dt-bindings: pinctrl: add bindings for MediaTek MT6779 SoC
[linux/fpc-iii.git] / drivers / base / regmap / regmap-irq.c
blob4340e1d268b65ac1717860d917a5723231482891
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // regmap based irq_chip
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/interrupt.h>
12 #include <linux/irq.h>
13 #include <linux/irqdomain.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/regmap.h>
16 #include <linux/slab.h>
18 #include "internal.h"
20 struct regmap_irq_chip_data {
21 struct mutex lock;
22 struct irq_chip irq_chip;
24 struct regmap *map;
25 const struct regmap_irq_chip *chip;
27 int irq_base;
28 struct irq_domain *domain;
30 int irq;
31 int wake_count;
33 void *status_reg_buf;
34 unsigned int *main_status_buf;
35 unsigned int *status_buf;
36 unsigned int *mask_buf;
37 unsigned int *mask_buf_def;
38 unsigned int *wake_buf;
39 unsigned int *type_buf;
40 unsigned int *type_buf_def;
42 unsigned int irq_reg_stride;
43 unsigned int type_reg_stride;
45 bool clear_status:1;
48 static inline const
49 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
50 int irq)
52 return &data->chip->irqs[irq];
55 static void regmap_irq_lock(struct irq_data *data)
57 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
59 mutex_lock(&d->lock);
62 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
63 unsigned int reg, unsigned int mask,
64 unsigned int val)
66 if (d->chip->mask_writeonly)
67 return regmap_write_bits(d->map, reg, mask, val);
68 else
69 return regmap_update_bits(d->map, reg, mask, val);
72 static void regmap_irq_sync_unlock(struct irq_data *data)
74 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
75 struct regmap *map = d->map;
76 int i, ret;
77 u32 reg;
78 u32 unmask_offset;
79 u32 val;
81 if (d->chip->runtime_pm) {
82 ret = pm_runtime_get_sync(map->dev);
83 if (ret < 0)
84 dev_err(map->dev, "IRQ sync failed to resume: %d\n",
85 ret);
88 if (d->clear_status) {
89 for (i = 0; i < d->chip->num_regs; i++) {
90 reg = d->chip->status_base +
91 (i * map->reg_stride * d->irq_reg_stride);
93 ret = regmap_read(map, reg, &val);
94 if (ret)
95 dev_err(d->map->dev,
96 "Failed to clear the interrupt status bits\n");
99 d->clear_status = false;
103 * If there's been a change in the mask write it back to the
104 * hardware. We rely on the use of the regmap core cache to
105 * suppress pointless writes.
107 for (i = 0; i < d->chip->num_regs; i++) {
108 if (!d->chip->mask_base)
109 continue;
111 reg = d->chip->mask_base +
112 (i * map->reg_stride * d->irq_reg_stride);
113 if (d->chip->mask_invert) {
114 ret = regmap_irq_update_bits(d, reg,
115 d->mask_buf_def[i], ~d->mask_buf[i]);
116 } else if (d->chip->unmask_base) {
117 /* set mask with mask_base register */
118 ret = regmap_irq_update_bits(d, reg,
119 d->mask_buf_def[i], ~d->mask_buf[i]);
120 if (ret < 0)
121 dev_err(d->map->dev,
122 "Failed to sync unmasks in %x\n",
123 reg);
124 unmask_offset = d->chip->unmask_base -
125 d->chip->mask_base;
126 /* clear mask with unmask_base register */
127 ret = regmap_irq_update_bits(d,
128 reg + unmask_offset,
129 d->mask_buf_def[i],
130 d->mask_buf[i]);
131 } else {
132 ret = regmap_irq_update_bits(d, reg,
133 d->mask_buf_def[i], d->mask_buf[i]);
135 if (ret != 0)
136 dev_err(d->map->dev, "Failed to sync masks in %x\n",
137 reg);
139 reg = d->chip->wake_base +
140 (i * map->reg_stride * d->irq_reg_stride);
141 if (d->wake_buf) {
142 if (d->chip->wake_invert)
143 ret = regmap_irq_update_bits(d, reg,
144 d->mask_buf_def[i],
145 ~d->wake_buf[i]);
146 else
147 ret = regmap_irq_update_bits(d, reg,
148 d->mask_buf_def[i],
149 d->wake_buf[i]);
150 if (ret != 0)
