iwlwifi: move rxon associated command to hcmd
[linux/fpc-iii.git] / drivers / ata / libata-core.c
blob48519887f94a021caa2e91e9287ad1db491e9c29
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/highmem.h>
50 #include <linux/spinlock.h>
51 #include <linux/blkdev.h>
52 #include <linux/delay.h>
53 #include <linux/timer.h>
54 #include <linux/interrupt.h>
55 #include <linux/completion.h>
56 #include <linux/suspend.h>
57 #include <linux/workqueue.h>
58 #include <linux/jiffies.h>
59 #include <linux/scatterlist.h>
60 #include <linux/io.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/semaphore.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
69 #include "libata.h"
72 /* debounce timing parameters in msecs { interval, duration, timeout } */
73 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
74 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
75 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
77 static unsigned int ata_dev_init_params(struct ata_device *dev,
78 u16 heads, u16 sectors);
79 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
80 static unsigned int ata_dev_set_feature(struct ata_device *dev,
81 u8 enable, u8 feature);
82 static void ata_dev_xfermask(struct ata_device *dev);
83 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
85 unsigned int ata_print_id = 1;
86 static struct workqueue_struct *ata_wq;
88 struct workqueue_struct *ata_aux_wq;
90 struct ata_force_param {
91 const char *name;
92 unsigned int cbl;
93 int spd_limit;
94 unsigned long xfer_mask;
95 unsigned int horkage_on;
96 unsigned int horkage_off;
99 struct ata_force_ent {
100 int port;
101 int device;
102 struct ata_force_param param;
105 static struct ata_force_ent *ata_force_tbl;
106 static int ata_force_tbl_size;
108 static char ata_force_param_buf[PAGE_SIZE] __initdata;
109 /* param_buf is thrown away after initialization, disallow read */
110 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
111 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
113 int atapi_enabled = 1;
114 module_param(atapi_enabled, int, 0444);
115 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
117 static int atapi_dmadir = 0;
118 module_param(atapi_dmadir, int, 0444);
119 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
121 int atapi_passthru16 = 1;
122 module_param(atapi_passthru16, int, 0444);
123 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices; on by default (0=off, 1=on)");
125 int libata_fua = 0;
126 module_param_named(fua, libata_fua, int, 0444);
127 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
129 static int ata_ignore_hpa;
130 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
131 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
133 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
134 module_param_named(dma, libata_dma_mask, int, 0444);
135 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
137 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
138 module_param(ata_probe_timeout, int, 0444);
139 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
141 int libata_noacpi = 0;
142 module_param_named(noacpi, libata_noacpi, int, 0444);
143 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in probe/suspend/resume when set");
145 int libata_allow_tpm = 0;
146 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
147 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands");
149 MODULE_AUTHOR("Jeff Garzik");
150 MODULE_DESCRIPTION("Library module for ATA devices");
151 MODULE_LICENSE("GPL");
152 MODULE_VERSION(DRV_VERSION);
156 * ata_force_cbl - force cable type according to libata.force
157 * @ap: ATA port of interest
159 * Force cable type according to libata.force and whine about it.
160 * The last entry which has matching port number is used, so it
161 * can be specified as part of device force parameters. For
162 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
163 * same effect.
165 * LOCKING:
166 * EH context.
168 void ata_force_cbl(struct ata_port *ap)
170 int i;
172 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
173 const struct ata_force_ent *fe = &ata_force_tbl[i];
175 if (fe->port != -1 && fe->port != ap->print_id)
176 continue;
178 if (fe->param.cbl == ATA_CBL_NONE)
179 continue;
181 ap->cbl = fe->param.cbl;
182 ata_port_printk(ap, KERN_NOTICE,
183 "FORCE: cable set to %s\n", fe->param.name);
184 return;
189 * ata_force_spd_limit - force SATA spd limit according to libata.force
190 * @link: ATA link of interest
192 * Force SATA spd limit according to libata.force and whine about
193 * it. When only the port part is specified (e.g. 1:), the limit
194 * applies to all links connected to both the host link and all
195 * fan-out ports connected via PMP. If the device part is
196 * specified as 0 (e.g. 1.00:), it specifies the first fan-out
197 * link not the host link. Device number 15 always points to the
198 * host link whether PMP is attached or not.
200 * LOCKING:
201 * EH context.
203 static void ata_force_spd_limit(struct ata_link *link)
205 int linkno, i;
207 if (ata_is_host_link(link))
208 linkno = 15;
209 else
210 linkno = link->pmp;
212 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
213 const struct ata_force_ent *fe = &ata_force_tbl[i];
215 if (fe->port != -1 && fe->port != link->ap->print_id)
216 continue;
218 if (fe->device != -1 && fe->device != linkno)
219 continue;
221 if (!fe->param.spd_limit)
222 continue;
224 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
225 ata_link_printk(link, KERN_NOTICE,
226 "FORCE: PHY spd limit set to %s\n", fe->param.name);
227 return;
232 * ata_force_xfermask - force xfermask according to libata.force
233 * @dev: ATA device of interest
235 * Force xfer_mask according to libata.force and whine about it.
236 * For consistency with link selection, device number 15 selects
237 * the first device connected to the host link.
239 * LOCKING:
240 * EH context.
242 static void ata_force_xfermask(struct ata_device *dev)
244 int devno = dev->link->pmp + dev->devno;
245 int alt_devno = devno;
246 int i;
248 /* allow n.15 for the first device attached to host port */
249 if (ata_is_host_link(dev->link) && devno == 0)
250 alt_devno = 15;
252 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
253 const struct ata_force_ent *fe = &ata_force_tbl[i];
254 unsigned long pio_mask, mwdma_mask, udma_mask;
256 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
257 continue;
259 if (fe->device != -1 && fe->device != devno &&
260 fe->device != alt_devno)
261 continue;
263 if (!fe->param.xfer_mask)
264 continue;
266 ata_unpack_xfermask(fe->param.xfer_mask,
267 &pio_mask, &mwdma_mask, &udma_mask);
268 if (udma_mask)
269 dev->udma_mask = udma_mask;
270 else if (mwdma_mask) {
271 dev->udma_mask = 0;
272 dev->mwdma_mask = mwdma_mask;
273 } else {
274 dev->udma_mask = 0;
275 dev->mwdma_mask = 0;
276 dev->pio_mask = pio_mask;
279 ata_dev_printk(dev, KERN_NOTICE,
280 "FORCE: xfer_mask set to %s\n", fe->param.name);
281 return;
286 * ata_force_horkage - force horkage according to libata.force
287 * @dev: ATA device of interest
289 * Force horkage according to libata.force and whine about it.
290 * For consistency with link selection, device number 15 selects
291 * the first device connected to the host link.
293 * LOCKING:
294 * EH context.
296 static void ata_force_horkage(struct ata_device *dev)
298 int devno = dev->link->pmp + dev->devno;
299 int alt_devno = devno;
300 int i;
302 /* allow n.15 for the first device attached to host port */
303 if (ata_is_host_link(dev->link) && devno == 0)
304 alt_devno = 15;
306 for (i = 0; i < ata_force_tbl_size; i++) {
307 const struct ata_force_ent *fe = &ata_force_tbl[i];
309 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
310 continue;
312 if (fe->device != -1 && fe->device != devno &&
313 fe->device != alt_devno)
314 continue;
316 if (!(~dev->horkage & fe->param.horkage_on) &&
317 !(dev->horkage & fe->param.horkage_off))
318 continue;
320 dev->horkage |= fe->param.horkage_on;
321 dev->horkage &= ~fe->param.horkage_off;
323 ata_dev_printk(dev, KERN_NOTICE,
324 "FORCE: horkage modified (%s)\n", fe->param.name);
329 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
330 * @tf: Taskfile to convert
331 * @pmp: Port multiplier port
332 * @is_cmd: This FIS is for command
333 * @fis: Buffer into which data will output
335 * Converts a standard ATA taskfile to a Serial ATA
336 * FIS structure (Register - Host to Device).
338 * LOCKING:
339 * Inherited from caller.
341 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
343 fis[0] = 0x27; /* Register - Host to Device FIS */
344 fis[1] = pmp & 0xf; /* Port multiplier number*/
345 if (is_cmd)
346 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
348 fis[2] = tf->command;
349 fis[3] = tf->feature;
351 fis[4] = tf->lbal;
352 fis[5] = tf->lbam;
353 fis[6] = tf->lbah;
354 fis[7] = tf->device;
356 fis[8] = tf->hob_lbal;
357 fis[9] = tf->hob_lbam;
358 fis[10] = tf->hob_lbah;
359 fis[11] = tf->hob_feature;
361 fis[12] = tf->nsect;
362 fis[13] = tf->hob_nsect;
363 fis[14] = 0;
364 fis[15] = tf->ctl;
366 fis[16] = 0;
367 fis[17] = 0;
368 fis[18] = 0;
369 fis[19] = 0;
373 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
374 * @fis: Buffer from which data will be input
375 * @tf: Taskfile to output
377 * Converts a serial ATA FIS structure to a standard ATA taskfile.
379 * LOCKING:
380 * Inherited from caller.
383 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
385 tf->command = fis[2]; /* status */
386 tf->feature = fis[3]; /* error */
388 tf->lbal = fis[4];
389 tf->lbam = fis[5];
390 tf->lbah = fis[6];
391 tf->device = fis[7];
393 tf->hob_lbal = fis[8];
394 tf->hob_lbam = fis[9];
395 tf->hob_lbah = fis[10];
397 tf->nsect = fis[12];
398 tf->hob_nsect = fis[13];
401 static const u8 ata_rw_cmds[] = {
402 /* pio multi */
403 ATA_CMD_READ_MULTI,
404 ATA_CMD_WRITE_MULTI,
405 ATA_CMD_READ_MULTI_EXT,
406 ATA_CMD_WRITE_MULTI_EXT,
410 ATA_CMD_WRITE_MULTI_FUA_EXT,
411 /* pio */
412 ATA_CMD_PIO_READ,
413 ATA_CMD_PIO_WRITE,
414 ATA_CMD_PIO_READ_EXT,
415 ATA_CMD_PIO_WRITE_EXT,
420 /* dma */
421 ATA_CMD_READ,
422 ATA_CMD_WRITE,
423 ATA_CMD_READ_EXT,
424 ATA_CMD_WRITE_EXT,
428 ATA_CMD_WRITE_FUA_EXT
432 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
433 * @tf: command to examine and configure
434 * @dev: device tf belongs to
436 * Examine the device configuration and tf->flags to calculate
437 * the proper read/write commands and protocol to use.
439 * LOCKING:
440 * caller.
442 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
444 u8 cmd;
446 int index, fua, lba48, write;
448 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
449 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
450 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
452 if (dev->flags & ATA_DFLAG_PIO) {
453 tf->protocol = ATA_PROT_PIO;
454 index = dev->multi_count ? 0 : 8;
455 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
456 /* Unable to use DMA due to host limitation */
457 tf->protocol = ATA_PROT_PIO;
458 index = dev->multi_count ? 0 : 8;
459 } else {
460 tf->protocol = ATA_PROT_DMA;
461 index = 16;
464 cmd = ata_rw_cmds[index + fua + lba48 + write];
465 if (cmd) {
466 tf->command = cmd;
467 return 0;
469 return -1;
473 * ata_tf_read_block - Read block address from ATA taskfile
474 * @tf: ATA taskfile of interest
475 * @dev: ATA device @tf belongs to
477 * LOCKING:
478 * None.
480 * Read block address from @tf. This function can handle all
481 * three address formats - LBA, LBA48 and CHS. tf->protocol and
482 * flags select the address format to use.
484 * RETURNS:
485 * Block address read from @tf.
487 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
489 u64 block = 0;
491 if (tf->flags & ATA_TFLAG_LBA) {
492 if (tf->flags & ATA_TFLAG_LBA48) {
493 block |= (u64)tf->hob_lbah << 40;
494 block |= (u64)tf->hob_lbam << 32;
495 block |= tf->hob_lbal << 24;
496 } else
497 block |= (tf->device & 0xf) << 24;
499 block |= tf->lbah << 16;
500 block |= tf->lbam << 8;
501 block |= tf->lbal;
502 } else {
503 u32 cyl, head, sect;
505 cyl = tf->lbam | (tf->lbah << 8);
506 head = tf->device & 0xf;
507 sect = tf->lbal;
509 block = (cyl * dev->heads + head) * dev->sectors + sect;
512 return block;
516 * ata_build_rw_tf - Build ATA taskfile for given read/write request
517 * @tf: Target ATA taskfile
518 * @dev: ATA device @tf belongs to
519 * @block: Block address
520 * @n_block: Number of blocks
521 * @tf_flags: RW/FUA etc...
522 * @tag: tag
524 * LOCKING:
525 * None.
527 * Build ATA taskfile @tf for read/write request described by
528 * @block, @n_block, @tf_flags and @tag on @dev.
530 * RETURNS:
532 * 0 on success, -ERANGE if the request is too large for @dev,
533 * -EINVAL if the request is invalid.
535 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
536 u64 block, u32 n_block, unsigned int tf_flags,
537 unsigned int tag)
539 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
540 tf->flags |= tf_flags;
542 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
543 /* yay, NCQ */
544 if (!lba_48_ok(block, n_block))
545 return -ERANGE;
547 tf->protocol = ATA_PROT_NCQ;
548 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
550 if (tf->flags & ATA_TFLAG_WRITE)
551 tf->command = ATA_CMD_FPDMA_WRITE;
552 else
553 tf->command = ATA_CMD_FPDMA_READ;
555 tf->nsect = tag << 3;
556 tf->hob_feature = (n_block >> 8) & 0xff;
557 tf->feature = n_block & 0xff;
559 tf->hob_lbah = (block >> 40) & 0xff;
560 tf->hob_lbam = (block >> 32) & 0xff;
561 tf->hob_lbal = (block >> 24) & 0xff;
562 tf->lbah = (block >> 16) & 0xff;
563 tf->lbam = (block >> 8) & 0xff;
564 tf->lbal = block & 0xff;
566 tf->device = 1 << 6;
567 if (tf->flags & ATA_TFLAG_FUA)
568 tf->device |= 1 << 7;
569 } else if (dev->flags & ATA_DFLAG_LBA) {
570 tf->flags |= ATA_TFLAG_LBA;
572 if (lba_28_ok(block, n_block)) {
573 /* use LBA28 */
574 tf->device |= (block >> 24) & 0xf;
575 } else if (lba_48_ok(block, n_block)) {
576 if (!(dev->flags & ATA_DFLAG_LBA48))
577 return -ERANGE;
579 /* use LBA48 */
580 tf->flags |= ATA_TFLAG_LBA48;
582 tf->hob_nsect = (n_block >> 8) & 0xff;
584 tf->hob_lbah = (block >> 40) & 0xff;
585 tf->hob_lbam = (block >> 32) & 0xff;
586 tf->hob_lbal = (block >> 24) & 0xff;
587 } else
588 /* request too large even for LBA48 */
589 return -ERANGE;
591 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
592 return -EINVAL;
594 tf->nsect = n_block & 0xff;
596 tf->lbah = (block >> 16) & 0xff;
597 tf->lbam = (block >> 8) & 0xff;
598 tf->lbal = block & 0xff;
600 tf->device |= ATA_LBA;
601 } else {
602 /* CHS */
603 u32 sect, head, cyl, track;
605 /* The request -may- be too large for CHS addressing. */
606 if (!lba_28_ok(block, n_block))
607 return -ERANGE;
609 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
610 return -EINVAL;
612 /* Convert LBA to CHS */
613 track = (u32)block / dev->sectors;
614 cyl = track / dev->heads;
615 head = track % dev->heads;
616 sect = (u32)block % dev->sectors + 1;
618 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
619 (u32)block, track, cyl, head, sect);
621 /* Check whether the converted CHS can fit.
622 Cylinder: 0-65535
623 Head: 0-15
624 Sector: 1-255*/
625 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
626 return -ERANGE;
628 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
629 tf->lbal = sect;
630 tf->lbam = cyl;
631 tf->lbah = cyl >> 8;
632 tf->device |= head;
635 return 0;
639 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
640 * @pio_mask: pio_mask
641 * @mwdma_mask: mwdma_mask
642 * @udma_mask: udma_mask
644 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
645 * unsigned int xfer_mask.
647 * LOCKING:
648 * None.
650 * RETURNS:
651 * Packed xfer_mask.
653 unsigned long ata_pack_xfermask(unsigned long pio_mask,
654 unsigned long mwdma_mask,
655 unsigned long udma_mask)
657 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
658 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
659 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
663 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
664 * @xfer_mask: xfer_mask to unpack
665 * @pio_mask: resulting pio_mask
666 * @mwdma_mask: resulting mwdma_mask
667 * @udma_mask: resulting udma_mask
669 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
670 * Any NULL distination masks will be ignored.
672 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
673 unsigned long *mwdma_mask, unsigned long *udma_mask)
675 if (pio_mask)
676 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
677 if (mwdma_mask)
678 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
679 if (udma_mask)
680 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
683 static const struct ata_xfer_ent {
684 int shift, bits;
685 u8 base;
686 } ata_xfer_tbl[] = {
687 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
688 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
689 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
690 { -1, },
694 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
695 * @xfer_mask: xfer_mask of interest
697 * Return matching XFER_* value for @xfer_mask. Only the highest
698 * bit of @xfer_mask is considered.
700 * LOCKING:
701 * None.
703 * RETURNS:
704 * Matching XFER_* value, 0xff if no match found.
706 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
708 int highbit = fls(xfer_mask) - 1;
709 const struct ata_xfer_ent *ent;
711 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
712 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
713 return ent->base + highbit - ent->shift;
714 return 0xff;
718 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
719 * @xfer_mode: XFER_* of interest
721 * Return matching xfer_mask for @xfer_mode.
723 * LOCKING:
724 * None.
726 * RETURNS:
727 * Matching xfer_mask, 0 if no match found.
729 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
731 const struct ata_xfer_ent *ent;
733 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
734 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
735 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
736 & ~((1 << ent->shift) - 1);
737 return 0;
741 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
742 * @xfer_mode: XFER_* of interest
744 * Return matching xfer_shift for @xfer_mode.
746 * LOCKING:
747 * None.
749 * RETURNS:
750 * Matching xfer_shift, -1 if no match found.
752 int ata_xfer_mode2shift(unsigned long xfer_mode)
754 const struct ata_xfer_ent *ent;
756 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
757 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
758 return ent->shift;
759 return -1;
763 * ata_mode_string - convert xfer_mask to string
764 * @xfer_mask: mask of bits supported; only highest bit counts.
766 * Determine string which represents the highest speed
767 * (highest bit in @modemask).
769 * LOCKING:
770 * None.
772 * RETURNS:
773 * Constant C string representing highest speed listed in
774 * @mode_mask, or the constant C string "<n/a>".
776 const char *ata_mode_string(unsigned long xfer_mask)
778 static const char * const xfer_mode_str[] = {
779 "PIO0",
780 "PIO1",
781 "PIO2",
782 "PIO3",
783 "PIO4",
784 "PIO5",
785 "PIO6",
786 "MWDMA0",
787 "MWDMA1",
788 "MWDMA2",
789 "MWDMA3",
790 "MWDMA4",
791 "UDMA/16",
792 "UDMA/25",
793 "UDMA/33",
794 "UDMA/44",
795 "UDMA/66",
796 "UDMA/100",
797 "UDMA/133",
798 "UDMA7",
800 int highbit;
802 highbit = fls(xfer_mask) - 1;
803 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
804 return xfer_mode_str[highbit];
805 return "<n/a>";
808 static const char *sata_spd_string(unsigned int spd)
810 static const char * const spd_str[] = {
811 "1.5 Gbps",
812 "3.0 Gbps",
815 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
816 return "<unknown>";
817 return spd_str[spd - 1];
820 void ata_dev_disable(struct ata_device *dev)
822 if (ata_dev_enabled(dev)) {
823 if (ata_msg_drv(dev->link->ap))
824 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
825 ata_acpi_on_disable(dev);
826 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0 |
827 ATA_DNXFER_QUIET);
828 dev->class++;
832 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
834 struct ata_link *link = dev->link;
835 struct ata_port *ap = link->ap;
836 u32 scontrol;
837 unsigned int err_mask;
838 int rc;
841 * disallow DIPM for drivers which haven't set
842 * ATA_FLAG_IPM. This is because when DIPM is enabled,
843 * phy ready will be set in the interrupt status on
844 * state changes, which will cause some drivers to
845 * think there are errors - additionally drivers will
846 * need to disable hot plug.
848 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
849 ap->pm_policy = NOT_AVAILABLE;
850 return -EINVAL;
854 * For DIPM, we will only enable it for the
855 * min_power setting.
857 * Why? Because Disks are too stupid to know that
858 * If the host rejects a request to go to SLUMBER
859 * they should retry at PARTIAL, and instead it
860 * just would give up. So, for medium_power to
861 * work at all, we need to only allow HIPM.
863 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
864 if (rc)
865 return rc;
867 switch (policy) {
868 case MIN_POWER:
869 /* no restrictions on IPM transitions */
870 scontrol &= ~(0x3 << 8);
871 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
872 if (rc)
873 return rc;
875 /* enable DIPM */
876 if (dev->flags & ATA_DFLAG_DIPM)
877 err_mask = ata_dev_set_feature(dev,
878 SETFEATURES_SATA_ENABLE, SATA_DIPM);
879 break;
880 case MEDIUM_POWER:
881 /* allow IPM to PARTIAL */
882 scontrol &= ~(0x1 << 8);
883 scontrol |= (0x2 << 8);
884 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
885 if (rc)
886 return rc;
889 * we don't have to disable DIPM since IPM flags
890 * disallow transitions to SLUMBER, which effectively
891 * disable DIPM if it does not support PARTIAL
893 break;
894 case NOT_AVAILABLE:
895 case MAX_PERFORMANCE:
896 /* disable all IPM transitions */
897 scontrol |= (0x3 << 8);
898 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
899 if (rc)
900 return rc;
903 * we don't have to disable DIPM since IPM flags
904 * disallow all transitions which effectively
905 * disable DIPM anyway.
907 break;
910 /* FIXME: handle SET FEATURES failure */
911 (void) err_mask;
913 return 0;
917 * ata_dev_enable_pm - enable SATA interface power management
918 * @dev: device to enable power management
919 * @policy: the link power management policy
921 * Enable SATA Interface power management. This will enable
922 * Device Interface Power Management (DIPM) for min_power
923 * policy, and then call driver specific callbacks for
924 * enabling Host Initiated Power management.
926 * Locking: Caller.
927 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
929 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
931 int rc = 0;
932 struct ata_port *ap = dev->link->ap;
934 /* set HIPM first, then DIPM */
935 if (ap->ops->enable_pm)
936 rc = ap->ops->enable_pm(ap, policy);
937 if (rc)
938 goto enable_pm_out;
939 rc = ata_dev_set_dipm(dev, policy);
941 enable_pm_out:
942 if (rc)
943 ap->pm_policy = MAX_PERFORMANCE;
944 else
945 ap->pm_policy = policy;
946 return /* rc */; /* hopefully we can use 'rc' eventually */
949 #ifdef CONFIG_PM
951 * ata_dev_disable_pm - disable SATA interface power management
952 * @dev: device to disable power management
954 * Disable SATA Interface power management. This will disable
955 * Device Interface Power Management (DIPM) without changing
956 * policy, call driver specific callbacks for disabling Host
957 * Initiated Power management.
959 * Locking: Caller.
960 * Returns: void
962 static void ata_dev_disable_pm(struct ata_device *dev)
964 struct ata_port *ap = dev->link->ap;
966 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
967 if (ap->ops->disable_pm)
968 ap->ops->disable_pm(ap);
970 #endif /* CONFIG_PM */
972 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
974 ap->pm_policy = policy;
975 ap->link.eh_info.action |= ATA_EH_LPM;
976 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
977 ata_port_schedule_eh(ap);
980 #ifdef CONFIG_PM
981 static void ata_lpm_enable(struct ata_host *host)
983 struct ata_link *link;
984 struct ata_port *ap;
985 struct ata_device *dev;
986 int i;
988 for (i = 0; i < host->n_ports; i++) {
989 ap = host->ports[i];
990 ata_port_for_each_link(link, ap) {
991 ata_link_for_each_dev(dev, link)
992 ata_dev_disable_pm(dev);
997 static void ata_lpm_disable(struct ata_host *host)
999 int i;
1001 for (i = 0; i < host->n_ports; i++) {
1002 struct ata_port *ap = host->ports[i];
1003 ata_lpm_schedule(ap, ap->pm_policy);
1006 #endif /* CONFIG_PM */
1010 * ata_devchk - PATA device presence detection
1011 * @ap: ATA channel to examine
1012 * @device: Device to examine (starting at zero)
1014 * This technique was originally described in
1015 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1016 * later found its way into the ATA/ATAPI spec.
1018 * Write a pattern to the ATA shadow registers,
1019 * and if a device is present, it will respond by
1020 * correctly storing and echoing back the
1021 * ATA shadow register contents.
1023 * LOCKING:
1024 * caller.
1027 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1029 struct ata_ioports *ioaddr = &ap->ioaddr;
1030 u8 nsect, lbal;
1032 ap->ops->dev_select(ap, device);
1034 iowrite8(0x55, ioaddr->nsect_addr);
1035 iowrite8(0xaa, ioaddr->lbal_addr);
1037 iowrite8(0xaa, ioaddr->nsect_addr);
1038 iowrite8(0x55, ioaddr->lbal_addr);
1040 iowrite8(0x55, ioaddr->nsect_addr);
1041 iowrite8(0xaa, ioaddr->lbal_addr);
1043 nsect = ioread8(ioaddr->nsect_addr);
1044 lbal = ioread8(ioaddr->lbal_addr);
1046 if ((nsect == 0x55) && (lbal == 0xaa))
1047 return 1; /* we found a device */
1049 return 0; /* nothing found */
1053 * ata_dev_classify - determine device type based on ATA-spec signature
1054 * @tf: ATA taskfile register set for device to be identified
1056 * Determine from taskfile register contents whether a device is
1057 * ATA or ATAPI, as per "Signature and persistence" section
1058 * of ATA/PI spec (volume 1, sect 5.14).
1060 * LOCKING:
1061 * None.
1063 * RETURNS:
1064 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1065 * %ATA_DEV_UNKNOWN the event of failure.
1067 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1069 /* Apple's open source Darwin code hints that some devices only
1070 * put a proper signature into the LBA mid/high registers,
1071 * So, we only check those. It's sufficient for uniqueness.
1073 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1074 * signatures for ATA and ATAPI devices attached on SerialATA,
1075 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1076 * spec has never mentioned about using different signatures
1077 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1078 * Multiplier specification began to use 0x69/0x96 to identify
1079 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1080 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1081 * 0x69/0x96 shortly and described them as reserved for
1082 * SerialATA.
