iwlwifi: move rxon associated command to hcmd
[linux/fpc-iii.git] / drivers / crypto / hifn_795x.c
blob81f3f950cd7d4c5007a64cadd11c18b61c8c6db2
1 /*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/interrupt.h>
33 #include <linux/crypto.h>
34 #include <linux/hw_random.h>
35 #include <linux/ktime.h>
37 #include <crypto/algapi.h>
38 #include <crypto/des.h>
40 #include <asm/kmap_types.h>
42 #undef dprintk
44 #define HIFN_TEST
45 //#define HIFN_DEBUG
47 #ifdef HIFN_DEBUG
48 #define dprintk(f, a...) printk(f, ##a)
49 #else
50 #define dprintk(f, a...) do {} while (0)
51 #endif
53 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
54 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
55 MODULE_PARM_DESC(hifn_pll_ref,
56 "PLL reference clock (pci[freq] or ext[freq], default ext)");
58 static atomic_t hifn_dev_number;
60 #define ACRYPTO_OP_DECRYPT 0
61 #define ACRYPTO_OP_ENCRYPT 1
62 #define ACRYPTO_OP_HMAC 2
63 #define ACRYPTO_OP_RNG 3
65 #define ACRYPTO_MODE_ECB 0
66 #define ACRYPTO_MODE_CBC 1
67 #define ACRYPTO_MODE_CFB 2
68 #define ACRYPTO_MODE_OFB 3
70 #define ACRYPTO_TYPE_AES_128 0
71 #define ACRYPTO_TYPE_AES_192 1
72 #define ACRYPTO_TYPE_AES_256 2
73 #define ACRYPTO_TYPE_3DES 3
74 #define ACRYPTO_TYPE_DES 4
76 #define PCI_VENDOR_ID_HIFN 0x13A3
77 #define PCI_DEVICE_ID_HIFN_7955 0x0020
78 #define PCI_DEVICE_ID_HIFN_7956 0x001d
80 /* I/O region sizes */
82 #define HIFN_BAR0_SIZE 0x1000
83 #define HIFN_BAR1_SIZE 0x2000
84 #define HIFN_BAR2_SIZE 0x8000
86 /* DMA registres */
88 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
89 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
90 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
91 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
92 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
93 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
94 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
95 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
96 #define HIFN_CHIP_ID 0x98 /* Chip ID */
99 * Processing Unit Registers (offset from BASEREG0)
101 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
102 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
103 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
104 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
105 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
106 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
107 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
108 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
109 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
111 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
112 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
113 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
114 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
115 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
116 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
118 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
119 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
120 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
121 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
122 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
123 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
124 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
125 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
126 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
127 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
128 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
130 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
131 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
132 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
133 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
134 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
135 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
136 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
137 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
138 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
139 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
140 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
141 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
142 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
143 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
144 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
145 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
146 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
147 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
148 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
149 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
150 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
151 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
152 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
153 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
155 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
156 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
157 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
158 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
159 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
160 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
161 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
162 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
163 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
164 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
165 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
167 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
168 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
169 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
170 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
171 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
172 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
173 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
174 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
175 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
176 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
177 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
178 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
179 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
180 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
181 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
182 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
183 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
184 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
186 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
187 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
188 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
190 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
191 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
194 * DMA Interface Registers (offset from BASEREG1)
196 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
197 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
198 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
199 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
200 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
201 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
202 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
203 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
204 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
205 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
206 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
207 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
208 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
209 #define HIFN_1_REVID 0x98 /* Revision ID */
210 #define HIFN_1_UNLOCK_SECRET1 0xf4
211 #define HIFN_1_UNLOCK_SECRET2 0xfc
212 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
213 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
214 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
215 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
216 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
217 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
218 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
219 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
220 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
221 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
223 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
224 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
225 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
226 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
227 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
228 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
229 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
230 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
231 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
232 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
233 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
234 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
235 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
236 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
237 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
238 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
239 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
240 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
241 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
242 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
243 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
244 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
245 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
246 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
247 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
248 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
249 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
250 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
251 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
252 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
253 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
254 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
255 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
256 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
257 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
258 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
259 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
260 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
261 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
263 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
264 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
265 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
266 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
267 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
268 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
269 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
270 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
271 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
272 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
273 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
274 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
275 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
276 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
277 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
278 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
279 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
280 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
281 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
282 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
283 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
284 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
285 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
287 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
288 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
289 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
290 #define HIFN_DMACNFG_UNLOCK 0x00000800
291 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
292 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
293 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
294 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
295 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
297 /* PLL configuration register */
298 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
299 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
300 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
301 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
302 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
303 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
304 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
305 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
306 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
307 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
308 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
309 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
310 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
311 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
312 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
313 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
314 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
316 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
318 /* Public key reset register (HIFN_1_PUB_RESET) */
319 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
321 /* Public base address register (HIFN_1_PUB_BASE) */
322 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
324 /* Public operand length register (HIFN_1_PUB_OPLEN) */
325 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
326 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
327 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
328 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent lenght shift */
329 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
330 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
332 /* Public operation register (HIFN_1_PUB_OP) */
333 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
334 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
335 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
336 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
337 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
338 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
339 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
340 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
341 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
342 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
343 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
344 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
345 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
346 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
347 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
348 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
349 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
350 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
351 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
352 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
354 /* Public status register (HIFN_1_PUB_STATUS) */
355 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
356 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
358 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
359 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
361 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
362 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
364 #define HIFN_NAMESIZE 32
365 #define HIFN_MAX_RESULT_ORDER 5
367 #define HIFN_D_CMD_RSIZE 24*4
368 #define HIFN_D_SRC_RSIZE 80*4
369 #define HIFN_D_DST_RSIZE 80*4
370 #define HIFN_D_RES_RSIZE 24*4
372 #define HIFN_QUEUE_LENGTH HIFN_D_CMD_RSIZE-5
374 #define AES_MIN_KEY_SIZE 16
375 #define AES_MAX_KEY_SIZE 32
377 #define HIFN_DES_KEY_LENGTH 8
378 #define HIFN_3DES_KEY_LENGTH 24
379 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
380 #define HIFN_IV_LENGTH 8
381 #define HIFN_AES_IV_LENGTH 16
382 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
384 #define HIFN_MAC_KEY_LENGTH 64
385 #define HIFN_MD5_LENGTH 16
386 #define HIFN_SHA1_LENGTH 20
387 #define HIFN_MAC_TRUNC_LENGTH 12
389 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
390 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
391 #define HIFN_USED_RESULT 12
393 struct hifn_desc
395 volatile __le32 l;
396 volatile __le32 p;
399 struct hifn_dma {
400 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
401 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
402 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
403 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
405 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
406 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
408 u64 test_src, test_dst;
411 * Our current positions for insertion and removal from the descriptor
412 * rings.
414 volatile int cmdi, srci, dsti, resi;
415 volatile int cmdu, srcu, dstu, resu;
416 int cmdk, srck, dstk, resk;
419 #define HIFN_FLAG_CMD_BUSY (1<<0)
420 #define HIFN_FLAG_SRC_BUSY (1<<1)
421 #define HIFN_FLAG_DST_BUSY (1<<2)
422 #define HIFN_FLAG_RES_BUSY (1<<3)
423 #define HIFN_FLAG_OLD_KEY (1<<4)
425 #define HIFN_DEFAULT_ACTIVE_NUM 5
427 struct hifn_device
429 char name[HIFN_NAMESIZE];
431 int irq;
433 struct pci_dev *pdev;
434 void __iomem *bar[3];
436 unsigned long result_mem;
437 dma_addr_t dst;
439 void *desc_virt;
440 dma_addr_t desc_dma;
442 u32 dmareg;
444 void *sa[HIFN_D_RES_RSIZE];
446 spinlock_t lock;
448 void *priv;
450 u32 flags;
451 int active, started;
452 struct delayed_work work;
453 unsigned long reset;
454 unsigned long success;
455 unsigned long prev_success;
457 u8 snum;
459 struct tasklet_struct tasklet;
461 struct crypto_queue queue;
462 struct list_head alg_list;
464 unsigned int pk_clk_freq;
466 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
467 unsigned int rng_wait_time;
468 ktime_t rngtime;
469 struct hwrng rng;
470 #endif
473 #define HIFN_D_LENGTH 0x0000ffff
474 #define HIFN_D_NOINVALID 0x01000000
475 #define HIFN_D_MASKDONEIRQ 0x02000000
476 #define HIFN_D_DESTOVER 0x04000000
477 #define HIFN_D_OVER 0x08000000
478 #define HIFN_D_LAST 0x20000000
479 #define HIFN_D_JUMP 0x40000000
480 #define HIFN_D_VALID 0x80000000
482 struct hifn_base_command
484 volatile __le16 masks;
485 volatile __le16 session_num;
486 volatile __le16 total_source_count;
487 volatile __le16 total_dest_count;
490 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
491 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
492 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
493 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
494 #define HIFN_BASE_CMD_DECODE 0x2000
495 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
496 #define HIFN_BASE_CMD_SRCLEN_S 14
497 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
498 #define HIFN_BASE_CMD_DSTLEN_S 12
499 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
500 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
503 * Structure to help build up the command data structure.