151 dev_err(d->map->dev,
152 "Failed to sync wakes in %x: %d\n",
153 reg, ret);
156 if (!d->chip->init_ack_masked)
157 continue;
159 * Ack all the masked interrupts unconditionally,
160 * OR if there is masked interrupt which hasn't been Acked,
161 * it'll be ignored in irq handler, then may introduce irq storm
163 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164 reg = d->chip->ack_base +
165 (i * map->reg_stride * d->irq_reg_stride);
166 /* some chips ack by write 0 */
167 if (d->chip->ack_invert)
168 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169 else
170 ret = regmap_write(map, reg, d->mask_buf[i]);
171 if (ret != 0)
172 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173 reg, ret);
177 /* Don't update the type bits if we're using mask bits for irq type. */
178 if (!d->chip->type_in_mask) {
179 for (i = 0; i < d->chip->num_type_reg; i++) {
180 if (!d->type_buf_def[i])
181 continue;
182 reg = d->chip->type_base +
183 (i * map->reg_stride * d->type_reg_stride);
184 if (d->chip->type_invert)
185 ret = regmap_irq_update_bits(d, reg,
186 d->type_buf_def[i], ~d->type_buf[i]);
187 else
188 ret = regmap_irq_update_bits(d, reg,
189 d->type_buf_def[i], d->type_buf[i]);
190 if (ret != 0)
191 dev_err(d->map->dev, "Failed to sync type in %x\n",
192 reg);
196 if (d->chip->runtime_pm)
197 pm_runtime_put(map->dev);
199 /* If we've changed our wakeup count propagate it to the parent */
200 if (d->wake_count < 0)
201 for (i = d->wake_count; i < 0; i++)
202 irq_set_irq_wake(d->irq, 0);
203 else if (d->wake_count > 0)
204 for (i = 0; i < d->wake_count; i++)
205 irq_set_irq_wake(d->irq, 1);
207 d->wake_count = 0;
209 mutex_unlock(&d->lock);
212 static void regmap_irq_enable(struct irq_data *data)
214 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215 struct regmap *map = d->map;
216 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217 unsigned int mask, type;
219 type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
222 * The type_in_mask flag means that the underlying hardware uses
223 * separate mask bits for rising and falling edge interrupts, but
224 * we want to make them into a single virtual interrupt with
225 * configurable edge.
227 * If the interrupt we're enabling defines the falling or rising
228 * masks then instead of using the regular mask bits for this
229 * interrupt, use the value previously written to the type buffer
230 * at the corresponding offset in regmap_irq_set_type().
232 if (d->chip->type_in_mask && type)
233 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234 else
235 mask = irq_data->mask;
237 if (d->chip->clear_on_unmask)
238 d->clear_status = true;
240 d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
243 static void regmap_irq_disable(struct irq_data *data)
245 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246 struct regmap *map = d->map;
247 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
249 d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
254 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255 struct regmap *map = d->map;
256 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257 int reg;
258 const struct regmap_irq_type *t = &irq_data->type;
260 if ((t->types_supported & type) != type)
261 return 0;
263 reg = t->type_reg_offset / map->reg_stride;
265 if (t->type_reg_mask)
266 d->type_buf[reg] &= ~t->type_reg_mask;
267 else
268 d->type_buf[reg] &= ~(t->type_falling_val |
269 t->type_rising_val |
270 t->type_level_low_val |
271 t->type_level_high_val);
272 switch (type) {
273 case IRQ_TYPE_EDGE_FALLING:
274 d->type_buf[reg] |= t->type_falling_val;
275 break;