1084 * We follow the current spec and consider that 0x69/0x96
1085 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1087 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1088 DPRINTK("found ATA device by sig\n");
1089 return ATA_DEV_ATA;
1092 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1093 DPRINTK("found ATAPI device by sig\n");
1094 return ATA_DEV_ATAPI;
1097 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1098 DPRINTK("found PMP device by sig\n");
1099 return ATA_DEV_PMP;
1102 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1103 printk(KERN_INFO "ata: SEMB device ignored\n");
1104 return ATA_DEV_SEMB_UNSUP; /* not yet */
1107 DPRINTK("unknown device\n");
1108 return ATA_DEV_UNKNOWN;
1112 * ata_dev_try_classify - Parse returned ATA device signature
1113 * @dev: ATA device to classify (starting at zero)
1114 * @present: device seems present
1115 * @r_err: Value of error register on completion
1117 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1118 * an ATA/ATAPI-defined set of values is placed in the ATA
1119 * shadow registers, indicating the results of device detection
1120 * and diagnostics.
1122 * Select the ATA device, and read the values from the ATA shadow
1123 * registers. Then parse according to the Error register value,
1124 * and the spec-defined values examined by ata_dev_classify().
1126 * LOCKING:
1127 * caller.
1129 * RETURNS:
1130 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1132 unsigned int ata_dev_try_classify(struct ata_device *dev, int present,
1133 u8 *r_err)
1135 struct ata_port *ap = dev->link->ap;
1136 struct ata_taskfile tf;
1137 unsigned int class;
1138 u8 err;
1140 ap->ops->dev_select(ap, dev->devno);
1142 memset(&tf, 0, sizeof(tf));
1144 ap->ops->tf_read(ap, &tf);
1145 err = tf.feature;
1146 if (r_err)
1147 *r_err = err;
1149 /* see if device passed diags: continue and warn later */
1150 if (err == 0)
1151 /* diagnostic fail : do nothing _YET_ */
1152 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1153 else if (err == 1)
1154 /* do nothing */ ;
1155 else if ((dev->devno == 0) && (err == 0x81))
1156 /* do nothing */ ;
1157 else
1158 return ATA_DEV_NONE;
1160 /* determine if device is ATA or ATAPI */
1161 class = ata_dev_classify(&tf);
1163 if (class == ATA_DEV_UNKNOWN) {
1164 /* If the device failed diagnostic, it's likely to
1165 * have reported incorrect device signature too.
1166 * Assume ATA device if the device seems present but
1167 * device signature is invalid with diagnostic
1168 * failure.
1170 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1171 class = ATA_DEV_ATA;
1172 else
1173 class = ATA_DEV_NONE;
1174 } else if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
1175 class = ATA_DEV_NONE;
1177 return class;
1181 * ata_id_string - Convert IDENTIFY DEVICE page into string
1182 * @id: IDENTIFY DEVICE results we will examine
1183 * @s: string into which data is output
1184 * @ofs: offset into identify device page
1185 * @len: length of string to return. must be an even number.
1187 * The strings in the IDENTIFY DEVICE page are broken up into
1188 * 16-bit chunks. Run through the string, and output each
1189 * 8-bit chunk linearly, regardless of platform.
1191 * LOCKING:
1192 * caller.
1195 void ata_id_string(const u16 *id, unsigned char *s,
1196 unsigned int ofs, unsigned int len)
1198 unsigned int c;
1200 while (len > 0) {
1201 c = id[ofs] >> 8;
1202 *s = c;
1203 s++;
1205 c = id[ofs] & 0xff;
1206 *s = c;
1207 s++;
1209 ofs++;
1210 len -= 2;
1215 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1216 * @id: IDENTIFY DEVICE results we will examine
1217 * @s: string into which data is output
1218 * @ofs: offset into identify device page
1219 * @len: length of string to return. must be an odd number.
1221 * This function is identical to ata_id_string except that it
1222 * trims trailing spaces and terminates the resulting string with
1223 * null. @len must be actual maximum length (even number) + 1.
1225 * LOCKING:
1226 * caller.
1228 void ata_id_c_string(const u16 *id, unsigned char *s,
1229 unsigned int ofs, unsigned int len)
1231 unsigned char *p;
1233 WARN_ON(!(len & 1));
1235 ata_id_string(id, s, ofs, len - 1);
1237 p = s + strnlen(s, len - 1);
1238 while (p > s && p[-1] == ' ')
1239 p--;
1240 *p = '\0';
1243 static u64 ata_id_n_sectors(const u16 *id)
1245 if (ata_id_has_lba(id)) {
1246 if (ata_id_has_lba48(id))
1247 return ata_id_u64(id, 100);
1248 else
1249 return ata_id_u32(id, 60);
1250 } else {
1251 if (ata_id_current_chs_valid(id))
1252 return ata_id_u32(id, 57);
1253 else
1254 return id[1] * id[3] * id[6];
1258 static u64 ata_tf_to_lba48(struct ata_taskfile *tf)
1260 u64 sectors = 0;
1262 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1263 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1264 sectors |= (tf->hob_lbal & 0xff) << 24;
1265 sectors |= (tf->lbah & 0xff) << 16;
1266 sectors |= (tf->lbam & 0xff) << 8;
1267 sectors |= (tf->lbal & 0xff);
1269 return ++sectors;
1272 static u64 ata_tf_to_lba(struct ata_taskfile *tf)
1274 u64 sectors = 0;
1276 sectors |= (tf->device & 0x0f) << 24;
1277 sectors |= (tf->lbah & 0xff) << 16;
1278 sectors |= (tf->lbam & 0xff) << 8;
1279 sectors |= (tf->lbal & 0xff);
1281 return ++sectors;
1285 * ata_read_native_max_address - Read native max address
1286 * @dev: target device
1287 * @max_sectors: out parameter for the result native max address
1289 * Perform an LBA48 or LBA28 native size query upon the device in
1290 * question.
1292 * RETURNS:
1293 * 0 on success, -EACCES if command is aborted by the drive.
1294 * -EIO on other errors.
1296 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1298 unsigned int err_mask;
1299 struct ata_taskfile tf;
1300 int lba48 = ata_id_has_lba48(dev->id);
1302 ata_tf_init(dev, &tf);
1304 /* always clear all address registers */
1305 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1307 if (lba48) {
1308 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1309 tf.flags |= ATA_TFLAG_LBA48;
1310 } else
1311 tf.command = ATA_CMD_READ_NATIVE_MAX;
1313 tf.protocol |= ATA_PROT_NODATA;
1314 tf.device |= ATA_LBA;
1316 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1317 if (err_mask) {
1318 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1319 "max address (err_mask=0x%x)\n", err_mask);
1320 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1321 return -EACCES;
1322 return -EIO;
1325 if (lba48)
1326 *max_sectors = ata_tf_to_lba48(&tf);
1327 else
1328 *max_sectors = ata_tf_to_lba(&tf);
1329 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1330 (*max_sectors)--;
1331 return 0;
1335 * ata_set_max_sectors - Set max sectors
1336 * @dev: target device
1337 * @new_sectors: new max sectors value to set for the device
1339 * Set max sectors of @dev to @new_sectors.
1341 * RETURNS:
1342 * 0 on success, -EACCES if command is aborted or denied (due to
1343 * previous non-volatile SET_MAX) by the drive. -EIO on other
1344 * errors.
1346 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1348 unsigned int err_mask;
1349 struct ata_taskfile tf;
1350 int lba48 = ata_id_has_lba48(dev->id);
1352 new_sectors--;
1354 ata_tf_init(dev, &tf);
1356 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1358 if (lba48) {
1359 tf.command = ATA_CMD_SET_MAX_EXT;
1360 tf.flags |= ATA_TFLAG_LBA48;
1362 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1363 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1364 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1365 } else {
1366 tf.command = ATA_CMD_SET_MAX;
1368 tf.device |= (new_sectors >> 24) & 0xf;
1371 tf.protocol |= ATA_PROT_NODATA;
1372 tf.device |= ATA_LBA;
1374 tf.lbal = (new_sectors >> 0) & 0xff;
1375 tf.lbam = (new_sectors >> 8) & 0xff;
1376 tf.lbah = (new_sectors >> 16) & 0xff;
1378 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1379 if (err_mask) {
1380 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1381 "max address (err_mask=0x%x)\n", err_mask);
1382 if (err_mask == AC_ERR_DEV &&
1383 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1384 return -EACCES;
1385 return -EIO;
1388 return 0;
1392 * ata_hpa_resize - Resize a device with an HPA set
1393 * @dev: Device to resize
1395 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1396 * it if required to the full size of the media. The caller must check
1397 * the drive has the HPA feature set enabled.
1399 * RETURNS:
1400 * 0 on success, -errno on failure.
1402 static int ata_hpa_resize(struct ata_device *dev)
1404 struct ata_eh_context *ehc = &dev->link->eh_context;
1405 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1406 u64 sectors = ata_id_n_sectors(dev->id);
1407 u64 native_sectors;
1408 int rc;
1410 /* do we need to do it? */
1411 if (dev->class != ATA_DEV_ATA ||
1412 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1413 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1414 return 0;
1416 /* read native max address */
1417 rc = ata_read_native_max_address(dev, &native_sectors);
1418 if (rc) {
1419 /* If device aborted the command or HPA isn't going to
1420 * be unlocked, skip HPA resizing.
1422 if (rc == -EACCES || !ata_ignore_hpa) {
1423 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1424 "broken, skipping HPA handling\n");
1425 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1427 /* we can continue if device aborted the command */
1428 if (rc == -EACCES)
1429 rc = 0;
1432 return rc;
1435 /* nothing to do? */
1436 if (native_sectors <= sectors || !ata_ignore_hpa) {
1437 if (!print_info || native_sectors == sectors)
1438 return 0;
1440 if (native_sectors > sectors)
1441 ata_dev_printk(dev, KERN_INFO,
1442 "HPA detected: current %llu, native %llu\n",
1443 (unsigned long long)sectors,
1444 (unsigned long long)native_sectors);
1445 else if (native_sectors < sectors)
1446 ata_dev_printk(dev, KERN_WARNING,
1447 "native sectors (%llu) is smaller than "
1448 "sectors (%llu)\n",
1449 (unsigned long long)native_sectors,
1450 (unsigned long long)sectors);
1451 return 0;
1454 /* let's unlock HPA */
1455 rc = ata_set_max_sectors(dev, native_sectors);
1456 if (rc == -EACCES) {
1457 /* if device aborted the command, skip HPA resizing */
1458 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1459 "(%llu -> %llu), skipping HPA handling\n",
1460 (unsigned long long)sectors,
1461 (unsigned long long)native_sectors);
1462 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1463 return 0;
1464 } else if (rc)
1465 return rc;
1467 /* re-read IDENTIFY data */
1468 rc = ata_dev_reread_id(dev, 0);
1469 if (rc) {
1470 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1471 "data after HPA resizing\n");
1472 return rc;
1475 if (print_info) {
1476 u64 new_sectors = ata_id_n_sectors(dev->id);
1477 ata_dev_printk(dev, KERN_INFO,
1478 "HPA unlocked: %llu -> %llu, native %llu\n",
1479 (unsigned long long)sectors,
1480 (unsigned long long)new_sectors,
1481 (unsigned long long)native_sectors);
1484 return 0;
1488 * ata_noop_dev_select - Select device 0/1 on ATA bus
1489 * @ap: ATA channel to manipulate
1490 * @device: ATA device (numbered from zero) to select
1492 * This function performs no actual function.
1494 * May be used as the dev_select() entry in ata_port_operations.
1496 * LOCKING:
1497 * caller.
1499 void ata_noop_dev_select(struct ata_port *ap, unsigned int device)
1505 * ata_std_dev_select - Select device 0/1 on ATA bus
1506 * @ap: ATA channel to manipulate
1507 * @device: ATA device (numbered from zero) to select
1509 * Use the method defined in the ATA specification to
1510 * make either device 0, or device 1, active on the
1511 * ATA channel. Works with both PIO and MMIO.
1513 * May be used as the dev_select() entry in ata_port_operations.
1515 * LOCKING:
1516 * caller.
1519 void ata_std_dev_select(struct ata_port *ap, unsigned int device)
1521 u8 tmp;
1523 if (device == 0)
1524 tmp = ATA_DEVICE_OBS;
1525 else
1526 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1528 iowrite8(tmp, ap->ioaddr.device_addr);
1529 ata_pause(ap); /* needed; also flushes, for mmio */
1533 * ata_dev_select - Select device 0/1 on ATA bus
1534 * @ap: ATA channel to manipulate
1535 * @device: ATA device (numbered from zero) to select
1536 * @wait: non-zero to wait for Status register BSY bit to clear
1537 * @can_sleep: non-zero if context allows sleeping
1539 * Use the method defined in the ATA specification to
1540 * make either device 0, or device 1, active on the
1541 * ATA channel.
1543 * This is a high-level version of ata_std_dev_select(),
1544 * which additionally provides the services of inserting
1545 * the proper pauses and status polling, where needed.
1547 * LOCKING:
1548 * caller.
1551 void ata_dev_select(struct ata_port *ap, unsigned int device,
1552 unsigned int wait, unsigned int can_sleep)
1554 if (ata_msg_probe(ap))
1555 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, "
1556 "device %u, wait %u\n", device, wait);
1558 if (wait)
1559 ata_wait_idle(ap);
1561 ap->ops->dev_select(ap, device);
1563 if (wait) {
1564 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
1565 msleep(150);
1566 ata_wait_idle(ap);
1571 * ata_dump_id - IDENTIFY DEVICE info debugging output
1572 * @id: IDENTIFY DEVICE page to dump
1574 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1575 * page.
1577 * LOCKING:
1578 * caller.
1581 static inline void ata_dump_id(const u16 *id)
1583 DPRINTK("49==0x%04x "
1584 "53==0x%04x "
1585 "63==0x%04x "
1586 "64==0x%04x "
1587 "75==0x%04x \n",
1588 id[49],
1589 id[53],
1590 id[63],
1591 id[64],
1592 id[75]);
1593 DPRINTK("80==0x%04x "
1594 "81==0x%04x "
1595 "82==0x%04x "
1596 "83==0x%04x "
1597 "84==0x%04x \n",
1598 id[80],
1599 id[81],
1600 id[82],
1601 id[83],
1602 id[84]);
1603 DPRINTK("88==0x%04x "
1604 "93==0x%04x\n",
1605 id[88],
1606 id[93]);
1610 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1611 * @id: IDENTIFY data to compute xfer mask from
1613 * Compute the xfermask for this device. This is not as trivial
1614 * as it seems if we must consider early devices correctly.
1616 * FIXME: pre IDE drive timing (do we care ?).
1618 * LOCKING:
1619 * None.
1621 * RETURNS:
1622 * Computed xfermask
1624 unsigned long ata_id_xfermask(const u16 *id)
1626 unsigned long pio_mask, mwdma_mask, udma_mask;
1628 /* Usual case. Word 53 indicates word 64 is valid */
1629 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1630 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1631 pio_mask <<= 3;
1632 pio_mask |= 0x7;
1633 } else {
1634 /* If word 64 isn't valid then Word 51 high byte holds
1635 * the PIO timing number for the maximum. Turn it into
1636 * a mask.
1638 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1639 if (mode < 5) /* Valid PIO range */
1640 pio_mask = (2 << mode) - 1;
1641 else
1642 pio_mask = 1;
1644 /* But wait.. there's more. Design your standards by
1645 * committee and you too can get a free iordy field to
1646 * process. However its the speeds not the modes that
1647 * are supported... Note drivers using the timing API
1648 * will get this right anyway
1652 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1654 if (ata_id_is_cfa(id)) {
1656 * Process compact flash extended modes
1658 int pio = id[163] & 0x7;
1659 int dma = (id[163] >> 3) & 7;
1661 if (pio)
1662 pio_mask |= (1 << 5);
1663 if (pio > 1)
1664 pio_mask |= (1 << 6);
1665 if (dma)
1666 mwdma_mask |= (1 << 3);
1667 if (dma > 1)
1668 mwdma_mask |= (1 << 4);
1671 udma_mask = 0;
1672 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1673 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1675 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1679 * ata_pio_queue_task - Queue port_task
1680 * @ap: The ata_port to queue port_task for
1681 * @fn: workqueue function to be scheduled
1682 * @data: data for @fn to use
1683 * @delay: delay time for workqueue function
1685 * Schedule @fn(@data) for execution after @delay jiffies using
1686 * port_task. There is one port_task per port and it's the
1687 * user(low level driver)'s responsibility to make sure that only
1688 * one task is active at any given time.
1690 * libata core layer takes care of synchronization between
1691 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1692 * synchronization.
1694 * LOCKING:
1695 * Inherited from caller.
1697 static void ata_pio_queue_task(struct ata_port *ap, void *data,
1698 unsigned long delay)
1700 ap->port_task_data = data;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq, &ap->port_task, delay);
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1713 * LOCKING:
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port *ap)
1718 DPRINTK("ENTER\n");
1720 cancel_rearming_delayed_work(&ap->port_task);
1722 if (ata_msg_ctl(ap))
1723 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1728 struct completion *waiting = qc->private_data;
1730 complete(waiting);
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1749 * LOCKING:
1750 * None. Should be called with kernel context, might sleep.
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device *dev,
1756 struct ata_taskfile *tf, const u8 *cdb,
1757 int dma_dir, struct scatterlist *sgl,
1758 unsigned int n_elem, unsigned long timeout)
1760 struct ata_link *link = dev->link;
1761 struct ata_port *ap = link->ap;
1762 u8 command = tf->command;
1763 struct ata_queued_cmd *qc;
1764 unsigned int tag, preempted_tag;
1765 u32 preempted_sactive, preempted_qc_active;
1766 int preempted_nr_active_links;
1767 DECLARE_COMPLETION_ONSTACK(wait);
1768 unsigned long flags;
1769 unsigned int err_mask;
1770 int rc;
1772 spin_lock_irqsave(ap->lock, flags);
1774 /* no internal command while frozen */
1775 if (ap->pflags & ATA_PFLAG_FROZEN) {
1776 spin_unlock_irqrestore(ap->lock, flags);
1777 return AC_ERR_SYSTEM;
1780 /* initialize internal qc */
1782 /* XXX: Tag 0 is used for drivers with legacy EH as some
1783 * drivers choke if any other tag is given. This breaks
1784 * ata_tag_internal() test for those drivers. Don't use new
1785 * EH stuff without converting to it.
1787 if (ap->ops->error_handler)
1788 tag = ATA_TAG_INTERNAL;
1789 else
1790 tag = 0;
1792 if (test_and_set_bit(tag, &ap->qc_allocated))
1793 BUG();
1794 qc = __ata_qc_from_tag(ap, tag);
1796 qc->tag = tag;
1797 qc->scsicmd = NULL;
1798 qc->ap = ap;
1799 qc->dev = dev;
1800 ata_qc_reinit(qc);
1802 preempted_tag = link->active_tag;
1803 preempted_sactive = link->sactive;
1804 preempted_qc_active = ap->qc_active;
1805 preempted_nr_active_links = ap->nr_active_links;
1806 link->active_tag = ATA_TAG_POISON;
1807 link->sactive = 0;
1808 ap->qc_active = 0;
1809 ap->nr_active_links = 0;
1811 /* prepare & issue qc */
1812 qc->tf = *tf;
1813 if (cdb)
1814 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1815 qc->flags |= ATA_QCFLAG_RESULT_TF;
1816 qc->dma_dir = dma_dir;
1817 if (dma_dir != DMA_NONE) {
1818 unsigned int i, buflen = 0;
1819 struct scatterlist *sg;
1821 for_each_sg(sgl, sg, n_elem, i)
1822 buflen += sg->length;
1824 ata_sg_init(qc, sgl, n_elem);
1825 qc->nbytes = buflen;
1828 qc->private_data = &wait;
1829 qc->complete_fn = ata_qc_complete_internal;
1831 ata_qc_issue(qc);
1833 spin_unlock_irqrestore(ap->lock, flags);
1835 if (!timeout)
1836 timeout = ata_probe_timeout * 1000 / HZ;
1838 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1840 ata_port_flush_task(ap);
1842 if (!rc) {
1843 spin_lock_irqsave(ap->lock, flags);
1845 /* We're racing with irq here. If we lose, the
1846 * following test prevents us from completing the qc
1847 * twice. If we win, the port is frozen and will be
1848 * cleaned up by ->post_internal_cmd().
1850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1851 qc->err_mask |= AC_ERR_TIMEOUT;
1853 if (ap->ops->error_handler)
1854 ata_port_freeze(ap);
1855 else
1856 ata_qc_complete(qc);
1858 if (ata_msg_warn(ap))
1859 ata_dev_printk(dev, KERN_WARNING,
1860 "qc timeout (cmd 0x%x)\n", command);
1863 spin_unlock_irqrestore(ap->lock, flags);
1866 /* do post_internal_cmd */
1867 if (ap->ops->post_internal_cmd)
1868 ap->ops->post_internal_cmd(qc);
1870 /* perform minimal error analysis */
1871 if (qc->flags & ATA_QCFLAG_FAILED) {
1872 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1873 qc->err_mask |= AC_ERR_DEV;
1875 if (!qc->err_mask)
1876 qc->err_mask |= AC_ERR_OTHER;
1878 if (qc->err_mask & ~AC_ERR_OTHER)
1879 qc->err_mask &= ~AC_ERR_OTHER;
1882 /* finish up */
1883 spin_lock_irqsave(ap->lock, flags);
1885 *tf = qc->result_tf;
1886 err_mask = qc->err_mask;
1888 ata_qc_free(qc);
1889 link->active_tag = preempted_tag;
1890 link->sactive = preempted_sactive;
1891 ap->qc_active = preempted_qc_active;
1892 ap->nr_active_links = preempted_nr_active_links;
1894 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1895 * Until those drivers are fixed, we detect the condition
1896 * here, fail the command with AC_ERR_SYSTEM and reenable the
1897 * port.
1899 * Note that this doesn't change any behavior as internal
1900 * command failure results in disabling the device in the
1901 * higher layer for LLDDs without new reset/EH callbacks.
1903 * Kill the following code as soon as those drivers are fixed.
1905 if (ap->flags & ATA_FLAG_DISABLED) {
1906 err_mask |= AC_ERR_SYSTEM;
1907 ata_port_probe(ap);
1910 spin_unlock_irqrestore(ap->lock, flags);
1912 return err_mask;
1916 * ata_exec_internal - execute libata internal command
1917 * @dev: Device to which the command is sent
1918 * @tf: Taskfile registers for the command and the result
1919 * @cdb: CDB for packet command
1920 * @dma_dir: Data tranfer direction of the command
1921 * @buf: Data buffer of the command
1922 * @buflen: Length of data buffer
1923 * @timeout: Timeout in msecs (0 for default)
1925 * Wrapper around ata_exec_internal_sg() which takes simple
1926 * buffer instead of sg list.
1928 * LOCKING:
1929 * None. Should be called with kernel context, might sleep.
1931 * RETURNS:
1932 * Zero on success, AC_ERR_* mask on failure
1934 unsigned ata_exec_internal(struct ata_device *dev,
1935 struct ata_taskfile *tf, const u8 *cdb,
1936 int dma_dir, void *buf, unsigned int buflen,
1937 unsigned long timeout)
1939 struct scatterlist *psg = NULL, sg;
1940 unsigned int n_elem = 0;
1942 if (dma_dir != DMA_NONE) {
1943 WARN_ON(!buf);
1944 sg_init_one(&sg, buf, buflen);
1945 psg = &sg;
1946 n_elem++;
1949 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1950 timeout);
1954 * ata_do_simple_cmd - execute simple internal command
1955 * @dev: Device to which the command is sent
1956 * @cmd: Opcode to execute
1958 * Execute a 'simple' command, that only consists of the opcode
1959 * 'cmd' itself, without filling any other registers
1961 * LOCKING:
1962 * Kernel thread context (may sleep).
1964 * RETURNS:
1965 * Zero on success, AC_ERR_* mask on failure
1967 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1969 struct ata_taskfile tf;
1971 ata_tf_init(dev, &tf);
1973 tf.command = cmd;
1974 tf.flags |= ATA_TFLAG_DEVICE;
1975 tf.protocol = ATA_PROT_NODATA;
1977 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1981 * ata_pio_need_iordy - check if iordy needed
1982 * @adev: ATA device
1984 * Check if the current speed of the device requires IORDY. Used
1985 * by various controllers for chip configuration.
1988 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1990 /* Controller doesn't support IORDY. Probably a pointless check
1991 as the caller should know this */
1992 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1993 return 0;
1994 /* PIO3 and higher it is mandatory */
1995 if (adev->pio_mode > XFER_PIO_2)
1996 return 1;
1997 /* We turn it on when possible */
1998 if (ata_id_has_iordy(adev->id))
1999 return 1;
2000 return 0;
2004 * ata_pio_mask_no_iordy - Return the non IORDY mask
2005 * @adev: ATA device
2007 * Compute the highest mode possible if we are not using iordy. Return
2008 * -1 if no iordy mode is available.
2011 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2013 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2014 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2015 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2016 /* Is the speed faster than the drive allows non IORDY ? */
2017 if (pio) {
2018 /* This is cycle times not frequency - watch the logic! */
2019 if (pio > 240) /* PIO2 is 240nS per cycle */
2020 return 3 << ATA_SHIFT_PIO;
2021 return 7 << ATA_SHIFT_PIO;
2024 return 3 << ATA_SHIFT_PIO;
2028 * ata_dev_read_id - Read ID data from the specified device
2029 * @dev: target device
2030 * @p_class: pointer to class of the target device (may be changed)
2031 * @flags: ATA_READID_* flags
2032 * @id: buffer to read IDENTIFY data into
2034 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2035 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2036 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2037 * for pre-ATA4 drives.
2039 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2040 * now we abort if we hit that case.
2042 * LOCKING:
2043 * Kernel thread context (may sleep)
2045 * RETURNS:
2046 * 0 on success, -errno otherwise.
2048 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2049 unsigned int flags, u16 *id)
2051 struct ata_port *ap = dev->link->ap;
2052 unsigned int class = *p_class;
2053 struct ata_taskfile tf;
2054 unsigned int err_mask = 0;
2055 const char *reason;
2056 int may_fallback = 1, tried_spinup = 0;
2057 int rc;
2059 if (ata_msg_ctl(ap))
2060 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2062 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
2063 retry:
2064 ata_tf_init(dev, &tf);
2066 switch (class) {
2067 case ATA_DEV_ATA:
2068 tf.command = ATA_CMD_ID_ATA;
2069 break;
2070 case ATA_DEV_ATAPI:
2071 tf.command = ATA_CMD_ID_ATAPI;
2072 break;
2073 default:
2074 rc = -ENODEV;
2075 reason = "unsupported class";
2076 goto err_out;
2079 tf.protocol = ATA_PROT_PIO;
2081 /* Some devices choke if TF registers contain garbage. Make
2082 * sure those are properly initialized.
