_oom_victim - mark the given task as OOM victim
690 * Has to be called with oom_lock held and never after
691 * oom has been disabled already.
693 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
694 * under task_lock or operate on the current).
696 static void mark_oom_victim(struct task_struct
*tsk
)
698 struct mm_struct
*mm
= tsk
->mm
;
700 WARN_ON(oom_killer_disabled
);
701 /* OOM killer might race with memcg OOM */
702 if (test_and_set_tsk_thread_flag(tsk
, TIF_MEMDIE
))
705 /* oom_mm is bound to the signal struct life time. */
706 if (!cmpxchg(&tsk
->signal
->oom_mm
, NULL
, mm
)) {
707 mmgrab(tsk
->signal
->oom_mm
);
708 set_bit(MMF_OOM_VICTIM
, &mm
->flags
);
712 * Make sure that the task is woken up from uninterruptible sleep
713 * if it is frozen because OOM killer wouldn't be able to free
714 * any memory and livelock. freezing_slow_path will tell the freezer
715 * that TIF_MEMDIE tasks should be ignored.
718 atomic_inc(&oom_victims
);
719 trace_mark_victim(tsk
->pid
);
723 * exit_oom_victim - note the exit of an OOM victim
725 void exit_oom_victim(void)
727 clear_thread_flag(TIF_MEMDIE
);
729 if (!atomic_dec_return(&oom_victims
))
730 wake_up_all(&oom_victims_wait
);
734 * oom_killer_enable - enable OOM killer
736 void oom_killer_enable(void)
738 oom_killer_disabled
= false;
739 pr_info("OOM killer enabled.\n");
743 * oom_killer_disable - disable OOM killer
744 * @timeout: maximum timeout to wait for oom victims in jiffies
746 * Forces all page allocations to fail rather than trigger OOM killer.
747 * Will block and wait until all OOM victims are killed or the given
750 * The function cannot be called when there are runnable user tasks because
751 * the userspace would see unexpected allocation failures as a result. Any
752 * new usage of this function should be consulted with MM people.
754 * Returns true if successful and false if the OOM killer cannot be
757 bool oom_killer_disable(signed long timeout
)
762 * Make sure to not race with an ongoing OOM killer. Check that the
763 * current is not killed (possibly due to sharing the victim's memory).
765 if (mutex_lock_killable(&oom_lock
))
767 oom_killer_disabled
= true;
768 mutex_unlock(&oom_lock
);
770 ret
= wait_event_interruptible_timeout(oom_victims_wait
,
771 !atomic_read(&oom_victims
), timeout
);
776 pr_info("OOM killer disabled.\n");
781 static inline bool __task_will_free_mem(struct task_struct
*task
)
783 struct signal_struct
*sig
= task
->signal
;
786 * A coredumping process may sleep for an extended period in exit_mm(),
787 * so the oom killer cannot assume that the process will promptly exit
788 * and release memory.
790 if (sig
->flags
& SIGNAL_GROUP_COREDUMP
)
793 if (sig
->flags
& SIGNAL_GROUP_EXIT
)
796 if (thread_group_empty(task
) && (task
->flags
& PF_EXITING
))
803 * Checks whether the given task is dying or exiting and likely to
804 * release its address space. This means that all threads and processes
805 * sharing the same mm have to be killed or exiting.
806 * Caller has to make sure that task->mm is stable (hold task_lock or
807 * it operates on the current).
809 static bool task_will_free_mem(struct task_struct
*task
)
811 struct mm_struct
*mm
= task
->mm
;
812 struct task_struct
*p
;
816 * Skip tasks without mm because it might have passed its exit_mm and
817 * exit_oom_victim. oom_reaper could have rescued that but do not rely
818 * on that for now. We can consider find_lock_task_mm in future.
823 if (!__task_will_free_mem(task
))
827 * This task has already been drained by the oom reaper so there are
828 * only small chances it will free some more
830 if (test_bit(MMF_OOM_SKIP
, &mm
->flags
))
833 if (atomic_read(&mm
->mm_users
) <= 1)
837 * Make sure that all tasks which share the mm with the given tasks
838 * are dying as well to make sure that a) nobody pins its mm and
839 * b) the task is also reapable by the oom reaper.