277 case IRQ_TYPE_EDGE_RISING:
278 d->type_buf[reg] |= t->type_rising_val;
279 break;
281 case IRQ_TYPE_EDGE_BOTH:
282 d->type_buf[reg] |= (t->type_falling_val |
283 t->type_rising_val);
284 break;
286 case IRQ_TYPE_LEVEL_HIGH:
287 d->type_buf[reg] |= t->type_level_high_val;
288 break;
290 case IRQ_TYPE_LEVEL_LOW:
291 d->type_buf[reg] |= t->type_level_low_val;
292 break;
293 default:
294 return -EINVAL;
296 return 0;
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
301 struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302 struct regmap *map = d->map;
303 const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
305 if (on) {
306 if (d->wake_buf)
307 d->wake_buf[irq_data->reg_offset / map->reg_stride]
308 &= ~irq_data->mask;
309 d->wake_count++;
310 } else {
311 if (d->wake_buf)
312 d->wake_buf[irq_data->reg_offset / map->reg_stride]
313 |= irq_data->mask;
314 d->wake_count--;
317 return 0;
320 static const struct irq_chip regmap_irq_chip = {
321 .irq_bus_lock = regmap_irq_lock,
322 .irq_bus_sync_unlock = regmap_irq_sync_unlock,
323 .irq_disable = regmap_irq_disable,
324 .irq_enable = regmap_irq_enable,
325 .irq_set_type = regmap_irq_set_type,
326 .irq_set_wake = regmap_irq_set_wake,
329 static inline int read_sub_irq_data(struct regmap_irq_chip_data *data,
330 unsigned int b)
332 const struct regmap_irq_chip *chip = data->chip;
333 struct regmap *map = data->map;
334 struct regmap_irq_sub_irq_map *subreg;
335 int i, ret = 0;
337 if (!chip->sub_reg_offsets) {
338 /* Assume linear mapping */
339 ret = regmap_read(map, chip->status_base +
340 (b * map->reg_stride * data->irq_reg_stride),
341 &data->status_buf[b]);
342 } else {
343 subreg = &chip->sub_reg_offsets[b];
344 for (i = 0; i < subreg->num_regs; i++) {
345 unsigned int offset = subreg->offset[i];
347 ret = regmap_read(map, chip->status_base + offset,
348 &data->status_buf[offset]);
349 if (ret)
350 break;
353 return ret;
356 static irqreturn_t regmap_irq_thread(int irq, void *d)
358 struct regmap_irq_chip_data *data = d;
359 const struct regmap_irq_chip *chip = data->chip;
360 struct regmap *map = data->map;
361 int ret, i;
362 bool handled = false;
363 u32 reg;
365 if (chip->handle_pre_irq)
366 chip->handle_pre_irq(chip->irq_drv_data);
368 if (chip->runtime_pm) {
369 ret = pm_runtime_get_sync(map->dev);
370 if (ret < 0) {
371 dev_err(map->dev, "IRQ thread failed to resume: %d\n",
372 ret);
373 goto exit;
378 * Read only registers with active IRQs if the chip has 'main status
379 * register'. Else read in the statuses, using a single bulk read if
380 * possible in order to reduce the I/O overheads.
383 if (chip->num_main_regs) {
384 unsigned int max_main_bits;
385 unsigned long size;
387 size = chip->num_regs * sizeof(unsigned int);
389 max_main_bits = (chip->num_main_status_bits) ?
390 chip->num_main_status_bits : chip->num_regs;
391 /* Clear the status buf as we don't read all status regs */
392 memset(data->status_buf, 0, size);
394 /* We could support bulk read for main status registers
395 * but I don't expect to see devices with really many main
396 * status registers so let's only support single reads for the
397 * sake of simplicity. and add bulk reads only if needed
399 for (i = 0; i < chip->num_main_regs; i++) {
400 ret = regmap_read(map, chip->main_status +
401 (i * map->reg_stride
402 * data->irq_reg_stride),
403 &data->main_status_buf[i]);
404 if (ret) {
405 dev_err(map->dev,
406 "Failed to read IRQ status %d\n",
407 ret);
408 goto exit;
412 /* Read sub registers with active IRQs */
413 for (i = 0; i < chip->num_main_regs; i++) {
414 unsigned int b;
415 const unsigned long mreg = data->main_status_buf[i];