2084 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2086 /* Device presence detection is unreliable on some
2087 * controllers. Always poll IDENTIFY if available.
2089 tf.flags |= ATA_TFLAG_POLLING;
2091 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2092 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2093 if (err_mask) {
2094 if (err_mask & AC_ERR_NODEV_HINT) {
2095 ata_dev_printk(dev, KERN_DEBUG,
2096 "NODEV after polling detection\n");
2097 return -ENOENT;
2100 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2101 /* Device or controller might have reported
2102 * the wrong device class. Give a shot at the
2103 * other IDENTIFY if the current one is
2104 * aborted by the device.
2106 if (may_fallback) {
2107 may_fallback = 0;
2109 if (class == ATA_DEV_ATA)
2110 class = ATA_DEV_ATAPI;
2111 else
2112 class = ATA_DEV_ATA;
2113 goto retry;
2116 /* Control reaches here iff the device aborted
2117 * both flavors of IDENTIFYs which happens
2118 * sometimes with phantom devices.
2120 ata_dev_printk(dev, KERN_DEBUG,
2121 "both IDENTIFYs aborted, assuming NODEV\n");
2122 return -ENOENT;
2125 rc = -EIO;
2126 reason = "I/O error";
2127 goto err_out;
2130 /* Falling back doesn't make sense if ID data was read
2131 * successfully at least once.
2133 may_fallback = 0;
2135 swap_buf_le16(id, ATA_ID_WORDS);
2137 /* sanity check */
2138 rc = -EINVAL;
2139 reason = "device reports invalid type";
2141 if (class == ATA_DEV_ATA) {
2142 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2143 goto err_out;
2144 } else {
2145 if (ata_id_is_ata(id))
2146 goto err_out;
2149 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2150 tried_spinup = 1;
2152 * Drive powered-up in standby mode, and requires a specific
2153 * SET_FEATURES spin-up subcommand before it will accept
2154 * anything other than the original IDENTIFY command.
2156 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2157 if (err_mask && id[2] != 0x738c) {
2158 rc = -EIO;
2159 reason = "SPINUP failed";
2160 goto err_out;
2163 * If the drive initially returned incomplete IDENTIFY info,
2164 * we now must reissue the IDENTIFY command.
2166 if (id[2] == 0x37c8)
2167 goto retry;
2170 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2172 * The exact sequence expected by certain pre-ATA4 drives is:
2173 * SRST RESET
2174 * IDENTIFY (optional in early ATA)
2175 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2176 * anything else..
2177 * Some drives were very specific about that exact sequence.
2179 * Note that ATA4 says lba is mandatory so the second check
2180 * shoud never trigger.
2182 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2183 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2184 if (err_mask) {
2185 rc = -EIO;
2186 reason = "INIT_DEV_PARAMS failed";
2187 goto err_out;
2190 /* current CHS translation info (id[53-58]) might be
2191 * changed. reread the identify device info.
2193 flags &= ~ATA_READID_POSTRESET;
2194 goto retry;
2198 *p_class = class;
2200 return 0;
2202 err_out:
2203 if (ata_msg_warn(ap))
2204 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2205 "(%s, err_mask=0x%x)\n", reason, err_mask);
2206 return rc;
2209 static inline u8 ata_dev_knobble(struct ata_device *dev)
2211 struct ata_port *ap = dev->link->ap;
2212 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2215 static void ata_dev_config_ncq(struct ata_device *dev,
2216 char *desc, size_t desc_sz)
2218 struct ata_port *ap = dev->link->ap;
2219 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2221 if (!ata_id_has_ncq(dev->id)) {
2222 desc[0] = '\0';
2223 return;
2225 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2226 snprintf(desc, desc_sz, "NCQ (not used)");
2227 return;
2229 if (ap->flags & ATA_FLAG_NCQ) {
2230 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2231 dev->flags |= ATA_DFLAG_NCQ;
2234 if (hdepth >= ddepth)
2235 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2236 else
2237 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2241 * ata_dev_configure - Configure the specified ATA/ATAPI device
2242 * @dev: Target device to configure
2244 * Configure @dev according to @dev->id. Generic and low-level
2245 * driver specific fixups are also applied.
2247 * LOCKING:
2248 * Kernel thread context (may sleep)
2250 * RETURNS:
2251 * 0 on success, -errno otherwise
2253 int ata_dev_configure(struct ata_device *dev)
2255 struct ata_port *ap = dev->link->ap;
2256 struct ata_eh_context *ehc = &dev->link->eh_context;
2257 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2258 const u16 *id = dev->id;
2259 unsigned long xfer_mask;
2260 char revbuf[7]; /* XYZ-99\0 */
2261 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2262 char modelbuf[ATA_ID_PROD_LEN+1];
2263 int rc;
2265 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2266 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2267 __func__);
2268 return 0;
2271 if (ata_msg_probe(ap))
2272 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2274 /* set horkage */
2275 dev->horkage |= ata_dev_blacklisted(dev);
2276 ata_force_horkage(dev);
2278 /* let ACPI work its magic */
2279 rc = ata_acpi_on_devcfg(dev);
2280 if (rc)
2281 return rc;
2283 /* massage HPA, do it early as it might change IDENTIFY data */
2284 rc = ata_hpa_resize(dev);
2285 if (rc)
2286 return rc;
2288 /* print device capabilities */
2289 if (ata_msg_probe(ap))
2290 ata_dev_printk(dev, KERN_DEBUG,
2291 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2292 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2293 __func__,
2294 id[49], id[82], id[83], id[84],
2295 id[85], id[86], id[87], id[88]);
2297 /* initialize to-be-configured parameters */
2298 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2299 dev->max_sectors = 0;
2300 dev->cdb_len = 0;
2301 dev->n_sectors = 0;
2302 dev->cylinders = 0;
2303 dev->heads = 0;
2304 dev->sectors = 0;
2307 * common ATA, ATAPI feature tests
2310 /* find max transfer mode; for printk only */
2311 xfer_mask = ata_id_xfermask(id);
2313 if (ata_msg_probe(ap))
2314 ata_dump_id(id);
2316 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2317 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2318 sizeof(fwrevbuf));
2320 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2321 sizeof(modelbuf));
2323 /* ATA-specific feature tests */
2324 if (dev->class == ATA_DEV_ATA) {
2325 if (ata_id_is_cfa(id)) {
2326 if (id[162] & 1) /* CPRM may make this media unusable */
2327 ata_dev_printk(dev, KERN_WARNING,
2328 "supports DRM functions and may "
2329 "not be fully accessable.\n");
2330 snprintf(revbuf, 7, "CFA");
2331 } else {
2332 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2333 /* Warn the user if the device has TPM extensions */
2334 if (ata_id_has_tpm(id))
2335 ata_dev_printk(dev, KERN_WARNING,
2336 "supports DRM functions and may "
2337 "not be fully accessable.\n");
2340 dev->n_sectors = ata_id_n_sectors(id);
2342 if (dev->id[59] & 0x100)
2343 dev->multi_count = dev->id[59] & 0xff;
2345 if (ata_id_has_lba(id)) {
2346 const char *lba_desc;
2347 char ncq_desc[20];
2349 lba_desc = "LBA";
2350 dev->flags |= ATA_DFLAG_LBA;
2351 if (ata_id_has_lba48(id)) {
2352 dev->flags |= ATA_DFLAG_LBA48;
2353 lba_desc = "LBA48";
2355 if (dev->n_sectors >= (1UL << 28) &&
2356 ata_id_has_flush_ext(id))
2357 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2360 /* config NCQ */
2361 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2363 /* print device info to dmesg */
2364 if (ata_msg_drv(ap) && print_info) {
2365 ata_dev_printk(dev, KERN_INFO,
2366 "%s: %s, %s, max %s\n",
2367 revbuf, modelbuf, fwrevbuf,
2368 ata_mode_string(xfer_mask));
2369 ata_dev_printk(dev, KERN_INFO,
2370 "%Lu sectors, multi %u: %s %s\n",
2371 (unsigned long long)dev->n_sectors,
2372 dev->multi_count, lba_desc, ncq_desc);
2374 } else {
2375 /* CHS */
2377 /* Default translation */
2378 dev->cylinders = id[1];
2379 dev->heads = id[3];
2380 dev->sectors = id[6];
2382 if (ata_id_current_chs_valid(id)) {
2383 /* Current CHS translation is valid. */
2384 dev->cylinders = id[54];
2385 dev->heads = id[55];
2386 dev->sectors = id[56];
2389 /* print device info to dmesg */
2390 if (ata_msg_drv(ap) && print_info) {
2391 ata_dev_printk(dev, KERN_INFO,
2392 "%s: %s, %s, max %s\n",
2393 revbuf, modelbuf, fwrevbuf,
2394 ata_mode_string(xfer_mask));
2395 ata_dev_printk(dev, KERN_INFO,
2396 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2397 (unsigned long long)dev->n_sectors,
2398 dev->multi_count, dev->cylinders,
2399 dev->heads, dev->sectors);
2403 dev->cdb_len = 16;
2406 /* ATAPI-specific feature tests */
2407 else if (dev->class == ATA_DEV_ATAPI) {
2408 const char *cdb_intr_string = "";
2409 const char *atapi_an_string = "";
2410 const char *dma_dir_string = "";
2411 u32 sntf;
2413 rc = atapi_cdb_len(id);
2414 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2415 if (ata_msg_warn(ap))
2416 ata_dev_printk(dev, KERN_WARNING,
2417 "unsupported CDB len\n");
2418 rc = -EINVAL;
2419 goto err_out_nosup;
2421 dev->cdb_len = (unsigned int) rc;
2423 /* Enable ATAPI AN if both the host and device have
2424 * the support. If PMP is attached, SNTF is required
2425 * to enable ATAPI AN to discern between PHY status
2426 * changed notifications and ATAPI ANs.
2428 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2429 (!ap->nr_pmp_links ||
2430 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2431 unsigned int err_mask;
2433 /* issue SET feature command to turn this on */
2434 err_mask = ata_dev_set_feature(dev,
2435 SETFEATURES_SATA_ENABLE, SATA_AN);
2436 if (err_mask)
2437 ata_dev_printk(dev, KERN_ERR,
2438 "failed to enable ATAPI AN "
2439 "(err_mask=0x%x)\n", err_mask);
2440 else {
2441 dev->flags |= ATA_DFLAG_AN;
2442 atapi_an_string = ", ATAPI AN";
2446 if (ata_id_cdb_intr(dev->id)) {
2447 dev->flags |= ATA_DFLAG_CDB_INTR;
2448 cdb_intr_string = ", CDB intr";
2451 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2452 dev->flags |= ATA_DFLAG_DMADIR;
2453 dma_dir_string = ", DMADIR";
2456 /* print device info to dmesg */
2457 if (ata_msg_drv(ap) && print_info)
2458 ata_dev_printk(dev, KERN_INFO,
2459 "ATAPI: %s, %s, max %s%s%s%s\n",
2460 modelbuf, fwrevbuf,
2461 ata_mode_string(xfer_mask),
2462 cdb_intr_string, atapi_an_string,
2463 dma_dir_string);
2466 /* determine max_sectors */
2467 dev->max_sectors = ATA_MAX_SECTORS;
2468 if (dev->flags & ATA_DFLAG_LBA48)
2469 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2471 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2472 if (ata_id_has_hipm(dev->id))
2473 dev->flags |= ATA_DFLAG_HIPM;
2474 if (ata_id_has_dipm(dev->id))
2475 dev->flags |= ATA_DFLAG_DIPM;
2478 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2479 200 sectors */
2480 if (ata_dev_knobble(dev)) {
2481 if (ata_msg_drv(ap) && print_info)
2482 ata_dev_printk(dev, KERN_INFO,
2483 "applying bridge limits\n");
2484 dev->udma_mask &= ATA_UDMA5;
2485 dev->max_sectors = ATA_MAX_SECTORS;
2488 if ((dev->class == ATA_DEV_ATAPI) &&
2489 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2490 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2491 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2494 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2495 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2496 dev->max_sectors);
2498 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2499 dev->horkage |= ATA_HORKAGE_IPM;
2501 /* reset link pm_policy for this port to no pm */
2502 ap->pm_policy = MAX_PERFORMANCE;
2505 if (ap->ops->dev_config)
2506 ap->ops->dev_config(dev);
2508 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2509 /* Let the user know. We don't want to disallow opens for
2510 rescue purposes, or in case the vendor is just a blithering
2511 idiot. Do this after the dev_config call as some controllers
2512 with buggy firmware may want to avoid reporting false device
2513 bugs */
2515 if (print_info) {
2516 ata_dev_printk(dev, KERN_WARNING,
2517 "Drive reports diagnostics failure. This may indicate a drive\n");
2518 ata_dev_printk(dev, KERN_WARNING,
2519 "fault or invalid emulation. Contact drive vendor for information.\n");
2523 if (ata_msg_probe(ap))
2524 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
2525 __func__, ata_chk_status(ap));
2526 return 0;
2528 err_out_nosup:
2529 if (ata_msg_probe(ap))
2530 ata_dev_printk(dev, KERN_DEBUG,
2531 "%s: EXIT, err\n", __func__);
2532 return rc;
2536 * ata_cable_40wire - return 40 wire cable type
2537 * @ap: port
2539 * Helper method for drivers which want to hardwire 40 wire cable
2540 * detection.
2543 int ata_cable_40wire(struct ata_port *ap)
2545 return ATA_CBL_PATA40;
2549 * ata_cable_80wire - return 80 wire cable type
2550 * @ap: port
2552 * Helper method for drivers which want to hardwire 80 wire cable
2553 * detection.
2556 int ata_cable_80wire(struct ata_port *ap)
2558 return ATA_CBL_PATA80;
2562 * ata_cable_unknown - return unknown PATA cable.
2563 * @ap: port
2565 * Helper method for drivers which have no PATA cable detection.
2568 int ata_cable_unknown(struct ata_port *ap)
2570 return ATA_CBL_PATA_UNK;
2574 * ata_cable_ignore - return ignored PATA cable.
2575 * @ap: port
2577 * Helper method for drivers which don't use cable type to limit
2578 * transfer mode.
2580 int ata_cable_ignore(struct ata_port *ap)
2582 return ATA_CBL_PATA_IGN;
2586 * ata_cable_sata - return SATA cable type
2587 * @ap: port
2589 * Helper method for drivers which have SATA cables
2592 int ata_cable_sata(struct ata_port *ap)
2594 return ATA_CBL_SATA;
2598 * ata_bus_probe - Reset and probe ATA bus
2599 * @ap: Bus to probe
2601 * Master ATA bus probing function. Initiates a hardware-dependent
2602 * bus reset, then attempts to identify any devices found on
2603 * the bus.
2605 * LOCKING:
2606 * PCI/etc. bus probe sem.
2608 * RETURNS:
2609 * Zero on success, negative errno otherwise.
2612 int ata_bus_probe(struct ata_port *ap)
2614 unsigned int classes[ATA_MAX_DEVICES];
2615 int tries[ATA_MAX_DEVICES];
2616 int rc;
2617 struct ata_device *dev;
2619 ata_port_probe(ap);
2621 ata_link_for_each_dev(dev, &ap->link)
2622 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2624 retry:
2625 ata_link_for_each_dev(dev, &ap->link) {
2626 /* If we issue an SRST then an ATA drive (not ATAPI)
2627 * may change configuration and be in PIO0 timing. If
2628 * we do a hard reset (or are coming from power on)
2629 * this is true for ATA or ATAPI. Until we've set a
2630 * suitable controller mode we should not touch the
2631 * bus as we may be talking too fast.
2633 dev->pio_mode = XFER_PIO_0;
2635 /* If the controller has a pio mode setup function
2636 * then use it to set the chipset to rights. Don't
2637 * touch the DMA setup as that will be dealt with when
2638 * configuring devices.
2640 if (ap->ops->set_piomode)
2641 ap->ops->set_piomode(ap, dev);
2644 /* reset and determine device classes */
2645 ap->ops->phy_reset(ap);
2647 ata_link_for_each_dev(dev, &ap->link) {
2648 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2649 dev->class != ATA_DEV_UNKNOWN)
2650 classes[dev->devno] = dev->class;
2651 else
2652 classes[dev->devno] = ATA_DEV_NONE;
2654 dev->class = ATA_DEV_UNKNOWN;
2657 ata_port_probe(ap);
2659 /* read IDENTIFY page and configure devices. We have to do the identify
2660 specific sequence bass-ackwards so that PDIAG- is released by
2661 the slave device */
2663 ata_link_for_each_dev(dev, &ap->link) {
2664 if (tries[dev->devno])
2665 dev->class = classes[dev->devno];
2667 if (!ata_dev_enabled(dev))
2668 continue;
2670 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2671 dev->id);
2672 if (rc)
2673 goto fail;
2676 /* Now ask for the cable type as PDIAG- should have been released */
2677 if (ap->ops->cable_detect)
2678 ap->cbl = ap->ops->cable_detect(ap);
2680 /* We may have SATA bridge glue hiding here irrespective of the
2681 reported cable types and sensed types */
2682 ata_link_for_each_dev(dev, &ap->link) {
2683 if (!ata_dev_enabled(dev))
2684 continue;
2685 /* SATA drives indicate we have a bridge. We don't know which
2686 end of the link the bridge is which is a problem */
2687 if (ata_id_is_sata(dev->id))
2688 ap->cbl = ATA_CBL_SATA;
2691 /* After the identify sequence we can now set up the devices. We do
2692 this in the normal order so that the user doesn't get confused */
2694 ata_link_for_each_dev(dev, &ap->link) {
2695 if (!ata_dev_enabled(dev))
2696 continue;
2698 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2699 rc = ata_dev_configure(dev);
2700 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2701 if (rc)
2702 goto fail;
2705 /* configure transfer mode */
2706 rc = ata_set_mode(&ap->link, &dev);
2707 if (rc)
2708 goto fail;
2710 ata_link_for_each_dev(dev, &ap->link)
2711 if (ata_dev_enabled(dev))
2712 return 0;
2714 /* no device present, disable port */
2715 ata_port_disable(ap);
2716 return -ENODEV;
2718 fail:
2719 tries[dev->devno]--;
2721 switch (rc) {
2722 case -EINVAL:
2723 /* eeek, something went very wrong, give up */
2724 tries[dev->devno] = 0;
2725 break;
2727 case -ENODEV:
2728 /* give it just one more chance */
2729 tries[dev->devno] = min(tries[dev->devno], 1);
2730 case -EIO:
2731 if (tries[dev->devno] == 1) {
2732 /* This is the last chance, better to slow
2733 * down than lose it.
2735 sata_down_spd_limit(&ap->link);
2736 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2740 if (!tries[dev->devno])
2741 ata_dev_disable(dev);
2743 goto retry;
2747 * ata_port_probe - Mark port as enabled
2748 * @ap: Port for which we indicate enablement
2750 * Modify @ap data structure such that the system
2751 * thinks that the entire port is enabled.
2753 * LOCKING: host lock, or some other form of
2754 * serialization.
2757 void ata_port_probe(struct ata_port *ap)
2759 ap->flags &= ~ATA_FLAG_DISABLED;
2763 * sata_print_link_status - Print SATA link status
2764 * @link: SATA link to printk link status about
2766 * This function prints link speed and status of a SATA link.
2768 * LOCKING:
2769 * None.
2771 void sata_print_link_status(struct ata_link *link)
2773 u32 sstatus, scontrol, tmp;
2775 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2776 return;
2777 sata_scr_read(link, SCR_CONTROL, &scontrol);
2779 if (ata_link_online(link)) {
2780 tmp = (sstatus >> 4) & 0xf;
2781 ata_link_printk(link, KERN_INFO,
2782 "SATA link up %s (SStatus %X SControl %X)\n",
2783 sata_spd_string(tmp), sstatus, scontrol);
2784 } else {
2785 ata_link_printk(link, KERN_INFO,
2786 "SATA link down (SStatus %X SControl %X)\n",
2787 sstatus, scontrol);
2792 * ata_dev_pair - return other device on cable
2793 * @adev: device
2795 * Obtain the other device on the same cable, or if none is
2796 * present NULL is returned
2799 struct ata_device *ata_dev_pair(struct ata_device *adev)
2801 struct ata_link *link = adev->link;
2802 struct ata_device *pair = &link->device[1 - adev->devno];
2803 if (!ata_dev_enabled(pair))
2804 return NULL;
2805 return pair;
2809 * ata_port_disable - Disable port.
2810 * @ap: Port to be disabled.
2812 * Modify @ap data structure such that the system
2813 * thinks that the entire port is disabled, and should
2814 * never attempt to probe or communicate with devices
2815 * on this port.
2817 * LOCKING: host lock, or some other form of
2818 * serialization.
2821 void ata_port_disable(struct ata_port *ap)
2823 ap->link.device[0].class = ATA_DEV_NONE;
2824 ap->link.device[1].class = ATA_DEV_NONE;
2825 ap->flags |= ATA_FLAG_DISABLED;
2829 * sata_down_spd_limit - adjust SATA spd limit downward
2830 * @link: Link to adjust SATA spd limit for
2832 * Adjust SATA spd limit of @link downward. Note that this
2833 * function only adjusts the limit. The change must be applied
2834 * using sata_set_spd().
2836 * LOCKING:
2837 * Inherited from caller.
2839 * RETURNS:
2840 * 0 on success, negative errno on failure
2842 int sata_down_spd_limit(struct ata_link *link)
2844 u32 sstatus, spd, mask;
2845 int rc, highbit;
2847 if (!sata_scr_valid(link))
2848 return -EOPNOTSUPP;
2850 /* If SCR can be read, use it to determine the current SPD.
2851 * If not, use cached value in link->sata_spd.
2853 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2854 if (rc == 0)
2855 spd = (sstatus >> 4) & 0xf;
2856 else
2857 spd = link->sata_spd;
2859 mask = link->sata_spd_limit;
2860 if (mask <= 1)
2861 return -EINVAL;
2863 /* unconditionally mask off the highest bit */
2864 highbit = fls(mask) - 1;
2865 mask &= ~(1 << highbit);
2867 /* Mask off all speeds higher than or equal to the current
2868 * one. Force 1.5Gbps if current SPD is not available.
2870 if (spd > 1)
2871 mask &= (1 << (spd - 1)) - 1;
2872 else
2873 mask &= 1;
2875 /* were we already at the bottom? */
2876 if (!mask)
2877 return -EINVAL;
2879 link->sata_spd_limit = mask;
2881 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2882 sata_spd_string(fls(mask)));
2884 return 0;
2887 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2889 struct ata_link *host_link = &link->ap->link;
2890 u32 limit, target, spd;
2892 limit = link->sata_spd_limit;
2894 /* Don't configure downstream link faster than upstream link.
2895 * It doesn't speed up anything and some PMPs choke on such
2896 * configuration.
2898 if (!ata_is_host_link(link) && host_link->sata_spd)
2899 limit &= (1 << host_link->sata_spd) - 1;
2901 if (limit == UINT_MAX)
2902 target = 0;
2903 else
2904 target = fls(limit);
2906 spd = (*scontrol >> 4) & 0xf;
2907 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2909 return spd != target;
2913 * sata_set_spd_needed - is SATA spd configuration needed
2914 * @link: Link in question
2916 * Test whether the spd limit in SControl matches
2917 * @link->sata_spd_limit. This function is used to determine
2918 * whether hardreset is necessary to apply SATA spd
2919 * configuration.
2921 * LOCKING:
2922 * Inherited from caller.
2924 * RETURNS:
2925 * 1 if SATA spd configuration is needed, 0 otherwise.
2927 int sata_set_spd_needed(struct ata_link *link)
2929 u32 scontrol;
2931 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2932 return 1;
2934 return __sata_set_spd_needed(link, &scontrol);
2938 * sata_set_spd - set SATA spd according to spd limit
2939 * @link: Link to set SATA spd for
2941 * Set SATA spd of @link according to sata_spd_limit.
2943 * LOCKING:
2944 * Inherited from caller.
2946 * RETURNS:
2947 * 0 if spd doesn't need to be changed, 1 if spd has been
2948 * changed. Negative errno if SCR registers are inaccessible.
2950 int sata_set_spd(struct ata_link *link)
2952 u32 scontrol;
2953 int rc;
2955 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2956 return rc;
2958 if (!__sata_set_spd_needed(link, &scontrol))
2959 return 0;
2961 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2962 return rc;
2964 return 1;
2968 * This mode timing computation functionality is ported over from
2969 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2972 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2973 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2974 * for UDMA6, which is currently supported only by Maxtor drives.
2976 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2979 static const struct ata_timing ata_timing[] = {
2980 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2981 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2982 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2983 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2984 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2985 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2986 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2987 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2989 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2990 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2991 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2993 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2994 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2995 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2996 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2997 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2999 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3000 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
3001 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
3002 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
3003 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
3004 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
3005 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
3006 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
3008 { 0xFF }
3011 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3012 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3014 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3016 q->setup = EZ(t->setup * 1000, T);
3017 q->act8b = EZ(t->act8b * 1000, T);
3018 q->rec8b = EZ(t->rec8b * 1000, T);
3019 q->cyc8b = EZ(t->cyc8b * 1000, T);
3020 q->active = EZ(t->active * 1000, T);
3021 q->recover = EZ(t->recover * 1000, T);
3022 q->cycle = EZ(t->cycle * 1000, T);
3023 q->udma = EZ(t->udma * 1000, UT);
3026 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3027 struct ata_timing *m, unsigned int what)
3029 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3030 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3031 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3032 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3033 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3034 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3035 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3036 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3039 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3041 const struct ata_timing *t = ata_timing;
3043 while (xfer_mode > t->mode)
3044 t++;
3046 if (xfer_mode == t->mode)
3047 return t;
3048 return NULL;
3051 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3052 struct ata_timing *t, int T, int UT)
3054 const struct ata_timing *s;
3055 struct ata_timing p;
3058 * Find the mode.
3061 if (!(s = ata_timing_find_mode(speed)))
3062 return -EINVAL;
3064 memcpy(t, s, sizeof(*s));
3067 * If the drive is an EIDE drive, it can tell us it needs extended
3068 * PIO/MW_DMA cycle timing.
3071 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3072 memset(&p, 0, sizeof(p));
3073 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3074 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3075 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3076 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3077 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3079 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3083 * Convert the timing to bus clock counts.
3086 ata_timing_quantize(t, t, T, UT);
3089 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3090 * S.M.A.R.T * and some other commands. We have to ensure that the
3091 * DMA cycle timing is slower/equal than the fastest PIO timing.