505 struct hifn_crypt_command
507 volatile __le16 masks;
508 volatile __le16 header_skip;
509 volatile __le16 source_count;
510 volatile __le16 reserved;
513 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
514 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
515 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
516 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
517 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
518 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
519 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
520 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
521 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
522 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
523 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
524 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
525 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
526 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
527 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
528 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
529 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
530 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
531 #define HIFN_CRYPT_CMD_SRCLEN_S 14
534 * Structure to help build up the command data structure.
536 struct hifn_mac_command
538 volatile u16 masks;
539 volatile u16 header_skip;
540 volatile u16 source_count;
541 volatile u16 reserved;
544 #define HIFN_MAC_CMD_ALG_MASK 0x0001
545 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
546 #define HIFN_MAC_CMD_ALG_MD5 0x0001
547 #define HIFN_MAC_CMD_MODE_MASK 0x000c
548 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
549 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
550 #define HIFN_MAC_CMD_MODE_HASH 0x0008
551 #define HIFN_MAC_CMD_MODE_FULL 0x0004
552 #define HIFN_MAC_CMD_TRUNC 0x0010
553 #define HIFN_MAC_CMD_RESULT 0x0020
554 #define HIFN_MAC_CMD_APPEND 0x0040
555 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
556 #define HIFN_MAC_CMD_SRCLEN_S 14
559 * MAC POS IPsec initiates authentication after encryption on encodes
560 * and before decryption on decodes.
562 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
563 #define HIFN_MAC_CMD_NEW_KEY 0x0800
565 struct hifn_comp_command
567 volatile u16 masks;
568 volatile u16 header_skip;
569 volatile u16 source_count;
570 volatile u16 reserved;
573 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
574 #define HIFN_COMP_CMD_SRCLEN_S 14
575 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
576 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
577 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
578 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
579 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
580 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
581 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
582 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
584 struct hifn_base_result
586 volatile u16 flags;
587 volatile u16 session;
588 volatile u16 src_cnt; /* 15:0 of source count */
589 volatile u16 dst_cnt; /* 15:0 of dest count */
592 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
593 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
594 #define HIFN_BASE_RES_SRCLEN_S 14
595 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
596 #define HIFN_BASE_RES_DSTLEN_S 12
598 struct hifn_comp_result
600 volatile u16 flags;
601 volatile u16 crc;
604 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
605 #define HIFN_COMP_RES_LCB_S 8
606 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
607 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
608 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
610 struct hifn_mac_result
612 volatile u16 flags;
613 volatile u16 reserved;
614 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
617 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
618 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
620 struct hifn_crypt_result
622 volatile u16 flags;
623 volatile u16 reserved;
626 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
628 #ifndef HIFN_POLL_FREQUENCY
629 #define HIFN_POLL_FREQUENCY 0x1
630 #endif
632 #ifndef HIFN_POLL_SCALAR
633 #define HIFN_POLL_SCALAR 0x0
634 #endif
636 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
637 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
639 struct hifn_crypto_alg
641 struct list_head entry;
642 struct crypto_alg alg;
643 struct hifn_device *dev;
646 #define ASYNC_SCATTERLIST_CACHE 16
648 #define ASYNC_FLAGS_MISALIGNED (1<<0)
650 struct ablkcipher_walk
652 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
653 u32 flags;
654 int num;
657 struct hifn_context
659 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH], *iv;
660 struct hifn_device *dev;
661 unsigned int keysize, ivsize;
662 u8 op, type, mode, unused;
663 struct ablkcipher_walk walk;
664 atomic_t sg_num;
667 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
669 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
671 u32 ret;
673 ret = readl(dev->bar[0] + reg);
675 return ret;
678 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
680 u32 ret;
682 ret = readl(dev->bar[1] + reg);
684 return ret;
687 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
689 writel(val, dev->bar[0] + reg);
692 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
694 writel(val, dev->bar[1] + reg);
697 static void hifn_wait_puc(struct hifn_device *dev)
699 int i;
700 u32 ret;
702 for (i=10000; i > 0; --i) {
703 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
704 if (!(ret & HIFN_PUCTRL_RESET))
705 break;
707 udelay(1);
710 if (!i)
711 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
714 static void hifn_reset_puc(struct hifn_device *dev)
716 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
717 hifn_wait_puc(dev);
720 static void hifn_stop_device(struct hifn_device *dev)
722 hifn_write_1(dev, HIFN_1_DMA_CSR,
723 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
724 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
725 hifn_write_0(dev, HIFN_0_PUIER, 0);
726 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
729 static void hifn_reset_dma(struct hifn_device *dev, int full)
731 hifn_stop_device(dev);
734 * Setting poll frequency and others to 0.
736 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
737 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
738 mdelay(1);
741 * Reset DMA.
743 if (full) {
744 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
745 mdelay(1);
746 } else {
747 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
748 HIFN_DMACNFG_MSTRESET);
749 hifn_reset_puc(dev);
752 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
753 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
755 hifn_reset_puc(dev);
758 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
760 int i;
761 u32 v;
763 for (i = 0; i < cnt; i++) {
765 /* get the parity */
766 v = a & 0x80080125;
767 v ^= v >> 16;
768 v ^= v >> 8;
769 v ^= v >> 4;
770 v ^= v >> 2;
771 v ^= v >> 1;
773 a = (v & 1) ^ (a << 1);
776 return a;
779 static struct pci2id {
780 u_short pci_vendor;
781 u_short pci_prod;
782 char card_id[13];
783 } pci2id[] = {
785 PCI_VENDOR_ID_HIFN,
786 PCI_DEVICE_ID_HIFN_7955,
787 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788 0x00, 0x00, 0x00, 0x00, 0x00 }
791 PCI_VENDOR_ID_HIFN,
792 PCI_DEVICE_ID_HIFN_7956,
793 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
794 0x00, 0x00, 0x00, 0x00, 0x00 }
798 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
799 static int hifn_rng_data_present(struct hwrng *rng, int wait)
801 struct hifn_device *dev = (struct hifn_device *)rng->priv;
802 s64 nsec;
804 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
805 nsec -= dev->rng_wait_time;
806 if (nsec <= 0)
807 return 1;
808 if (!wait)
809 return 0;
810 ndelay(nsec);
811 return 1;
814 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
816 struct hifn_device *dev = (struct hifn_device *)rng->priv;
818 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
819 dev->rngtime = ktime_get();
820 return 4;
823 static int hifn_register_rng(struct hifn_device *dev)
826 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
828 dev->rng_wait_time = DIV_ROUND_UP(NSEC_PER_SEC, dev->pk_clk_freq) *
829 256;
831 dev->rng.name = dev->name;
832 dev->rng.data_present = hifn_rng_data_present,
833 dev->rng.data_read = hifn_rng_data_read,
834 dev->rng.priv = (unsigned long)dev;
836 return hwrng_register(&dev->rng);
839 static void hifn_unregister_rng(struct hifn_device *dev)
841 hwrng_unregister(&dev->rng);
843 #else
844 #define hifn_register_rng(dev) 0
845 #define hifn_unregister_rng(dev)
846 #endif
848 static int hifn_init_pubrng(struct hifn_device *dev)
850 int i;
852 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
853 HIFN_PUBRST_RESET);
855 for (i=100; i > 0; --i) {
856 mdelay(1);
858 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
859 break;
862 if (!i)
863 dprintk("Chip %s: Failed to initialise public key engine.\n",
864 dev->name);
865 else {
866 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
867 dev->dmareg |= HIFN_DMAIER_PUBDONE;
868 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
870 dprintk("Chip %s: Public key engine has been sucessfully "
871 "initialised.\n", dev->name);
875 * Enable RNG engine.