417 for_each_set_bit(b, &mreg, map->format.val_bytes * 8) {
418 if (i * map->format.val_bytes * 8 + b >
419 max_main_bits)
420 break;
421 ret = read_sub_irq_data(data, b);
423 if (ret != 0) {
424 dev_err(map->dev,
425 "Failed to read IRQ status %d\n",
426 ret);
427 goto exit;
432 } else if (!map->use_single_read && map->reg_stride == 1 &&
433 data->irq_reg_stride == 1) {
435 u8 *buf8 = data->status_reg_buf;
436 u16 *buf16 = data->status_reg_buf;
437 u32 *buf32 = data->status_reg_buf;
439 BUG_ON(!data->status_reg_buf);
441 ret = regmap_bulk_read(map, chip->status_base,
442 data->status_reg_buf,
443 chip->num_regs);
444 if (ret != 0) {
445 dev_err(map->dev, "Failed to read IRQ status: %d\n",
446 ret);
447 goto exit;
450 for (i = 0; i < data->chip->num_regs; i++) {
451 switch (map->format.val_bytes) {
452 case 1:
453 data->status_buf[i] = buf8[i];
454 break;
455 case 2:
456 data->status_buf[i] = buf16[i];
457 break;
458 case 4:
459 data->status_buf[i] = buf32[i];
460 break;
461 default:
462 BUG();
463 goto exit;
467 } else {
468 for (i = 0; i < data->chip->num_regs; i++) {
469 ret = regmap_read(map, chip->status_base +
470 (i * map->reg_stride
471 * data->irq_reg_stride),
472 &data->status_buf[i]);
474 if (ret != 0) {
475 dev_err(map->dev,
476 "Failed to read IRQ status: %d\n",
477 ret);
478 goto exit;
484 * Ignore masked IRQs and ack if we need to; we ack early so
485 * there is no race between handling and acknowleding the
486 * interrupt. We assume that typically few of the interrupts
487 * will fire simultaneously so don't worry about overhead from
488 * doing a write per register.
490 for (i = 0; i < data->chip->num_regs; i++) {
491 data->status_buf[i] &= ~data->mask_buf[i];
493 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
494 reg = chip->ack_base +
495 (i * map->reg_stride * data->irq_reg_stride);
496 ret = regmap_write(map, reg, data->status_buf[i]);
497 if (ret != 0)
498 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
499 reg, ret);
503 for (i = 0; i < chip->num_irqs; i++) {
504 if (data->status_buf[chip->irqs[i].reg_offset /
505 map->reg_stride] & chip->irqs[i].mask) {
506 handle_nested_irq(irq_find_mapping(data->domain, i));
507 handled = true;
511 exit:
512 if (chip->runtime_pm)
513 pm_runtime_put(map->dev);
515 if (chip->handle_post_irq)
516 chip->handle_post_irq(chip->irq_drv_data);
518 if (handled)
519 return IRQ_HANDLED;
520 else
521 return IRQ_NONE;
524 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
525 irq_hw_number_t hw)
527 struct regmap_irq_chip_data *data = h->host_data;
529 irq_set_chip_data(virq, data);
530 irq_set_chip(virq, &data->irq_chip);
531 irq_set_nested_thread(virq, 1);
532 irq_set_parent(virq, data->irq);
533 irq_set_noprobe(virq);
535 return 0;
538 static const struct irq_domain_ops regmap_domain_ops = {
539 .map = regmap_irq_map,
540 .xlate = irq_domain_xlate_onetwocell,
544 * regmap_add_irq_chip_np() - Use standard regmap IRQ controller handling
546 * @np: The device_node where the IRQ domain should be added to.
547 * @map: The regmap for the device.
548 * @irq: The IRQ the device uses to signal interrupts.
549 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
550 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
551 * @chip: Configuration for the interrupt controller.
552 * @data: Runtime data structure for the controller, allocated on success.
554 * Returns 0 on success or an errno on failure.
556 * In order for this to be efficient the chip really should use a
557 * register cache. The chip driver is responsible for restoring the
558 * register values used by the IRQ controller over suspend and resume.
