1 // SPDX-License-Identifier: GPL-2.0
3 // regmap based irq_chip
5 // Copyright 2011 Wolfson Microelectronics plc
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
20 struct regmap_irq_chip_data
{
22 struct irq_chip irq_chip
;
25 const struct regmap_irq_chip
*chip
;
28 struct irq_domain
*domain
;
34 unsigned int *main_status_buf
;
35 unsigned int *status_buf
;
36 unsigned int *mask_buf
;
37 unsigned int *mask_buf_def
;
38 unsigned int *wake_buf
;
39 unsigned int *type_buf
;
40 unsigned int *type_buf_def
;
42 unsigned int irq_reg_stride
;
43 unsigned int type_reg_stride
;
49 struct regmap_irq
*irq_to_regmap_irq(struct regmap_irq_chip_data
*data
,
52 return &data
->chip
->irqs
[irq
];
55 static void regmap_irq_lock(struct irq_data
*data
)
57 struct regmap_irq_chip_data
*d
= irq_data_get_irq_chip_data(data
);
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data
*d
,
63 unsigned int reg
, unsigned int mask
,
66 if (d
->chip
->mask_writeonly
)
67 return regmap_write_bits(d
->map
, reg
, mask
, val
);
69 return regmap_update_bits(d
->map
, reg
, mask
, val
);
72 static void regmap_irq_sync_unlock(struct irq_data
*data
)
74 struct regmap_irq_chip_data
*d
= irq_data_get_irq_chip_data(data
);
75 struct regmap
*map
= d
->map
;
81 if (d
->chip
->runtime_pm
) {
82 ret
= pm_runtime_get_sync(map
->dev
);
84 dev_err(map
->dev
, "IRQ sync failed to resume: %d\n",
88 if (d
->clear_status
) {
89 for (i
= 0; i
< d
->chip
->num_regs
; i
++) {
90 reg
= d
->chip
->status_base
+
91 (i
* map
->reg_stride
* d
->irq_reg_stride
);
93 ret
= regmap_read(map
, reg
, &val
);
96 "Failed to clear the interrupt status bits\n");
99 d
->clear_status
= false;
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
107 for (i
= 0; i
< d
->chip
->num_regs
; i
++) {
108 if (!d
->chip
->mask_base
)
111 reg
= d
->chip
->mask_base
+
112 (i
* map
->reg_stride
* d
->irq_reg_stride
);
113 if (d
->chip
->mask_invert
) {
114 ret
= regmap_irq_update_bits(d
, reg
,
115 d
->mask_buf_def
[i
], ~d
->mask_buf
[i
]);
116 } else if (d
->chip
->unmask_base
) {
117 /* set mask with mask_base register */
118 ret
= regmap_irq_update_bits(d
, reg
,
119 d
->mask_buf_def
[i
], ~d
->mask_buf
[i
]);
122 "Failed to sync unmasks in %x\n",
124 unmask_offset
= d
->chip
->unmask_base
-
126 /* clear mask with unmask_base register */
127 ret
= regmap_irq_update_bits(d
,
132 ret
= regmap_irq_update_bits(d
, reg
,
133 d
->mask_buf_def
[i
], d
->mask_buf
[i
]);
136 dev_err(d
->map
->dev
, "Failed to sync masks in %x\n",
139 reg
= d
->chip
->wake_base
+
140 (i
* map
->reg_stride
* d
->irq_reg_stride
);
142 if (d
->chip
->wake_invert
)
143 ret
= regmap_irq_update_bits(d
, reg
,
147 ret
= regmap_irq_update_bits(d
, reg
,
152 "Failed to sync wakes in %x: %d\n",
156 if (!d
->chip
->init_ack_masked
)
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
163 if (d
->mask_buf
[i
] && (d
->chip
->ack_base
|| d
->chip
->use_ack
)) {
