iwlwifi: move rxon associated command to hcmd
[linux/fpc-iii.git] / drivers / ide / ide-timing.h
blob3b12ffe770712dd1f1a708c7852ff5745a9b6e2a
1 #ifndef _IDE_TIMING_H
2 #define _IDE_TIMING_H
4 /*
5 * Copyright (c) 1999-2001 Vojtech Pavlik
6 */
8 /*
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Should you need to contact me, the author, you can do so either by
24 * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
25 * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
28 #include <linux/kernel.h>
29 #include <linux/hdreg.h>
31 #define XFER_PIO_5 0x0d
32 #define XFER_UDMA_SLOW 0x4f
34 struct ide_timing {
35 short mode;
36 short setup; /* t1 */
37 short act8b; /* t2 for 8-bit io */
38 short rec8b; /* t2i for 8-bit io */
39 short cyc8b; /* t0 for 8-bit io */
40 short active; /* t2 or tD */
41 short recover; /* t2i or tK */
42 short cycle; /* t0 */
43 short udma; /* t2CYCTYP/2 */
47 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
48 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
49 * for PIO 5, which is a nonstandard extension and UDMA6, which
50 * is currently supported only by Maxtor drives.
53 static struct ide_timing ide_timing[] = {
55 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
56 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
57 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
58 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
60 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
61 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
62 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
64 { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 },
66 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
67 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
68 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
70 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
71 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
72 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
74 { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
75 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
76 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
78 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
79 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
80 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
82 { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
84 { -1 }
87 #define IDE_TIMING_SETUP 0x01
88 #define IDE_TIMING_ACT8B 0x02
89 #define IDE_TIMING_REC8B 0x04
90 #define IDE_TIMING_CYC8B 0x08
91 #define IDE_TIMING_8BIT 0x0e
92 #define IDE_TIMING_ACTIVE 0x10
93 #define IDE_TIMING_RECOVER 0x20
94 #define IDE_TIMING_CYCLE 0x40
95 #define IDE_TIMING_UDMA 0x80
96 #define IDE_TIMING_ALL 0xff
98 #define FIT(v,vmin,vmax) max_t(short,min_t(short,v,vmax),vmin)
99 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
100 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
102 #define XFER_MODE 0xf0
103 #define XFER_MWDMA 0x20
104 #define XFER_EPIO 0x01
105 #define XFER_PIO 0x00
107 static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q, int T, int UT)
109 q->setup = EZ(t->setup * 1000, T);
110 q->act8b = EZ(t->act8b * 1000, T);
111 q->rec8b = EZ(t->rec8b * 1000, T);
112 q->cyc8b = EZ(t->cyc8b * 1000, T);
113 q->active = EZ(t->active * 1000, T);
114 q->recover = EZ(t->recover * 1000, T);
115 q->cycle = EZ(t->cycle * 1000, T);
116 q->udma = EZ(t->udma * 1000, UT);
119 static void ide_timing_merge(struct ide_timing *a, struct ide_timing *b, struct ide_timing *m, unsigned int what)
121 if (what & IDE_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
122 if (what & IDE_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
123 if (what & IDE_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
124 if (what & IDE_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
125 if (what & IDE_TIMING_ACTIVE ) m->active = max(a->active, b->active);
126 if (what & IDE_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
127 if (what & IDE_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
128 if (what & IDE_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
131 static struct ide_timing* ide_timing_find_mode(short speed)
133 struct ide_timing *t;
135 for (t = ide_timing; t->mode != speed; t++)
136 if (t->mode < 0)
137 return NULL;
138 return t;
141 static int ide_timing_compute(ide_drive_t *drive, short speed, struct ide_timing *t, int T, int UT)
143 struct hd_driveid *id = drive->id;
144 struct ide_timing *s, p;
147 * Find the mode.
150 if (!(s = ide_timing_find_mode(speed)))
151 return -EINVAL;
154 * Copy the timing from the table.
157 *t = *s;
160 * If the drive is an EIDE drive, it can tell us it needs extended
161 * PIO/MWDMA cycle timing.
164 if (id && id->field_valid & 2) { /* EIDE drive */
166 memset(&p, 0, sizeof(p));
168 switch (speed & XFER_MODE) {
170 case XFER_PIO:
171 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = id->eide_pio;
172 else p.cycle = p.cyc8b = id->eide_pio_iordy;
173 break;
175 case XFER_MWDMA:
176 p.cycle = id->eide_dma_min;
177 break;
180 ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
184 * Convert the timing to bus clock counts.
187 ide_timing_quantize(t, t, T, UT);
190 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
191 * and some other commands. We have to ensure that the DMA cycle timing is
192 * slower/equal than the fastest PIO timing.
195 if ((speed & XFER_MODE) != XFER_PIO) {
196 u8 pio = ide_get_best_pio_mode(drive, 255, 5);
197 ide_timing_compute(drive, XFER_PIO_0 + pio, &p, T, UT);
198 ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
202 * Lengthen active & recovery time so that cycle time is correct.
205 if (t->act8b + t->rec8b < t->cyc8b) {
206 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
207 t->rec8b = t->cyc8b - t->act8b;
210 if (t->active + t->recover < t->cycle) {
211 t->active += (t->cycle - (t->active + t->recover)) / 2;
212 t->recover = t->cycle - t->active;
215 return 0;
218 #endif