560 int regmap_add_irq_chip_np(struct device_node *np, struct regmap *map, int irq,
561 int irq_flags, int irq_base,
562 const struct regmap_irq_chip *chip,
563 struct regmap_irq_chip_data **data)
565 struct regmap_irq_chip_data *d;
566 int i;
567 int ret = -ENOMEM;
568 int num_type_reg;
569 u32 reg;
570 u32 unmask_offset;
572 if (chip->num_regs <= 0)
573 return -EINVAL;
575 if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
576 return -EINVAL;
578 for (i = 0; i < chip->num_irqs; i++) {
579 if (chip->irqs[i].reg_offset % map->reg_stride)
580 return -EINVAL;
581 if (chip->irqs[i].reg_offset / map->reg_stride >=
582 chip->num_regs)
583 return -EINVAL;
586 if (irq_base) {
587 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
588 if (irq_base < 0) {
589 dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
590 irq_base);
591 return irq_base;
595 d = kzalloc(sizeof(*d), GFP_KERNEL);
596 if (!d)
597 return -ENOMEM;
599 if (chip->num_main_regs) {
600 d->main_status_buf = kcalloc(chip->num_main_regs,
601 sizeof(unsigned int),
602 GFP_KERNEL);
604 if (!d->main_status_buf)
605 goto err_alloc;
608 d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
609 GFP_KERNEL);
610 if (!d->status_buf)
611 goto err_alloc;
613 d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
614 GFP_KERNEL);
615 if (!d->mask_buf)
616 goto err_alloc;
618 d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
619 GFP_KERNEL);
620 if (!d->mask_buf_def)
621 goto err_alloc;
623 if (chip->wake_base) {
624 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
625 GFP_KERNEL);
626 if (!d->wake_buf)
627 goto err_alloc;
630 num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
631 if (num_type_reg) {
632 d->type_buf_def = kcalloc(num_type_reg,
633 sizeof(unsigned int), GFP_KERNEL);
634 if (!d->type_buf_def)
635 goto err_alloc;
637 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
638 GFP_KERNEL);
639 if (!d->type_buf)
640 goto err_alloc;
643 d->irq_chip = regmap_irq_chip;
644 d->irq_chip.name = chip->name;
645 d->irq = irq;
646 d->map = map;
647 d->chip = chip;
648 d->irq_base = irq_base;
650 if (chip->irq_reg_stride)
651 d->irq_reg_stride = chip->irq_reg_stride;
652 else
653 d->irq_reg_stride = 1;
655 if (chip->type_reg_stride)
656 d->type_reg_stride = chip->type_reg_stride;
657 else
658 d->type_reg_stride = 1;
660 if (!map->use_single_read && map->reg_stride == 1 &&
661 d->irq_reg_stride == 1) {
662 d->status_reg_buf = kmalloc_array(chip->num_regs,
663 map->format.val_bytes,
664 GFP_KERNEL);
665 if (!d->status_reg_buf)
666 goto err_alloc;
669 mutex_init(&d->lock);
671 for (i = 0; i < chip->num_irqs; i++)
672 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
673 |= chip->irqs[i].mask;
675 /* Mask all the interrupts by default */
676 for (i = 0; i < chip->num_regs; i++) {
677 d->mask_buf[i] = d->mask_buf_def[i];
678 if (!chip->mask_base)
679 continue;
681 reg = chip->mask_base +
682 (i * map->reg_stride * d->irq_reg_stride);
683 if (chip->mask_invert)
684 ret = regmap_irq_update_bits(d, reg,
685 d->mask_buf[i], ~d->mask_buf[i]);
686 else if (d->chip->unmask_base) {
687 unmask_offset = d->chip->unmask_base -
688 d->chip->mask_base;
689 ret = regmap_irq_update_bits(d,
690 reg + unmask_offset,
691 d->mask_buf[i],
692 d->mask_buf[i]);
693 } else
694 ret = regmap_irq_update_bits(d, reg,
695 d->mask_buf[i], d->mask_buf[i]);
696 if (ret != 0) {
697 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
698 reg, ret);
699 goto err_alloc;
702 if (!chip->init_ack_masked)
703 continue;
705 /* Ack masked but set interrupts */
706 reg = chip->status_base +
707 (i * map->reg_stride * d->irq_reg_stride);
708 ret = regmap_read(map, reg, &d->status_buf[i]);
709 if (ret != 0) {
710 dev_err(map->dev, "Failed to read IRQ status: %d\n",
711 ret);
712 goto err_alloc;
715 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
716 reg = chip->ack_base +
717 (i * map->reg_stride * d->irq_reg_stride);
718 if (chip->ack_invert)
719 ret = regmap_write(map, reg,
720 ~(d->status_buf[i] & d->mask_buf[i]));
721 else
722 ret = regmap_write(map, reg,
723 d->status_buf[i] & d->mask_buf[i]);
724 if (ret != 0) {
725 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
726 reg, ret);
727 goto err_alloc;
732 /* Wake is disabled by default */