878 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
879 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
880 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
881 dev->name);
883 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
884 /* First value must be discarded */
885 hifn_read_1(dev, HIFN_1_RNG_DATA);
886 dev->rngtime = ktime_get();
887 #endif
888 return 0;
891 static int hifn_enable_crypto(struct hifn_device *dev)
893 u32 dmacfg, addr;
894 char *offtbl = NULL;
895 int i;
897 for (i = 0; i < sizeof(pci2id)/sizeof(pci2id[0]); i++) {
898 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
899 pci2id[i].pci_prod == dev->pdev->device) {
900 offtbl = pci2id[i].card_id;
901 break;
905 if (offtbl == NULL) {
906 dprintk("Chip %s: Unknown card!\n", dev->name);
907 return -ENODEV;
910 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
912 hifn_write_1(dev, HIFN_1_DMA_CNFG,
913 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
914 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
915 mdelay(1);
916 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
917 mdelay(1);
918 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
919 mdelay(1);
921 for (i=0; i<12; ++i) {
922 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
923 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
925 mdelay(1);
927 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
929 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
931 return 0;
934 static void hifn_init_dma(struct hifn_device *dev)
936 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
937 u32 dptr = dev->desc_dma;
938 int i;
940 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
941 dma->cmdr[i].p = __cpu_to_le32(dptr +
942 offsetof(struct hifn_dma, command_bufs[i][0]));
943 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
944 dma->resr[i].p = __cpu_to_le32(dptr +
945 offsetof(struct hifn_dma, result_bufs[i][0]));
948 * Setup LAST descriptors.
950 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
951 offsetof(struct hifn_dma, cmdr[0]));
952 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
953 offsetof(struct hifn_dma, srcr[0]));
954 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
955 offsetof(struct hifn_dma, dstr[0]));
956 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
957 offsetof(struct hifn_dma, resr[0]));
959 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
960 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
961 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
965 * Initialize the PLL. We need to know the frequency of the reference clock
966 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
967 * allows us to operate without the risk of overclocking the chip. If it
968 * actually uses 33MHz, the chip will operate at half the speed, this can be
969 * overriden by specifying the frequency as module parameter (pci33).
971 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
972 * stable clock and the PCI clock frequency may vary, so the default is the
973 * external clock. There is no way to find out its frequency, we default to
974 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
975 * has an external crystal populated at 66MHz.
977 static void hifn_init_pll(struct hifn_device *dev)
979 unsigned int freq, m;
980 u32 pllcfg;
982 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
984 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
985 pllcfg |= HIFN_PLL_REF_CLK_PLL;
986 else
987 pllcfg |= HIFN_PLL_REF_CLK_HBI;
989 if (hifn_pll_ref[3] != '\0')
990 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
991 else {
992 freq = 66;
993 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
994 "override with hifn_pll_ref=%.3s<frequency>\n",
995 freq, hifn_pll_ref);
998 m = HIFN_PLL_FCK_MAX / freq;
1000 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
1001 if (m <= 8)
1002 pllcfg |= HIFN_PLL_IS_1_8;
1003 else
1004 pllcfg |= HIFN_PLL_IS_9_12;
1006 /* Select clock source and enable clock bypass */
1007 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1008 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1010 /* Let the chip lock to the input clock */
1011 mdelay(10);
1013 /* Disable clock bypass */
1014 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1015 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1017 /* Switch the engines to the PLL */
1018 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1019 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1022 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1023 * calculate the minimum time between two reads of the rng. Since 33MHz
1024 * is actually 33.333... we overestimate the frequency here, resulting
1025 * in slightly larger intervals.
1027 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1030 static void hifn_init_registers(struct hifn_device *dev)
1032 u32 dptr = dev->desc_dma;
1034 /* Initialization magic... */
1035 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1036 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1037 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1039 /* write all 4 ring address registers */
1040 hifn_write_1(dev, HIFN_1_DMA_CRAR, __cpu_to_le32(dptr +
1041 offsetof(struct hifn_dma, cmdr[0])));
1042 hifn_write_1(dev, HIFN_1_DMA_SRAR, __cpu_to_le32(dptr +
1043 offsetof(struct hifn_dma, srcr[0])));
1044 hifn_write_1(dev, HIFN_1_DMA_DRAR, __cpu_to_le32(dptr +
1045 offsetof(struct hifn_dma, dstr[0])));
1046 hifn_write_1(dev, HIFN_1_DMA_RRAR, __cpu_to_le32(dptr +
1047 offsetof(struct hifn_dma, resr[0])));
1049 mdelay(2);
1050 #if 0
1051 hifn_write_1(dev, HIFN_1_DMA_CSR,
1052 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1053 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1054 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1055 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1056 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1057 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1058 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1059 HIFN_DMACSR_S_WAIT |
1060 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1061 HIFN_DMACSR_C_WAIT |
1062 HIFN_DMACSR_ENGINE |
1063 HIFN_DMACSR_PUBDONE);
1064 #else
1065 hifn_write_1(dev, HIFN_1_DMA_CSR,
1066 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1067 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1068 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1069 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1070 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1071 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1072 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1073 HIFN_DMACSR_S_WAIT |
1074 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1075 HIFN_DMACSR_C_WAIT |
1076 HIFN_DMACSR_ENGINE |
1077 HIFN_DMACSR_PUBDONE);
1078 #endif
1079 hifn_read_1(dev, HIFN_1_DMA_CSR);
1081 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1082 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1083 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1084 HIFN_DMAIER_ENGINE;
1085 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1087 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1088 hifn_read_1(dev, HIFN_1_DMA_IER);
1089 #if 0
1090 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1091 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1092 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1093 HIFN_PUCNFG_DRAM);
1094 #else
1095 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1096 #endif
1097 hifn_init_pll(dev);
1099 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1100 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1101 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1102 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1103 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1106 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1107 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1109 struct hifn_base_command *base_cmd;
1110 u8 *buf_pos = buf;
1112 base_cmd = (struct hifn_base_command *)buf_pos;
1113 base_cmd->masks = __cpu_to_le16(mask);
1114 base_cmd->total_source_count =
1115 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1116 base_cmd->total_dest_count =
1117 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1119 dlen >>= 16;
1120 slen >>= 16;
1121 base_cmd->session_num = __cpu_to_le16(snum |
1122 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1123 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1125 return sizeof(struct hifn_base_command);
1128 static int hifn_setup_crypto_command(struct hifn_device *dev,
1129 u8 *buf, unsigned dlen, unsigned slen,
1130 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1132 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1133 struct hifn_crypt_command *cry_cmd;
1134 u8 *buf_pos = buf;
1135 u16 cmd_len;
1137 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1139 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1140 dlen >>= 16;
1141 cry_cmd->masks = __cpu_to_le16(mode |
1142 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1143 HIFN_CRYPT_CMD_SRCLEN_M));
1144 cry_cmd->header_skip = 0;
1145 cry_cmd->reserved = 0;