3094 if (speed > XFER_PIO_6) {
3095 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3096 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3100 * Lengthen active & recovery time so that cycle time is correct.
3103 if (t->act8b + t->rec8b < t->cyc8b) {
3104 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3105 t->rec8b = t->cyc8b - t->act8b;
3108 if (t->active + t->recover < t->cycle) {
3109 t->active += (t->cycle - (t->active + t->recover)) / 2;
3110 t->recover = t->cycle - t->active;
3113 /* In a few cases quantisation may produce enough errors to
3114 leave t->cycle too low for the sum of active and recovery
3115 if so we must correct this */
3116 if (t->active + t->recover > t->cycle)
3117 t->cycle = t->active + t->recover;
3119 return 0;
3123 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3124 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3125 * @cycle: cycle duration in ns
3127 * Return matching xfer mode for @cycle. The returned mode is of
3128 * the transfer type specified by @xfer_shift. If @cycle is too
3129 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3130 * than the fastest known mode, the fasted mode is returned.
3132 * LOCKING:
3133 * None.
3135 * RETURNS:
3136 * Matching xfer_mode, 0xff if no match found.
3138 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3140 u8 base_mode = 0xff, last_mode = 0xff;
3141 const struct ata_xfer_ent *ent;
3142 const struct ata_timing *t;
3144 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3145 if (ent->shift == xfer_shift)
3146 base_mode = ent->base;
3148 for (t = ata_timing_find_mode(base_mode);
3149 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3150 unsigned short this_cycle;
3152 switch (xfer_shift) {
3153 case ATA_SHIFT_PIO:
3154 case ATA_SHIFT_MWDMA:
3155 this_cycle = t->cycle;
3156 break;
3157 case ATA_SHIFT_UDMA:
3158 this_cycle = t->udma;
3159 break;
3160 default:
3161 return 0xff;
3164 if (cycle > this_cycle)
3165 break;
3167 last_mode = t->mode;
3170 return last_mode;
3174 * ata_down_xfermask_limit - adjust dev xfer masks downward
3175 * @dev: Device to adjust xfer masks
3176 * @sel: ATA_DNXFER_* selector
3178 * Adjust xfer masks of @dev downward. Note that this function
3179 * does not apply the change. Invoking ata_set_mode() afterwards
3180 * will apply the limit.
3182 * LOCKING:
3183 * Inherited from caller.
3185 * RETURNS:
3186 * 0 on success, negative errno on failure
3188 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3190 char buf[32];
3191 unsigned long orig_mask, xfer_mask;
3192 unsigned long pio_mask, mwdma_mask, udma_mask;
3193 int quiet, highbit;
3195 quiet = !!(sel & ATA_DNXFER_QUIET);
3196 sel &= ~ATA_DNXFER_QUIET;
3198 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3199 dev->mwdma_mask,
3200 dev->udma_mask);
3201 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3203 switch (sel) {
3204 case ATA_DNXFER_PIO:
3205 highbit = fls(pio_mask) - 1;
3206 pio_mask &= ~(1 << highbit);
3207 break;
3209 case ATA_DNXFER_DMA:
3210 if (udma_mask) {
3211 highbit = fls(udma_mask) - 1;
3212 udma_mask &= ~(1 << highbit);
3213 if (!udma_mask)
3214 return -ENOENT;
3215 } else if (mwdma_mask) {
3216 highbit = fls(mwdma_mask) - 1;
3217 mwdma_mask &= ~(1 << highbit);
3218 if (!mwdma_mask)
3219 return -ENOENT;
3221 break;
3223 case ATA_DNXFER_40C:
3224 udma_mask &= ATA_UDMA_MASK_40C;
3225 break;
3227 case ATA_DNXFER_FORCE_PIO0:
3228 pio_mask &= 1;
3229 case ATA_DNXFER_FORCE_PIO:
3230 mwdma_mask = 0;
3231 udma_mask = 0;
3232 break;
3234 default:
3235 BUG();
3238 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3240 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3241 return -ENOENT;
3243 if (!quiet) {
3244 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3245 snprintf(buf, sizeof(buf), "%s:%s",
3246 ata_mode_string(xfer_mask),
3247 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3248 else
3249 snprintf(buf, sizeof(buf), "%s",
3250 ata_mode_string(xfer_mask));
3252 ata_dev_printk(dev, KERN_WARNING,
3253 "limiting speed to %s\n", buf);
3256 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3257 &dev->udma_mask);
3259 return 0;
3262 static int ata_dev_set_mode(struct ata_device *dev)
3264 struct ata_eh_context *ehc = &dev->link->eh_context;
3265 const char *dev_err_whine = "";
3266 int ign_dev_err = 0;
3267 unsigned int err_mask;
3268 int rc;
3270 dev->flags &= ~ATA_DFLAG_PIO;
3271 if (dev->xfer_shift == ATA_SHIFT_PIO)
3272 dev->flags |= ATA_DFLAG_PIO;
3274 err_mask = ata_dev_set_xfermode(dev);
3276 if (err_mask & ~AC_ERR_DEV)
3277 goto fail;
3279 /* revalidate */
3280 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3281 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3282 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3283 if (rc)
3284 return rc;
3286 /* Old CFA may refuse this command, which is just fine */
3287 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
3288 ign_dev_err = 1;
3290 /* Some very old devices and some bad newer ones fail any kind of
3291 SET_XFERMODE request but support PIO0-2 timings and no IORDY */
3292 if (dev->xfer_shift == ATA_SHIFT_PIO && !ata_id_has_iordy(dev->id) &&
3293 dev->pio_mode <= XFER_PIO_2)
3294 ign_dev_err = 1;
3296 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3297 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3298 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3299 dev->dma_mode == XFER_MW_DMA_0 &&
3300 (dev->id[63] >> 8) & 1)
3301 ign_dev_err = 1;
3303 /* if the device is actually configured correctly, ignore dev err */
3304 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3305 ign_dev_err = 1;
3307 if (err_mask & AC_ERR_DEV) {
3308 if (!ign_dev_err)
3309 goto fail;
3310 else
3311 dev_err_whine = " (device error ignored)";
3314 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3315 dev->xfer_shift, (int)dev->xfer_mode);
3317 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3318 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3319 dev_err_whine);
3321 return 0;
3323 fail:
3324 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3325 "(err_mask=0x%x)\n", err_mask);
3326 return -EIO;
3330 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3331 * @link: link on which timings will be programmed
3332 * @r_failed_dev: out parameter for failed device
3334 * Standard implementation of the function used to tune and set
3335 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3336 * ata_dev_set_mode() fails, pointer to the failing device is
3337 * returned in @r_failed_dev.
3339 * LOCKING:
3340 * PCI/etc. bus probe sem.
3342 * RETURNS:
3343 * 0 on success, negative errno otherwise
3346 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3348 struct ata_port *ap = link->ap;
3349 struct ata_device *dev;
3350 int rc = 0, used_dma = 0, found = 0;
3352 /* step 1: calculate xfer_mask */
3353 ata_link_for_each_dev(dev, link) {
3354 unsigned long pio_mask, dma_mask;
3355 unsigned int mode_mask;
3357 if (!ata_dev_enabled(dev))
3358 continue;
3360 mode_mask = ATA_DMA_MASK_ATA;
3361 if (dev->class == ATA_DEV_ATAPI)
3362 mode_mask = ATA_DMA_MASK_ATAPI;
3363 else if (ata_id_is_cfa(dev->id))
3364 mode_mask = ATA_DMA_MASK_CFA;
3366 ata_dev_xfermask(dev);
3367 ata_force_xfermask(dev);
3369 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3370 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3372 if (libata_dma_mask & mode_mask)
3373 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3374 else
3375 dma_mask = 0;
3377 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3378 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3380 found = 1;
3381 if (dev->dma_mode != 0xff)
3382 used_dma = 1;
3384 if (!found)
3385 goto out;
3387 /* step 2: always set host PIO timings */
3388 ata_link_for_each_dev(dev, link) {
3389 if (!ata_dev_enabled(dev))
3390 continue;
3392 if (dev->pio_mode == 0xff) {
3393 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3394 rc = -EINVAL;
3395 goto out;
3398 dev->xfer_mode = dev->pio_mode;
3399 dev->xfer_shift = ATA_SHIFT_PIO;
3400 if (ap->ops->set_piomode)
3401 ap->ops->set_piomode(ap, dev);
3404 /* step 3: set host DMA timings */
3405 ata_link_for_each_dev(dev, link) {
3406 if (!ata_dev_enabled(dev) || dev->dma_mode == 0xff)
3407 continue;
3409 dev->xfer_mode = dev->dma_mode;
3410 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3411 if (ap->ops->set_dmamode)
3412 ap->ops->set_dmamode(ap, dev);
3415 /* step 4: update devices' xfer mode */
3416 ata_link_for_each_dev(dev, link) {
3417 /* don't update suspended devices' xfer mode */
3418 if (!ata_dev_enabled(dev))
3419 continue;
3421 rc = ata_dev_set_mode(dev);
3422 if (rc)
3423 goto out;
3426 /* Record simplex status. If we selected DMA then the other
3427 * host channels are not permitted to do so.
3429 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3430 ap->host->simplex_claimed = ap;
3432 out:
3433 if (rc)
3434 *r_failed_dev = dev;
3435 return rc;
3439 * ata_tf_to_host - issue ATA taskfile to host controller
3440 * @ap: port to which command is being issued
3441 * @tf: ATA taskfile register set
3443 * Issues ATA taskfile register set to ATA host controller,
3444 * with proper synchronization with interrupt handler and
3445 * other threads.
3447 * LOCKING:
3448 * spin_lock_irqsave(host lock)
3451 static inline void ata_tf_to_host(struct ata_port *ap,
3452 const struct ata_taskfile *tf)
3454 ap->ops->tf_load(ap, tf);
3455 ap->ops->exec_command(ap, tf);
3459 * ata_busy_sleep - sleep until BSY clears, or timeout
3460 * @ap: port containing status register to be polled
3461 * @tmout_pat: impatience timeout
3462 * @tmout: overall timeout
3464 * Sleep until ATA Status register bit BSY clears,
3465 * or a timeout occurs.
3467 * LOCKING:
3468 * Kernel thread context (may sleep).
3470 * RETURNS:
3471 * 0 on success, -errno otherwise.
3473 int ata_busy_sleep(struct ata_port *ap,
3474 unsigned long tmout_pat, unsigned long tmout)
3476 unsigned long timer_start, timeout;
3477 u8 status;
3479 status = ata_busy_wait(ap, ATA_BUSY, 300);
3480 timer_start = jiffies;
3481 timeout = timer_start + tmout_pat;
3482 while (status != 0xff && (status & ATA_BUSY) &&
3483 time_before(jiffies, timeout)) {
3484 msleep(50);
3485 status = ata_busy_wait(ap, ATA_BUSY, 3);
3488 if (status != 0xff && (status & ATA_BUSY))
3489 ata_port_printk(ap, KERN_WARNING,
3490 "port is slow to respond, please be patient "
3491 "(Status 0x%x)\n", status);
3493 timeout = timer_start + tmout;
3494 while (status != 0xff && (status & ATA_BUSY) &&
3495 time_before(jiffies, timeout)) {
3496 msleep(50);
3497 status = ata_chk_status(ap);
3500 if (status == 0xff)
3501 return -ENODEV;
3503 if (status & ATA_BUSY) {
3504 ata_port_printk(ap, KERN_ERR, "port failed to respond "
3505 "(%lu secs, Status 0x%x)\n",
3506 tmout / HZ, status);
3507 return -EBUSY;
3510 return 0;
3514 * ata_wait_after_reset - wait before checking status after reset
3515 * @ap: port containing status register to be polled
3516 * @deadline: deadline jiffies for the operation
3518 * After reset, we need to pause a while before reading status.
3519 * Also, certain combination of controller and device report 0xff
3520 * for some duration (e.g. until SATA PHY is up and running)
3521 * which is interpreted as empty port in ATA world. This
3522 * function also waits for such devices to get out of 0xff
3523 * status.
3525 * LOCKING:
3526 * Kernel thread context (may sleep).
3528 void ata_wait_after_reset(struct ata_port *ap, unsigned long deadline)
3530 unsigned long until = jiffies + ATA_TMOUT_FF_WAIT;
3532 if (time_before(until, deadline))
3533 deadline = until;
3535 /* Spec mandates ">= 2ms" before checking status. We wait
3536 * 150ms, because that was the magic delay used for ATAPI
3537 * devices in Hale Landis's ATADRVR, for the period of time
3538 * between when the ATA command register is written, and then
3539 * status is checked. Because waiting for "a while" before
3540 * checking status is fine, post SRST, we perform this magic
3541 * delay here as well.
3543 * Old drivers/ide uses the 2mS rule and then waits for ready.
3545 msleep(150);
3547 /* Wait for 0xff to clear. Some SATA devices take a long time
3548 * to clear 0xff after reset. For example, HHD424020F7SV00
3549 * iVDR needs >= 800ms while. Quantum GoVault needs even more
3550 * than that.
3552 * Note that some PATA controllers (pata_ali) explode if
3553 * status register is read more than once when there's no
3554 * device attached.
3556 if (ap->flags & ATA_FLAG_SATA) {
3557 while (1) {
3558 u8 status = ata_chk_status(ap);
3560 if (status != 0xff || time_after(jiffies, deadline))
3561 return;
3563 msleep(50);
3569 * ata_wait_ready - sleep until BSY clears, or timeout
3570 * @ap: port containing status register to be polled
3571 * @deadline: deadline jiffies for the operation
3573 * Sleep until ATA Status register bit BSY clears, or timeout
3574 * occurs.
3576 * LOCKING:
3577 * Kernel thread context (may sleep).
3579 * RETURNS:
3580 * 0 on success, -errno otherwise.
3582 int ata_wait_ready(struct ata_port *ap, unsigned long deadline)
3584 unsigned long start = jiffies;
3585 int warned = 0;
3587 while (1) {
3588 u8 status = ata_chk_status(ap);
3589 unsigned long now = jiffies;
3591 if (!(status & ATA_BUSY))
3592 return 0;
3593 if (!ata_link_online(&ap->link) && status == 0xff)
3594 return -ENODEV;
3595 if (time_after(now, deadline))
3596 return -EBUSY;
3598 if (!warned && time_after(now, start + 5 * HZ) &&
3599 (deadline - now > 3 * HZ)) {
3600 ata_port_printk(ap, KERN_WARNING,
3601 "port is slow to respond, please be patient "
3602 "(Status 0x%x)\n", status);
3603 warned = 1;
3606 msleep(50);
3610 static int ata_bus_post_reset(struct ata_port *ap, unsigned int devmask,
3611 unsigned long deadline)
3613 struct ata_ioports *ioaddr = &ap->ioaddr;
3614 unsigned int dev0 = devmask & (1 << 0);
3615 unsigned int dev1 = devmask & (1 << 1);
3616 int rc, ret = 0;
3618 /* if device 0 was found in ata_devchk, wait for its
3619 * BSY bit to clear
3621 if (dev0) {
3622 rc = ata_wait_ready(ap, deadline);
3623 if (rc) {
3624 if (rc != -ENODEV)
3625 return rc;
3626 ret = rc;
3630 /* if device 1 was found in ata_devchk, wait for register
3631 * access briefly, then wait for BSY to clear.
3633 if (dev1) {
3634 int i;
3636 ap->ops->dev_select(ap, 1);
3638 /* Wait for register access. Some ATAPI devices fail
3639 * to set nsect/lbal after reset, so don't waste too
3640 * much time on it. We're gonna wait for !BSY anyway.
3642 for (i = 0; i < 2; i++) {
3643 u8 nsect, lbal;
3645 nsect = ioread8(ioaddr->nsect_addr);
3646 lbal = ioread8(ioaddr->lbal_addr);
3647 if ((nsect == 1) && (lbal == 1))
3648 break;
3649 msleep(50); /* give drive a breather */
3652 rc = ata_wait_ready(ap, deadline);
3653 if (rc) {
3654 if (rc != -ENODEV)
3655 return rc;
3656 ret = rc;
3660 /* is all this really necessary? */
3661 ap->ops->dev_select(ap, 0);
3662 if (dev1)
3663 ap->ops->dev_select(ap, 1);
3664 if (dev0)
3665 ap->ops->dev_select(ap, 0);
3667 return ret;
3670 static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
3671 unsigned long deadline)
3673 struct ata_ioports *ioaddr = &ap->ioaddr;
3675 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
3677 /* software reset. causes dev0 to be selected */
3678 iowrite8(ap->ctl, ioaddr->ctl_addr);
3679 udelay(20); /* FIXME: flush */
3680 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
3681 udelay(20); /* FIXME: flush */
3682 iowrite8(ap->ctl, ioaddr->ctl_addr);
3684 /* wait a while before checking status */
3685 ata_wait_after_reset(ap, deadline);
3687 /* Before we perform post reset processing we want to see if
3688 * the bus shows 0xFF because the odd clown forgets the D7
3689 * pulldown resistor.
3691 if (ata_chk_status(ap) == 0xFF)
3692 return -ENODEV;
3694 return ata_bus_post_reset(ap, devmask, deadline);
3698 * ata_bus_reset - reset host port and associated ATA channel
3699 * @ap: port to reset
3701 * This is typically the first time we actually start issuing
3702 * commands to the ATA channel. We wait for BSY to clear, then
3703 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
3704 * result. Determine what devices, if any, are on the channel
3705 * by looking at the device 0/1 error register. Look at the signature
3706 * stored in each device's taskfile registers, to determine if
3707 * the device is ATA or ATAPI.
3709 * LOCKING:
3710 * PCI/etc. bus probe sem.
3711 * Obtains host lock.
3713 * SIDE EFFECTS:
3714 * Sets ATA_FLAG_DISABLED if bus reset fails.
3717 void ata_bus_reset(struct ata_port *ap)
3719 struct ata_device *device = ap->link.device;
3720 struct ata_ioports *ioaddr = &ap->ioaddr;
3721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3722 u8 err;
3723 unsigned int dev0, dev1 = 0, devmask = 0;
3724 int rc;
3726 DPRINTK("ENTER, host %u, port %u\n", ap->print_id, ap->port_no);
3728 /* determine if device 0/1 are present */
3729 if (ap->flags & ATA_FLAG_SATA_RESET)
3730 dev0 = 1;
3731 else {
3732 dev0 = ata_devchk(ap, 0);
3733 if (slave_possible)
3734 dev1 = ata_devchk(ap, 1);
3737 if (dev0)
3738 devmask |= (1 << 0);
3739 if (dev1)
3740 devmask |= (1 << 1);
3742 /* select device 0 again */
3743 ap->ops->dev_select(ap, 0);
3745 /* issue bus reset */
3746 if (ap->flags & ATA_FLAG_SRST) {
3747 rc = ata_bus_softreset(ap, devmask, jiffies + 40 * HZ);
3748 if (rc && rc != -ENODEV)
3749 goto err_out;
3753 * determine by signature whether we have ATA or ATAPI devices
3755 device[0].class = ata_dev_try_classify(&device[0], dev0, &err);
3756 if ((slave_possible) && (err != 0x81))
3757 device[1].class = ata_dev_try_classify(&device[1], dev1, &err);
3759 /* is double-select really necessary? */
3760 if (device[1].class != ATA_DEV_NONE)
3761 ap->ops->dev_select(ap, 1);
3762 if (device[0].class != ATA_DEV_NONE)
3763 ap->ops->dev_select(ap, 0);
3765 /* if no devices were detected, disable this port */
3766 if ((device[0].class == ATA_DEV_NONE) &&
3767 (device[1].class == ATA_DEV_NONE))
3768 goto err_out;
3770 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
3771 /* set up device control for ATA_FLAG_SATA_RESET */
3772 iowrite8(ap->ctl, ioaddr->ctl_addr);
3775 DPRINTK("EXIT\n");
3776 return;
3778 err_out:
3779 ata_port_printk(ap, KERN_ERR, "disabling port\n");
3780 ata_port_disable(ap);
3782 DPRINTK("EXIT\n");
3786 * sata_link_debounce - debounce SATA phy status
3787 * @link: ATA link to debounce SATA phy status for
3788 * @params: timing parameters { interval, duratinon, timeout } in msec
3789 * @deadline: deadline jiffies for the operation
3791 * Make sure SStatus of @link reaches stable state, determined by
3792 * holding the same value where DET is not 1 for @duration polled
3793 * every @interval, before @timeout. Timeout constraints the
3794 * beginning of the stable state. Because DET gets stuck at 1 on
3795 * some controllers after hot unplugging, this functions waits
3796 * until timeout then returns 0 if DET is stable at 1.
3798 * @timeout is further limited by @deadline. The sooner of the
3799 * two is used.
3801 * LOCKING:
3802 * Kernel thread context (may sleep)
3804 * RETURNS:
3805 * 0 on success, -errno on failure.
3807 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3808 unsigned long deadline)
3810 unsigned long interval_msec = params[0];
3811 unsigned long duration = msecs_to_jiffies(params[1]);
3812 unsigned long last_jiffies, t;
3813 u32 last, cur;
3814 int rc;
3816 t = jiffies + msecs_to_jiffies(params[2]);
3817 if (time_before(t, deadline))
3818 deadline = t;
3820 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3821 return rc;
3822 cur &= 0xf;
3824 last = cur;
3825 last_jiffies = jiffies;
3827 while (1) {
3828 msleep(interval_msec);
3829 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3830 return rc;
3831 cur &= 0xf;
3833 /* DET stable? */
3834 if (cur == last) {
3835 if (cur == 1 && time_before(jiffies, deadline))
3836 continue;
3837 if (time_after(jiffies, last_jiffies + duration))
3838 return 0;
3839 continue;
3842 /* unstable, start over */
3843 last = cur;
3844 last_jiffies = jiffies;
3846 /* Check deadline. If debouncing failed, return
3847 * -EPIPE to tell upper layer to lower link speed.
3849 if (time_after(jiffies, deadline))
3850 return -EPIPE;
3855 * sata_link_resume - resume SATA link
3856 * @link: ATA link to resume SATA
3857 * @params: timing parameters { interval, duratinon, timeout } in msec
3858 * @deadline: deadline jiffies for the operation
3860 * Resume SATA phy @link and debounce it.
3862 * LOCKING:
3863 * Kernel thread context (may sleep)
3865 * RETURNS:
3866 * 0 on success, -errno on failure.
3868 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3869 unsigned long deadline)
3871 u32 scontrol;
3872 int rc;
3874 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3875 return rc;
3877 scontrol = (scontrol & 0x0f0) | 0x300;
3879 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3880 return rc;
3882 /* Some PHYs react badly if SStatus is pounded immediately
3883 * after resuming. Delay 200ms before debouncing.
3885 msleep(200);
3887 return sata_link_debounce(link, params, deadline);
3891 * ata_std_prereset - prepare for reset
3892 * @link: ATA link to be reset
3893 * @deadline: deadline jiffies for the operation
3895 * @link is about to be reset. Initialize it. Failure from
3896 * prereset makes libata abort whole reset sequence and give up
3897 * that port, so prereset should be best-effort. It does its
3898 * best to prepare for reset sequence but if things go wrong, it
3899 * should just whine, not fail.
3901 * LOCKING:
3902 * Kernel thread context (may sleep)
3904 * RETURNS:
3905 * 0 on success, -errno otherwise.
3907 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3909 struct ata_port *ap = link->ap;
3910 struct ata_eh_context *ehc = &link->eh_context;
3911 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3912 int rc;
3914 /* handle link resume */
3915 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
3916 (link->flags & ATA_LFLAG_HRST_TO_RESUME))
3917 ehc->i.action |= ATA_EH_HARDRESET;
3919 /* Some PMPs don't work with only SRST, force hardreset if PMP
3920 * is supported.
3922 if (ap->flags & ATA_FLAG_PMP)
3923 ehc->i.action |= ATA_EH_HARDRESET;
3925 /* if we're about to do hardreset, nothing more to do */
3926 if (ehc->i.action & ATA_EH_HARDRESET)
3927 return 0;
3929 /* if SATA, resume link */
3930 if (ap->flags & ATA_FLAG_SATA) {
3931 rc = sata_link_resume(link, timing, deadline);
3932 /* whine about phy resume failure but proceed */
3933 if (rc && rc != -EOPNOTSUPP)
3934 ata_link_printk(link, KERN_WARNING, "failed to resume "
3935 "link for reset (errno=%d)\n", rc);
3938 /* Wait for !BSY if the controller can wait for the first D2H
3939 * Reg FIS and we don't know that no device is attached.
3941 if (!(link->flags & ATA_LFLAG_SKIP_D2H_BSY) && !ata_link_offline(link)) {
3942 rc = ata_wait_ready(ap, deadline);
3943 if (rc && rc != -ENODEV) {
3944 ata_link_printk(link, KERN_WARNING, "device not ready "
3945 "(errno=%d), forcing hardreset\n", rc);
3946 ehc->i.action |= ATA_EH_HARDRESET;
3950 return 0;
3954 * ata_std_softreset - reset host port via ATA SRST
3955 * @link: ATA link to reset
3956 * @classes: resulting classes of attached devices
3957 * @deadline: deadline jiffies for the operation
3959 * Reset host port using ATA SRST.
3961 * LOCKING:
3962 * Kernel thread context (may sleep)
3964 * RETURNS:
3965 * 0 on success, -errno otherwise.
3967 int ata_std_softreset(struct ata_link *link, unsigned int *classes,
3968 unsigned long deadline)
3970 struct ata_port *ap = link->ap;
3971 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
3972 unsigned int devmask = 0;
3973 int rc;
3974 u8 err;
3976 DPRINTK("ENTER\n");
3978 if (ata_link_offline(link)) {
3979 classes[0] = ATA_DEV_NONE;
3980 goto out;
3983 /* determine if device 0/1 are present */
3984 if (ata_devchk(ap, 0))
3985 devmask |= (1 << 0);
3986 if (slave_possible && ata_devchk(ap, 1))
3987 devmask |= (1 << 1);
3989 /* select device 0 again */
3990 ap->ops->dev_select(ap, 0);
3992 /* issue bus reset */
3993 DPRINTK("about to softreset, devmask=%x\n", devmask);
3994 rc = ata_bus_softreset(ap, devmask, deadline);
3995 /* if link is occupied, -ENODEV too is an error */
3996 if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
3997 ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc);
3998 return rc;
4001 /* determine by signature whether we have ATA or ATAPI devices */
4002 classes[0] = ata_dev_try_classify(&link->device[0],
4003 devmask & (1 << 0), &err);
4004 if (slave_possible && err != 0x81)
4005 classes[1] = ata_dev_try_classify(&link->device[1],
4006 devmask & (1 << 1), &err);
4008 out:
4009 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
4010 return 0;
4014 * sata_link_hardreset - reset link via SATA phy reset
4015 * @link: link to reset
4016 * @timing: timing parameters { interval, duratinon, timeout } in msec
4017 * @deadline: deadline jiffies for the operation
4019 * SATA phy-reset @link using DET bits of SControl register.