733 if (d->wake_buf) {
734 for (i = 0; i < chip->num_regs; i++) {
735 d->wake_buf[i] = d->mask_buf_def[i];
736 reg = chip->wake_base +
737 (i * map->reg_stride * d->irq_reg_stride);
739 if (chip->wake_invert)
740 ret = regmap_irq_update_bits(d, reg,
741 d->mask_buf_def[i],
743 else
744 ret = regmap_irq_update_bits(d, reg,
745 d->mask_buf_def[i],
746 d->wake_buf[i]);
747 if (ret != 0) {
748 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
749 reg, ret);
750 goto err_alloc;
755 if (chip->num_type_reg && !chip->type_in_mask) {
756 for (i = 0; i < chip->num_type_reg; ++i) {
757 reg = chip->type_base +
758 (i * map->reg_stride * d->type_reg_stride);
760 ret = regmap_read(map, reg, &d->type_buf_def[i]);
762 if (d->chip->type_invert)
763 d->type_buf_def[i] = ~d->type_buf_def[i];
765 if (ret) {
766 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
767 reg, ret);
768 goto err_alloc;
773 if (irq_base)
774 d->domain = irq_domain_add_legacy(np, chip->num_irqs, irq_base,
775 0, &regmap_domain_ops, d);
776 else
777 d->domain = irq_domain_add_linear(np, chip->num_irqs,
778 &regmap_domain_ops, d);
779 if (!d->domain) {
780 dev_err(map->dev, "Failed to create IRQ domain\n");
781 ret = -ENOMEM;
782 goto err_alloc;
785 ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
786 irq_flags | IRQF_ONESHOT,
787 chip->name, d);
788 if (ret != 0) {
789 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
790 irq, chip->name, ret);
791 goto err_domain;
794 *data = d;
796 return 0;
798 err_domain:
799 /* Should really dispose of the domain but... */
800 err_alloc:
801 kfree(d->type_buf);
802 kfree(d->type_buf_def);
803 kfree(d->wake_buf);
804 kfree(d->mask_buf_def);
805 kfree(d->mask_buf);
806 kfree(d->status_buf);
807 kfree(d->status_reg_buf);
808 kfree(d);
809 return ret;
811 EXPORT_SYMBOL_GPL(regmap_add_irq_chip_np);
814 * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
816 * @map: The regmap for the device.
817 * @irq: The IRQ the device uses to signal interrupts.
818 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
819 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
820 * @chip: Configuration for the interrupt controller.
821 * @data: Runtime data structure for the controller, allocated on success.
823 * Returns 0 on success or an errno on failure.
825 * This is the same as regmap_add_irq_chip_np, except that the device
826 * node of the regmap is used.
828 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
829 int irq_base, const struct regmap_irq_chip *chip,
830 struct regmap_irq_chip_data **data)
832 return regmap_add_irq_chip_np(map->dev->of_node, map, irq, irq_flags,
833 irq_base, chip, data);
835 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
838 * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
840 * @irq: Primary IRQ for the device
841 * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
843 * This function also disposes of all mapped IRQs on the chip.
845 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
847 unsigned int virq;
848 int hwirq;
850 if (!d)
851 return;
853 free_irq(irq, d);
855 /* Dispose all virtual irq from irq domain before removing it */
856 for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
857 /* Ignore hwirq if holes in the IRQ list */
858 if (!d->chip->irqs[hwirq].mask)
859 continue;
862 * Find the virtual irq of hwirq on chip and if it is
863 * there then dispose it
865 virq = irq_find_mapping(d->domain, hwirq);
866 if (virq)
867 irq_dispose_mapping(virq);
870 irq_domain_remove(d->domain);
871 kfree(d->type_buf);
872 kfree(d->type_buf_def);
873 kfree(d->wake_buf);
874 kfree(d->mask_buf_def);
875 kfree(d->mask_buf);
876 kfree(d->status_reg_buf);
877 kfree(d->status_buf);
878 kfree(d);
880 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
882 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
884 struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
886 regmap_del_irq_chip(d->irq, d);
889 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
892 struct regmap_irq_chip_data **r = res;
894 if (!r || !*r) {
895 WARN_ON(!r || !*r);
896 return 0;
898 return *r == data;
902 * devm_regmap_add_irq_chip_np() - Resource manager regmap_add_irq_chip_np()
904 * @dev: The device pointer on which irq_chip belongs to.