164 reg
= d
->chip
->ack_base
+
165 (i
* map
->reg_stride
* d
->irq_reg_stride
);
166 /* some chips ack by write 0 */
167 if (d
->chip
->ack_invert
)
168 ret
= regmap_write(map
, reg
, ~d
->mask_buf
[i
]);
170 ret
= regmap_write(map
, reg
, d
->mask_buf
[i
]);
172 dev_err(d
->map
->dev
, "Failed to ack 0x%x: %d\n",
177 /* Don't update the type bits if we're using mask bits for irq type. */
178 if (!d
->chip
->type_in_mask
) {
179 for (i
= 0; i
< d
->chip
->num_type_reg
; i
++) {
180 if (!d
->type_buf_def
[i
])
182 reg
= d
->chip
->type_base
+
183 (i
* map
->reg_stride
* d
->type_reg_stride
);
184 if (d
->chip
->type_invert
)
185 ret
= regmap_irq_update_bits(d
, reg
,
186 d
->type_buf_def
[i
], ~d
->type_buf
[i
]);
188 ret
= regmap_irq_update_bits(d
, reg
,
189 d
->type_buf_def
[i
], d
->type_buf
[i
]);
191 dev_err(d
->map
->dev
, "Failed to sync type in %x\n",
196 if (d
->chip
->runtime_pm
)
197 pm_runtime_put(map
->dev
);
199 /* If we've changed our wakeup count propagate it to the parent */
200 if (d
->wake_count
< 0)
201 for (i
= d
->wake_count
; i
< 0; i
++)
202 irq_set_irq_wake(d
->irq
, 0);
203 else if (d
->wake_count
> 0)
204 for (i
= 0; i
< d
->wake_count
; i
++)
205 irq_set_irq_wake(d
->irq
, 1);
209 mutex_unlock(&d
->lock
);
212 static void regmap_irq_enable(struct irq_data
*data
)
214 struct regmap_irq_chip_data
*d
= irq_data_get_irq_chip_data(data
);
215 struct regmap
*map
= d
->map
;
216 const struct regmap_irq
*irq_data
= irq_to_regmap_irq(d
, data
->hwirq
);
217 unsigned int mask
, type
;
219 type
= irq_data
->type
.type_falling_val
| irq_data
->type
.type_rising_val
;
222 * The type_in_mask flag means that the underlying hardware uses
223 * separate mask bits for rising and falling edge interrupts, but
224 * we want to make them into a single virtual interrupt with
227 * If the interrupt we're enabling defines the falling or rising
228 * masks then instead of using the regular mask bits for this
229 * interrupt, use the value previously written to the type buffer
230 * at the corresponding offset in regmap_irq_set_type().
232 if (d
->chip
->type_in_mask
&& type
)
233 mask
= d
->type_buf
[irq_data
->reg_offset
/ map
->reg_stride
];
235 mask
= irq_data
->mask
;
237 if (d
->chip
->clear_on_unmask
)
238 d
->clear_status
= true;
240 d
->mask_buf
[irq_data
->reg_offset
/ map
->reg_stride
] &= ~mask
;
243 static void regmap_irq_disable(struct irq_data
*data
)
245 struct regmap_irq_chip_data
*d
= irq_data_get_irq_chip_data(data
);
246 struct regmap
*map
= d
->map
;
247 const struct regmap_irq
*irq_data
= irq_to_regmap_irq(d
, data
->hwirq
);
249 d
->mask_buf
[irq_data
->reg_offset
/ map
->reg_stride
] |= irq_data
->mask
;
252 static int regmap_irq_set_type(struct irq_data
*data
, unsigned int type
)
254 struct regmap_irq_chip_data
*d
= irq_data_get_irq_chip_data(data
);
255 struct regmap
*map
= d
->map
;
256 const struct regmap_irq
*irq_data
= irq_to_regmap_irq(d
