dt-bindings: pinctrl: add bindings for MediaTek MT6779 SoC
[linux/fpc-iii.git] / drivers / base / arch_topology.c
blob4d0a0038b476e4a6d12ff980f5f882b8cb8e4d03
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
24 __weak bool arch_freq_counters_available(struct cpumask *cpus)
26 return false;
28 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
30 void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
31 unsigned long max_freq)
33 unsigned long scale;
34 int i;
37 * If the use of counters for FIE is enabled, just return as we don't
38 * want to update the scale factor with information from CPUFREQ.
39 * Instead the scale factor will be updated from arch_scale_freq_tick.
41 if (arch_freq_counters_available(cpus))
42 return;
44 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
46 for_each_cpu(i, cpus)
47 per_cpu(freq_scale, i) = scale;
50 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
52 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
54 per_cpu(cpu_scale, cpu) = capacity;
57 static ssize_t cpu_capacity_show(struct device *dev,
58 struct device_attribute *attr,
59 char *buf)
61 struct cpu *cpu = container_of(dev, struct cpu, dev);
63 return sprintf(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
66 static void update_topology_flags_workfn(struct work_struct *work);
67 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
69 static DEVICE_ATTR_RO(cpu_capacity);
71 static int register_cpu_capacity_sysctl(void)
73 int i;
74 struct device *cpu;
76 for_each_possible_cpu(i) {
77 cpu = get_cpu_device(i);
78 if (!cpu) {
79 pr_err("%s: too early to get CPU%d device!\n",
80 __func__, i);
81 continue;
83 device_create_file(cpu, &dev_attr_cpu_capacity);
86 return 0;
88 subsys_initcall(register_cpu_capacity_sysctl);
90 static int update_topology;
92 int topology_update_cpu_topology(void)
94 return update_topology;
98 * Updating the sched_domains can't be done directly from cpufreq callbacks
99 * due to locking, so queue the work for later.
101 static void update_topology_flags_workfn(struct work_struct *work)
103 update_topology = 1;
104 rebuild_sched_domains();
105 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
106 update_topology = 0;
109 static DEFINE_PER_CPU(u32, freq_factor) = 1;
110 static u32 *raw_capacity;
112 static int free_raw_capacity(void)
114 kfree(raw_capacity);
115 raw_capacity = NULL;
117 return 0;
120 void topology_normalize_cpu_scale(void)
122 u64 capacity;
123 u64 capacity_scale;
124 int cpu;
126 if (!raw_capacity)
127 return;
129 capacity_scale = 1;
130 for_each_possible_cpu(cpu) {
131 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
132 capacity_scale = max(capacity, capacity_scale);
135 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
136 for_each_possible_cpu(cpu) {
137 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
138 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
139 capacity_scale);
140 topology_set_cpu_scale(cpu, capacity);
141 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
142 cpu, topology_get_cpu_scale(cpu));
146 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
148 struct clk *cpu_clk;
149 static bool cap_parsing_failed;
150 int ret;
151 u32 cpu_capacity;
153 if (cap_parsing_failed)
154 return false;
156 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
157 &cpu_capacity);
158 if (!ret) {
159 if (!raw_capacity) {
160 raw_capacity = kcalloc(num_possible_cpus(),
161 sizeof(*raw_capacity),
162 GFP_KERNEL);
163 if (!raw_capacity) {
164 cap_parsing_failed = true;
165 return false;
168 raw_capacity[cpu] = cpu_capacity;
169 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
170 cpu_node, raw_capacity[cpu]);
173 * Update freq_factor for calculating early boot cpu capacities.
174 * For non-clk CPU DVFS mechanism, there's no way to get the
175 * frequency value now, assuming they are running at the same
176 * frequency (by keeping the initial freq_factor value).