905 * @np: The device_node where the IRQ domain should be added to.
906 * @map: The regmap for the device.
907 * @irq: The IRQ the device uses to signal interrupts
908 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
909 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
910 * @chip: Configuration for the interrupt controller.
911 * @data: Runtime data structure for the controller, allocated on success
913 * Returns 0 on success or an errno on failure.
915 * The &regmap_irq_chip_data will be automatically released when the device is
916 * unbound.
918 int devm_regmap_add_irq_chip_np(struct device *dev, struct device_node *np,
919 struct regmap *map, int irq, int irq_flags,
920 int irq_base,
921 const struct regmap_irq_chip *chip,
922 struct regmap_irq_chip_data **data)
924 struct regmap_irq_chip_data **ptr, *d;
925 int ret;
927 ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
928 GFP_KERNEL);
929 if (!ptr)
930 return -ENOMEM;
932 ret = regmap_add_irq_chip_np(np, map, irq, irq_flags, irq_base,
933 chip, &d);
934 if (ret < 0) {
935 devres_free(ptr);
936 return ret;
939 *ptr = d;
940 devres_add(dev, ptr);
941 *data = d;
942 return 0;
944 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip_np);
947 * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
949 * @dev: The device pointer on which irq_chip belongs to.
950 * @map: The regmap for the device.
951 * @irq: The IRQ the device uses to signal interrupts
952 * @irq_flags: The IRQF_ flags to use for the primary interrupt.
953 * @irq_base: Allocate at specific IRQ number if irq_base > 0.
954 * @chip: Configuration for the interrupt controller.
955 * @data: Runtime data structure for the controller, allocated on success
957 * Returns 0 on success or an errno on failure.
959 * The &regmap_irq_chip_data will be automatically released when the device is
960 * unbound.
962 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
963 int irq_flags, int irq_base,
964 const struct regmap_irq_chip *chip,
965 struct regmap_irq_chip_data **data)
967 return devm_regmap_add_irq_chip_np(dev, map->dev->of_node, map, irq,
968 irq_flags, irq_base, chip, data);
970 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
973 * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
975 * @dev: Device for which which resource was allocated.
976 * @irq: Primary IRQ for the device.
977 * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
979 * A resource managed version of regmap_del_irq_chip().
981 void devm_regmap_del_irq_chip(struct device *dev, int irq,
982 struct regmap_irq_chip_data *data)
984 int rc;
986 WARN_ON(irq != data->irq);
987 rc = devres_release(dev, devm_regmap_irq_chip_release,
988 devm_regmap_irq_chip_match, data);
990 if (rc != 0)
991 WARN_ON(rc);
993 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
996 * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
998 * @data: regmap irq controller to operate on.
1000 * Useful for drivers to request their own IRQs.
1002 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
1004 WARN_ON(!data->irq_base);
1005 return data->irq_base;
1007 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
1010 * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
1012 * @data: regmap irq controller to operate on.
1013 * @irq: index of the interrupt requested in the chip IRQs.
1015 * Useful for drivers to request their own IRQs.
1017 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
1019 /* Handle holes in the IRQ list */
1020 if (!data->chip->irqs[irq].mask)
1021 return -EINVAL;
1023 return irq_create_mapping(data->domain, irq);
1025 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
1028 * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
1030 * @data: regmap_irq controller to operate on.
1032 * Useful for drivers to request their own IRQs and for integration
1033 * with subsystems. For ease of integration NULL is accepted as a
1034 * domain, allowing devices to just call this even if no domain is
1035 * allocated.
1037 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
1039 if (data)
1040 return data->domain;
1041 else
1042 return NULL;
1044 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);