, data
->hwirq
);
258 const struct regmap_irq_type
*t
= &irq_data
->type
;
260 if ((t
->types_supported
& type
) != type
)
263 reg
= t
->type_reg_offset
/ map
->reg_stride
;
265 if (t
->type_reg_mask
)
266 d
->type_buf
[reg
] &= ~t
->type_reg_mask
;
268 d
->type_buf
[reg
] &= ~(t
->type_falling_val
|
270 t
->type_level_low_val
|
271 t
->type_level_high_val
);
273 case IRQ_TYPE_EDGE_FALLING
:
274 d
->type_buf
[reg
] |= t
->type_falling_val
;
277 case IRQ_TYPE_EDGE_RISING
:
278 d
->type_buf
[reg
] |= t
->type_rising_val
;
281 case IRQ_TYPE_EDGE_BOTH
:
282 d
->type_buf
[reg
] |= (t
->type_falling_val
|
286 case IRQ_TYPE_LEVEL_HIGH
:
287 d
->type_buf
[reg
] |= t
->type_level_high_val
;
290 case IRQ_TYPE_LEVEL_LOW
:
291 d
->type_buf
[reg
] |= t
->type_level_low_val
;
299 static int regmap_irq_set_wake(struct irq_data
*data
, unsigned int on
)
301 struct regmap_irq_chip_data
*d
= irq_data_get_irq_chip_data(data
);
302 struct regmap
*map
= d
->map
;
303 const struct regmap_irq
*irq_data
= irq_to_regmap_irq(d
, data
->hwirq
);
307 d
->wake_buf
[irq_data
->reg_offset
/ map
->reg_stride
]
312 d
->wake_buf
[irq_data
->reg_offset
/ map
->reg_stride
]
320 static const struct irq_chip regmap_irq_chip
= {
321 .irq_bus_lock
= regmap_irq_lock
,
322 .irq_bus_sync_unlock
= regmap_irq_sync_unlock
,
323 .irq_disable
= regmap_irq_disable
,
324 .irq_enable
= regmap_irq_enable
,
325 .irq_set_type
= regmap_irq_set_type
,
326 .irq_set_wake
= regmap_irq_set_wake
,
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data
*data
,
332 const struct regmap_irq_chip
*chip
= data
->chip
;
333 struct regmap
*map
= data
->map
;
334 struct regmap_irq_sub_irq_map
*subreg
;
337 if (!chip
->sub_reg_offsets
) {
338 /* Assume linear mapping */
339 ret
= regmap_read(map
, chip
->status_base
+
340 (b
* map
->reg_stride
* data
->irq_reg_stride
),
341 &data
->status_buf
[b
]);
343 subreg
= &chip
->sub_reg_offsets
[b
];
344 for (i
= 0; i
< subreg
->num_regs
; i
++) {
345 unsigned int offset
= subreg
->offset
[i
];
347 ret
= regmap_read(map
, chip
->status_base
+ offset
,
348 &data
->status_buf
[offset
]);
356 static irqreturn_t
regmap_irq_thread(int irq
, void *d
)
358 struct regmap_irq_chip_data
*data
= d
;
359 const struct regmap_irq_chip
*chip
= data
->chip
;
360 struct regmap
*map
= data
->map
;
362 bool handled
= false;
365 if (chip
->handle_pre_irq
)
366 chip
->handle_pre_irq(chip
->irq_drv_data
);
368 if (chip
->runtime_pm
) {
369 ret
= pm_runtime_get_sync(map
->dev
);
371 dev_err(map
->dev
, "IRQ thread failed to resume: %d\n",
378 * Read only registers with active IRQs if the chip has 'main status
379 * register'. Else read in the statuses, using a single bulk read if
380 * possible in order to reduce the I/O overheads.
383 if (chip
->num_main_regs
) {
384 unsigned int max_main_bits
;
387 size
= chip
->num_regs
* sizeof(unsigned int);
389 max_main_bits
= (chip
->num_main_status_bits
) ?