1147 buf_pos += sizeof(struct hifn_crypt_command);
1149 dma->cmdu++;
1150 if (dma->cmdu > 1) {
1151 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1152 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1155 if (keylen) {
1156 memcpy(buf_pos, key, keylen);
1157 buf_pos += keylen;
1159 if (ivsize) {
1160 memcpy(buf_pos, iv, ivsize);
1161 buf_pos += ivsize;
1164 cmd_len = buf_pos - buf;
1166 return cmd_len;
1169 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1170 unsigned int offset, unsigned int size)
1172 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1173 int idx;
1174 dma_addr_t addr;
1176 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1178 idx = dma->srci;
1180 dma->srcr[idx].p = __cpu_to_le32(addr);
1181 dma->srcr[idx].l = __cpu_to_le32(size) | HIFN_D_VALID |
1182 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST;
1184 if (++idx == HIFN_D_SRC_RSIZE) {
1185 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1186 HIFN_D_JUMP |
1187 HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1188 idx = 0;
1191 dma->srci = idx;
1192 dma->srcu++;
1194 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1195 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1196 dev->flags |= HIFN_FLAG_SRC_BUSY;
1199 return size;
1202 static void hifn_setup_res_desc(struct hifn_device *dev)
1204 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1206 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1207 HIFN_D_VALID | HIFN_D_LAST);
1209 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1210 * HIFN_D_LAST | HIFN_D_NOINVALID);
1213 if (++dma->resi == HIFN_D_RES_RSIZE) {
1214 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1215 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1216 dma->resi = 0;
1219 dma->resu++;
1221 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1222 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1223 dev->flags |= HIFN_FLAG_RES_BUSY;
1227 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1228 unsigned offset, unsigned size)
1230 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1231 int idx;
1232 dma_addr_t addr;
1234 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1236 idx = dma->dsti;
1237 dma->dstr[idx].p = __cpu_to_le32(addr);
1238 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1239 HIFN_D_MASKDONEIRQ | HIFN_D_NOINVALID | HIFN_D_LAST);
1241 if (++idx == HIFN_D_DST_RSIZE) {
1242 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1243 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1244 HIFN_D_LAST | HIFN_D_NOINVALID);
1245 idx = 0;
1247 dma->dsti = idx;
1248 dma->dstu++;
1250 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1251 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1252 dev->flags |= HIFN_FLAG_DST_BUSY;
1256 static int hifn_setup_dma(struct hifn_device *dev, struct page *spage, unsigned int soff,
1257 struct page *dpage, unsigned int doff, unsigned int nbytes, void *priv,
1258 struct hifn_context *ctx)
1260 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1261 int cmd_len, sa_idx;
1262 u8 *buf, *buf_pos;
1263 u16 mask;
1265 dprintk("%s: spage: %p, soffset: %u, dpage: %p, doffset: %u, nbytes: %u, priv: %p, ctx: %p.\n",
1266 dev->name, spage, soff, dpage, doff, nbytes, priv, ctx);
1268 sa_idx = dma->resi;
1270 hifn_setup_src_desc(dev, spage, soff, nbytes);
1272 buf_pos = buf = dma->command_bufs[dma->cmdi];
1274 mask = 0;
1275 switch (ctx->op) {
1276 case ACRYPTO_OP_DECRYPT:
1277 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1278 break;
1279 case ACRYPTO_OP_ENCRYPT:
1280 mask = HIFN_BASE_CMD_CRYPT;
1281 break;
1282 case ACRYPTO_OP_HMAC:
1283 mask = HIFN_BASE_CMD_MAC;
1284 break;
1285 default:
1286 goto err_out;
1289 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1290 nbytes, mask, dev->snum);
1292 if (ctx->op == ACRYPTO_OP_ENCRYPT || ctx->op == ACRYPTO_OP_DECRYPT) {
1293 u16 md = 0;
1295 if (ctx->keysize)
1296 md |= HIFN_CRYPT_CMD_NEW_KEY;
1297 if (ctx->iv && ctx->mode != ACRYPTO_MODE_ECB)
1298 md |= HIFN_CRYPT_CMD_NEW_IV;
1300 switch (ctx->mode) {
1301 case ACRYPTO_MODE_ECB:
1302 md |= HIFN_CRYPT_CMD_MODE_ECB;
1303 break;
1304 case ACRYPTO_MODE_CBC:
1305 md |= HIFN_CRYPT_CMD_MODE_CBC;
1306 break;
1307 case ACRYPTO_MODE_CFB:
1308 md |= HIFN_CRYPT_CMD_MODE_CFB;
1309 break;
1310 case ACRYPTO_MODE_OFB:
1311 md |= HIFN_CRYPT_CMD_MODE_OFB;
1312 break;
1313 default:
1314 goto err_out;
1317 switch (ctx->type) {
1318 case ACRYPTO_TYPE_AES_128:
1319 if (ctx->keysize != 16)
1320 goto err_out;
1321 md |= HIFN_CRYPT_CMD_KSZ_128 |
1322 HIFN_CRYPT_CMD_ALG_AES;
1323 break;
1324 case ACRYPTO_TYPE_AES_192:
1325 if (ctx->keysize != 24)
1326 goto err_out;
1327 md |= HIFN_CRYPT_CMD_KSZ_192 |
1328 HIFN_CRYPT_CMD_ALG_AES;
1329 break;
1330 case ACRYPTO_TYPE_AES_256:
1331 if (ctx->keysize != 32)
1332 goto err_out;
1333 md |= HIFN_CRYPT_CMD_KSZ_256 |
1334 HIFN_CRYPT_CMD_ALG_AES;
1335 break;
1336 case ACRYPTO_TYPE_3DES:
1337 if (ctx->keysize != 24)
1338 goto err_out;
1339 md |= HIFN_CRYPT_CMD_ALG_3DES;
1340 break;
1341 case ACRYPTO_TYPE_DES:
1342 if (ctx->keysize != 8)
1343 goto err_out;
1344 md |= HIFN_CRYPT_CMD_ALG_DES;
1345 break;
1346 default:
1347 goto err_out;
1350 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1351 nbytes, nbytes, ctx->key, ctx->keysize,
1352 ctx->iv, ctx->ivsize, md);
1355 dev->sa[sa_idx] = priv;
1357 cmd_len = buf_pos - buf;
1358 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1359 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1361 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1362 dma->cmdr[dma->cmdi].l = __cpu_to_le32(HIFN_MAX_COMMAND |
1363 HIFN_D_VALID | HIFN_D_LAST |
1364 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1365 dma->cmdi = 0;
1366 } else
1367 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1369 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1370 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1371 dev->flags |= HIFN_FLAG_CMD_BUSY;
1374 hifn_setup_dst_desc(dev, dpage, doff, nbytes);
1375 hifn_setup_res_desc(dev);
1377 return 0;
1379 err_out:
1380 return -EINVAL;
1383 static int ablkcipher_walk_init(struct ablkcipher_walk *w,
1384 int num, gfp_t gfp_flags)
1386 int i;
1388 num = min(ASYNC_SCATTERLIST_CACHE, num);
1389 sg_init_table(w->cache, num);
1391 w->num = 0;
1392 for (i=0; i<num; ++i) {
1393 struct page *page = alloc_page(gfp_flags);
1394 struct scatterlist *s;
1396 if (!page)
1397 break;
1399 s = &w->cache[i];
1401 sg_set_page(s, page, PAGE_SIZE, 0);
1402 w->num++;
1405 return i;
1408 static void ablkcipher_walk_exit(struct ablkcipher_walk *w)
1410 int i;
1412 for (i=0; i<w->num; ++i) {
1413 struct scatterlist *s = &w->cache[i];
1415 __free_page(sg_page(s));
1417 s->length = 0;
1420 w->num = 0;
1423 static int ablkcipher_add(void *daddr, unsigned int *drestp, struct scatterlist *src,
1424 unsigned int size, unsigned int *nbytesp)
1426 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1427 int idx = 0;
1428 void *saddr;
1430 if (drest < size || size > nbytes)
1431 return -EINVAL;
1433 while (size) {
1434 copy = min(drest, src->length);
1436 saddr = kmap_atomic(sg_page(src), KM_SOFTIRQ1);
1437 memcpy(daddr, saddr + src->offset, copy);
1438 kunmap_atomic(saddr, KM_SOFTIRQ1);
1440 size -= copy;
1441 drest -= copy;
1442 nbytes -= copy;
1443 daddr += copy;
1445 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1446 __func__, copy, size, drest, nbytes);
1448 src++;
1449 idx++;
1452 *nbytesp = nbytes;
1453 *drestp = drest;
1455 return idx;
1458 static int ablkcipher_walk(struct ablkcipher_request *req,
1459 struct ablkcipher_walk *w)
1461 unsigned blocksize =
1462 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1463 unsigned alignmask =
1464 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1465 struct scatterlist *src, *dst, *t;
1466 void *daddr;
1467 unsigned int nbytes = req->nbytes, offset, copy, diff;
1468 int idx, tidx, err;
1470 tidx = idx = 0;
1471 offset = 0;
1472 while (nbytes) {
1473 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1474 return -EINVAL;
1476 src = &req->src[idx];
1477 dst = &req->dst[idx];
1479 dprintk("\n%s: slen: %u, dlen: %u, soff: %u, doff: %u, offset: %u, "
1480 "blocksize: %u, nbytes: %u.\n",
1481 __func__, src->length, dst->length, src->offset,
1482 dst->offset, offset, blocksize, nbytes);
1484 if (src->length & (blocksize - 1) ||
1485 src->offset & (alignmask - 1) ||
1486 dst->length & (blocksize - 1) ||
1487 dst->offset & (alignmask - 1) ||
1488 offset) {
1489 unsigned slen = src->length - offset;
1490 unsigned dlen = PAGE_SIZE;
1492 t = &w->cache[idx];
1494 daddr = kmap_atomic(sg_page(t), KM_SOFTIRQ0);
1495 err = ablkcipher_add(daddr, &dlen, src, slen, &nbytes);
1496 if (err < 0)
1497 goto err_out_unmap;
1499 idx += err;
1501 copy = slen & ~(blocksize - 1);
1502 diff = slen & (blocksize - 1);
1504 if (dlen < nbytes) {
1506 * Destination page does not have enough space
1507 * to put there additional blocksized chunk,
1508 * so we mark that page as containing only
1509 * blocksize aligned chunks:
1510 * t->length = (slen & ~(blocksize - 1));
1511 * and increase number of bytes to be processed
1512 * in next chunk:
1513 * nbytes += diff;
1515 nbytes += diff;
1518 * Temporary of course...