4021 * LOCKING:
4022 * Kernel thread context (may sleep)
4024 * RETURNS:
4025 * 0 on success, -errno otherwise.
4027 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4028 unsigned long deadline)
4030 u32 scontrol;
4031 int rc;
4033 DPRINTK("ENTER\n");
4035 if (sata_set_spd_needed(link)) {
4036 /* SATA spec says nothing about how to reconfigure
4037 * spd. To be on the safe side, turn off phy during
4038 * reconfiguration. This works for at least ICH7 AHCI
4039 * and Sil3124.
4041 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4042 goto out;
4044 scontrol = (scontrol & 0x0f0) | 0x304;
4046 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4047 goto out;
4049 sata_set_spd(link);
4052 /* issue phy wake/reset */
4053 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4054 goto out;
4056 scontrol = (scontrol & 0x0f0) | 0x301;
4058 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4059 goto out;
4061 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4062 * 10.4.2 says at least 1 ms.
4064 msleep(1);
4066 /* bring link back */
4067 rc = sata_link_resume(link, timing, deadline);
4068 out:
4069 DPRINTK("EXIT, rc=%d\n", rc);
4070 return rc;
4074 * sata_std_hardreset - reset host port via SATA phy reset
4075 * @link: link to reset
4076 * @class: resulting class of attached device
4077 * @deadline: deadline jiffies for the operation
4079 * SATA phy-reset host port using DET bits of SControl register,
4080 * wait for !BSY and classify the attached device.
4082 * LOCKING:
4083 * Kernel thread context (may sleep)
4085 * RETURNS:
4086 * 0 on success, -errno otherwise.
4088 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4089 unsigned long deadline)
4091 struct ata_port *ap = link->ap;
4092 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4093 int rc;
4095 DPRINTK("ENTER\n");
4097 /* do hardreset */
4098 rc = sata_link_hardreset(link, timing, deadline);
4099 if (rc) {
4100 ata_link_printk(link, KERN_ERR,
4101 "COMRESET failed (errno=%d)\n", rc);
4102 return rc;
4105 /* TODO: phy layer with polling, timeouts, etc. */
4106 if (ata_link_offline(link)) {
4107 *class = ATA_DEV_NONE;
4108 DPRINTK("EXIT, link offline\n");
4109 return 0;
4112 /* wait a while before checking status */
4113 ata_wait_after_reset(ap, deadline);
4115 /* If PMP is supported, we have to do follow-up SRST. Note
4116 * that some PMPs don't send D2H Reg FIS after hardreset at
4117 * all if the first port is empty. Wait for it just for a
4118 * second and request follow-up SRST.
4120 if (ap->flags & ATA_FLAG_PMP) {
4121 ata_wait_ready(ap, jiffies + HZ);
4122 return -EAGAIN;
4125 rc = ata_wait_ready(ap, deadline);
4126 /* link occupied, -ENODEV too is an error */
4127 if (rc) {
4128 ata_link_printk(link, KERN_ERR,
4129 "COMRESET failed (errno=%d)\n", rc);
4130 return rc;
4133 ap->ops->dev_select(ap, 0); /* probably unnecessary */
4135 *class = ata_dev_try_classify(link->device, 1, NULL);
4137 DPRINTK("EXIT, class=%u\n", *class);
4138 return 0;
4142 * ata_std_postreset - standard postreset callback
4143 * @link: the target ata_link
4144 * @classes: classes of attached devices
4146 * This function is invoked after a successful reset. Note that
4147 * the device might have been reset more than once using
4148 * different reset methods before postreset is invoked.
4150 * LOCKING:
4151 * Kernel thread context (may sleep)
4153 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4155 struct ata_port *ap = link->ap;
4156 u32 serror;
4158 DPRINTK("ENTER\n");
4160 /* print link status */
4161 sata_print_link_status(link);
4163 /* clear SError */
4164 if (sata_scr_read(link, SCR_ERROR, &serror) == 0)
4165 sata_scr_write(link, SCR_ERROR, serror);
4166 link->eh_info.serror = 0;
4168 /* is double-select really necessary? */
4169 if (classes[0] != ATA_DEV_NONE)
4170 ap->ops->dev_select(ap, 1);
4171 if (classes[1] != ATA_DEV_NONE)
4172 ap->ops->dev_select(ap, 0);
4174 /* bail out if no device is present */
4175 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
4176 DPRINTK("EXIT, no device\n");
4177 return;
4180 /* set up device control */
4181 if (ap->ioaddr.ctl_addr)
4182 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
4184 DPRINTK("EXIT\n");
4188 * ata_dev_same_device - Determine whether new ID matches configured device
4189 * @dev: device to compare against
4190 * @new_class: class of the new device
4191 * @new_id: IDENTIFY page of the new device
4193 * Compare @new_class and @new_id against @dev and determine
4194 * whether @dev is the device indicated by @new_class and
4195 * @new_id.
4197 * LOCKING:
4198 * None.
4200 * RETURNS:
4201 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4203 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4204 const u16 *new_id)
4206 const u16 *old_id = dev->id;
4207 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4208 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4210 if (dev->class != new_class) {
4211 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4212 dev->class, new_class);
4213 return 0;
4216 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4217 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4218 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4219 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4221 if (strcmp(model[0], model[1])) {
4222 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4223 "'%s' != '%s'\n", model[0], model[1]);
4224 return 0;
4227 if (strcmp(serial[0], serial[1])) {
4228 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4229 "'%s' != '%s'\n", serial[0], serial[1]);
4230 return 0;
4233 return 1;
4237 * ata_dev_reread_id - Re-read IDENTIFY data
4238 * @dev: target ATA device
4239 * @readid_flags: read ID flags
4241 * Re-read IDENTIFY page and make sure @dev is still attached to
4242 * the port.
4244 * LOCKING:
4245 * Kernel thread context (may sleep)
4247 * RETURNS:
4248 * 0 on success, negative errno otherwise
4250 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4252 unsigned int class = dev->class;
4253 u16 *id = (void *)dev->link->ap->sector_buf;
4254 int rc;
4256 /* read ID data */
4257 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4258 if (rc)
4259 return rc;
4261 /* is the device still there? */
4262 if (!ata_dev_same_device(dev, class, id))
4263 return -ENODEV;
4265 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4266 return 0;
4270 * ata_dev_revalidate - Revalidate ATA device
4271 * @dev: device to revalidate
4272 * @new_class: new class code
4273 * @readid_flags: read ID flags
4275 * Re-read IDENTIFY page, make sure @dev is still attached to the
4276 * port and reconfigure it according to the new IDENTIFY page.
4278 * LOCKING:
4279 * Kernel thread context (may sleep)
4281 * RETURNS:
4282 * 0 on success, negative errno otherwise
4284 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4285 unsigned int readid_flags)
4287 u64 n_sectors = dev->n_sectors;
4288 int rc;
4290 if (!ata_dev_enabled(dev))
4291 return -ENODEV;
4293 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4294 if (ata_class_enabled(new_class) &&
4295 new_class != ATA_DEV_ATA && new_class != ATA_DEV_ATAPI) {
4296 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4297 dev->class, new_class);
4298 rc = -ENODEV;
4299 goto fail;
4302 /* re-read ID */
4303 rc = ata_dev_reread_id(dev, readid_flags);
4304 if (rc)
4305 goto fail;
4307 /* configure device according to the new ID */
4308 rc = ata_dev_configure(dev);
4309 if (rc)
4310 goto fail;
4312 /* verify n_sectors hasn't changed */
4313 if (dev->class == ATA_DEV_ATA && n_sectors &&
4314 dev->n_sectors != n_sectors) {
4315 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
4316 "%llu != %llu\n",
4317 (unsigned long long)n_sectors,
4318 (unsigned long long)dev->n_sectors);
4320 /* restore original n_sectors */
4321 dev->n_sectors = n_sectors;
4323 rc = -ENODEV;
4324 goto fail;
4327 return 0;
4329 fail:
4330 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4331 return rc;
4334 struct ata_blacklist_entry {
4335 const char *model_num;
4336 const char *model_rev;
4337 unsigned long horkage;
4340 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4341 /* Devices with DMA related problems under Linux */
4342 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4343 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4344 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4345 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4346 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4347 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4348 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4349 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4350 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4351 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4352 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4353 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4354 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4355 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4356 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4357 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4358 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4359 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4360 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4361 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4362 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4363 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4364 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4365 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4366 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4367 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4368 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4369 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4370 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4371 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4372 /* Odd clown on sil3726/4726 PMPs */
4373 { "Config Disk", NULL, ATA_HORKAGE_NODMA |
4374 ATA_HORKAGE_SKIP_PM },
4376 /* Weird ATAPI devices */
4377 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4379 /* Devices we expect to fail diagnostics */
4381 /* Devices where NCQ should be avoided */
4382 /* NCQ is slow */
4383 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4384 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4385 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4386 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4387 /* NCQ is broken */
4388 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4389 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4390 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4391 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4393 /* Blacklist entries taken from Silicon Image 3124/3132
4394 Windows driver .inf file - also several Linux problem reports */
4395 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4396 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4397 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4399 /* devices which puke on READ_NATIVE_MAX */
4400 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4401 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4402 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4403 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4405 /* Devices which report 1 sector over size HPA */
4406 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4407 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4408 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4410 /* Devices which get the IVB wrong */
4411 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4412 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4413 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4414 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4415 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4417 /* End Marker */
4421 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4423 const char *p;
4424 int len;
4427 * check for trailing wildcard: *\0
4429 p = strchr(patt, wildchar);
4430 if (p && ((*(p + 1)) == 0))
4431 len = p - patt;
4432 else {
4433 len = strlen(name);
4434 if (!len) {
4435 if (!*patt)
4436 return 0;
4437 return -1;
4441 return strncmp(patt, name, len);
4444 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4446 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4447 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4448 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4450 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4451 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4453 while (ad->model_num) {
4454 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4455 if (ad->model_rev == NULL)
4456 return ad->horkage;
4457 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4458 return ad->horkage;
4460 ad++;
4462 return 0;
4465 static int ata_dma_blacklisted(const struct ata_device *dev)
4467 /* We don't support polling DMA.
4468 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4469 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4471 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4472 (dev->flags & ATA_DFLAG_CDB_INTR))
4473 return 1;
4474 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4478 * ata_is_40wire - check drive side detection
4479 * @dev: device
4481 * Perform drive side detection decoding, allowing for device vendors
4482 * who can't follow the documentation.
4485 static int ata_is_40wire(struct ata_device *dev)
4487 if (dev->horkage & ATA_HORKAGE_IVB)
4488 return ata_drive_40wire_relaxed(dev->id);
4489 return ata_drive_40wire(dev->id);
4493 * ata_dev_xfermask - Compute supported xfermask of the given device
4494 * @dev: Device to compute xfermask for
4496 * Compute supported xfermask of @dev and store it in
4497 * dev->*_mask. This function is responsible for applying all
4498 * known limits including host controller limits, device
4499 * blacklist, etc...
4501 * LOCKING:
4502 * None.
4504 static void ata_dev_xfermask(struct ata_device *dev)
4506 struct ata_link *link = dev->link;
4507 struct ata_port *ap = link->ap;
4508 struct ata_host *host = ap->host;
4509 unsigned long xfer_mask;
4511 /* controller modes available */
4512 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4513 ap->mwdma_mask, ap->udma_mask);
4515 /* drive modes available */
4516 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4517 dev->mwdma_mask, dev->udma_mask);
4518 xfer_mask &= ata_id_xfermask(dev->id);
4521 * CFA Advanced TrueIDE timings are not allowed on a shared
4522 * cable
4524 if (ata_dev_pair(dev)) {
4525 /* No PIO5 or PIO6 */
4526 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4527 /* No MWDMA3 or MWDMA 4 */
4528 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4531 if (ata_dma_blacklisted(dev)) {
4532 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4533 ata_dev_printk(dev, KERN_WARNING,
4534 "device is on DMA blacklist, disabling DMA\n");
4537 if ((host->flags & ATA_HOST_SIMPLEX) &&
4538 host->simplex_claimed && host->simplex_claimed != ap) {
4539 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4540 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4541 "other device, disabling DMA\n");
4544 if (ap->flags & ATA_FLAG_NO_IORDY)
4545 xfer_mask &= ata_pio_mask_no_iordy(dev);
4547 if (ap->ops->mode_filter)
4548 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4550 /* Apply cable rule here. Don't apply it early because when
4551 * we handle hot plug the cable type can itself change.
4552 * Check this last so that we know if the transfer rate was
4553 * solely limited by the cable.
4554 * Unknown or 80 wire cables reported host side are checked
4555 * drive side as well. Cases where we know a 40wire cable
4556 * is used safely for 80 are not checked here.
4558 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4559 /* UDMA/44 or higher would be available */
4560 if ((ap->cbl == ATA_CBL_PATA40) ||
4561 (ata_is_40wire(dev) &&
4562 (ap->cbl == ATA_CBL_PATA_UNK ||
4563 ap->cbl == ATA_CBL_PATA80))) {
4564 ata_dev_printk(dev, KERN_WARNING,
4565 "limited to UDMA/33 due to 40-wire cable\n");
4566 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4569 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4570 &dev->mwdma_mask, &dev->udma_mask);
4574 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4575 * @dev: Device to which command will be sent
4577 * Issue SET FEATURES - XFER MODE command to device @dev
4578 * on port @ap.
4580 * LOCKING:
4581 * PCI/etc. bus probe sem.
4583 * RETURNS:
4584 * 0 on success, AC_ERR_* mask otherwise.
4587 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4589 struct ata_taskfile tf;
4590 unsigned int err_mask;
4592 /* set up set-features taskfile */
4593 DPRINTK("set features - xfer mode\n");
4595 /* Some controllers and ATAPI devices show flaky interrupt
4596 * behavior after setting xfer mode. Use polling instead.
4598 ata_tf_init(dev, &tf);
4599 tf.command = ATA_CMD_SET_FEATURES;
4600 tf.feature = SETFEATURES_XFER;
4601 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4602 tf.protocol = ATA_PROT_NODATA;
4603 /* If we are using IORDY we must send the mode setting command */
4604 if (ata_pio_need_iordy(dev))
4605 tf.nsect = dev->xfer_mode;
4606 /* If the device has IORDY and the controller does not - turn it off */
4607 else if (ata_id_has_iordy(dev->id))
4608 tf.nsect = 0x01;
4609 else /* In the ancient relic department - skip all of this */
4610 return 0;
4612 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4614 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4615 return err_mask;
4618 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4619 * @dev: Device to which command will be sent
4620 * @enable: Whether to enable or disable the feature
4621 * @feature: The sector count represents the feature to set
4623 * Issue SET FEATURES - SATA FEATURES command to device @dev
4624 * on port @ap with sector count
4626 * LOCKING:
4627 * PCI/etc. bus probe sem.
4629 * RETURNS:
4630 * 0 on success, AC_ERR_* mask otherwise.
4632 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4633 u8 feature)
4635 struct ata_taskfile tf;
4636 unsigned int err_mask;
4638 /* set up set-features taskfile */
4639 DPRINTK("set features - SATA features\n");
4641 ata_tf_init(dev, &tf);
4642 tf.command = ATA_CMD_SET_FEATURES;
4643 tf.feature = enable;
4644 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4645 tf.protocol = ATA_PROT_NODATA;
4646 tf.nsect = feature;
4648 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4650 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4651 return err_mask;
4655 * ata_dev_init_params - Issue INIT DEV PARAMS command
4656 * @dev: Device to which command will be sent
4657 * @heads: Number of heads (taskfile parameter)
4658 * @sectors: Number of sectors (taskfile parameter)
4660 * LOCKING:
4661 * Kernel thread context (may sleep)
4663 * RETURNS:
4664 * 0 on success, AC_ERR_* mask otherwise.
4666 static unsigned int ata_dev_init_params(struct ata_device *dev,
4667 u16 heads, u16 sectors)
4669 struct ata_taskfile tf;
4670 unsigned int err_mask;
4672 /* Number of sectors per track 1-255. Number of heads 1-16 */
4673 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4674 return AC_ERR_INVALID;
4676 /* set up init dev params taskfile */
4677 DPRINTK("init dev params \n");
4679 ata_tf_init(dev, &tf);
4680 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4681 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4682 tf.protocol = ATA_PROT_NODATA;
4683 tf.nsect = sectors;
4684 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4686 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4687 /* A clean abort indicates an original or just out of spec drive
4688 and we should continue as we issue the setup based on the
4689 drive reported working geometry */
4690 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4691 err_mask = 0;
4693 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4694 return err_mask;
4698 * ata_sg_clean - Unmap DMA memory associated with command
4699 * @qc: Command containing DMA memory to be released
4701 * Unmap all mapped DMA memory associated with this command.
4703 * LOCKING:
4704 * spin_lock_irqsave(host lock)
4706 void ata_sg_clean(struct ata_queued_cmd *qc)
4708 struct ata_port *ap = qc->ap;
4709 struct scatterlist *sg = qc->sg;
4710 int dir = qc->dma_dir;
4712 WARN_ON(sg == NULL);
4714 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4716 if (qc->n_elem)
4717 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
4719 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4720 qc->sg = NULL;
4724 * ata_fill_sg - Fill PCI IDE PRD table
4725 * @qc: Metadata associated with taskfile to be transferred
4727 * Fill PCI IDE PRD (scatter-gather) table with segments
4728 * associated with the current disk command.
4730 * LOCKING:
4731 * spin_lock_irqsave(host lock)
4734 static void ata_fill_sg(struct ata_queued_cmd *qc)
4736 struct ata_port *ap = qc->ap;
4737 struct scatterlist *sg;
4738 unsigned int si, pi;
4740 pi = 0;
4741 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4742 u32 addr, offset;
4743 u32 sg_len, len;
4745 /* determine if physical DMA addr spans 64K boundary.
4746 * Note h/w doesn't support 64-bit, so we unconditionally
4747 * truncate dma_addr_t to u32.
4749 addr = (u32) sg_dma_address(sg);
4750 sg_len = sg_dma_len(sg);
4752 while (sg_len) {
4753 offset = addr & 0xffff;
4754 len = sg_len;
4755 if ((offset + sg_len) > 0x10000)
4756 len = 0x10000 - offset;
4758 ap->prd[pi].addr = cpu_to_le32(addr);
4759 ap->prd[pi].flags_len = cpu_to_le32(len & 0xffff);
4760 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4762 pi++;
4763 sg_len -= len;
4764 addr += len;
4768 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4772 * ata_fill_sg_dumb - Fill PCI IDE PRD table
4773 * @qc: Metadata associated with taskfile to be transferred
4775 * Fill PCI IDE PRD (scatter-gather) table with segments
4776 * associated with the current disk command. Perform the fill
4777 * so that we avoid writing any length 64K records for
4778 * controllers that don't follow the spec.
4780 * LOCKING:
4781 * spin_lock_irqsave(host lock)
4784 static void ata_fill_sg_dumb(struct ata_queued_cmd *qc)
4786 struct ata_port *ap = qc->ap;
4787 struct scatterlist *sg;
4788 unsigned int si, pi;
4790 pi = 0;
4791 for_each_sg(qc->sg, sg, qc->n_elem, si) {
4792 u32 addr, offset;
4793 u32 sg_len, len, blen;
4795 /* determine if physical DMA addr spans 64K boundary.
4796 * Note h/w doesn't support 64-bit, so we unconditionally
4797 * truncate dma_addr_t to u32.
4799 addr = (u32) sg_dma_address(sg);
4800 sg_len = sg_dma_len(sg);
4802 while (sg_len) {
4803 offset = addr & 0xffff;
4804 len = sg_len;
4805 if ((offset + sg_len) > 0x10000)
4806 len = 0x10000 - offset;
4808 blen = len & 0xffff;
4809 ap->prd[pi].addr = cpu_to_le32(addr);
4810 if (blen == 0) {
4811 /* Some PATA chipsets like the CS5530 can't
4812 cope with 0x0000 meaning 64K as the spec says */
4813 ap->prd[pi].flags_len = cpu_to_le32(0x8000);
4814 blen = 0x8000;
4815 ap->prd[++pi].addr = cpu_to_le32(addr + 0x8000);
4817 ap->prd[pi].flags_len = cpu_to_le32(blen);
4818 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
4820 pi++;
4821 sg_len -= len;
4822 addr += len;
4826 ap->prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
4830 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
4831 * @qc: Metadata associated with taskfile to check
4833 * Allow low-level driver to filter ATA PACKET commands, returning
4834 * a status indicating whether or not it is OK to use DMA for the
4835 * supplied PACKET command.
4837 * LOCKING:
4838 * spin_lock_irqsave(host lock)
4840 * RETURNS: 0 when ATAPI DMA can be used
4841 * nonzero otherwise
4843 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
4845 struct ata_port *ap = qc->ap;
4847 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4848 * few ATAPI devices choke on such DMA requests.
4850 if (unlikely(qc->nbytes & 15))
4851 return 1;
4853 if (ap->ops->check_atapi_dma)
4854 return ap->ops->check_atapi_dma(qc);
4856 return 0;
4860 * ata_std_qc_defer - Check whether a qc needs to be deferred
4861 * @qc: ATA command in question
4863 * Non-NCQ commands cannot run with any other command, NCQ or
4864 * not. As upper layer only knows the queue depth, we are
4865 * responsible for maintaining exclusion. This function checks
4866 * whether a new command @qc can be issued.
4868 * LOCKING:
4869 * spin_lock_irqsave(host lock)
4871 * RETURNS:
4872 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4874 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4876 struct ata_link *link = qc->dev->link;
4878 if (qc->tf.protocol == ATA_PROT_NCQ) {
4879 if (!ata_tag_valid(link->active_tag))
4880 return 0;
4881 } else {
4882 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4883 return 0;
4886 return ATA_DEFER_LINK;
4890 * ata_qc_prep - Prepare taskfile for submission
4891 * @qc: Metadata associated with taskfile to be prepared
4893 * Prepare ATA taskfile for submission.
4895 * LOCKING:
4896 * spin_lock_irqsave(host lock)
4898 void ata_qc_prep(struct ata_queued_cmd *qc)
4900 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4901 return;
4903 ata_fill_sg(qc);
4907 * ata_dumb_qc_prep - Prepare taskfile for submission
4908 * @qc: Metadata associated with taskfile to be prepared
4910 * Prepare ATA taskfile for submission.
4912 * LOCKING:
4913 * spin_lock_irqsave(host lock)
4915 void ata_dumb_qc_prep(struct ata_queued_cmd *qc)
4917 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
4918 return;
4920 ata_fill_sg_dumb(qc);
4923 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4926 * ata_sg_init - Associate command with scatter-gather table.
4927 * @qc: Command to be associated
4928 * @sg: Scatter-gather table.
4929 * @n_elem: Number of elements in s/g table.
4931 * Initialize the data-related elements of queued_cmd @qc
4932 * to point to a scatter-gather table @sg, containing @n_elem
4933 * elements.
4935 * LOCKING:
4936 * spin_lock_irqsave(host lock)
4938 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4939 unsigned int n_elem)
4941 qc->sg = sg;
4942 qc->n_elem = n_elem;
4943 qc->cursg = qc->sg;
4947 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4948 * @qc: Command with scatter-gather table to be mapped.
4950 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4952 * LOCKING:
4953 * spin_lock_irqsave(host lock)
4955 * RETURNS:
4956 * Zero on success, negative on error.
4959 static int ata_sg_setup(struct ata_queued_cmd *qc)
4961 struct ata_port *ap = qc->ap;
4962 unsigned int n_elem;
4964 VPRINTK("ENTER, ata%u\n", ap->print_id);
4966 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4967 if (n_elem < 1)
4968 return -1;
4970 DPRINTK("%d sg elements mapped\n", n_elem);
4972 qc->n_elem = n_elem;
4973 qc->flags |= ATA_QCFLAG_DMAMAP;
4975 return 0;
4979 * swap_buf_le16 - swap halves of 16-bit words in place
4980 * @buf: Buffer to swap
4981 * @buf_words: Number of 16-bit words in buffer.
4983 * Swap halves of 16-bit words if needed to convert from
4984 * little-endian byte order to native cpu byte order, or
4985 * vice-versa.
4987 * LOCKING:
4988 * Inherited from caller.
4990 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4992 #ifdef __BIG_ENDIAN
4993 unsigned int i;
4995 for (i = 0; i < buf_words; i++)
4996 buf[i] = le16_to_cpu(buf[i]);
4997 #endif /* __BIG_ENDIAN */
5001 * ata_data_xfer - Transfer data by PIO
5002 * @dev: device to target
5003 * @buf: data buffer
5004 * @buflen: buffer length
5005 * @rw: read/write
5007 * Transfer data from/to the device data register by PIO.
5009 * LOCKING:
5010 * Inherited from caller.
5012 * RETURNS:
5013 * Bytes consumed.
5015 unsigned int ata_data_xfer(struct ata_device *dev, unsigned char *buf,
5016 unsigned int buflen, int rw)
5018 struct ata_port *ap = dev->link->ap;
5019 void __iomem *data_addr = ap->ioaddr.data_addr;
5020 unsigned int words = buflen >> 1;
5022 /* Transfer multiple of 2 bytes */
5023 if (rw == READ)
5024 ioread16_rep(data_addr, buf, words);
5025 else
5026 iowrite16_rep(data_addr, buf, words);
5028 /* Transfer trailing 1 byte, if any. */
5029 if (unlikely(buflen & 0x01)) {
5030 __le16 align_buf[1] = { 0 };
5031 unsigned char *trailing_buf = buf + buflen - 1;
5033 if (rw == READ) {
5034 align_buf[0] = cpu_to_le16(ioread16(data_addr));
5035 memcpy(trailing_buf, align_buf, 1);
5036 } else {
5037 memcpy(align_buf, trailing_buf, 1);
5038 iowrite16(le16_to_cpu(align_buf[0]), data_addr);
5040 words++;
5043 return words << 1;
5047 * ata_data_xfer_noirq - Transfer data by PIO
5048 * @dev: device to target
5049 * @buf: data buffer
5050 * @buflen: buffer length
5051 * @rw: read/write
5053 * Transfer data from/to the device data register by PIO. Do the
5054 * transfer with interrupts disabled.
5056 * LOCKING:
5057 * Inherited from caller.
5059 * RETURNS:
5060 * Bytes consumed.
5062 unsigned int ata_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
5063 unsigned int buflen, int rw)
5065 unsigned long flags;
5066 unsigned int consumed;
5068 local_irq_save(flags);
5069 consumed = ata_data_xfer(dev, buf, buflen, rw);
5070 local_irq_restore(flags);
5072 return consumed;
5077 * ata_pio_sector - Transfer a sector of data.