390 chip
->num_main_status_bits
: chip
->num_regs
;
391 /* Clear the status buf as we don't read all status regs */
392 memset(data
->status_buf
, 0, size
);
394 /* We could support bulk read for main status registers
395 * but I don't expect to see devices with really many main
396 * status registers so let's only support single reads for the
397 * sake of simplicity. and add bulk reads only if needed
399 for (i
= 0; i
< chip
->num_main_regs
; i
++) {
400 ret
= regmap_read(map
, chip
->main_status
+
402 * data
->irq_reg_stride
),
403 &data
->main_status_buf
[i
]);
406 "Failed to read IRQ status %d\n",
412 /* Read sub registers with active IRQs */
413 for (i
= 0; i
< chip
->num_main_regs
; i
++) {
415 const unsigned long mreg
= data
->main_status_buf
[i
];
417 for_each_set_bit(b
, &mreg
, map
->format
.val_bytes
* 8) {
418 if (i
* map
->format
.val_bytes
* 8 + b
>
421 ret
= read_sub_irq_data(data
, b
);
425 "Failed to read IRQ status %d\n",
432 } else if (!map
->use_single_read
&& map
->reg_stride
== 1 &&
433 data
->irq_reg_stride
== 1) {
435 u8
*buf8
= data
->status_reg_buf
;
436 u16
*buf16
= data
->status_reg_buf
;
437 u32
*buf32
= data
->status_reg_buf
;
439 BUG_ON(!data
->status_reg_buf
);
441 ret
= regmap_bulk_read(map
, chip
->status_base
,
442 data
->status_reg_buf
,
445 dev_err(map
->dev
, "Failed to read IRQ status: %d\n",
450 for (i
= 0; i
< data
->chip
->num_regs
; i
++) {
451 switch (map
->format
.val_bytes
) {
453 data
->status_buf
[i
] = buf8
[i
];
456 data
->status_buf
[i
] = buf16
[i
];
459 data
->status_buf
[i
] = buf32
[i
];
468 for (i
= 0; i
< data
->chip
->num_regs
; i
++) {
469 ret
= regmap_read(map
, chip
->status_base
+
471 * data
->irq_reg_stride
),
472 &data
->status_buf
[i
]);
476 "Failed to read IRQ status: %d\n",
484 * Ignore masked IRQs and ack if we need to; we ack early so
485 * there is no race between handling and acknowleding the
486 * interrupt. We assume that typically few of the interrupts
487 * will fire simultaneously so don't worry about overhead from
488 * doing a write per register.
490 for (i
= 0; i
< data
->chip
->num_regs
; i
++) {
491 data
->status_buf
[i
] &= ~data
->mask_buf
[i
];
493 if (data
->status_buf
[i
] && (chip
->ack_base
|| chip
->use_ack
)) {
494 reg
= chip
->ack_base
+
495 (i
* map
->reg_stride
* data
->irq_reg_stride
);
496 ret
= regmap_write(map
, reg
, data
->status_buf
[i
]);
498 dev_err(map
->dev
, "Failed to ack 0x%x: %d\n",
503 for (i
= 0; i
< chip
->num_irqs
; i
++) {
504 if (data
->status_buf
[chip
->irqs
[i
].reg_offset
/
505 map
->reg_stride
] & chip
->irqs
[i
].mask
) {
506 handle_nested_irq(irq_find_mapping(data
->domain
, i
));
512 if (chip
->runtime_pm
)
513 pm_runtime_put(map
->dev
);
515 if (chip
->handle_post_irq
)
516 chip
->handle_post_irq(chip
->irq_drv_data
);
524 static int regmap_irq_map(struct irq_domain
*h
, unsigned int virq
,
527 struct regmap_irq_chip_data
*data
= h
->host_data
;
529 irq_set_chip_data(virq
, data
);
530 irq_set_chip(virq
, &data
->irq_chip
);
531 irq_set_nested_thread(virq
, 1);
532 irq_set_parent(virq
, data
->irq
);
533 irq_set_noprobe(virq
);
538 static const struct irq_domain_ops regmap_domain_ops
= {
539 .map
= regmap_irq_map
,
540 .xlate
= irq_domain_xlate_onetwocell
,
544 * regmap_add_irq_chip_np() - Use standard regmap IRQ controller handling
546 * @np: The device_node where the IRQ domain should be added to.
547 * @map: The regmap for the device.
548 * @irq: The IRQ the device uses to signal interrupts.
549 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551 * @chip: Configuration for the interrupt controller.
552 * @data: Runtime data structure for the controller, allocated on success.
554 * Returns 0 on success or an errno on failure.
556 * In order for this to be efficient the chip really should use a
557 * register cache. The chip driver is responsible for restoring the
558 * register values used by the IRQ controller over suspend and resume.