842 for_each_process(p
) {
843 if (!process_shares_mm(p
, mm
))
845 if (same_thread_group(task
, p
))
847 ret
= __task_will_free_mem(p
);
856 static void __oom_kill_process(struct task_struct
*victim
, const char *message
)
858 struct task_struct
*p
;
859 struct mm_struct
*mm
;
860 bool can_oom_reap
= true;
862 p
= find_lock_task_mm(victim
);
864 put_task_struct(victim
);
866 } else if (victim
!= p
) {
868 put_task_struct(victim
);
872 /* Get a reference to safely compare mm after task_unlock(victim) */
876 /* Raise event before sending signal: task reaper must see this */
877 count_vm_event(OOM_KILL
);
878 memcg_memory_event_mm(mm
, MEMCG_OOM_KILL
);
881 * We should send SIGKILL before granting access to memory reserves
882 * in order to prevent the OOM victim from depleting the memory
883 * reserves from the user space under its control.
885 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, victim
, PIDTYPE_TGID
);
886 mark_oom_victim(victim
);
887 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
888 message
, task_pid_nr(victim
), victim
->comm
, K(mm
->total_vm
),
889 K(get_mm_counter(mm
, MM_ANONPAGES
)),
890 K(get_mm_counter(mm
, MM_FILEPAGES
)),
891 K(get_mm_counter(mm
, MM_SHMEMPAGES
)),
892 from_kuid(&init_user_ns
, task_uid(victim
)),
893 mm_pgtables_bytes(mm
), victim
->signal
->oom_score_adj
);
897 * Kill all user processes sharing victim->mm in other thread groups, if
898 * any. They don't get access to memory reserves, though, to avoid
899 * depletion of all memory. This prevents mm->mmap_sem livelock when an
900 * oom killed thread cannot exit because it requires the semaphore and
901 * its contended by another thread trying to allocate memory itself.
902 * That thread will now get access to memory reserves since it has a
903 * pending fatal signal.
906 for_each_process(p
) {
907 if (!process_shares_mm(p
, mm
))
909 if (same_thread_group(p
, victim
))
911 if (is_global_init(p
)) {
912 can_oom_reap
= false;
913 set_bit(MMF_OOM_SKIP
, &mm
->flags
);
914 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
915 task_pid_nr(victim
), victim
->comm
,
916 task_pid_nr(p
), p
->comm
);
920 * No use_mm() user needs to read from the userspace so we are
923 if (unlikely(p
->flags
& PF_KTHREAD
))
925 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, p
, PIDTYPE_TGID
);
930 wake_oom_reaper(victim
);
933 put_task_struct(victim
);
938 * Kill provided task unless it's secured by setting
939 * oom_score_adj to OOM_SCORE_ADJ_MIN.
941 static int oom_kill_memcg_member(struct task_struct
*task
, void *message
)
943 if (task
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
&&
944 !is_global_init(task
)) {
945 get_task_struct(task
);
946 __oom_kill_process(task
, message
);
951 static void oom_kill_process(struct oom_control
*oc
, const char *message
)
953 struct task_struct
*victim
= oc
->chosen
;
954 struct mem_cgroup
*oom_group
;
955 static DEFINE_RATELIMIT_STATE(oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
956 DEFAULT_RATELIMIT_BURST
);
959 * If the task is already exiting, don't alarm the sysadmin or kill
960 * its children or threads, just give it access to memory reserves
961 * so it can die quickly
964 if (task_will_free_mem(victim
)) {
965 mark_oom_victim(victim
);
966 wake_oom_reaper(victim
);
968 put_task_struct(victim
);
973 if (__ratelimit(&oom_rs
))
974 dump_header(oc
, victim
);
977 * Do we need to kill the entire memory cgroup?
978 * Or even one of the ancestor memory cgroups?
979 * Check this out before killing the victim task.
981 oom_group
= mem_cgroup_get_oom_group(victim
, oc
->memcg
);
983 __oom_kill_process(victim
, message
);
986 * If necessary, kill all tasks in the selected memory cgroup.