5078 * @qc: Command on going
5080 * Transfer qc->sect_size bytes of data from/to the ATA device.
5082 * LOCKING:
5083 * Inherited from caller.
5086 static void ata_pio_sector(struct ata_queued_cmd *qc)
5088 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
5089 struct ata_port *ap = qc->ap;
5090 struct page *page;
5091 unsigned int offset;
5092 unsigned char *buf;
5094 if (qc->curbytes == qc->nbytes - qc->sect_size)
5095 ap->hsm_task_state = HSM_ST_LAST;
5097 page = sg_page(qc->cursg);
5098 offset = qc->cursg->offset + qc->cursg_ofs;
5100 /* get the current page and offset */
5101 page = nth_page(page, (offset >> PAGE_SHIFT));
5102 offset %= PAGE_SIZE;
5104 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5106 if (PageHighMem(page)) {
5107 unsigned long flags;
5109 /* FIXME: use a bounce buffer */
5110 local_irq_save(flags);
5111 buf = kmap_atomic(page, KM_IRQ0);
5113 /* do the actual data transfer */
5114 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5116 kunmap_atomic(buf, KM_IRQ0);
5117 local_irq_restore(flags);
5118 } else {
5119 buf = page_address(page);
5120 ap->ops->data_xfer(qc->dev, buf + offset, qc->sect_size, do_write);
5123 qc->curbytes += qc->sect_size;
5124 qc->cursg_ofs += qc->sect_size;
5126 if (qc->cursg_ofs == qc->cursg->length) {
5127 qc->cursg = sg_next(qc->cursg);
5128 qc->cursg_ofs = 0;
5133 * ata_pio_sectors - Transfer one or many sectors.
5134 * @qc: Command on going
5136 * Transfer one or many sectors of data from/to the
5137 * ATA device for the DRQ request.
5139 * LOCKING:
5140 * Inherited from caller.
5143 static void ata_pio_sectors(struct ata_queued_cmd *qc)
5145 if (is_multi_taskfile(&qc->tf)) {
5146 /* READ/WRITE MULTIPLE */
5147 unsigned int nsect;
5149 WARN_ON(qc->dev->multi_count == 0);
5151 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
5152 qc->dev->multi_count);
5153 while (nsect--)
5154 ata_pio_sector(qc);
5155 } else
5156 ata_pio_sector(qc);
5158 ata_altstatus(qc->ap); /* flush */
5162 * atapi_send_cdb - Write CDB bytes to hardware
5163 * @ap: Port to which ATAPI device is attached.
5164 * @qc: Taskfile currently active
5166 * When device has indicated its readiness to accept
5167 * a CDB, this function is called. Send the CDB.
5169 * LOCKING:
5170 * caller.
5173 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
5175 /* send SCSI cdb */
5176 DPRINTK("send cdb\n");
5177 WARN_ON(qc->dev->cdb_len < 12);
5179 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
5180 ata_altstatus(ap); /* flush */
5182 switch (qc->tf.protocol) {
5183 case ATAPI_PROT_PIO:
5184 ap->hsm_task_state = HSM_ST;
5185 break;
5186 case ATAPI_PROT_NODATA:
5187 ap->hsm_task_state = HSM_ST_LAST;
5188 break;
5189 case ATAPI_PROT_DMA:
5190 ap->hsm_task_state = HSM_ST_LAST;
5191 /* initiate bmdma */
5192 ap->ops->bmdma_start(qc);
5193 break;
5198 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
5199 * @qc: Command on going
5200 * @bytes: number of bytes
5202 * Transfer Transfer data from/to the ATAPI device.
5204 * LOCKING:
5205 * Inherited from caller.
5208 static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
5210 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
5211 struct ata_port *ap = qc->ap;
5212 struct ata_device *dev = qc->dev;
5213 struct ata_eh_info *ehi = &dev->link->eh_info;
5214 struct scatterlist *sg;
5215 struct page *page;
5216 unsigned char *buf;
5217 unsigned int offset, count, consumed;
5219 next_sg:
5220 sg = qc->cursg;
5221 if (unlikely(!sg)) {
5222 ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
5223 "buf=%u cur=%u bytes=%u",
5224 qc->nbytes, qc->curbytes, bytes);
5225 return -1;
5228 page = sg_page(sg);
5229 offset = sg->offset + qc->cursg_ofs;
5231 /* get the current page and offset */
5232 page = nth_page(page, (offset >> PAGE_SHIFT));
5233 offset %= PAGE_SIZE;
5235 /* don't overrun current sg */
5236 count = min(sg->length - qc->cursg_ofs, bytes);
5238 /* don't cross page boundaries */
5239 count = min(count, (unsigned int)PAGE_SIZE - offset);
5241 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
5243 if (PageHighMem(page)) {
5244 unsigned long flags;
5246 /* FIXME: use bounce buffer */
5247 local_irq_save(flags);
5248 buf = kmap_atomic(page, KM_IRQ0);
5250 /* do the actual data transfer */
5251 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5253 kunmap_atomic(buf, KM_IRQ0);
5254 local_irq_restore(flags);
5255 } else {
5256 buf = page_address(page);
5257 consumed = ap->ops->data_xfer(dev, buf + offset, count, rw);
5260 bytes -= min(bytes, consumed);
5261 qc->curbytes += count;
5262 qc->cursg_ofs += count;
5264 if (qc->cursg_ofs == sg->length) {
5265 qc->cursg = sg_next(qc->cursg);
5266 qc->cursg_ofs = 0;
5269 /* consumed can be larger than count only for the last transfer */
5270 WARN_ON(qc->cursg && count != consumed);
5272 if (bytes)
5273 goto next_sg;
5274 return 0;
5278 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
5279 * @qc: Command on going
5281 * Transfer Transfer data from/to the ATAPI device.
5283 * LOCKING:
5284 * Inherited from caller.
5287 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
5289 struct ata_port *ap = qc->ap;
5290 struct ata_device *dev = qc->dev;
5291 struct ata_eh_info *ehi = &dev->link->eh_info;
5292 unsigned int ireason, bc_lo, bc_hi, bytes;
5293 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
5295 /* Abuse qc->result_tf for temp storage of intermediate TF
5296 * here to save some kernel stack usage.
5297 * For normal completion, qc->result_tf is not relevant. For
5298 * error, qc->result_tf is later overwritten by ata_qc_complete().
5299 * So, the correctness of qc->result_tf is not affected.
5301 ap->ops->tf_read(ap, &qc->result_tf);
5302 ireason = qc->result_tf.nsect;
5303 bc_lo = qc->result_tf.lbam;
5304 bc_hi = qc->result_tf.lbah;
5305 bytes = (bc_hi << 8) | bc_lo;
5307 /* shall be cleared to zero, indicating xfer of data */
5308 if (unlikely(ireason & (1 << 0)))
5309 goto atapi_check;
5311 /* make sure transfer direction matches expected */
5312 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
5313 if (unlikely(do_write != i_write))
5314 goto atapi_check;
5316 if (unlikely(!bytes))
5317 goto atapi_check;
5319 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
5321 if (unlikely(__atapi_pio_bytes(qc, bytes)))
5322 goto err_out;
5323 ata_altstatus(ap); /* flush */
5325 return;
5327 atapi_check:
5328 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
5329 ireason, bytes);
5330 err_out:
5331 qc->err_mask |= AC_ERR_HSM;
5332 ap->hsm_task_state = HSM_ST_ERR;
5336 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
5337 * @ap: the target ata_port
5338 * @qc: qc on going
5340 * RETURNS:
5341 * 1 if ok in workqueue, 0 otherwise.
5344 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
5346 if (qc->tf.flags & ATA_TFLAG_POLLING)
5347 return 1;
5349 if (ap->hsm_task_state == HSM_ST_FIRST) {
5350 if (qc->tf.protocol == ATA_PROT_PIO &&
5351 (qc->tf.flags & ATA_TFLAG_WRITE))
5352 return 1;
5354 if (ata_is_atapi(qc->tf.protocol) &&
5355 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5356 return 1;
5359 return 0;
5363 * ata_hsm_qc_complete - finish a qc running on standard HSM
5364 * @qc: Command to complete
5365 * @in_wq: 1 if called from workqueue, 0 otherwise
5367 * Finish @qc which is running on standard HSM.
5369 * LOCKING:
5370 * If @in_wq is zero, spin_lock_irqsave(host lock).
5371 * Otherwise, none on entry and grabs host lock.
5373 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
5375 struct ata_port *ap = qc->ap;
5376 unsigned long flags;
5378 if (ap->ops->error_handler) {
5379 if (in_wq) {
5380 spin_lock_irqsave(ap->lock, flags);
5382 /* EH might have kicked in while host lock is
5383 * released.
5385 qc = ata_qc_from_tag(ap, qc->tag);
5386 if (qc) {
5387 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
5388 ap->ops->irq_on(ap);
5389 ata_qc_complete(qc);
5390 } else
5391 ata_port_freeze(ap);
5394 spin_unlock_irqrestore(ap->lock, flags);
5395 } else {
5396 if (likely(!(qc->err_mask & AC_ERR_HSM)))
5397 ata_qc_complete(qc);
5398 else
5399 ata_port_freeze(ap);
5401 } else {
5402 if (in_wq) {
5403 spin_lock_irqsave(ap->lock, flags);
5404 ap->ops->irq_on(ap);
5405 ata_qc_complete(qc);
5406 spin_unlock_irqrestore(ap->lock, flags);
5407 } else
5408 ata_qc_complete(qc);
5413 * ata_hsm_move - move the HSM to the next state.
5414 * @ap: the target ata_port
5415 * @qc: qc on going
5416 * @status: current device status
5417 * @in_wq: 1 if called from workqueue, 0 otherwise
5419 * RETURNS:
5420 * 1 when poll next status needed, 0 otherwise.
5422 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
5423 u8 status, int in_wq)
5425 unsigned long flags = 0;
5426 int poll_next;
5428 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
5430 /* Make sure ata_qc_issue_prot() does not throw things
5431 * like DMA polling into the workqueue. Notice that
5432 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
5434 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
5436 fsm_start:
5437 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
5438 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
5440 switch (ap->hsm_task_state) {
5441 case HSM_ST_FIRST:
5442 /* Send first data block or PACKET CDB */
5444 /* If polling, we will stay in the work queue after
5445 * sending the data. Otherwise, interrupt handler
5446 * takes over after sending the data.
5448 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
5450 /* check device status */
5451 if (unlikely((status & ATA_DRQ) == 0)) {
5452 /* handle BSY=0, DRQ=0 as error */
5453 if (likely(status & (ATA_ERR | ATA_DF)))
5454 /* device stops HSM for abort/error */
5455 qc->err_mask |= AC_ERR_DEV;
5456 else
5457 /* HSM violation. Let EH handle this */
5458 qc->err_mask |= AC_ERR_HSM;
5460 ap->hsm_task_state = HSM_ST_ERR;
5461 goto fsm_start;
5464 /* Device should not ask for data transfer (DRQ=1)
5465 * when it finds something wrong.
5466 * We ignore DRQ here and stop the HSM by
5467 * changing hsm_task_state to HSM_ST_ERR and
5468 * let the EH abort the command or reset the device.
5470 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5471 /* Some ATAPI tape drives forget to clear the ERR bit
5472 * when doing the next command (mostly request sense).
5473 * We ignore ERR here to workaround and proceed sending
5474 * the CDB.
5476 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
5477 ata_port_printk(ap, KERN_WARNING,
5478 "DRQ=1 with device error, "
5479 "dev_stat 0x%X\n", status);
5480 qc->err_mask |= AC_ERR_HSM;
5481 ap->hsm_task_state = HSM_ST_ERR;
5482 goto fsm_start;
5486 /* Send the CDB (atapi) or the first data block (ata pio out).
5487 * During the state transition, interrupt handler shouldn't
5488 * be invoked before the data transfer is complete and
5489 * hsm_task_state is changed. Hence, the following locking.
5491 if (in_wq)
5492 spin_lock_irqsave(ap->lock, flags);
5494 if (qc->tf.protocol == ATA_PROT_PIO) {
5495 /* PIO data out protocol.
5496 * send first data block.
5499 /* ata_pio_sectors() might change the state
5500 * to HSM_ST_LAST. so, the state is changed here
5501 * before ata_pio_sectors().
5503 ap->hsm_task_state = HSM_ST;
5504 ata_pio_sectors(qc);
5505 } else
5506 /* send CDB */
5507 atapi_send_cdb(ap, qc);
5509 if (in_wq)
5510 spin_unlock_irqrestore(ap->lock, flags);
5512 /* if polling, ata_pio_task() handles the rest.
5513 * otherwise, interrupt handler takes over from here.
5515 break;
5517 case HSM_ST:
5518 /* complete command or read/write the data register */
5519 if (qc->tf.protocol == ATAPI_PROT_PIO) {
5520 /* ATAPI PIO protocol */
5521 if ((status & ATA_DRQ) == 0) {
5522 /* No more data to transfer or device error.
5523 * Device error will be tagged in HSM_ST_LAST.
5525 ap->hsm_task_state = HSM_ST_LAST;
5526 goto fsm_start;
5529 /* Device should not ask for data transfer (DRQ=1)
5530 * when it finds something wrong.
5531 * We ignore DRQ here and stop the HSM by
5532 * changing hsm_task_state to HSM_ST_ERR and
5533 * let the EH abort the command or reset the device.
5535 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5536 ata_port_printk(ap, KERN_WARNING, "DRQ=1 with "
5537 "device error, dev_stat 0x%X\n",
5538 status);
5539 qc->err_mask |= AC_ERR_HSM;
5540 ap->hsm_task_state = HSM_ST_ERR;
5541 goto fsm_start;
5544 atapi_pio_bytes(qc);
5546 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
5547 /* bad ireason reported by device */
5548 goto fsm_start;
5550 } else {
5551 /* ATA PIO protocol */
5552 if (unlikely((status & ATA_DRQ) == 0)) {
5553 /* handle BSY=0, DRQ=0 as error */
5554 if (likely(status & (ATA_ERR | ATA_DF)))
5555 /* device stops HSM for abort/error */
5556 qc->err_mask |= AC_ERR_DEV;
5557 else
5558 /* HSM violation. Let EH handle this.
5559 * Phantom devices also trigger this
5560 * condition. Mark hint.
5562 qc->err_mask |= AC_ERR_HSM |
5563 AC_ERR_NODEV_HINT;
5565 ap->hsm_task_state = HSM_ST_ERR;
5566 goto fsm_start;
5569 /* For PIO reads, some devices may ask for
5570 * data transfer (DRQ=1) alone with ERR=1.
5571 * We respect DRQ here and transfer one
5572 * block of junk data before changing the
5573 * hsm_task_state to HSM_ST_ERR.
5575 * For PIO writes, ERR=1 DRQ=1 doesn't make
5576 * sense since the data block has been
5577 * transferred to the device.
5579 if (unlikely(status & (ATA_ERR | ATA_DF))) {
5580 /* data might be corrputed */
5581 qc->err_mask |= AC_ERR_DEV;
5583 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
5584 ata_pio_sectors(qc);
5585 status = ata_wait_idle(ap);
5588 if (status & (ATA_BUSY | ATA_DRQ))
5589 qc->err_mask |= AC_ERR_HSM;
5591 /* ata_pio_sectors() might change the
5592 * state to HSM_ST_LAST. so, the state
5593 * is changed after ata_pio_sectors().
5595 ap->hsm_task_state = HSM_ST_ERR;
5596 goto fsm_start;
5599 ata_pio_sectors(qc);
5601 if (ap->hsm_task_state == HSM_ST_LAST &&
5602 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
5603 /* all data read */
5604 status = ata_wait_idle(ap);
5605 goto fsm_start;
5609 poll_next = 1;
5610 break;
5612 case HSM_ST_LAST:
5613 if (unlikely(!ata_ok(status))) {
5614 qc->err_mask |= __ac_err_mask(status);
5615 ap->hsm_task_state = HSM_ST_ERR;
5616 goto fsm_start;
5619 /* no more data to transfer */
5620 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
5621 ap->print_id, qc->dev->devno, status);
5623 WARN_ON(qc->err_mask);
5625 ap->hsm_task_state = HSM_ST_IDLE;
5627 /* complete taskfile transaction */
5628 ata_hsm_qc_complete(qc, in_wq);
5630 poll_next = 0;
5631 break;
5633 case HSM_ST_ERR:
5634 /* make sure qc->err_mask is available to
5635 * know what's wrong and recover
5637 WARN_ON(qc->err_mask == 0);
5639 ap->hsm_task_state = HSM_ST_IDLE;
5641 /* complete taskfile transaction */
5642 ata_hsm_qc_complete(qc, in_wq);
5644 poll_next = 0;
5645 break;
5646 default:
5647 poll_next = 0;
5648 BUG();
5651 return poll_next;
5654 static void ata_pio_task(struct work_struct *work)
5656 struct ata_port *ap =
5657 container_of(work, struct ata_port, port_task.work);
5658 struct ata_queued_cmd *qc = ap->port_task_data;
5659 u8 status;
5660 int poll_next;
5662 fsm_start:
5663 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
5666 * This is purely heuristic. This is a fast path.
5667 * Sometimes when we enter, BSY will be cleared in
5668 * a chk-status or two. If not, the drive is probably seeking
5669 * or something. Snooze for a couple msecs, then
5670 * chk-status again. If still busy, queue delayed work.
5672 status = ata_busy_wait(ap, ATA_BUSY, 5);
5673 if (status & ATA_BUSY) {
5674 msleep(2);
5675 status = ata_busy_wait(ap, ATA_BUSY, 10);
5676 if (status & ATA_BUSY) {
5677 ata_pio_queue_task(ap, qc, ATA_SHORT_PAUSE);
5678 return;
5682 /* move the HSM */
5683 poll_next = ata_hsm_move(ap, qc, status, 1);
5685 /* another command or interrupt handler
5686 * may be running at this point.
5688 if (poll_next)
5689 goto fsm_start;
5693 * ata_qc_new - Request an available ATA command, for queueing
5694 * @ap: Port associated with device @dev
5695 * @dev: Device from whom we request an available command structure
5697 * LOCKING:
5698 * None.
5701 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
5703 struct ata_queued_cmd *qc = NULL;
5704 unsigned int i;
5706 /* no command while frozen */
5707 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5708 return NULL;
5710 /* the last tag is reserved for internal command. */
5711 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
5712 if (!test_and_set_bit(i, &ap->qc_allocated)) {
5713 qc = __ata_qc_from_tag(ap, i);
5714 break;
5717 if (qc)
5718 qc->tag = i;
5720 return qc;
5724 * ata_qc_new_init - Request an available ATA command, and initialize it
5725 * @dev: Device from whom we request an available command structure
5727 * LOCKING:
5728 * None.
5731 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
5733 struct ata_port *ap = dev->link->ap;
5734 struct ata_queued_cmd *qc;
5736 qc = ata_qc_new(ap);
5737 if (qc) {
5738 qc->scsicmd = NULL;
5739 qc->ap = ap;
5740 qc->dev = dev;
5742 ata_qc_reinit(qc);
5745 return qc;
5749 * ata_qc_free - free unused ata_queued_cmd
5750 * @qc: Command to complete
5752 * Designed to free unused ata_queued_cmd object
5753 * in case something prevents using it.
5755 * LOCKING:
5756 * spin_lock_irqsave(host lock)
5758 void ata_qc_free(struct ata_queued_cmd *qc)
5760 struct ata_port *ap = qc->ap;
5761 unsigned int tag;
5763 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5765 qc->flags = 0;
5766 tag = qc->tag;
5767 if (likely(ata_tag_valid(tag))) {
5768 qc->tag = ATA_TAG_POISON;
5769 clear_bit(tag, &ap->qc_allocated);
5773 void __ata_qc_complete(struct ata_queued_cmd *qc)
5775 struct ata_port *ap = qc->ap;
5776 struct ata_link *link = qc->dev->link;
5778 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5779 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
5781 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5782 ata_sg_clean(qc);
5784 /* command should be marked inactive atomically with qc completion */
5785 if (qc->tf.protocol == ATA_PROT_NCQ) {
5786 link->sactive &= ~(1 << qc->tag);
5787 if (!link->sactive)
5788 ap->nr_active_links--;
5789 } else {
5790 link->active_tag = ATA_TAG_POISON;
5791 ap->nr_active_links--;
5794 /* clear exclusive status */
5795 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5796 ap->excl_link == link))
5797 ap->excl_link = NULL;
5799 /* atapi: mark qc as inactive to prevent the interrupt handler
5800 * from completing the command twice later, before the error handler
5801 * is called. (when rc != 0 and atapi request sense is needed)
5803 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5804 ap->qc_active &= ~(1 << qc->tag);
5806 /* call completion callback */
5807 qc->complete_fn(qc);
5810 static void fill_result_tf(struct ata_queued_cmd *qc)
5812 struct ata_port *ap = qc->ap;
5814 qc->result_tf.flags = qc->tf.flags;
5815 ap->ops->tf_read(ap, &qc->result_tf);
5818 static void ata_verify_xfer(struct ata_queued_cmd *qc)
5820 struct ata_device *dev = qc->dev;
5822 if (ata_tag_internal(qc->tag))
5823 return;
5825 if (ata_is_nodata(qc->tf.protocol))
5826 return;
5828 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5829 return;
5831 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5835 * ata_qc_complete - Complete an active ATA command
5836 * @qc: Command to complete
5837 * @err_mask: ATA Status register contents
5839 * Indicate to the mid and upper layers that an ATA
5840 * command has completed, with either an ok or not-ok status.
5842 * LOCKING:
5843 * spin_lock_irqsave(host lock)
5845 void ata_qc_complete(struct ata_queued_cmd *qc)
5847 struct ata_port *ap = qc->ap;
5849 /* XXX: New EH and old EH use different mechanisms to
5850 * synchronize EH with regular execution path.
5852 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5853 * Normal execution path is responsible for not accessing a
5854 * failed qc. libata core enforces the rule by returning NULL
5855 * from ata_qc_from_tag() for failed qcs.
5857 * Old EH depends on ata_qc_complete() nullifying completion
5858 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5859 * not synchronize with interrupt handler. Only PIO task is
5860 * taken care of.
5862 if (ap->ops->error_handler) {
5863 struct ata_device *dev = qc->dev;
5864 struct ata_eh_info *ehi = &dev->link->eh_info;
5866 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
5868 if (unlikely(qc->err_mask))
5869 qc->flags |= ATA_QCFLAG_FAILED;
5871 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5872 if (!ata_tag_internal(qc->tag)) {
5873 /* always fill result TF for failed qc */
5874 fill_result_tf(qc);
5875 ata_qc_schedule_eh(qc);
5876 return;
5880 /* read result TF if requested */
5881 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5882 fill_result_tf(qc);
5884 /* Some commands need post-processing after successful
5885 * completion.
5887 switch (qc->tf.command) {
5888 case ATA_CMD_SET_FEATURES:
5889 if (qc->tf.feature != SETFEATURES_WC_ON &&
5890 qc->tf.feature != SETFEATURES_WC_OFF)
5891 break;
5892 /* fall through */
5893 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5894 case ATA_CMD_SET_MULTI: /* multi_count changed */
5895 /* revalidate device */
5896 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5897 ata_port_schedule_eh(ap);
5898 break;
5900 case ATA_CMD_SLEEP:
5901 dev->flags |= ATA_DFLAG_SLEEPING;
5902 break;
5905 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5906 ata_verify_xfer(qc);
5908 __ata_qc_complete(qc);
5909 } else {
5910 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5911 return;
5913 /* read result TF if failed or requested */
5914 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5915 fill_result_tf(qc);
5917 __ata_qc_complete(qc);
5922 * ata_qc_complete_multiple - Complete multiple qcs successfully
5923 * @ap: port in question
5924 * @qc_active: new qc_active mask
5925 * @finish_qc: LLDD callback invoked before completing a qc
5927 * Complete in-flight commands. This functions is meant to be
5928 * called from low-level driver's interrupt routine to complete
5929 * requests normally. ap->qc_active and @qc_active is compared
5930 * and commands are completed accordingly.
5932 * LOCKING:
5933 * spin_lock_irqsave(host lock)
5935 * RETURNS:
5936 * Number of completed commands on success, -errno otherwise.
5938 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
5939 void (*finish_qc)(struct ata_queued_cmd *))
5941 int nr_done = 0;
5942 u32 done_mask;
5943 int i;
5945 done_mask = ap->qc_active ^ qc_active;
5947 if (unlikely(done_mask & qc_active)) {
5948 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5949 "(%08x->%08x)\n", ap->qc_active, qc_active);
5950 return -EINVAL;
5953 for (i = 0; i < ATA_MAX_QUEUE; i++) {
5954 struct ata_queued_cmd *qc;
5956 if (!(done_mask & (1 << i)))
5957 continue;
5959 if ((qc = ata_qc_from_tag(ap, i))) {
5960 if (finish_qc)
5961 finish_qc(qc);
5962 ata_qc_complete(qc);
5963 nr_done++;
5967 return nr_done;
5971 * ata_qc_issue - issue taskfile to device
5972 * @qc: command to issue to device
5974 * Prepare an ATA command to submission to device.
5975 * This includes mapping the data into a DMA-able
5976 * area, filling in the S/G table, and finally
5977 * writing the taskfile to hardware, starting the command.
5979 * LOCKING:
5980 * spin_lock_irqsave(host lock)
5982 void ata_qc_issue(struct ata_queued_cmd *qc)
5984 struct ata_port *ap = qc->ap;
5985 struct ata_link *link = qc->dev->link;
5986 u8 prot = qc->tf.protocol;
5988 /* Make sure only one non-NCQ command is outstanding. The
5989 * check is skipped for old EH because it reuses active qc to
5990 * request ATAPI sense.
5992 WARN_ON(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5994 if (ata_is_ncq(prot)) {
5995 WARN_ON(link->sactive & (1 << qc->tag));
5997 if (!link->sactive)
5998 ap->nr_active_links++;
5999 link->sactive |= 1 << qc->tag;
6000 } else {
6001 WARN_ON(link->sactive);
6003 ap->nr_active_links++;
6004 link->active_tag = qc->tag;
6007 qc->flags |= ATA_QCFLAG_ACTIVE;
6008 ap->qc_active |= 1 << qc->tag;
6010 /* We guarantee to LLDs that they will have at least one
6011 * non-zero sg if the command is a data command.