1519 * Kick author if you will catch this one.
1521 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1522 "slen: %u, offset: %u.\n",
1523 __func__, dlen, nbytes, slen, offset);
1524 printk(KERN_ERR "%s: please contact author to fix this "
1525 "issue, generally you should not catch "
1526 "this path under any condition but who "
1527 "knows how did you use crypto code.\n"
1528 "Thank you.\n", __func__);
1529 BUG();
1530 } else {
1531 copy += diff + nbytes;
1533 src = &req->src[idx];
1535 err = ablkcipher_add(daddr + slen, &dlen, src, nbytes, &nbytes);
1536 if (err < 0)
1537 goto err_out_unmap;
1539 idx += err;
1542 t->length = copy;
1543 t->offset = offset;
1545 kunmap_atomic(daddr, KM_SOFTIRQ0);
1546 } else {
1547 nbytes -= src->length;
1548 idx++;
1551 tidx++;
1554 return tidx;
1556 err_out_unmap:
1557 kunmap_atomic(daddr, KM_SOFTIRQ0);
1558 return err;
1561 static int hifn_setup_session(struct ablkcipher_request *req)
1563 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1564 struct hifn_device *dev = ctx->dev;
1565 struct page *spage, *dpage;
1566 unsigned long soff, doff, flags;
1567 unsigned int nbytes = req->nbytes, idx = 0, len;
1568 int err = -EINVAL, sg_num;
1569 struct scatterlist *src, *dst, *t;
1570 unsigned blocksize =
1571 crypto_ablkcipher_blocksize(crypto_ablkcipher_reqtfm(req));
1572 unsigned alignmask =
1573 crypto_ablkcipher_alignmask(crypto_ablkcipher_reqtfm(req));
1575 if (ctx->iv && !ctx->ivsize && ctx->mode != ACRYPTO_MODE_ECB)
1576 goto err_out_exit;
1578 ctx->walk.flags = 0;
1580 while (nbytes) {
1581 src = &req->src[idx];
1582 dst = &req->dst[idx];
1584 if (src->length & (blocksize - 1) ||
1585 src->offset & (alignmask - 1) ||
1586 dst->length & (blocksize - 1) ||
1587 dst->offset & (alignmask - 1)) {
1588 ctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1591 nbytes -= src->length;
1592 idx++;
1595 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1596 err = ablkcipher_walk_init(&ctx->walk, idx, GFP_ATOMIC);
1597 if (err < 0)
1598 return err;
1601 nbytes = req->nbytes;
1602 idx = 0;
1604 sg_num = ablkcipher_walk(req, &ctx->walk);
1606 atomic_set(&ctx->sg_num, sg_num);
1608 spin_lock_irqsave(&dev->lock, flags);
1609 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1610 err = -EAGAIN;
1611 goto err_out;
1614 dev->snum++;
1615 dev->started += sg_num;
1617 while (nbytes) {
1618 src = &req->src[idx];
1619 dst = &req->dst[idx];
1620 t = &ctx->walk.cache[idx];
1622 if (t->length) {
1623 spage = dpage = sg_page(t);
1624 soff = doff = 0;
1625 len = t->length;
1626 } else {
1627 spage = sg_page(src);
1628 soff = src->offset;
1630 dpage = sg_page(dst);
1631 doff = dst->offset;
1633 len = dst->length;
1636 idx++;
1638 err = hifn_setup_dma(dev, spage, soff, dpage, doff, nbytes,
1639 req, ctx);
1640 if (err)
1641 goto err_out;
1643 nbytes -= len;
1646 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1647 spin_unlock_irqrestore(&dev->lock, flags);
1649 return 0;
1651 err_out:
1652 spin_unlock_irqrestore(&dev->lock, flags);
1653 err_out_exit:
1654 if (err && printk_ratelimit())
1655 dprintk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1656 "type: %u, err: %d.\n",
1657 dev->name, ctx->iv, ctx->ivsize,
1658 ctx->key, ctx->keysize,
1659 ctx->mode, ctx->op, ctx->type, err);
1661 return err;
1664 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1666 int n, err;
1667 u8 src[16];
1668 struct hifn_context ctx;
1669 u8 fips_aes_ecb_from_zero[16] = {
1670 0x66, 0xE9, 0x4B, 0xD4,
1671 0xEF, 0x8A, 0x2C, 0x3B,
1672 0x88, 0x4C, 0xFA, 0x59,
1673 0xCA, 0x34, 0x2B, 0x2E};
1675 memset(src, 0, sizeof(src));
1676 memset(ctx.key, 0, sizeof(ctx.key));
1678 ctx.dev = dev;
1679 ctx.keysize = 16;
1680 ctx.ivsize = 0;
1681 ctx.iv = NULL;
1682 ctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1683 ctx.mode = ACRYPTO_MODE_ECB;
1684 ctx.type = ACRYPTO_TYPE_AES_128;
1685 atomic_set(&ctx.sg_num, 1);
1687 err = hifn_setup_dma(dev,
1688 virt_to_page(src), offset_in_page(src),
1689 virt_to_page(src), offset_in_page(src),
1690 sizeof(src), NULL, &ctx);
1691 if (err)
1692 goto err_out;
1694 msleep(200);
1696 dprintk("%s: decoded: ", dev->name);
1697 for (n=0; n<sizeof(src); ++n)
1698 dprintk("%02x ", src[n]);
1699 dprintk("\n");
1700 dprintk("%s: FIPS : ", dev->name);
1701 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1702 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1703 dprintk("\n");
1705 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1706 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1707 "passed.\n", dev->name);
1708 return 0;
1711 err_out:
1712 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1713 return -1;
1716 static int hifn_start_device(struct hifn_device *dev)
1718 int err;
1720 hifn_reset_dma(dev, 1);
1722 err = hifn_enable_crypto(dev);
1723 if (err)
1724 return err;
1726 hifn_reset_puc(dev);
1728 hifn_init_dma(dev);
1730 hifn_init_registers(dev);
1732 hifn_init_pubrng(dev);
1734 return 0;
1737 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1738 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1740 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1741 void *daddr;
1742 int idx = 0;
1744 if (srest < size || size > nbytes)
1745 return -EINVAL;
1747 while (size) {
1749 copy = min(dst->length, srest);
1751 daddr = kmap_atomic(sg_page(dst), KM_IRQ0);
1752 memcpy(daddr + dst->offset + offset, saddr, copy);
1753 kunmap_atomic(daddr, KM_IRQ0);
1755 nbytes -= copy;
1756 size -= copy;
1757 srest -= copy;
1758 saddr += copy;
1759 offset = 0;
1761 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1762 __func__, copy, size, srest, nbytes);
1764 dst++;
1765 idx++;
1768 *nbytesp = nbytes;
1769 *srestp = srest;
1771 return idx;
1774 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1776 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1777 struct hifn_device *dev;
1779 dprintk("%s: req: %p, ctx: %p.\n", __func__, req, ctx);
1781 dev = ctx->dev;
1782 dprintk("%s: req: %p, started: %d, sg_num: %d.\n",
1783 __func__, req, dev->started, atomic_read(&ctx->sg_num));
1785 if (--dev->started < 0)
1786 BUG();
1788 if (atomic_dec_and_test(&ctx->sg_num)) {
1789 unsigned int nbytes = req->nbytes;
1790 int idx = 0, err;
1791 struct scatterlist *dst, *t;
1792 void *saddr;
1794 if (ctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1795 while (nbytes) {
1796 t = &ctx->walk.cache[idx];
1797 dst = &req->dst[idx];
1799 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1800 "sg_page(dst): %p, dst->length: %u, "
1801 "nbytes: %u.\n",
1802 __func__, sg_page(t), t->length,
1803 sg_page(dst), dst->length, nbytes);
1805 if (!t->length) {
1806 nbytes -= dst->length;
1807 idx++;
1808 continue;
1811 saddr = kmap_atomic(sg_page(t), KM_IRQ1);
1813 err = ablkcipher_get(saddr, &t->length, t->offset,
1814 dst, nbytes, &nbytes);
1815 if (err < 0) {
1816 kunmap_atomic(saddr, KM_IRQ1);
1817 break;
1820 idx += err;
1821 kunmap_atomic(saddr, KM_IRQ1);
1824 ablkcipher_walk_exit(&ctx->walk);
1827 req->base.complete(&req->base, error);
1831 static void hifn_check_for_completion(struct hifn_device *dev, int error)
1833 int i;
1834 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1836 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1837 struct hifn_desc *d = &dma->resr[i];
1839 if (!(d->l & __cpu_to_le32(HIFN_D_VALID)) && dev->sa[i]) {
1840 dev->success++;
1841 dev->reset = 0;
1842 hifn_process_ready(dev->sa[i], error);
1843 dev->sa[i] = NULL;
1846 if (d->l & __cpu_to_le32(HIFN_D_DESTOVER | HIFN_D_OVER))
1847 if (printk_ratelimit())
1848 printk("%s: overflow detected [d: %u, o: %u] "
1849 "at %d resr: l: %08x, p: %08x.\n",
1850 dev->name,
1851 !!(d->l & __cpu_to_le32(HIFN_D_DESTOVER)),
1852 !!(d->l & __cpu_to_le32(HIFN_D_OVER)),
1853 i, d->l, d->p);
1857 static void hifn_clear_rings(struct hifn_device *dev)
1859 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1860 int i, u;
1862 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1863 "k: %d.%d.%d.%d.\n",
1864 dev->name,
1865 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1866 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1867 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1869 i = dma->resk; u = dma->resu;
1870 while (u != 0) {
1871 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1872 break;
1874 if (i != HIFN_D_RES_RSIZE)
1875 u--;
1877 if (++i == (HIFN_D_RES_RSIZE + 1))
1878 i = 0;
1880 dma->resk = i; dma->resu = u;
1882 i = dma->srck; u = dma->srcu;
1883 while (u != 0) {
1884 if (i == HIFN_D_SRC_RSIZE)
1885 i = 0;
1886 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1887 break;
1888 i++, u--;
1890 dma->srck = i; dma->srcu = u;
1892 i = dma->cmdk; u = dma->cmdu;
1893 while (u != 0) {
1894 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1895 break;
1896 if (i != HIFN_D_CMD_RSIZE)
1897 u--;