560 int regmap_add_irq_chip_np(struct device_node
*np
, struct regmap
*map
, int irq
,
561 int irq_flags
, int irq_base
,
562 const struct regmap_irq_chip
*chip
,
563 struct regmap_irq_chip_data
**data
)
565 struct regmap_irq_chip_data
*d
;
572 if (chip
->num_regs
<= 0)
575 if (chip
->clear_on_unmask
&& (chip
->ack_base
|| chip
->use_ack
))
578 for (i
= 0; i
< chip
->num_irqs
; i
++) {
579 if (chip
->irqs
[i
].reg_offset
% map
->reg_stride
)
581 if (chip
->irqs
[i
].reg_offset
/ map
->reg_stride
>=
587 irq_base
= irq_alloc_descs(irq_base
, 0, chip
->num_irqs
, 0);
589 dev_warn(map
->dev
, "Failed to allocate IRQs: %d\n",
595 d
= kzalloc(sizeof(*d
), GFP_KERNEL
);
599 if (chip
->num_main_regs
) {
600 d
->main_status_buf
= kcalloc(chip
->num_main_regs
,
601 sizeof(unsigned int),
604 if (!d
->main_status_buf
)
608 d
->status_buf
= kcalloc(chip
->num_regs
, sizeof(unsigned int),
613 d
->mask_buf
= kcalloc(chip
->num_regs
, sizeof(unsigned int),
618 d
->mask_buf_def
= kcalloc(chip
->num_regs
, sizeof(unsigned int),
620 if (!d
->mask_buf_def
)
623 if (chip
->wake_base
) {
624 d
->wake_buf
= kcalloc(chip
->num_regs
, sizeof(unsigned int),
630 num_type_reg
= chip
->type_in_mask
? chip
->num_regs
: chip
->num_type_reg
;
632 d
->type_buf_def
= kcalloc(num_type_reg
,
633 sizeof(unsigned int), GFP_KERNEL
);
634 if (!d
->type_buf_def
)
637 d
->type_buf
= kcalloc(num_type_reg
, sizeof(unsigned int),
643 d
->irq_chip
= regmap_irq_chip
;
644 d
->irq_chip
.name
= chip
->name
;
648 d
->irq_base
= irq_base
;
650 if (chip
->irq_reg_stride
)
651 d
->irq_reg_stride
= chip
->irq_reg_stride
;
653 d
->irq_reg_stride
= 1;
655 if (chip
->type_reg_stride
)
656 d
->type_reg_stride
= chip
->type_reg_stride
;
658 d
->type_reg_stride
= 1;
660 if (!map
->use_single_read
&& map
->reg_stride
== 1 &&
661 d
->irq_reg_stride
== 1) {
662 d
->status_reg_buf
= kmalloc_array(chip
->num_regs
,
663 map
->format
.val_bytes
,
665 if (!d
->status_reg_buf
)
669 mutex_init(&d
->lock
);
671 for (i
= 0; i
< chip
->num_irqs
; i
++)
672 d
->mask_buf_def
[chip
->irqs
[i
].reg_offset
/ map
->reg_stride
]
673 |= chip
->irqs
[i
].mask
;
675 /* Mask all the interrupts by default */
676 for (i
= 0; i
< chip
->num_regs
; i
++) {
677 d
->mask_buf
[i
] = d
->mask_buf_def
[i
];
678 if (!chip
->mask_base
)
681 reg
= chip
->mask_base
+
682 (i
* map
->reg_stride
* d
->irq_reg_stride
);
683 if (chip
->mask_invert
)
684 ret
= regmap_irq_update_bits(d
, reg
,
685 d
->mask_buf
[i
], ~d
->mask_buf
[i
]);
686 else if (d
->chip
->unmask_base
) {
687 unmask_offset
= d
->chip
->unmask_base
-
689 ret
= regmap_irq_update_bits(d
,
694 ret
= regmap_irq_update_bits(d
, reg
,
695 d
->mask_buf
[i
], d
->mask_buf
[i
]);
697 dev_err(map
->dev
, "Failed to set masks in 0x%x: %d\n",
702 if (!chip
->init_ack_masked
)
705 /* Ack masked but set interrupts */
706 reg
= chip
->status_base
+
707 (i
* map
->reg_stride
* d
->irq_reg_stride
);
708 ret
= regmap_read(map
, reg
, &d
->status_buf
[i
]);
710 dev_err(map
->dev
, "Failed to read IRQ status: %d\n",
715 if (d
->status_buf
[i
] && (chip
->ack_base
|| chip
->use_ack
)) {
716 reg
= chip
->ack_base
+
717 (i
* map
->reg_stride
* d
->irq_reg_stride
);
718 if (chip
->ack_invert
)
719 ret
= regmap_write(map
, reg
,
720 ~(d
->status_buf
[i
] & d
->mask_buf
[i
]));
722 ret
= regmap_write(map
, reg
,
723 d
->status_buf
[i
] & d
->mask_buf
[i
]);
725 dev_err(map
->dev
, "Failed to ack 0x%x: %d\n",
732 /* Wake is disabled by default */
734 for (i
= 0; i
< chip
->num_regs
; i
++) {
735 d
->wake_buf
[i
] = d
->mask_buf_def
[i
];
736 reg
= chip