178 cpu_clk = of_clk_get(cpu_node, 0);
179 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
180 per_cpu(freq_factor, cpu) =
181 clk_get_rate(cpu_clk) / 1000;
182 clk_put(cpu_clk);
184 } else {
185 if (raw_capacity) {
186 pr_err("cpu_capacity: missing %pOF raw capacity\n",
187 cpu_node);
188 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
190 cap_parsing_failed = true;
191 free_raw_capacity();
194 return !ret;
197 #ifdef CONFIG_CPU_FREQ
198 static cpumask_var_t cpus_to_visit;
199 static void parsing_done_workfn(struct work_struct *work);
200 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
202 static int
203 init_cpu_capacity_callback(struct notifier_block *nb,
204 unsigned long val,
205 void *data)
207 struct cpufreq_policy *policy = data;
208 int cpu;
210 if (!raw_capacity)
211 return 0;
213 if (val != CPUFREQ_CREATE_POLICY)
214 return 0;
216 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
217 cpumask_pr_args(policy->related_cpus),
218 cpumask_pr_args(cpus_to_visit));
220 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
222 for_each_cpu(cpu, policy->related_cpus)
223 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
225 if (cpumask_empty(cpus_to_visit)) {
226 topology_normalize_cpu_scale();
227 schedule_work(&update_topology_flags_work);
228 free_raw_capacity();
229 pr_debug("cpu_capacity: parsing done\n");
230 schedule_work(&parsing_done_work);
233 return 0;
236 static struct notifier_block init_cpu_capacity_notifier = {
237 .notifier_call = init_cpu_capacity_callback,
240 static int __init register_cpufreq_notifier(void)
242 int ret;
245 * on ACPI-based systems we need to use the default cpu capacity
246 * until we have the necessary code to parse the cpu capacity, so
247 * skip registering cpufreq notifier.
249 if (!acpi_disabled || !raw_capacity)
250 return -EINVAL;
252 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
253 return -ENOMEM;
255 cpumask_copy(cpus_to_visit, cpu_possible_mask);
257 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
258 CPUFREQ_POLICY_NOTIFIER);
260 if (ret)
261 free_cpumask_var(cpus_to_visit);
263 return ret;
265 core_initcall(register_cpufreq_notifier);
267 static void parsing_done_workfn(struct work_struct *work)
269 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
270 CPUFREQ_POLICY_NOTIFIER);
271 free_cpumask_var(cpus_to_visit);
274 #else
275 core_initcall(free_raw_capacity);
276 #endif
278 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
280 * This function returns the logic cpu number of the node.
281 * There are basically three kinds of return values:
282 * (1) logic cpu number which is > 0.
283 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
284 * there is no possible logical CPU in the kernel to match. This happens
285 * when CONFIG_NR_CPUS is configure to be smaller than the number of
286 * CPU nodes in DT. We need to just ignore this case.
287 * (3) -1 if the node does not exist in the device tree
289 static int __init get_cpu_for_node(struct device_node *node)
291 struct device_node *cpu_node;
292 int cpu;
294 cpu_node = of_parse_phandle(node, "cpu", 0);
295 if (!cpu_node)
296 return -1;
298 cpu = of_cpu_node_to_id(cpu_node);
299 if (cpu >= 0)
300 topology_parse_cpu_capacity(cpu_node, cpu);
301 else
302 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
303 cpu_node, cpumask_pr_args(cpu_possible_mask));
305 of_node_put(cpu_node);
306 return cpu;
309 static int __init parse_core(struct device_node *core, int package_id,
310 int core_id)
312 char name[20];
313 bool leaf = true;
314 int i = 0;
315 int cpu;
316 struct device_node *t;
318 do {
319 snprintf(name, sizeof(name), "thread%d", i);
320 t = of_get_child_by_name(core, name);
321 if (t) {
322 leaf = false;
323 cpu = get_cpu_for_node(t);
324 if (cpu >= 0) {
325 cpu_topology[cpu].package_id = package_id;
326 cpu_topology[cpu].core_id = core_id;
327 cpu_topology[cpu].thread_id = i;
328 } else if (cpu != -ENODEV) {
329 pr_err("%pOF: Can't get CPU for thread\n", t);
330 of_node_put(t);
331 return -EINVAL;
333 of_node_put(t);
335 i++;
336 } while (t);
338 cpu = get_cpu_for_node(core);
339 if (cpu >= 0) {
340 if (!leaf) {
341 pr_err("%pOF: Core has both threads and CPU\n",
342 core);
343 return -EINVAL;
346 cpu_topology[cpu].package_id = package_id;
347 cpu_topology[cpu].core_id = core_id;
348 } else if (leaf && cpu != -ENODEV) {
349 pr_err("%pOF: Can't get CPU for leaf core\n", core);
350 return -EINVAL;
353 return 0;
356 static int __init parse_cluster(struct device_node *cluster, int depth)
358 char name[20];
359 bool leaf = true;
360 bool has_cores = false;
361 struct device_node *c;
362 static int package_id __initdata;
363 int core_id = 0;
364 int i, ret;
367 * First check for child clusters; we currently ignore any
368 * information about the nesting of clusters and present the
369 * scheduler with a flat list of them.