6013 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
6015 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
6016 (ap->flags & ATA_FLAG_PIO_DMA)))
6017 if (ata_sg_setup(qc))
6018 goto sg_err;
6020 /* if device is sleeping, schedule softreset and abort the link */
6021 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
6022 link->eh_info.action |= ATA_EH_SOFTRESET;
6023 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
6024 ata_link_abort(link);
6025 return;
6028 ap->ops->qc_prep(qc);
6030 qc->err_mask |= ap->ops->qc_issue(qc);
6031 if (unlikely(qc->err_mask))
6032 goto err;
6033 return;
6035 sg_err:
6036 qc->err_mask |= AC_ERR_SYSTEM;
6037 err:
6038 ata_qc_complete(qc);
6042 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
6043 * @qc: command to issue to device
6045 * Using various libata functions and hooks, this function
6046 * starts an ATA command. ATA commands are grouped into
6047 * classes called "protocols", and issuing each type of protocol
6048 * is slightly different.
6050 * May be used as the qc_issue() entry in ata_port_operations.
6052 * LOCKING:
6053 * spin_lock_irqsave(host lock)
6055 * RETURNS:
6056 * Zero on success, AC_ERR_* mask on failure
6059 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
6061 struct ata_port *ap = qc->ap;
6063 /* Use polling pio if the LLD doesn't handle
6064 * interrupt driven pio and atapi CDB interrupt.
6066 if (ap->flags & ATA_FLAG_PIO_POLLING) {
6067 switch (qc->tf.protocol) {
6068 case ATA_PROT_PIO:
6069 case ATA_PROT_NODATA:
6070 case ATAPI_PROT_PIO:
6071 case ATAPI_PROT_NODATA:
6072 qc->tf.flags |= ATA_TFLAG_POLLING;
6073 break;
6074 case ATAPI_PROT_DMA:
6075 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
6076 /* see ata_dma_blacklisted() */
6077 BUG();
6078 break;
6079 default:
6080 break;
6084 /* select the device */
6085 ata_dev_select(ap, qc->dev->devno, 1, 0);
6087 /* start the command */
6088 switch (qc->tf.protocol) {
6089 case ATA_PROT_NODATA:
6090 if (qc->tf.flags & ATA_TFLAG_POLLING)
6091 ata_qc_set_polling(qc);
6093 ata_tf_to_host(ap, &qc->tf);
6094 ap->hsm_task_state = HSM_ST_LAST;
6096 if (qc->tf.flags & ATA_TFLAG_POLLING)
6097 ata_pio_queue_task(ap, qc, 0);
6099 break;
6101 case ATA_PROT_DMA:
6102 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6104 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6105 ap->ops->bmdma_setup(qc); /* set up bmdma */
6106 ap->ops->bmdma_start(qc); /* initiate bmdma */
6107 ap->hsm_task_state = HSM_ST_LAST;
6108 break;
6110 case ATA_PROT_PIO:
6111 if (qc->tf.flags & ATA_TFLAG_POLLING)
6112 ata_qc_set_polling(qc);
6114 ata_tf_to_host(ap, &qc->tf);
6116 if (qc->tf.flags & ATA_TFLAG_WRITE) {
6117 /* PIO data out protocol */
6118 ap->hsm_task_state = HSM_ST_FIRST;
6119 ata_pio_queue_task(ap, qc, 0);
6121 /* always send first data block using
6122 * the ata_pio_task() codepath.
6124 } else {
6125 /* PIO data in protocol */
6126 ap->hsm_task_state = HSM_ST;
6128 if (qc->tf.flags & ATA_TFLAG_POLLING)
6129 ata_pio_queue_task(ap, qc, 0);
6131 /* if polling, ata_pio_task() handles the rest.
6132 * otherwise, interrupt handler takes over from here.
6136 break;
6138 case ATAPI_PROT_PIO:
6139 case ATAPI_PROT_NODATA:
6140 if (qc->tf.flags & ATA_TFLAG_POLLING)
6141 ata_qc_set_polling(qc);
6143 ata_tf_to_host(ap, &qc->tf);
6145 ap->hsm_task_state = HSM_ST_FIRST;
6147 /* send cdb by polling if no cdb interrupt */
6148 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
6149 (qc->tf.flags & ATA_TFLAG_POLLING))
6150 ata_pio_queue_task(ap, qc, 0);
6151 break;
6153 case ATAPI_PROT_DMA:
6154 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
6156 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
6157 ap->ops->bmdma_setup(qc); /* set up bmdma */
6158 ap->hsm_task_state = HSM_ST_FIRST;
6160 /* send cdb by polling if no cdb interrupt */
6161 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6162 ata_pio_queue_task(ap, qc, 0);
6163 break;
6165 default:
6166 WARN_ON(1);
6167 return AC_ERR_SYSTEM;
6170 return 0;
6174 * ata_host_intr - Handle host interrupt for given (port, task)
6175 * @ap: Port on which interrupt arrived (possibly...)
6176 * @qc: Taskfile currently active in engine
6178 * Handle host interrupt for given queued command. Currently,
6179 * only DMA interrupts are handled. All other commands are
6180 * handled via polling with interrupts disabled (nIEN bit).
6182 * LOCKING:
6183 * spin_lock_irqsave(host lock)
6185 * RETURNS:
6186 * One if interrupt was handled, zero if not (shared irq).
6189 inline unsigned int ata_host_intr(struct ata_port *ap,
6190 struct ata_queued_cmd *qc)
6192 struct ata_eh_info *ehi = &ap->link.eh_info;
6193 u8 status, host_stat = 0;
6195 VPRINTK("ata%u: protocol %d task_state %d\n",
6196 ap->print_id, qc->tf.protocol, ap->hsm_task_state);
6198 /* Check whether we are expecting interrupt in this state */
6199 switch (ap->hsm_task_state) {
6200 case HSM_ST_FIRST:
6201 /* Some pre-ATAPI-4 devices assert INTRQ
6202 * at this state when ready to receive CDB.
6205 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
6206 * The flag was turned on only for atapi devices. No
6207 * need to check ata_is_atapi(qc->tf.protocol) again.
6209 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
6210 goto idle_irq;
6211 break;
6212 case HSM_ST_LAST:
6213 if (qc->tf.protocol == ATA_PROT_DMA ||
6214 qc->tf.protocol == ATAPI_PROT_DMA) {
6215 /* check status of DMA engine */
6216 host_stat = ap->ops->bmdma_status(ap);
6217 VPRINTK("ata%u: host_stat 0x%X\n",
6218 ap->print_id, host_stat);
6220 /* if it's not our irq... */
6221 if (!(host_stat & ATA_DMA_INTR))
6222 goto idle_irq;
6224 /* before we do anything else, clear DMA-Start bit */
6225 ap->ops->bmdma_stop(qc);
6227 if (unlikely(host_stat & ATA_DMA_ERR)) {
6228 /* error when transfering data to/from memory */
6229 qc->err_mask |= AC_ERR_HOST_BUS;
6230 ap->hsm_task_state = HSM_ST_ERR;
6233 break;
6234 case HSM_ST:
6235 break;
6236 default:
6237 goto idle_irq;
6240 /* check altstatus */
6241 status = ata_altstatus(ap);
6242 if (status & ATA_BUSY)
6243 goto idle_irq;
6245 /* check main status, clearing INTRQ */
6246 status = ata_chk_status(ap);
6247 if (unlikely(status & ATA_BUSY))
6248 goto idle_irq;
6250 /* ack bmdma irq events */
6251 ap->ops->irq_clear(ap);
6253 ata_hsm_move(ap, qc, status, 0);
6255 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
6256 qc->tf.protocol == ATAPI_PROT_DMA))
6257 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
6259 return 1; /* irq handled */
6261 idle_irq:
6262 ap->stats.idle_irq++;
6264 #ifdef ATA_IRQ_TRAP
6265 if ((ap->stats.idle_irq % 1000) == 0) {
6266 ata_chk_status(ap);
6267 ap->ops->irq_clear(ap);
6268 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
6269 return 1;
6271 #endif
6272 return 0; /* irq not handled */
6276 * ata_interrupt - Default ATA host interrupt handler
6277 * @irq: irq line (unused)
6278 * @dev_instance: pointer to our ata_host information structure
6280 * Default interrupt handler for PCI IDE devices. Calls
6281 * ata_host_intr() for each port that is not disabled.
6283 * LOCKING:
6284 * Obtains host lock during operation.
6286 * RETURNS:
6287 * IRQ_NONE or IRQ_HANDLED.
6290 irqreturn_t ata_interrupt(int irq, void *dev_instance)
6292 struct ata_host *host = dev_instance;
6293 unsigned int i;
6294 unsigned int handled = 0;
6295 unsigned long flags;
6297 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
6298 spin_lock_irqsave(&host->lock, flags);
6300 for (i = 0; i < host->n_ports; i++) {
6301 struct ata_port *ap;
6303 ap = host->ports[i];
6304 if (ap &&
6305 !(ap->flags & ATA_FLAG_DISABLED)) {
6306 struct ata_queued_cmd *qc;
6308 qc = ata_qc_from_tag(ap, ap->link.active_tag);
6309 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
6310 (qc->flags & ATA_QCFLAG_ACTIVE))
6311 handled |= ata_host_intr(ap, qc);
6315 spin_unlock_irqrestore(&host->lock, flags);
6317 return IRQ_RETVAL(handled);
6321 * sata_scr_valid - test whether SCRs are accessible
6322 * @link: ATA link to test SCR accessibility for
6324 * Test whether SCRs are accessible for @link.
6326 * LOCKING:
6327 * None.
6329 * RETURNS:
6330 * 1 if SCRs are accessible, 0 otherwise.
6332 int sata_scr_valid(struct ata_link *link)
6334 struct ata_port *ap = link->ap;
6336 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
6340 * sata_scr_read - read SCR register of the specified port
6341 * @link: ATA link to read SCR for
6342 * @reg: SCR to read
6343 * @val: Place to store read value
6345 * Read SCR register @reg of @link into *@val. This function is
6346 * guaranteed to succeed if @link is ap->link, the cable type of
6347 * the port is SATA and the port implements ->scr_read.
6349 * LOCKING:
6350 * None if @link is ap->link. Kernel thread context otherwise.
6352 * RETURNS:
6353 * 0 on success, negative errno on failure.
6355 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
6357 if (ata_is_host_link(link)) {
6358 struct ata_port *ap = link->ap;
6360 if (sata_scr_valid(link))
6361 return ap->ops->scr_read(ap, reg, val);
6362 return -EOPNOTSUPP;
6365 return sata_pmp_scr_read(link, reg, val);
6369 * sata_scr_write - write SCR register of the specified port
6370 * @link: ATA link to write SCR for
6371 * @reg: SCR to write
6372 * @val: value to write
6374 * Write @val to SCR register @reg of @link. This function is
6375 * guaranteed to succeed if @link is ap->link, the cable type of
6376 * the port is SATA and the port implements ->scr_read.
6378 * LOCKING:
6379 * None if @link is ap->link. Kernel thread context otherwise.
6381 * RETURNS:
6382 * 0 on success, negative errno on failure.
6384 int sata_scr_write(struct ata_link *link, int reg, u32 val)
6386 if (ata_is_host_link(link)) {
6387 struct ata_port *ap = link->ap;
6389 if (sata_scr_valid(link))
6390 return ap->ops->scr_write(ap, reg, val);
6391 return -EOPNOTSUPP;
6394 return sata_pmp_scr_write(link, reg, val);
6398 * sata_scr_write_flush - write SCR register of the specified port and flush
6399 * @link: ATA link to write SCR for
6400 * @reg: SCR to write
6401 * @val: value to write
6403 * This function is identical to sata_scr_write() except that this
6404 * function performs flush after writing to the register.
6406 * LOCKING:
6407 * None if @link is ap->link. Kernel thread context otherwise.
6409 * RETURNS:
6410 * 0 on success, negative errno on failure.
6412 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
6414 if (ata_is_host_link(link)) {
6415 struct ata_port *ap = link->ap;
6416 int rc;
6418 if (sata_scr_valid(link)) {
6419 rc = ap->ops->scr_write(ap, reg, val);
6420 if (rc == 0)
6421 rc = ap->ops->scr_read(ap, reg, &val);
6422 return rc;
6424 return -EOPNOTSUPP;
6427 return sata_pmp_scr_write(link, reg, val);
6431 * ata_link_online - test whether the given link is online
6432 * @link: ATA link to test
6434 * Test whether @link is online. Note that this function returns
6435 * 0 if online status of @link cannot be obtained, so
6436 * ata_link_online(link) != !ata_link_offline(link).
6438 * LOCKING:
6439 * None.
6441 * RETURNS:
6442 * 1 if the port online status is available and online.
6444 int ata_link_online(struct ata_link *link)
6446 u32 sstatus;
6448 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6449 (sstatus & 0xf) == 0x3)
6450 return 1;
6451 return 0;
6455 * ata_link_offline - test whether the given link is offline
6456 * @link: ATA link to test
6458 * Test whether @link is offline. Note that this function
6459 * returns 0 if offline status of @link cannot be obtained, so
6460 * ata_link_online(link) != !ata_link_offline(link).
6462 * LOCKING:
6463 * None.
6465 * RETURNS:
6466 * 1 if the port offline status is available and offline.
6468 int ata_link_offline(struct ata_link *link)
6470 u32 sstatus;
6472 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
6473 (sstatus & 0xf) != 0x3)
6474 return 1;
6475 return 0;
6478 int ata_flush_cache(struct ata_device *dev)
6480 unsigned int err_mask;
6481 u8 cmd;
6483 if (!ata_try_flush_cache(dev))
6484 return 0;
6486 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
6487 cmd = ATA_CMD_FLUSH_EXT;
6488 else
6489 cmd = ATA_CMD_FLUSH;
6491 /* This is wrong. On a failed flush we get back the LBA of the lost
6492 sector and we should (assuming it wasn't aborted as unknown) issue
6493 a further flush command to continue the writeback until it
6494 does not error */
6495 err_mask = ata_do_simple_cmd(dev, cmd);
6496 if (err_mask) {
6497 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
6498 return -EIO;
6501 return 0;
6504 #ifdef CONFIG_PM
6505 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
6506 unsigned int action, unsigned int ehi_flags,
6507 int wait)
6509 unsigned long flags;
6510 int i, rc;
6512 for (i = 0; i < host->n_ports; i++) {
6513 struct ata_port *ap = host->ports[i];
6514 struct ata_link *link;
6516 /* Previous resume operation might still be in
6517 * progress. Wait for PM_PENDING to clear.
6519 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
6520 ata_port_wait_eh(ap);
6521 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6524 /* request PM ops to EH */
6525 spin_lock_irqsave(ap->lock, flags);
6527 ap->pm_mesg = mesg;
6528 if (wait) {
6529 rc = 0;
6530 ap->pm_result = &rc;
6533 ap->pflags |= ATA_PFLAG_PM_PENDING;
6534 __ata_port_for_each_link(link, ap) {
6535 link->eh_info.action |= action;
6536 link->eh_info.flags |= ehi_flags;
6539 ata_port_schedule_eh(ap);
6541 spin_unlock_irqrestore(ap->lock, flags);
6543 /* wait and check result */
6544 if (wait) {
6545 ata_port_wait_eh(ap);
6546 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
6547 if (rc)
6548 return rc;
6552 return 0;
6556 * ata_host_suspend - suspend host
6557 * @host: host to suspend
6558 * @mesg: PM message
6560 * Suspend @host. Actual operation is performed by EH. This
6561 * function requests EH to perform PM operations and waits for EH
6562 * to finish.
6564 * LOCKING:
6565 * Kernel thread context (may sleep).
6567 * RETURNS:
6568 * 0 on success, -errno on failure.
6570 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
6572 int rc;
6575 * disable link pm on all ports before requesting
6576 * any pm activity
6578 ata_lpm_enable(host);
6580 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
6581 if (rc == 0)
6582 host->dev->power.power_state = mesg;
6583 return rc;
6587 * ata_host_resume - resume host
6588 * @host: host to resume
6590 * Resume @host. Actual operation is performed by EH. This
6591 * function requests EH to perform PM operations and returns.
6592 * Note that all resume operations are performed parallely.
6594 * LOCKING:
6595 * Kernel thread context (may sleep).
6597 void ata_host_resume(struct ata_host *host)
6599 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
6600 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
6601 host->dev->power.power_state = PMSG_ON;
6603 /* reenable link pm */
6604 ata_lpm_disable(host);
6606 #endif
6609 * ata_port_start - Set port up for dma.
6610 * @ap: Port to initialize
6612 * Called just after data structures for each port are
6613 * initialized. Allocates space for PRD table.
6615 * May be used as the port_start() entry in ata_port_operations.
6617 * LOCKING:
6618 * Inherited from caller.
6620 int ata_port_start(struct ata_port *ap)
6622 struct device *dev = ap->dev;
6624 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
6625 GFP_KERNEL);
6626 if (!ap->prd)
6627 return -ENOMEM;
6629 return 0;
6633 * ata_dev_init - Initialize an ata_device structure
6634 * @dev: Device structure to initialize
6636 * Initialize @dev in preparation for probing.
6638 * LOCKING:
6639 * Inherited from caller.
6641 void ata_dev_init(struct ata_device *dev)
6643 struct ata_link *link = dev->link;
6644 struct ata_port *ap = link->ap;
6645 unsigned long flags;
6647 /* SATA spd limit is bound to the first device */
6648 link->sata_spd_limit = link->hw_sata_spd_limit;
6649 link->sata_spd = 0;
6651 /* High bits of dev->flags are used to record warm plug
6652 * requests which occur asynchronously. Synchronize using
6653 * host lock.
6655 spin_lock_irqsave(ap->lock, flags);
6656 dev->flags &= ~ATA_DFLAG_INIT_MASK;
6657 dev->horkage = 0;
6658 spin_unlock_irqrestore(ap->lock, flags);
6660 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
6661 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
6662 dev->pio_mask = UINT_MAX;
6663 dev->mwdma_mask = UINT_MAX;
6664 dev->udma_mask = UINT_MAX;
6668 * ata_link_init - Initialize an ata_link structure
6669 * @ap: ATA port link is attached to
6670 * @link: Link structure to initialize
6671 * @pmp: Port multiplier port number
6673 * Initialize @link.
6675 * LOCKING:
6676 * Kernel thread context (may sleep)
6678 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
6680 int i;
6682 /* clear everything except for devices */
6683 memset(link, 0, offsetof(struct ata_link, device[0]));
6685 link->ap = ap;
6686 link->pmp = pmp;
6687 link->active_tag = ATA_TAG_POISON;
6688 link->hw_sata_spd_limit = UINT_MAX;
6690 /* can't use iterator, ap isn't initialized yet */
6691 for (i = 0; i < ATA_MAX_DEVICES; i++) {
6692 struct ata_device *dev = &link->device[i];
6694 dev->link = link;
6695 dev->devno = dev - link->device;
6696 ata_dev_init(dev);
6701 * sata_link_init_spd - Initialize link->sata_spd_limit
6702 * @link: Link to configure sata_spd_limit for
6704 * Initialize @link->[hw_]sata_spd_limit to the currently
6705 * configured value.
6707 * LOCKING:
6708 * Kernel thread context (may sleep).
6710 * RETURNS:
6711 * 0 on success, -errno on failure.
6713 int sata_link_init_spd(struct ata_link *link)
6715 u32 scontrol;
6716 u8 spd;
6717 int rc;
6719 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
6720 if (rc)
6721 return rc;
6723 spd = (scontrol >> 4) & 0xf;
6724 if (spd)
6725 link->hw_sata_spd_limit &= (1 << spd) - 1;
6727 ata_force_spd_limit(link);
6729 link->sata_spd_limit = link->hw_sata_spd_limit;
6731 return 0;
6735 * ata_port_alloc - allocate and initialize basic ATA port resources
6736 * @host: ATA host this allocated port belongs to
6738 * Allocate and initialize basic ATA port resources.
6740 * RETURNS:
6741 * Allocate ATA port on success, NULL on failure.
6743 * LOCKING:
6744 * Inherited from calling layer (may sleep).
6746 struct ata_port *ata_port_alloc(struct ata_host *host)
6748 struct ata_port *ap;
6750 DPRINTK("ENTER\n");
6752 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6753 if (!ap)
6754 return NULL;
6756 ap->pflags |= ATA_PFLAG_INITIALIZING;
6757 ap->lock = &host->lock;
6758 ap->flags = ATA_FLAG_DISABLED;
6759 ap->print_id = -1;
6760 ap->ctl = ATA_DEVCTL_OBS;
6761 ap->host = host;
6762 ap->dev = host->dev;
6763 ap->last_ctl = 0xFF;
6765 #if defined(ATA_VERBOSE_DEBUG)
6766 /* turn on all debugging levels */
6767 ap->msg_enable = 0x00FF;
6768 #elif defined(ATA_DEBUG)
6769 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6770 #else
6771 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6772 #endif
6774 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
6775 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6776 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6777 INIT_LIST_HEAD(&ap->eh_done_q);
6778 init_waitqueue_head(&ap->eh_wait_q);
6779 init_timer_deferrable(&ap->fastdrain_timer);
6780 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
6781 ap->fastdrain_timer.data = (unsigned long)ap;
6783 ap->cbl = ATA_CBL_NONE;
6785 ata_link_init(ap, &ap->link, 0);
6787 #ifdef ATA_IRQ_TRAP
6788 ap->stats.unhandled_irq = 1;
6789 ap->stats.idle_irq = 1;
6790 #endif
6791 return ap;
6794 static void ata_host_release(struct device *gendev, void *res)
6796 struct ata_host *host = dev_get_drvdata(gendev);
6797 int i;
6799 for (i = 0; i < host->n_ports; i++) {
6800 struct ata_port *ap = host->ports[i];
6802 if (!ap)
6803 continue;
6805 if (ap->scsi_host)
6806 scsi_host_put(ap->scsi_host);
6808 kfree(ap->pmp_link);
6809 kfree(ap);
6810 host->ports[i] = NULL;
6813 dev_set_drvdata(gendev, NULL);
6817 * ata_host_alloc - allocate and init basic ATA host resources
6818 * @dev: generic device this host is associated with
6819 * @max_ports: maximum number of ATA ports associated with this host
6821 * Allocate and initialize basic ATA host resources. LLD calls
6822 * this function to allocate a host, initializes it fully and
6823 * attaches it using ata_host_register().
6825 * @max_ports ports are allocated and host->n_ports is
6826 * initialized to @max_ports. The caller is allowed to decrease
6827 * host->n_ports before calling ata_host_register(). The unused
6828 * ports will be automatically freed on registration.
6830 * RETURNS:
6831 * Allocate ATA host on success, NULL on failure.
6833 * LOCKING:
6834 * Inherited from calling layer (may sleep).
6836 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6838 struct ata_host *host;
6839 size_t sz;
6840 int i;
6842 DPRINTK("ENTER\n");
6844 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6845 return NULL;
6847 /* alloc a container for our list of ATA ports (buses) */
6848 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6849 /* alloc a container for our list of ATA ports (buses) */
6850 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
6851 if (!host)
6852 goto err_out;
6854 devres_add(dev, host);
6855 dev_set_drvdata(dev, host);
6857 spin_lock_init(&host->lock);
6858 host->dev = dev;
6859 host->n_ports = max_ports;
6861 /* allocate ports bound to this host */
6862 for (i = 0; i < max_ports; i++) {
6863 struct ata_port *ap;
6865 ap = ata_port_alloc(host);
6866 if (!ap)
6867 goto err_out;
6869 ap->port_no = i;
6870 host->ports[i] = ap;
6873 devres_remove_group(dev, NULL);
6874 return host;
6876 err_out:
6877 devres_release_group(dev, NULL);
6878 return NULL;
6882 * ata_host_alloc_pinfo - alloc host and init with port_info array
6883 * @dev: generic device this host is associated with
6884 * @ppi: array of ATA port_info to initialize host with
6885 * @n_ports: number of ATA ports attached to this host
6887 * Allocate ATA host and initialize with info from @ppi. If NULL
6888 * terminated, @ppi may contain fewer entries than @n_ports. The
6889 * last entry will be used for the remaining ports.
6891 * RETURNS:
6892 * Allocate ATA host on success, NULL on failure.
6894 * LOCKING:
6895 * Inherited from calling layer (may sleep).
6897 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6898 const struct ata_port_info * const * ppi,
6899 int n_ports)
6901 const struct ata_port_info *pi;
6902 struct ata_host *host;
6903 int i, j;
6905 host = ata_host_alloc(dev, n_ports);
6906 if (!host)
6907 return NULL;
6909 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6910 struct ata_port *ap = host->ports[i];
6912 if (ppi[j])
6913 pi = ppi[j++];
6915 ap->pio_mask = pi->pio_mask;
6916 ap->mwdma_mask = pi->mwdma_mask;
6917 ap->udma_mask = pi->udma_mask;
6918 ap->flags |= pi->flags;
6919 ap->link.flags |= pi->link_flags;
6920 ap->ops = pi->port_ops;
6922 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6923 host->ops = pi->port_ops;
6924 if (!host->private_data && pi->private_data)
6925 host->private_data = pi->private_data;
6928 return host;
6931 static void ata_host_stop(struct device *gendev, void *res)
6933 struct ata_host *host = dev_get_drvdata(gendev);
6934 int i;
6936 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6938 for (i = 0; i < host->n_ports; i++) {
6939 struct ata_port *ap = host->ports[i];
6941 if (ap->ops->port_stop)
6942 ap->ops->port_stop(ap);
6945 if (host->ops->host_stop)
6946 host->ops->host_stop(host);
6950 * ata_host_start - start and freeze ports of an ATA host
6951 * @host: ATA host to start ports for
6953 * Start and then freeze ports of @host. Started status is
6954 * recorded in host->flags, so this function can be called
6955 * multiple times. Ports are guaranteed to get started only
6956 * once. If host->ops isn't initialized yet, its set to the
6957 * first non-dummy port ops.
6959 * LOCKING:
6960 * Inherited from calling layer (may sleep).
6962 * RETURNS:
6963 * 0 if all ports are started successfully, -errno otherwise.
6965 int ata_host_start(struct ata_host *host)
6967 int have_stop = 0;
6968 void *start_dr = NULL;
6969 int i, rc;
6971 if (host->flags & ATA_HOST_STARTED)
6972 return 0;
6974 for (i = 0; i < host->n_ports; i++) {
6975 struct ata_port *ap = host->ports[i];
6977 if (!host->ops && !ata_port_is_dummy(ap))
6978 host->ops = ap->ops;
6980 if (ap->ops->port_stop)
6981 have_stop = 1;
6984 if (host->ops->host_stop)
6985 have_stop = 1;
6987 if (have_stop) {
6988 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6989 if (!start_dr)
6990 return -ENOMEM;
6993 for (i = 0; i < host->n_ports; i++) {
6994 struct ata_port *ap = host->ports[i];
6996 if (ap->ops->port_start) {
6997 rc = ap->ops->port_start(ap);
6998 if (rc) {
6999 if (rc != -ENODEV)
7000 dev_printk(KERN_ERR, host->dev,
7001 "failed to start port %d "
7002 "(errno=%d)\n", i, rc);
7003 goto err_out;
7006 ata_eh_freeze_port(ap);
7009 if (start_dr)
7010 devres_add(host->dev, start_dr);
7011 host->flags |= ATA_HOST_STARTED;
7012 return 0;
7014 err_out:
7015 while (--i >= 0) {
7016 struct ata_port *ap = host->ports[i];
7018 if (ap->ops->port_stop)
7019 ap->ops->port_stop(ap);
7021 devres_free(start_dr);
7022 return rc;
7026 * ata_sas_host_init - Initialize a host struct
7027 * @host: host to initialize
7028 * @dev: device host is attached to
7029 * @flags: host flags
7030 * @ops: port_ops
7032 * LOCKING:
7033 * PCI/etc. bus probe sem.