->wake_base
+
737 (i
* map
->reg_stride
* d
->irq_reg_stride
);
739 if (chip
->wake_invert
)
740 ret
= regmap_irq_update_bits(d
, reg
,
744 ret
= regmap_irq_update_bits(d
, reg
,
748 dev_err(map
->dev
, "Failed to set masks in 0x%x: %d\n",
755 if (chip
->num_type_reg
&& !chip
->type_in_mask
) {
756 for (i
= 0; i
< chip
->num_type_reg
; ++i
) {
757 reg
= chip
->type_base
+
758 (i
* map
->reg_stride
* d
->type_reg_stride
);
760 ret
= regmap_read(map
, reg
, &d
->type_buf_def
[i
]);
762 if (d
->chip
->type_invert
)
763 d
->type_buf_def
[i
] = ~d
->type_buf_def
[i
];
766 dev_err(map
->dev
, "Failed to get type defaults at 0x%x: %d\n",
774 d
->domain
= irq_domain_add_legacy(np
, chip
->num_irqs
, irq_base
,
775 0, ®map_domain_ops
, d
);
777 d
->domain
= irq_domain_add_linear(np
, chip
->num_irqs
,
778 ®map_domain_ops
, d
);
780 dev_err(map
->dev
, "Failed to create IRQ domain\n");
785 ret
= request_threaded_irq(irq
, NULL
, regmap_irq_thread
,
786 irq_flags
| IRQF_ONESHOT
,
789 dev_err(map
->dev
, "Failed to request IRQ %d for %s: %d\n",
790 irq
, chip
->name
, ret
);
799 /* Should really dispose of the domain but... */
802 kfree(d
->type_buf_def
);
804 kfree(d
->mask_buf_def
);
806 kfree(d
->status_buf
);
807 kfree(d
->status_reg_buf
);
811 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_np
);
814 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
816 * @map: The regmap for the device.
817 * @irq: The IRQ the device uses to signal interrupts.
818 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
819 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
820 * @chip: Configuration for the interrupt controller.
821 * @data: Runtime data structure for the controller, allocated on success.
823 * Returns 0 on success or an errno on failure.
825 * This is the same as regmap_add_irq_chip_np, except that the device
826 * node of the regmap is used.
828 int regmap_add_irq_chip(struct regmap
*map
, int irq
, int irq_flags
,
829 int irq_base
, const struct regmap_irq_chip
*chip
,
830 struct regmap_irq_chip_data
**data
)
832 return regmap_add_irq_chip_np(map
->dev
->of_node
, map
, irq
, irq_flags
,
833 irq_base
, chip
, data
);
835 EXPORT_SYMBOL_GPL(regmap_add_irq_chip
);
838 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
840 * @irq: Primary IRQ for the device
841 * @d: ®map_irq_chip_data allocated by regmap_add_irq_chip()
843 * This function also disposes of all mapped IRQs on the chip.
845 void regmap_del_irq_chip(int irq
, struct regmap_irq_chip_data
*d
)
855 /* Dispose all virtual irq from irq domain before removing it */
856 for (hwirq
= 0; hwirq
< d
->chip
->num_irqs
; hwirq
++) {
857 /* Ignore hwirq if holes in the IRQ list */
858 if (!d
->chip
->irqs
[hwirq
].mask
)
862 * Find the virtual irq of hwirq on chip and if it is
863 * there then dispose it
865 virq
= irq_find_mapping(d
->domain
, hwirq
);
867 irq_dispose_mapping(virq
);
870 irq_domain_remove(d
->domain
);
872 kfree(d
->type_buf_def
);
874 kfree(d
->mask_buf_def
);
876 kfree(d
->status_reg_buf
);
877 kfree(d
->status_buf
);
880 EXPORT_SYMBOL_GPL(regmap_del_irq_chip
);
882 static void devm_regmap_irq_chip_release(struct device
*dev
, void *res
)
884 struct regmap_irq_chip_data
*d
= *(struct regmap_irq_chip_data
**)res
;
886 regmap_del_irq_chip(d
->irq
, d
);
889 static int devm_regmap_irq_chip_match(struct device
*dev
, void *res
, void *data
)
892 struct regmap_irq_chip_data
**r
= res
;
902 * devm_regmap_add_irq_chip_np() - Resource manager regmap_add_irq_chip_np()
904 * @dev: The device pointer on which irq_chip belongs to.