1898 if (++i == (HIFN_D_CMD_RSIZE + 1))
1899 i = 0;
1901 dma->cmdk = i; dma->cmdu = u;
1903 i = dma->dstk; u = dma->dstu;
1904 while (u != 0) {
1905 if (i == HIFN_D_DST_RSIZE)
1906 i = 0;
1907 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1908 break;
1909 i++, u--;
1911 dma->dstk = i; dma->dstu = u;
1913 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1914 "k: %d.%d.%d.%d.\n",
1915 dev->name,
1916 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1917 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1918 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1921 static void hifn_work(struct work_struct *work)
1923 struct delayed_work *dw = container_of(work, struct delayed_work, work);
1924 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1925 unsigned long flags;
1926 int reset = 0;
1927 u32 r = 0;
1929 spin_lock_irqsave(&dev->lock, flags);
1930 if (dev->active == 0) {
1931 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1933 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1934 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1935 r |= HIFN_DMACSR_C_CTRL_DIS;
1937 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1938 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1939 r |= HIFN_DMACSR_S_CTRL_DIS;
1941 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1942 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1943 r |= HIFN_DMACSR_D_CTRL_DIS;
1945 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1946 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1947 r |= HIFN_DMACSR_R_CTRL_DIS;
1949 if (r)
1950 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1951 } else
1952 dev->active--;
1954 if (dev->prev_success == dev->success && dev->started)
1955 reset = 1;
1956 dev->prev_success = dev->success;
1957 spin_unlock_irqrestore(&dev->lock, flags);
1959 if (reset) {
1960 dprintk("%s: r: %08x, active: %d, started: %d, "
1961 "success: %lu: reset: %d.\n",
1962 dev->name, r, dev->active, dev->started,
1963 dev->success, reset);
1965 if (++dev->reset >= 5) {
1966 dprintk("%s: really hard reset.\n", dev->name);
1967 hifn_reset_dma(dev, 1);
1968 hifn_stop_device(dev);
1969 hifn_start_device(dev);
1970 dev->reset = 0;
1973 spin_lock_irqsave(&dev->lock, flags);
1974 hifn_check_for_completion(dev, -EBUSY);
1975 hifn_clear_rings(dev);
1976 dev->started = 0;
1977 spin_unlock_irqrestore(&dev->lock, flags);
1980 schedule_delayed_work(&dev->work, HZ);
1983 static irqreturn_t hifn_interrupt(int irq, void *data)
1985 struct hifn_device *dev = (struct hifn_device *)data;
1986 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1987 u32 dmacsr, restart;
1989 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1991 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1992 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1993 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1994 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1995 dma->cmdi, dma->srci, dma->dsti, dma->resi);
1997 if ((dmacsr & dev->dmareg) == 0)
1998 return IRQ_NONE;
2000 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
2002 if (dmacsr & HIFN_DMACSR_ENGINE)
2003 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
2004 if (dmacsr & HIFN_DMACSR_PUBDONE)
2005 hifn_write_1(dev, HIFN_1_PUB_STATUS,
2006 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
2008 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
2009 if (restart) {
2010 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
2012 if (printk_ratelimit())
2013 printk("%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
2014 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
2015 !!(dmacsr & HIFN_DMACSR_D_OVER),
2016 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
2017 if (!!(puisr & HIFN_PUISR_DSTOVER))
2018 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
2019 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
2020 HIFN_DMACSR_D_OVER));
2023 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
2024 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
2025 if (restart) {
2026 if (printk_ratelimit())
2027 printk("%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
2028 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
2029 !!(dmacsr & HIFN_DMACSR_S_ABORT),
2030 !!(dmacsr & HIFN_DMACSR_D_ABORT),
2031 !!(dmacsr & HIFN_DMACSR_R_ABORT));
2032 hifn_reset_dma(dev, 1);
2033 hifn_init_dma(dev);
2034 hifn_init_registers(dev);
2037 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2038 dprintk("%s: wait on command.\n", dev->name);
2039 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2040 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2043 tasklet_schedule(&dev->tasklet);
2044 hifn_clear_rings(dev);
2046 return IRQ_HANDLED;
2049 static void hifn_flush(struct hifn_device *dev)
2051 unsigned long flags;
2052 struct crypto_async_request *async_req;
2053 struct hifn_context *ctx;
2054 struct ablkcipher_request *req;
2055 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2056 int i;
2058 spin_lock_irqsave(&dev->lock, flags);
2059 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2060 struct hifn_desc *d = &dma->resr[i];
2062 if (dev->sa[i]) {
2063 hifn_process_ready(dev->sa[i],
2064 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2068 while ((async_req = crypto_dequeue_request(&dev->queue))) {
2069 ctx = crypto_tfm_ctx(async_req->tfm);
2070 req = container_of(async_req, struct ablkcipher_request, base);
2072 hifn_process_ready(req, -ENODEV);
2074 spin_unlock_irqrestore(&dev->lock, flags);
2077 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2078 unsigned int len)
2080 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2081 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2082 struct hifn_device *dev = ctx->dev;
2084 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2085 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2086 return -1;
2089 if (len == HIFN_DES_KEY_LENGTH) {
2090 u32 tmp[DES_EXPKEY_WORDS];
2091 int ret = des_ekey(tmp, key);
2093 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2094 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2095 return -EINVAL;
2099 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2101 memcpy(ctx->key, key, len);
2102 ctx->keysize = len;
2104 return 0;
2107 static int hifn_handle_req(struct ablkcipher_request *req)
2109 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2110 struct hifn_device *dev = ctx->dev;
2111 int err = -EAGAIN;
2113 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2114 err = hifn_setup_session(req);
2116 if (err == -EAGAIN) {
2117 unsigned long flags;
2119 spin_lock_irqsave(&dev->lock, flags);
2120 err = ablkcipher_enqueue_request(&dev->queue, req);
2121 spin_unlock_irqrestore(&dev->lock, flags);
2124 return err;
2127 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2128 u8 type, u8 mode)
2130 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2131 unsigned ivsize;
2133 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2135 if (req->info && mode != ACRYPTO_MODE_ECB) {
2136 if (type == ACRYPTO_TYPE_AES_128)
2137 ivsize = HIFN_AES_IV_LENGTH;
2138 else if (type == ACRYPTO_TYPE_DES)
2139 ivsize = HIFN_DES_KEY_LENGTH;
2140 else if (type == ACRYPTO_TYPE_3DES)
2141 ivsize = HIFN_3DES_KEY_LENGTH;
2144 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2145 if (ctx->keysize == 24)
2146 type = ACRYPTO_TYPE_AES_192;
2147 else if (ctx->keysize == 32)
2148 type = ACRYPTO_TYPE_AES_256;
2151 ctx->op = op;
2152 ctx->mode = mode;
2153 ctx->type = type;
2154 ctx->iv = req->info;
2155 ctx->ivsize = ivsize;
2158 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2159 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2160 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2163 return hifn_handle_req(req);
2166 static int hifn_process_queue(struct hifn_device *dev)
2168 struct crypto_async_request *async_req;
2169 struct hifn_context *ctx;
2170 struct ablkcipher_request *req;
2171 unsigned long flags;
2172 int err = 0;
2174 while (dev->started < HIFN_QUEUE_LENGTH) {
2175 spin_lock_irqsave(&dev->lock, flags);
2176 async_req = crypto_dequeue_request(&dev->queue);
2177 spin_unlock_irqrestore(&dev->lock, flags);
2179 if (!async_req)
2180 break;
2182 ctx = crypto_tfm_ctx(async_req->tfm);
2183 req = container_of(async_req, struct ablkcipher_request, base);
2185 err = hifn_handle_req(req);
2186 if (err)
2187 break;
2190 return err;
2193 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2194 u8 type, u8 mode)
2196 int err;
2197 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2198 struct hifn_device *dev = ctx->dev;
2200 err = hifn_setup_crypto_req(req, op, type, mode);
2201 if (err)
2202 return err;
2204 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2205 err = hifn_process_queue(dev);
2207 return err;
2211 * AES ecryption functions.