7036 /* KILLME - the only user left is ipr */
7037 void ata_host_init(struct ata_host *host, struct device *dev,
7038 unsigned long flags, const struct ata_port_operations *ops)
7040 spin_lock_init(&host->lock);
7041 host->dev = dev;
7042 host->flags = flags;
7043 host->ops = ops;
7047 * ata_host_register - register initialized ATA host
7048 * @host: ATA host to register
7049 * @sht: template for SCSI host
7051 * Register initialized ATA host. @host is allocated using
7052 * ata_host_alloc() and fully initialized by LLD. This function
7053 * starts ports, registers @host with ATA and SCSI layers and
7054 * probe registered devices.
7056 * LOCKING:
7057 * Inherited from calling layer (may sleep).
7059 * RETURNS:
7060 * 0 on success, -errno otherwise.
7062 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
7064 int i, rc;
7066 /* host must have been started */
7067 if (!(host->flags & ATA_HOST_STARTED)) {
7068 dev_printk(KERN_ERR, host->dev,
7069 "BUG: trying to register unstarted host\n");
7070 WARN_ON(1);
7071 return -EINVAL;
7074 /* Blow away unused ports. This happens when LLD can't
7075 * determine the exact number of ports to allocate at
7076 * allocation time.
7078 for (i = host->n_ports; host->ports[i]; i++)
7079 kfree(host->ports[i]);
7081 /* give ports names and add SCSI hosts */
7082 for (i = 0; i < host->n_ports; i++)
7083 host->ports[i]->print_id = ata_print_id++;
7085 rc = ata_scsi_add_hosts(host, sht);
7086 if (rc)
7087 return rc;
7089 /* associate with ACPI nodes */
7090 ata_acpi_associate(host);
7092 /* set cable, sata_spd_limit and report */
7093 for (i = 0; i < host->n_ports; i++) {
7094 struct ata_port *ap = host->ports[i];
7095 unsigned long xfer_mask;
7097 /* set SATA cable type if still unset */
7098 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
7099 ap->cbl = ATA_CBL_SATA;
7101 /* init sata_spd_limit to the current value */
7102 sata_link_init_spd(&ap->link);
7104 /* print per-port info to dmesg */
7105 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
7106 ap->udma_mask);
7108 if (!ata_port_is_dummy(ap)) {
7109 ata_port_printk(ap, KERN_INFO,
7110 "%cATA max %s %s\n",
7111 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
7112 ata_mode_string(xfer_mask),
7113 ap->link.eh_info.desc);
7114 ata_ehi_clear_desc(&ap->link.eh_info);
7115 } else
7116 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
7119 /* perform each probe synchronously */
7120 DPRINTK("probe begin\n");
7121 for (i = 0; i < host->n_ports; i++) {
7122 struct ata_port *ap = host->ports[i];
7124 /* probe */
7125 if (ap->ops->error_handler) {
7126 struct ata_eh_info *ehi = &ap->link.eh_info;
7127 unsigned long flags;
7129 ata_port_probe(ap);
7131 /* kick EH for boot probing */
7132 spin_lock_irqsave(ap->lock, flags);
7134 ehi->probe_mask =
7135 (1 << ata_link_max_devices(&ap->link)) - 1;
7136 ehi->action |= ATA_EH_SOFTRESET;
7137 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
7139 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
7140 ap->pflags |= ATA_PFLAG_LOADING;
7141 ata_port_schedule_eh(ap);
7143 spin_unlock_irqrestore(ap->lock, flags);
7145 /* wait for EH to finish */
7146 ata_port_wait_eh(ap);
7147 } else {
7148 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
7149 rc = ata_bus_probe(ap);
7150 DPRINTK("ata%u: bus probe end\n", ap->print_id);
7152 if (rc) {
7153 /* FIXME: do something useful here?
7154 * Current libata behavior will
7155 * tear down everything when
7156 * the module is removed
7157 * or the h/w is unplugged.
7163 /* probes are done, now scan each port's disk(s) */
7164 DPRINTK("host probe begin\n");
7165 for (i = 0; i < host->n_ports; i++) {
7166 struct ata_port *ap = host->ports[i];
7168 ata_scsi_scan_host(ap, 1);
7169 ata_lpm_schedule(ap, ap->pm_policy);
7172 return 0;
7176 * ata_host_activate - start host, request IRQ and register it
7177 * @host: target ATA host
7178 * @irq: IRQ to request
7179 * @irq_handler: irq_handler used when requesting IRQ
7180 * @irq_flags: irq_flags used when requesting IRQ
7181 * @sht: scsi_host_template to use when registering the host
7183 * After allocating an ATA host and initializing it, most libata
7184 * LLDs perform three steps to activate the host - start host,
7185 * request IRQ and register it. This helper takes necessasry
7186 * arguments and performs the three steps in one go.
7188 * An invalid IRQ skips the IRQ registration and expects the host to
7189 * have set polling mode on the port. In this case, @irq_handler
7190 * should be NULL.
7192 * LOCKING:
7193 * Inherited from calling layer (may sleep).
7195 * RETURNS:
7196 * 0 on success, -errno otherwise.
7198 int ata_host_activate(struct ata_host *host, int irq,
7199 irq_handler_t irq_handler, unsigned long irq_flags,
7200 struct scsi_host_template *sht)
7202 int i, rc;
7204 rc = ata_host_start(host);
7205 if (rc)
7206 return rc;
7208 /* Special case for polling mode */
7209 if (!irq) {
7210 WARN_ON(irq_handler);
7211 return ata_host_register(host, sht);
7214 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
7215 dev_driver_string(host->dev), host);
7216 if (rc)
7217 return rc;
7219 for (i = 0; i < host->n_ports; i++)
7220 ata_port_desc(host->ports[i], "irq %d", irq);
7222 rc = ata_host_register(host, sht);
7223 /* if failed, just free the IRQ and leave ports alone */
7224 if (rc)
7225 devm_free_irq(host->dev, irq, host);
7227 return rc;
7231 * ata_port_detach - Detach ATA port in prepration of device removal
7232 * @ap: ATA port to be detached
7234 * Detach all ATA devices and the associated SCSI devices of @ap;
7235 * then, remove the associated SCSI host. @ap is guaranteed to
7236 * be quiescent on return from this function.
7238 * LOCKING:
7239 * Kernel thread context (may sleep).
7241 static void ata_port_detach(struct ata_port *ap)
7243 unsigned long flags;
7244 struct ata_link *link;
7245 struct ata_device *dev;
7247 if (!ap->ops->error_handler)
7248 goto skip_eh;
7250 /* tell EH we're leaving & flush EH */
7251 spin_lock_irqsave(ap->lock, flags);
7252 ap->pflags |= ATA_PFLAG_UNLOADING;
7253 spin_unlock_irqrestore(ap->lock, flags);
7255 ata_port_wait_eh(ap);
7257 /* EH is now guaranteed to see UNLOADING - EH context belongs
7258 * to us. Disable all existing devices.
7260 ata_port_for_each_link(link, ap) {
7261 ata_link_for_each_dev(dev, link)
7262 ata_dev_disable(dev);
7265 /* Final freeze & EH. All in-flight commands are aborted. EH
7266 * will be skipped and retrials will be terminated with bad
7267 * target.
7269 spin_lock_irqsave(ap->lock, flags);
7270 ata_port_freeze(ap); /* won't be thawed */
7271 spin_unlock_irqrestore(ap->lock, flags);
7273 ata_port_wait_eh(ap);
7274 cancel_rearming_delayed_work(&ap->hotplug_task);
7276 skip_eh:
7277 /* remove the associated SCSI host */
7278 scsi_remove_host(ap->scsi_host);
7282 * ata_host_detach - Detach all ports of an ATA host
7283 * @host: Host to detach
7285 * Detach all ports of @host.
7287 * LOCKING:
7288 * Kernel thread context (may sleep).
7290 void ata_host_detach(struct ata_host *host)
7292 int i;
7294 for (i = 0; i < host->n_ports; i++)
7295 ata_port_detach(host->ports[i]);
7297 /* the host is dead now, dissociate ACPI */
7298 ata_acpi_dissociate(host);
7302 * ata_std_ports - initialize ioaddr with standard port offsets.
7303 * @ioaddr: IO address structure to be initialized
7305 * Utility function which initializes data_addr, error_addr,
7306 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
7307 * device_addr, status_addr, and command_addr to standard offsets
7308 * relative to cmd_addr.
7310 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
7313 void ata_std_ports(struct ata_ioports *ioaddr)
7315 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
7316 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
7317 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
7318 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
7319 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
7320 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
7321 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
7322 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
7323 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
7324 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
7328 #ifdef CONFIG_PCI
7331 * ata_pci_remove_one - PCI layer callback for device removal
7332 * @pdev: PCI device that was removed
7334 * PCI layer indicates to libata via this hook that hot-unplug or
7335 * module unload event has occurred. Detach all ports. Resource
7336 * release is handled via devres.
7338 * LOCKING:
7339 * Inherited from PCI layer (may sleep).
7341 void ata_pci_remove_one(struct pci_dev *pdev)
7343 struct device *dev = &pdev->dev;
7344 struct ata_host *host = dev_get_drvdata(dev);
7346 ata_host_detach(host);
7349 /* move to PCI subsystem */
7350 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
7352 unsigned long tmp = 0;
7354 switch (bits->width) {
7355 case 1: {
7356 u8 tmp8 = 0;
7357 pci_read_config_byte(pdev, bits->reg, &tmp8);
7358 tmp = tmp8;
7359 break;
7361 case 2: {
7362 u16 tmp16 = 0;
7363 pci_read_config_word(pdev, bits->reg, &tmp16);
7364 tmp = tmp16;
7365 break;
7367 case 4: {
7368 u32 tmp32 = 0;
7369 pci_read_config_dword(pdev, bits->reg, &tmp32);
7370 tmp = tmp32;
7371 break;
7374 default:
7375 return -EINVAL;
7378 tmp &= bits->mask;
7380 return (tmp == bits->val) ? 1 : 0;
7383 #ifdef CONFIG_PM
7384 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
7386 pci_save_state(pdev);
7387 pci_disable_device(pdev);
7389 if (mesg.event & PM_EVENT_SLEEP)
7390 pci_set_power_state(pdev, PCI_D3hot);
7393 int ata_pci_device_do_resume(struct pci_dev *pdev)
7395 int rc;
7397 pci_set_power_state(pdev, PCI_D0);
7398 pci_restore_state(pdev);
7400 rc = pcim_enable_device(pdev);
7401 if (rc) {
7402 dev_printk(KERN_ERR, &pdev->dev,
7403 "failed to enable device after resume (%d)\n", rc);
7404 return rc;
7407 pci_set_master(pdev);
7408 return 0;
7411 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
7413 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7414 int rc = 0;
7416 rc = ata_host_suspend(host, mesg);
7417 if (rc)
7418 return rc;
7420 ata_pci_device_do_suspend(pdev, mesg);
7422 return 0;
7425 int ata_pci_device_resume(struct pci_dev *pdev)
7427 struct ata_host *host = dev_get_drvdata(&pdev->dev);
7428 int rc;
7430 rc = ata_pci_device_do_resume(pdev);
7431 if (rc == 0)
7432 ata_host_resume(host);
7433 return rc;
7435 #endif /* CONFIG_PM */
7437 #endif /* CONFIG_PCI */
7439 static int __init ata_parse_force_one(char **cur,
7440 struct ata_force_ent *force_ent,
7441 const char **reason)
7443 /* FIXME: Currently, there's no way to tag init const data and
7444 * using __initdata causes build failure on some versions of
7445 * gcc. Once __initdataconst is implemented, add const to the
7446 * following structure.
7448 static struct ata_force_param force_tbl[] __initdata = {
7449 { "40c", .cbl = ATA_CBL_PATA40 },
7450 { "80c", .cbl = ATA_CBL_PATA80 },
7451 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
7452 { "unk", .cbl = ATA_CBL_PATA_UNK },
7453 { "ign", .cbl = ATA_CBL_PATA_IGN },
7454 { "sata", .cbl = ATA_CBL_SATA },
7455 { "1.5Gbps", .spd_limit = 1 },
7456 { "3.0Gbps", .spd_limit = 2 },
7457 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
7458 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
7459 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
7460 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
7461 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
7462 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
7463 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
7464 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
7465 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
7466 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
7467 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
7468 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
7469 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
7470 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
7471 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7472 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7473 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
7474 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7475 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7476 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
7477 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7478 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7479 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
7480 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7481 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7482 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
7483 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7484 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7485 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
7486 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7487 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7488 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
7489 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7490 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7491 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
7492 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
7494 char *start = *cur, *p = *cur;
7495 char *id, *val, *endp;
7496 const struct ata_force_param *match_fp = NULL;
7497 int nr_matches = 0, i;
7499 /* find where this param ends and update *cur */
7500 while (*p != '\0' && *p != ',')
7501 p++;
7503 if (*p == '\0')
7504 *cur = p;
7505 else
7506 *cur = p + 1;
7508 *p = '\0';
7510 /* parse */
7511 p = strchr(start, ':');
7512 if (!p) {
7513 val = strstrip(start);
7514 goto parse_val;
7516 *p = '\0';
7518 id = strstrip(start);
7519 val = strstrip(p + 1);
7521 /* parse id */
7522 p = strchr(id, '.');
7523 if (p) {
7524 *p++ = '\0';
7525 force_ent->device = simple_strtoul(p, &endp, 10);
7526 if (p == endp || *endp != '\0') {
7527 *reason = "invalid device";
7528 return -EINVAL;
7532 force_ent->port = simple_strtoul(id, &endp, 10);
7533 if (p == endp || *endp != '\0') {
7534 *reason = "invalid port/link";
7535 return -EINVAL;
7538 parse_val:
7539 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
7540 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
7541 const struct ata_force_param *fp = &force_tbl[i];
7543 if (strncasecmp(val, fp->name, strlen(val)))
7544 continue;
7546 nr_matches++;
7547 match_fp = fp;
7549 if (strcasecmp(val, fp->name) == 0) {
7550 nr_matches = 1;
7551 break;
7555 if (!nr_matches) {
7556 *reason = "unknown value";
7557 return -EINVAL;
7559 if (nr_matches > 1) {
7560 *reason = "ambigious value";
7561 return -EINVAL;
7564 force_ent->param = *match_fp;
7566 return 0;
7569 static void __init ata_parse_force_param(void)
7571 int idx = 0, size = 1;
7572 int last_port = -1, last_device = -1;
7573 char *p, *cur, *next;
7575 /* calculate maximum number of params and allocate force_tbl */
7576 for (p = ata_force_param_buf; *p; p++)
7577 if (*p == ',')
7578 size++;
7580 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7581 if (!ata_force_tbl) {
7582 printk(KERN_WARNING "ata: failed to extend force table, "
7583 "libata.force ignored\n");
7584 return;
7587 /* parse and populate the table */
7588 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7589 const char *reason = "";
7590 struct ata_force_ent te = { .port = -1, .device = -1 };
7592 next = cur;
7593 if (ata_parse_force_one(&next, &te, &reason)) {
7594 printk(KERN_WARNING "ata: failed to parse force "
7595 "parameter \"%s\" (%s)\n",
7596 cur, reason);
7597 continue;
7600 if (te.port == -1) {
7601 te.port = last_port;
7602 te.device = last_device;
7605 ata_force_tbl[idx++] = te;
7607 last_port = te.port;
7608 last_device = te.device;
7611 ata_force_tbl_size = idx;
7614 static int __init ata_init(void)
7616 ata_probe_timeout *= HZ;
7618 ata_parse_force_param();
7620 ata_wq = create_workqueue("ata");
7621 if (!ata_wq)
7622 return -ENOMEM;
7624 ata_aux_wq = create_singlethread_workqueue("ata_aux");
7625 if (!ata_aux_wq) {
7626 destroy_workqueue(ata_wq);
7627 return -ENOMEM;
7630 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7631 return 0;
7634 static void __exit ata_exit(void)
7636 kfree(ata_force_tbl);
7637 destroy_workqueue(ata_wq);
7638 destroy_workqueue(ata_aux_wq);
7641 subsys_initcall(ata_init);
7642 module_exit(ata_exit);
7644 static unsigned long ratelimit_time;
7645 static DEFINE_SPINLOCK(ata_ratelimit_lock);
7647 int ata_ratelimit(void)
7649 int rc;
7650 unsigned long flags;
7652 spin_lock_irqsave(&ata_ratelimit_lock, flags);
7654 if (time_after(jiffies, ratelimit_time)) {
7655 rc = 1;
7656 ratelimit_time = jiffies + (HZ/5);
7657 } else
7658 rc = 0;
7660 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
7662 return rc;
7666 * ata_wait_register - wait until register value changes
7667 * @reg: IO-mapped register
7668 * @mask: Mask to apply to read register value
7669 * @val: Wait condition
7670 * @interval_msec: polling interval in milliseconds
7671 * @timeout_msec: timeout in milliseconds
7673 * Waiting for some bits of register to change is a common
7674 * operation for ATA controllers. This function reads 32bit LE
7675 * IO-mapped register @reg and tests for the following condition.
7677 * (*@reg & mask) != val
7679 * If the condition is met, it returns; otherwise, the process is
7680 * repeated after @interval_msec until timeout.
7682 * LOCKING:
7683 * Kernel thread context (may sleep)
7685 * RETURNS:
7686 * The final register value.
7688 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
7689 unsigned long interval_msec,
7690 unsigned long timeout_msec)
7692 unsigned long timeout;
7693 u32 tmp;
7695 tmp = ioread32(reg);
7697 /* Calculate timeout _after_ the first read to make sure
7698 * preceding writes reach the controller before starting to
7699 * eat away the timeout.
7701 timeout = jiffies + (timeout_msec * HZ) / 1000;
7703 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
7704 msleep(interval_msec);
7705 tmp = ioread32(reg);
7708 return tmp;
7712 * Dummy port_ops
7714 static void ata_dummy_noret(struct ata_port *ap) { }
7715 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
7716 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
7718 static u8 ata_dummy_check_status(struct ata_port *ap)
7720 return ATA_DRDY;
7723 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7725 return AC_ERR_SYSTEM;
7728 const struct ata_port_operations ata_dummy_port_ops = {
7729 .check_status = ata_dummy_check_status,
7730 .check_altstatus = ata_dummy_check_status,
7731 .dev_select = ata_noop_dev_select,
7732 .qc_prep = ata_noop_qc_prep,
7733 .qc_issue = ata_dummy_qc_issue,
7734 .freeze = ata_dummy_noret,
7735 .thaw = ata_dummy_noret,
7736 .error_handler = ata_dummy_noret,
7737 .post_internal_cmd = ata_dummy_qc_noret,
7738 .irq_clear = ata_dummy_noret,
7739 .port_start = ata_dummy_ret0,
7740 .port_stop = ata_dummy_noret,
7743 const struct ata_port_info ata_dummy_port_info = {
7744 .port_ops = &ata_dummy_port_ops,
7748 * libata is essentially a library of internal helper functions for
7749 * low-level ATA host controller drivers. As such, the API/ABI is
7750 * likely to change as new drivers are added and updated.
7751 * Do not depend on ABI/API stability.
7753 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7754 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7755 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7756 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7757 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7758 EXPORT_SYMBOL_GPL(ata_std_bios_param);
7759 EXPORT_SYMBOL_GPL(ata_std_ports);
7760 EXPORT_SYMBOL_GPL(ata_host_init);
7761 EXPORT_SYMBOL_GPL(ata_host_alloc);
7762 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7763 EXPORT_SYMBOL_GPL(ata_host_start);
7764 EXPORT_SYMBOL_GPL(ata_host_register);
7765 EXPORT_SYMBOL_GPL(ata_host_activate);
7766 EXPORT_SYMBOL_GPL(ata_host_detach);
7767 EXPORT_SYMBOL_GPL(ata_sg_init);
7768 EXPORT_SYMBOL_GPL(ata_hsm_move);
7769 EXPORT_SYMBOL_GPL(ata_qc_complete);
7770 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7771 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
7772 EXPORT_SYMBOL_GPL(ata_tf_load);
7773 EXPORT_SYMBOL_GPL(ata_tf_read);
7774 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
7775 EXPORT_SYMBOL_GPL(ata_std_dev_select);
7776 EXPORT_SYMBOL_GPL(sata_print_link_status);
7777 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7778 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7779 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7780 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7781 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7782 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7783 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7784 EXPORT_SYMBOL_GPL(ata_mode_string);
7785 EXPORT_SYMBOL_GPL(ata_id_xfermask);
7786 EXPORT_SYMBOL_GPL(ata_check_status);
7787 EXPORT_SYMBOL_GPL(ata_altstatus);
7788 EXPORT_SYMBOL_GPL(ata_exec_command);
7789 EXPORT_SYMBOL_GPL(ata_port_start);
7790 EXPORT_SYMBOL_GPL(ata_sff_port_start);
7791 EXPORT_SYMBOL_GPL(ata_interrupt);
7792 EXPORT_SYMBOL_GPL(ata_do_set_mode);
7793 EXPORT_SYMBOL_GPL(ata_data_xfer);
7794 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
7795 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7796 EXPORT_SYMBOL_GPL(ata_qc_prep);
7797 EXPORT_SYMBOL_GPL(ata_dumb_qc_prep);
7798 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7799 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
7800 EXPORT_SYMBOL_GPL(ata_bmdma_start);
7801 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
7802 EXPORT_SYMBOL_GPL(ata_bmdma_status);
7803 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
7804 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
7805 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
7806 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
7807 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
7808 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
7809 EXPORT_SYMBOL_GPL(ata_port_probe);
7810 EXPORT_SYMBOL_GPL(ata_dev_disable);
7811 EXPORT_SYMBOL_GPL(sata_set_spd);
7812 EXPORT_SYMBOL_GPL(sata_link_debounce);
7813 EXPORT_SYMBOL_GPL(sata_link_resume);
7814 EXPORT_SYMBOL_GPL(ata_bus_reset);
7815 EXPORT_SYMBOL_GPL(ata_std_prereset);
7816 EXPORT_SYMBOL_GPL(ata_std_softreset);
7817 EXPORT_SYMBOL_GPL(sata_link_hardreset);
7818 EXPORT_SYMBOL_GPL(sata_std_hardreset);
7819 EXPORT_SYMBOL_GPL(ata_std_postreset);
7820 EXPORT_SYMBOL_GPL(ata_dev_classify);
7821 EXPORT_SYMBOL_GPL(ata_dev_pair);
7822 EXPORT_SYMBOL_GPL(ata_port_disable);
7823 EXPORT_SYMBOL_GPL(ata_ratelimit);
7824 EXPORT_SYMBOL_GPL(ata_wait_register);
7825 EXPORT_SYMBOL_GPL(ata_busy_sleep);
7826 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7827 EXPORT_SYMBOL_GPL(ata_wait_ready);
7828 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
7829 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7830 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7831 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7832 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7833 EXPORT_SYMBOL_GPL(ata_host_intr);
7834 EXPORT_SYMBOL_GPL(sata_scr_valid);
7835 EXPORT_SYMBOL_GPL(sata_scr_read);
7836 EXPORT_SYMBOL_GPL(sata_scr_write);
7837 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7838 EXPORT_SYMBOL_GPL(ata_link_online);
7839 EXPORT_SYMBOL_GPL(ata_link_offline);
7840 #ifdef CONFIG_PM
7841 EXPORT_SYMBOL_GPL(ata_host_suspend);
7842 EXPORT_SYMBOL_GPL(ata_host_resume);
7843 #endif /* CONFIG_PM */
7844 EXPORT_SYMBOL_GPL(ata_id_string);
7845 EXPORT_SYMBOL_GPL(ata_id_c_string);
7846 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7848 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7849 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7850 EXPORT_SYMBOL_GPL(ata_timing_compute);
7851 EXPORT_SYMBOL_GPL(ata_timing_merge);
7852 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7854 #ifdef CONFIG_PCI
7855 EXPORT_SYMBOL_GPL(pci_test_config_bits);
7856 EXPORT_SYMBOL_GPL(ata_pci_init_sff_host);
7857 EXPORT_SYMBOL_GPL(ata_pci_init_bmdma);
7858 EXPORT_SYMBOL_GPL(ata_pci_prepare_sff_host);
7859 EXPORT_SYMBOL_GPL(ata_pci_activate_sff_host);
7860 EXPORT_SYMBOL_GPL(ata_pci_init_one);
7861 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7862 #ifdef CONFIG_PM
7863 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7864 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7865 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7866 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7867 #endif /* CONFIG_PM */
7868 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
7869 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
7870 #endif /* CONFIG_PCI */
7872 EXPORT_SYMBOL_GPL(sata_pmp_qc_defer_cmd_switch);
7873 EXPORT_SYMBOL_GPL(sata_pmp_std_prereset);
7874 EXPORT_SYMBOL_GPL(sata_pmp_std_hardreset);
7875 EXPORT_SYMBOL_GPL(sata_pmp_std_postreset);
7876 EXPORT_SYMBOL_GPL(sata_pmp_do_eh);
7878 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7879 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7880 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7881 EXPORT_SYMBOL_GPL(ata_port_desc);
7882 #ifdef CONFIG_PCI
7883 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7884 #endif /* CONFIG_PCI */
7885 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7886 EXPORT_SYMBOL_GPL(ata_link_abort);
7887 EXPORT_SYMBOL_GPL(ata_port_abort);
7888 EXPORT_SYMBOL_GPL(ata_port_freeze);
7889 EXPORT_SYMBOL_GPL(sata_async_notification);
7890 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7891 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7892 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7893 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7894 EXPORT_SYMBOL_GPL(ata_do_eh);
7895 EXPORT_SYMBOL_GPL(ata_irq_on);
7896 EXPORT_SYMBOL_GPL(ata_dev_try_classify);
7898 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7899 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7900 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7901 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7902 EXPORT_SYMBOL_GPL(ata_cable_sata);