371 i = 0;
372 do {
373 snprintf(name, sizeof(name), "cluster%d", i);
374 c = of_get_child_by_name(cluster, name);
375 if (c) {
376 leaf = false;
377 ret = parse_cluster(c, depth + 1);
378 of_node_put(c);
379 if (ret != 0)
380 return ret;
382 i++;
383 } while (c);
385 /* Now check for cores */
386 i = 0;
387 do {
388 snprintf(name, sizeof(name), "core%d", i);
389 c = of_get_child_by_name(cluster, name);
390 if (c) {
391 has_cores = true;
393 if (depth == 0) {
394 pr_err("%pOF: cpu-map children should be clusters\n",
396 of_node_put(c);
397 return -EINVAL;
400 if (leaf) {
401 ret = parse_core(c, package_id, core_id++);
402 } else {
403 pr_err("%pOF: Non-leaf cluster with core %s\n",
404 cluster, name);
405 ret = -EINVAL;
408 of_node_put(c);
409 if (ret != 0)
410 return ret;
412 i++;
413 } while (c);
415 if (leaf && !has_cores)
416 pr_warn("%pOF: empty cluster\n", cluster);
418 if (leaf)
419 package_id++;
421 return 0;
424 static int __init parse_dt_topology(void)
426 struct device_node *cn, *map;
427 int ret = 0;
428 int cpu;
430 cn = of_find_node_by_path("/cpus");
431 if (!cn) {
432 pr_err("No CPU information found in DT\n");
433 return 0;
437 * When topology is provided cpu-map is essentially a root
438 * cluster with restricted subnodes.
440 map = of_get_child_by_name(cn, "cpu-map");
441 if (!map)
442 goto out;
444 ret = parse_cluster(map, 0);
445 if (ret != 0)
446 goto out_map;
448 topology_normalize_cpu_scale();
451 * Check that all cores are in the topology; the SMP code will
452 * only mark cores described in the DT as possible.
454 for_each_possible_cpu(cpu)
455 if (cpu_topology[cpu].package_id == -1)
456 ret = -EINVAL;
458 out_map:
459 of_node_put(map);
460 out:
461 of_node_put(cn);
462 return ret;
464 #endif
467 * cpu topology table
469 struct cpu_topology cpu_topology[NR_CPUS];
470 EXPORT_SYMBOL_GPL(cpu_topology);
472 const struct cpumask *cpu_coregroup_mask(int cpu)
474 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
476 /* Find the smaller of NUMA, core or LLC siblings */
477 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
478 /* not numa in package, lets use the package siblings */
479 core_mask = &cpu_topology[cpu].core_sibling;
481 if (cpu_topology[cpu].llc_id != -1) {
482 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
483 core_mask = &cpu_topology[cpu].llc_sibling;
486 return core_mask;
489 void update_siblings_masks(unsigned int cpuid)
491 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
492 int cpu;
494 /* update core and thread sibling masks */
495 for_each_online_cpu(cpu) {
496 cpu_topo = &cpu_topology[cpu];
498 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
499 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
500 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
503 if (cpuid_topo->package_id != cpu_topo->package_id)
504 continue;
506 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
507 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
509 if (cpuid_topo->core_id != cpu_topo->core_id)
510 continue;
512 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
513 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
517 static void clear_cpu_topology(int cpu)
519 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
521 cpumask_clear(&cpu_topo->llc_sibling);
522 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
524 cpumask_clear(&cpu_topo->core_sibling);
525 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
526 cpumask_clear(&cpu_topo->thread_sibling);
527 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
530 void __init reset_cpu_topology(void)
532 unsigned int cpu;
534 for_each_possible_cpu(cpu) {
535 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
537 cpu_topo->thread_id = -1;
538 cpu_topo->core_id = -1;
539 cpu_topo->package_id = -1;
540 cpu_topo->llc_id = -1;
542 clear_cpu_topology(cpu);
546 void remove_cpu_topology(unsigned int cpu)
548 int sibling;
550 for_each_cpu(sibling, topology_core_cpumask(cpu))
551 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
552 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
553 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
554 for_each_cpu(sibling, topology_llc_cpumask(cpu))
555 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
557 clear_cpu_topology(cpu);
560 __weak int __init parse_acpi_topology(void)
562 return 0;
565 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
566 void __init init_cpu_topology(void)
568 reset_cpu_topology();
571 * Discard anything that was parsed if we hit an error so we
572 * don't use partial information.
574 if (parse_acpi_topology())
575 reset_cpu_topology();
576 else if (of_have_populated_dt() && parse_dt_topology())
577 reset_cpu_topology();
579 #endif