2213 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2215 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2216 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2218 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2220 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2221 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2223 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2225 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2226 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2228 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2230 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2231 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2235 * AES decryption functions.
2237 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2239 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2240 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2242 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2244 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2245 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2247 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2249 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2250 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2252 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2254 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2255 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2259 * DES ecryption functions.
2261 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2263 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2264 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2266 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2268 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2269 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2271 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2273 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2274 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2276 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2278 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2279 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2283 * DES decryption functions.
2285 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2287 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2288 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2290 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2292 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2293 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2295 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2297 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2298 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2300 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2302 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2303 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2307 * 3DES ecryption functions.
2309 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2311 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2312 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2314 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2316 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2317 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2319 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2321 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2322 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2324 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2326 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2327 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2331 * 3DES decryption functions.
2333 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2335 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2336 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2338 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2340 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2341 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2343 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2345 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2346 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2348 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2350 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2351 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2354 struct hifn_alg_template
2356 char name[CRYPTO_MAX_ALG_NAME];
2357 char drv_name[CRYPTO_MAX_ALG_NAME];
2358 unsigned int bsize;
2359 struct ablkcipher_alg ablkcipher;
2362 static struct hifn_alg_template hifn_alg_templates[] = {
2364 * 3DES ECB, CBC, CFB and OFB modes.
2367 .name = "cfb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2368 .ablkcipher = {
2369 .min_keysize = HIFN_3DES_KEY_LENGTH,
2370 .max_keysize = HIFN_3DES_KEY_LENGTH,
2371 .setkey = hifn_setkey,
2372 .encrypt = hifn_encrypt_3des_cfb,
2373 .decrypt = hifn_decrypt_3des_cfb,
2377 .name = "ofb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2378 .ablkcipher = {
2379 .min_keysize = HIFN_3DES_KEY_LENGTH,
2380 .max_keysize = HIFN_3DES_KEY_LENGTH,
2381 .setkey = hifn_setkey,
2382 .encrypt = hifn_encrypt_3des_ofb,
2383 .decrypt = hifn_decrypt_3des_ofb,
2387 .name = "cbc(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2388 .ablkcipher = {
2389 .min_keysize = HIFN_3DES_KEY_LENGTH,
2390 .max_keysize = HIFN_3DES_KEY_LENGTH,
2391 .setkey = hifn_setkey,
2392 .encrypt = hifn_encrypt_3des_cbc,
2393 .decrypt = hifn_decrypt_3des_cbc,
2397 .name = "ecb(des3_ede)", .drv_name = "hifn-3des", .bsize = 8,
2398 .ablkcipher = {
2399 .min_keysize = HIFN_3DES_KEY_LENGTH,
2400 .max_keysize = HIFN_3DES_KEY_LENGTH,
2401 .setkey = hifn_setkey,
2402 .encrypt = hifn_encrypt_3des_ecb,
2403 .decrypt = hifn_decrypt_3des_ecb,
2408 * DES ECB, CBC, CFB and OFB modes.
2411 .name = "cfb(des)", .drv_name = "hifn-des", .bsize = 8,
2412 .ablkcipher = {
2413 .min_keysize = HIFN_DES_KEY_LENGTH,
2414 .max_keysize = HIFN_DES_KEY_LENGTH,
2415 .setkey = hifn_setkey,
2416 .encrypt = hifn_encrypt_des_cfb,
2417 .decrypt = hifn_decrypt_des_cfb,
2421 .name = "ofb(des)", .drv_name = "hifn-des", .bsize = 8,
2422 .ablkcipher = {
2423 .min_keysize = HIFN_DES_KEY_LENGTH,
2424 .max_keysize = HIFN_DES_KEY_LENGTH,
2425 .setkey = hifn_setkey,
2426 .encrypt = hifn_encrypt_des_ofb,
2427 .decrypt = hifn_decrypt_des_ofb,
2431 .name = "cbc(des)", .drv_name = "hifn-des", .bsize = 8,
2432 .ablkcipher = {
2433 .min_keysize = HIFN_DES_KEY_LENGTH,
2434 .max_keysize = HIFN_DES_KEY_LENGTH,
2435 .setkey = hifn_setkey,
2436 .encrypt = hifn_encrypt_des_cbc,
2437 .decrypt = hifn_decrypt_des_cbc,
2441 .name = "ecb(des)", .drv_name = "hifn-des", .bsize = 8,
2442 .ablkcipher = {
2443 .min_keysize = HIFN_DES_KEY_LENGTH,
2444 .max_keysize = HIFN_DES_KEY_LENGTH,
2445 .setkey = hifn_setkey,
2446 .encrypt = hifn_encrypt_des_ecb,
2447 .decrypt = hifn_decrypt_des_ecb,
2452 * AES ECB, CBC, CFB and OFB modes.
2455 .name = "ecb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2456 .ablkcipher = {
2457 .min_keysize = AES_MIN_KEY_SIZE,
2458 .max_keysize = AES_MAX_KEY_SIZE,
2459 .setkey = hifn_setkey,
2460 .encrypt = hifn_encrypt_aes_ecb,
2461 .decrypt = hifn_decrypt_aes_ecb,
2465 .name = "cbc(aes)", .drv_name = "hifn-aes", .bsize = 16,
2466 .ablkcipher = {
2467 .min_keysize = AES_MIN_KEY_SIZE,
2468 .max_keysize = AES_MAX_KEY_SIZE,
2469 .setkey = hifn_setkey,
2470 .encrypt = hifn_encrypt_aes_cbc,
2471 .decrypt = hifn_decrypt_aes_cbc,
2475 .name = "cfb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2476 .ablkcipher = {
2477 .min_keysize = AES_MIN_KEY_SIZE,
2478 .max_keysize = AES_MAX_KEY_SIZE,
2479 .setkey = hifn_setkey,
2480 .encrypt = hifn_encrypt_aes_cfb,
2481 .decrypt = hifn_decrypt_aes_cfb,
2485 .name = "ofb(aes)", .drv_name = "hifn-aes", .bsize = 16,
2486 .ablkcipher = {
2487 .min_keysize = AES_MIN_KEY_SIZE,
2488 .max_keysize = AES_MAX_KEY_SIZE,
2489 .setkey = hifn_setkey,
2490 .encrypt = hifn_encrypt_aes_ofb,
2491 .decrypt = hifn_decrypt_aes_ofb,
2496 static int hifn_cra_init(struct crypto_tfm *tfm)
2498 struct crypto_alg *alg = tfm->__crt_alg;
2499 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2500 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2502 ctx->dev = ha->dev;
2504 return 0;
2507 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2509 struct hifn_crypto_alg *alg;
2510 int err;
2512 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2513 if (!alg)
2514 return -ENOMEM;
2516 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2517 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s", t->drv_name);
2519 alg->alg.cra_priority = 300;
2520 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC;
2521 alg->alg.cra_blocksize = t->bsize;
2522 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2523 alg->alg.cra_alignmask = 15;
2524 if (t->bsize == 8)
2525 alg->alg.cra_alignmask = 3;
2526 alg->alg.cra_type = &crypto_ablkcipher_type;
2527 alg->alg.cra_module = THIS_MODULE;
2528 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2529 alg->alg.cra_init = hifn_cra_init;
2531 alg->dev = dev;
2533 list_add_tail(&alg->entry, &dev->alg_list);
2535 err = crypto_register_alg(&alg->alg);
2536 if (err) {
2537 list_del(&alg->entry);
2538 kfree(alg);
2541 return err;
2544 static void hifn_unregister_alg(struct hifn_device *dev)
2546 struct hifn_crypto_alg *a, *n;
2548 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2549 list_del(&a->entry);
2550 crypto_unregister_alg(&a->alg);
2551 kfree(a);
2555 static int hifn_register_alg(struct hifn_device *dev)
2557 int i, err;
2559 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2560 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2561 if (err)
2562 goto err_out_exit;
2565 return 0;
2567 err_out_exit:
2568 hifn_unregister_alg(dev);
2569 return err;
2572 static void hifn_tasklet_callback(unsigned long data)
2574 struct hifn_device *dev = (struct hifn_device *)data;
2577 * This is ok to call this without lock being held,
2578 * althogh it modifies some parameters used in parallel,
2579 * (like dev->success), but they are used in process
2580 * context or update is atomic (like setting dev->sa[i] to NULL).