989 mem_cgroup_print_oom_group(oom_group
);
990 mem_cgroup_scan_tasks(oom_group
, oom_kill_memcg_member
,
992 mem_cgroup_put(oom_group
);
997 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
999 static void check_panic_on_oom(struct oom_control
*oc
)
1001 if (likely(!sysctl_panic_on_oom
))
1003 if (sysctl_panic_on_oom
!= 2) {
1005 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006 * does not panic for cpuset, mempolicy, or memcg allocation
1009 if (oc
->constraint
!= CONSTRAINT_NONE
)
1012 /* Do not panic for oom kills triggered by sysrq */
1013 if (is_sysrq_oom(oc
))
1015 dump_header(oc
, NULL
);
1016 panic("Out of memory: %s panic_on_oom is enabled\n",
1017 sysctl_panic_on_oom
== 2 ? "compulsory" : "system-wide");
1020 static BLOCKING_NOTIFIER_HEAD(oom_notify_list
);
1022 int register_oom_notifier(struct notifier_block
*nb
)
1024 return blocking_notifier_chain_register(&oom_notify_list
, nb
);
1026 EXPORT_SYMBOL_GPL(register_oom_notifier
);
1028 int unregister_oom_notifier(struct notifier_block
*nb
)
1030 return blocking_notifier_chain_unregister(&oom_notify_list
, nb
);
1032 EXPORT_SYMBOL_GPL(unregister_oom_notifier
);
1035 * out_of_memory - kill the "best" process when we run out of memory
1036 * @oc: pointer to struct oom_control
1038 * If we run out of memory, we have the choice between either
1039 * killing a random task (bad), letting the system crash (worse)
1040 * OR try to be smart about which process to kill. Note that we
1041 * don't have to be perfect here, we just have to be good.
1043 bool out_of_memory(struct oom_control
*oc
)
1045 unsigned long freed
= 0;
1047 if (oom_killer_disabled
)
1050 if (!is_memcg_oom(oc
)) {
1051 blocking_notifier_call_chain(&oom_notify_list
, 0, &freed
);
1053 /* Got some memory back in the last second. */
1058 * If current has a pending SIGKILL or is exiting, then automatically
1059 * select it. The goal is to allow it to allocate so that it may
1060 * quickly exit and free its memory.
1062 if (task_will_free_mem(current
)) {
1063 mark_oom_victim(current
);
1064 wake_oom_reaper(current
);
1069 * The OOM killer does not compensate for IO-less reclaim.
1070 * pagefault_out_of_memory lost its gfp context so we have to
1071 * make sure exclude 0 mask - all other users should have at least
1072 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1075 if (oc
->gfp_mask
&& !(oc
->gfp_mask
& __GFP_FS
) && !is_memcg_oom(oc
))
1079 * Check if there were limitations on the allocation (only relevant for
1080 * NUMA and memcg) that may require different handling.
1082 oc
->constraint
= constrained_alloc(oc
);
1083 if (oc
->constraint
!= CONSTRAINT_MEMORY_POLICY
)
1084 oc
->nodemask
= NULL
;
1085 check_panic_on_oom(oc
);
1087 if (!is_memcg_oom(oc
) && sysctl_oom_kill_allocating_task
&&
1088 current
->mm
&& !oom_unkillable_task(current
) &&
1089 oom_cpuset_eligible(current
, oc
) &&
1090 current
->signal
->oom_score_adj
!= OOM_SCORE_ADJ_MIN
) {
1091 get_task_struct(current
);
1092 oc
->chosen
= current
;
1093 oom_kill_process(oc
, "Out of memory (oom_kill_allocating_task)");
1097 select_bad_process(oc
);
1098 /* Found nothing?!?! */
1100 dump_header(oc
, NULL
);
1101 pr_warn("Out of memory and no killable processes...\n");
1103 * If we got here due to an actual allocation at the
1104 * system level, we cannot survive this and will enter
1105 * an endless loop in the allocator. Bail out now.
1107 if (!is_sysrq_oom(oc
) && !is_memcg_oom(oc
))
1108 panic("System is deadlocked on memory\n");
1110 if (oc
->chosen
&& oc
->chosen
!= (void *)-1UL)
1111 oom_kill_process(oc
, !is_memcg_oom(oc
) ? "Out of memory" :
1112 "Memory cgroup out of memory");
1113 return !!oc
->chosen
;
1117 * The pagefault handler calls here because it is out of memory, so kill a
1118 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119 * killing is already in progress so do nothing.
1121 void pagefault_out_of_memory(void)
1123 struct oom_control oc
= {
1131 if (mem_cgroup_oom_synchronize(true))
1134 if (!mutex_trylock(&oom_lock
))
1137 mutex_unlock(&oom_lock
);