905 * @np: The device_node where the IRQ domain should be added to.
906 * @map: The regmap for the device.
907 * @irq: The IRQ the device uses to signal interrupts
908 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
909 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
910 * @chip: Configuration for the interrupt controller.
911 * @data: Runtime data structure for the controller, allocated on success
913 * Returns 0 on success or an errno on failure.
915 * The ®map_irq_chip_data will be automatically released when the device is
918 int devm_regmap_add_irq_chip_np(struct device
*dev
, struct device_node
*np
,
919 struct regmap
*map
, int irq
, int irq_flags
,
921 const struct regmap_irq_chip
*chip
,
922 struct regmap_irq_chip_data
**data
)
924 struct regmap_irq_chip_data
**ptr
, *d
;
927 ptr
= devres_alloc(devm_regmap_irq_chip_release
, sizeof(*ptr
),
932 ret
= regmap_add_irq_chip_np(np
, map
, irq
, irq_flags
, irq_base
,
940 devres_add(dev
, ptr
);
944 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_np
);
947 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
949 * @dev: The device pointer on which irq_chip belongs to.
950 * @map: The regmap for the device.
951 * @irq: The IRQ the device uses to signal interrupts
952 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
953 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
954 * @chip: Configuration for the interrupt controller.
955 * @data: Runtime data structure for the controller, allocated on success
957 * Returns 0 on success or an errno on failure.
959 * The ®map_irq_chip_data will be automatically released when the device is
962 int devm_regmap_add_irq_chip(struct device
*dev
, struct regmap
*map
, int irq
,
963 int irq_flags
, int irq_base
,
964 const struct regmap_irq_chip
*chip
,
965 struct regmap_irq_chip_data
**data
)
967 return devm_regmap_add_irq_chip_np(dev
, map
->dev
->of_node
, map
, irq
,
968 irq_flags
, irq_base
, chip
, data
);
970 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip
);
973 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
975 * @dev: Device for which which resource was allocated.
976 * @irq: Primary IRQ for the device.
977 * @data: ®map_irq_chip_data allocated by regmap_add_irq_chip().
979 * A resource managed version of regmap_del_irq_chip().
981 void devm_regmap_del_irq_chip(struct device
*dev
, int irq
,
982 struct regmap_irq_chip_data
*data
)
986 WARN_ON(irq
!= data
->irq
);
987 rc
= devres_release(dev
, devm_regmap_irq_chip_release
,
988 devm_regmap_irq_chip_match
, data
);
993 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip
);
996 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
998 * @data: regmap irq controller to operate on.
1000 * Useful for drivers to request their own IRQs.
1002 int regmap_irq_chip_get_base(struct regmap_irq_chip_data
*data
)
1004 WARN_ON(!data
->irq_base
);
1005 return data
->irq_base
;
1007 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base
);
1010 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1012 * @data: regmap irq controller to operate on.
1013 * @irq: index of the interrupt requested in the chip IRQs.
1015 * Useful for drivers to request their own IRQs.
1017 int regmap_irq_get_virq(struct regmap_irq_chip_data
*data
, int irq
)
1019 /* Handle holes in the IRQ list */
1020 if (!data
->chip
->irqs
[irq
].mask
)
1023 return irq_create_mapping(data
->domain
, irq
);
1025 EXPORT_SYMBOL_GPL(regmap_irq_get_virq
);
1028 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1030 * @data: regmap_irq controller to operate on.
1032 * Useful for drivers to request their own IRQs and for integration
1033 * with subsystems. For ease of integration NULL is accepted as a
1034 * domain, allowing devices to just call this even if no domain is
1037 struct irq_domain
*regmap_irq_get_domain(struct regmap_irq_chip_data
*data
)
1040 return data
->domain
;
1044 EXPORT_SYMBOL_GPL(regmap_irq_get_domain
);