2582 hifn_check_for_completion(dev, 0);
2585 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2587 int err, i;
2588 struct hifn_device *dev;
2589 char name[8];
2591 err = pci_enable_device(pdev);
2592 if (err)
2593 return err;
2594 pci_set_master(pdev);
2596 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2597 if (err)
2598 goto err_out_disable_pci_device;
2600 snprintf(name, sizeof(name), "hifn%d",
2601 atomic_inc_return(&hifn_dev_number)-1);
2603 err = pci_request_regions(pdev, name);
2604 if (err)
2605 goto err_out_disable_pci_device;
2607 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2608 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2609 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2610 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2611 pci_name(pdev));
2612 err = -ENODEV;
2613 goto err_out_free_regions;
2616 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2617 GFP_KERNEL);
2618 if (!dev) {
2619 err = -ENOMEM;
2620 goto err_out_free_regions;
2623 INIT_LIST_HEAD(&dev->alg_list);
2625 snprintf(dev->name, sizeof(dev->name), "%s", name);
2626 spin_lock_init(&dev->lock);
2628 for (i=0; i<3; ++i) {
2629 unsigned long addr, size;
2631 addr = pci_resource_start(pdev, i);
2632 size = pci_resource_len(pdev, i);
2634 dev->bar[i] = ioremap_nocache(addr, size);
2635 if (!dev->bar[i])
2636 goto err_out_unmap_bars;
2639 dev->result_mem = __get_free_pages(GFP_KERNEL, HIFN_MAX_RESULT_ORDER);
2640 if (!dev->result_mem) {
2641 dprintk("Failed to allocate %d pages for result_mem.\n",
2642 HIFN_MAX_RESULT_ORDER);
2643 goto err_out_unmap_bars;
2645 memset((void *)dev->result_mem, 0, PAGE_SIZE*(1<<HIFN_MAX_RESULT_ORDER));
2647 dev->dst = pci_map_single(pdev, (void *)dev->result_mem,
2648 PAGE_SIZE << HIFN_MAX_RESULT_ORDER, PCI_DMA_FROMDEVICE);
2650 dev->desc_virt = pci_alloc_consistent(pdev, sizeof(struct hifn_dma),
2651 &dev->desc_dma);
2652 if (!dev->desc_virt) {
2653 dprintk("Failed to allocate descriptor rings.\n");
2654 goto err_out_free_result_pages;
2656 memset(dev->desc_virt, 0, sizeof(struct hifn_dma));
2658 dev->pdev = pdev;
2659 dev->irq = pdev->irq;
2661 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2662 dev->sa[i] = NULL;
2664 pci_set_drvdata(pdev, dev);
2666 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2668 crypto_init_queue(&dev->queue, 1);
2670 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2671 if (err) {
2672 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2673 dev->irq = 0;
2674 goto err_out_free_desc;
2677 err = hifn_start_device(dev);
2678 if (err)
2679 goto err_out_free_irq;
2681 err = hifn_test(dev, 1, 0);
2682 if (err)
2683 goto err_out_stop_device;
2685 err = hifn_register_rng(dev);
2686 if (err)
2687 goto err_out_stop_device;
2689 err = hifn_register_alg(dev);
2690 if (err)
2691 goto err_out_unregister_rng;
2693 INIT_DELAYED_WORK(&dev->work, hifn_work);
2694 schedule_delayed_work(&dev->work, HZ);
2696 dprintk("HIFN crypto accelerator card at %s has been "
2697 "successfully registered as %s.\n",
2698 pci_name(pdev), dev->name);
2700 return 0;
2702 err_out_unregister_rng:
2703 hifn_unregister_rng(dev);
2704 err_out_stop_device:
2705 hifn_reset_dma(dev, 1);
2706 hifn_stop_device(dev);
2707 err_out_free_irq:
2708 free_irq(dev->irq, dev->name);
2709 tasklet_kill(&dev->tasklet);
2710 err_out_free_desc:
2711 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2712 dev->desc_virt, dev->desc_dma);
2714 err_out_free_result_pages:
2715 pci_unmap_single(pdev, dev->dst, PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2716 PCI_DMA_FROMDEVICE);
2717 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2719 err_out_unmap_bars:
2720 for (i=0; i<3; ++i)
2721 if (dev->bar[i])
2722 iounmap(dev->bar[i]);
2724 err_out_free_regions:
2725 pci_release_regions(pdev);
2727 err_out_disable_pci_device:
2728 pci_disable_device(pdev);
2730 return err;
2733 static void hifn_remove(struct pci_dev *pdev)
2735 int i;
2736 struct hifn_device *dev;
2738 dev = pci_get_drvdata(pdev);
2740 if (dev) {
2741 cancel_delayed_work(&dev->work);
2742 flush_scheduled_work();
2744 hifn_unregister_rng(dev);
2745 hifn_unregister_alg(dev);
2746 hifn_reset_dma(dev, 1);
2747 hifn_stop_device(dev);
2749 free_irq(dev->irq, dev->name);
2750 tasklet_kill(&dev->tasklet);
2752 hifn_flush(dev);
2754 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2755 dev->desc_virt, dev->desc_dma);
2756 pci_unmap_single(pdev, dev->dst,
2757 PAGE_SIZE << HIFN_MAX_RESULT_ORDER,
2758 PCI_DMA_FROMDEVICE);
2759 free_pages(dev->result_mem, HIFN_MAX_RESULT_ORDER);
2760 for (i=0; i<3; ++i)
2761 if (dev->bar[i])
2762 iounmap(dev->bar[i]);
2764 kfree(dev);
2767 pci_release_regions(pdev);
2768 pci_disable_device(pdev);
2771 static struct pci_device_id hifn_pci_tbl[] = {
2772 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2773 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2774 { 0 }
2776 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2778 static struct pci_driver hifn_pci_driver = {
2779 .name = "hifn795x",
2780 .id_table = hifn_pci_tbl,
2781 .probe = hifn_probe,
2782 .remove = __devexit_p(hifn_remove),
2785 static int __devinit hifn_init(void)
2787 unsigned int freq;
2788 int err;
2790 if (strncmp(hifn_pll_ref, "ext", 3) &&
2791 strncmp(hifn_pll_ref, "pci", 3)) {
2792 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2793 "must be pci or ext");
2794 return -EINVAL;
2798 * For the 7955/7956 the reference clock frequency must be in the
2799 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2800 * but this chip is currently not supported.
2802 if (hifn_pll_ref[3] != '\0') {
2803 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2804 if (freq < 20 || freq > 100) {
2805 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2806 "frequency, must be in the range "
2807 "of 20-100");
2808 return -EINVAL;
2812 err = pci_register_driver(&hifn_pci_driver);
2813 if (err < 0) {
2814 dprintk("Failed to register PCI driver for %s device.\n",
2815 hifn_pci_driver.name);
2816 return -ENODEV;
2819 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2820 "has been successfully registered.\n");
2822 return 0;
2825 static void __devexit hifn_fini(void)
2827 pci_unregister_driver(&hifn_pci_driver);
2829 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2830 "has been successfully unregistered.\n");
2833 module_init(hifn_init);
2834 module_exit(hifn_fini);
2836 MODULE_LICENSE("GPL");
2837 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2838 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");