2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
80 DEFINE_MUTEX(cgroup_mutex
);
81 DEFINE_SPINLOCK(css_set_lock
);
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex
);
85 EXPORT_SYMBOL_GPL(css_set_lock
);
88 DEFINE_SPINLOCK(trace_cgroup_path_lock
);
89 char trace_cgroup_path
[TRACE_CGROUP_PATH_LEN
];
90 bool cgroup_debug __read_mostly
;
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
96 static DEFINE_SPINLOCK(cgroup_idr_lock
);
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
104 DEFINE_PERCPU_RWSEM(cgroup_threadgroup_rwsem
);
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys
*cgroup_subsys
[] = {
122 #include <linux/cgroup_subsys.h>
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name
[] = {
129 #include <linux/cgroup_subsys.h>
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
144 #include <linux/cgroup_subsys.h>
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
150 #include <linux/cgroup_subsys.h>
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu
, cgrp_dfl_root_rstat_cpu
);
156 /* the default hierarchy */
157 struct cgroup_root cgrp_dfl_root
= { .cgrp
.rstat_cpu
= &cgrp_dfl_root_rstat_cpu
};
158 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
161 * The default hierarchy always exists but is hidden until mounted for the
162 * first time. This is for backward compatibility.
164 static bool cgrp_dfl_visible
;
166 /* some controllers are not supported in the default hierarchy */
167 static u16 cgrp_dfl_inhibit_ss_mask
;
169 /* some controllers are implicitly enabled on the default hierarchy */
170 static u16 cgrp_dfl_implicit_ss_mask
;
172 /* some controllers can be threaded on the default hierarchy */
173 static u16 cgrp_dfl_threaded_ss_mask
;
175 /* The list of hierarchy roots */
176 LIST_HEAD(cgroup_roots
);
177 static int cgroup_root_count
;
179 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
180 static DEFINE_IDR(cgroup_hierarchy_idr
);
183 * Assign a monotonically increasing serial number to csses. It guarantees
184 * cgroups with bigger numbers are newer than those with smaller numbers.
185 * Also, as csses are always appended to the parent's ->children list, it
186 * guarantees that sibling csses are always sorted in the ascending serial
187 * number order on the list. Protected by cgroup_mutex.
189 static u64 css_serial_nr_next
= 1;
192 * These bitmasks identify subsystems with specific features to avoid
193 * having to do iterative checks repeatedly.
195 static u16 have_fork_callback __read_mostly
;
196 static u16 have_exit_callback __read_mostly
;
197 static u16 have_release_callback __read_mostly
;
198 static u16 have_canfork_callback __read_mostly
;
200 /* cgroup namespace for init task */
201 struct cgroup_namespace init_cgroup_ns
= {
202 .count
= REFCOUNT_INIT(2),
203 .user_ns
= &init_user_ns
,
204 .ns
.ops
= &cgroupns_operations
,
205 .ns
.inum
= PROC_CGROUP_INIT_INO
,
206 .root_cset
= &init_css_set
,
209 static struct file_system_type cgroup2_fs_type
;
210 static struct cftype cgroup_base_files
[];
212 static int cgroup_apply_control(struct cgroup
*cgrp
);
213 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
214 static void css_task_iter_skip(struct css_task_iter
*it
,
215 struct task_struct
*task
);
216 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
217 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
218 struct cgroup_subsys
*ss
);
219 static void css_release(struct percpu_ref
*ref
);
220 static void kill_css(struct cgroup_subsys_state
*css
);
221 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
222 struct cgroup
*cgrp
, struct cftype cfts
[],
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
233 bool cgroup_ssid_enabled(int ssid
)
235 if (CGROUP_SUBSYS_COUNT
== 0)
238 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
250 * List of changed behaviors:
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
255 * - When mounting an existing superblock, mount options should match.
257 * - Remount is disallowed.
259 * - rename(2) is disallowed.
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
270 * - "cgroup.clone_children" is removed.
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
287 * - blkcg: blk-throttle becomes properly hierarchical.
289 * - debug: disallowed on the default hierarchy.
291 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
293 return cgrp
->root
== &cgrp_dfl_root
;
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
297 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
302 idr_preload(gfp_mask
);
303 spin_lock_bh(&cgroup_idr_lock
);
304 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
305 spin_unlock_bh(&cgroup_idr_lock
);
310 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
314 spin_lock_bh(&cgroup_idr_lock
);
315 ret
= idr_replace(idr
, ptr
, id
);
316 spin_unlock_bh(&cgroup_idr_lock
);
320 static void cgroup_idr_remove(struct idr
*idr
, int id
)
322 spin_lock_bh(&cgroup_idr_lock
);
324 spin_unlock_bh(&cgroup_idr_lock
);
327 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
329 return cgrp
->nr_populated_csets
;
332 bool cgroup_is_threaded(struct cgroup
*cgrp
)
334 return cgrp
->dom_cgrp
!= cgrp
;
337 /* can @cgrp host both domain and threaded children? */
338 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
345 return !cgroup_parent(cgrp
);
348 /* can @cgrp become a thread root? should always be true for a thread root */
349 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp
))
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp
))
359 /* can only have either domain or threaded children */
360 if (cgrp
->nr_populated_domain_children
)
363 /* and no domain controllers can be enabled */
364 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
370 /* is @cgrp root of a threaded subtree? */
371 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp
))
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp
->nr_threaded_children
)
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
385 if (cgroup_has_tasks(cgrp
) &&
386 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
392 /* a domain which isn't connected to the root w/o brekage can't be used */
393 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp
))
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp
= cgroup_parent(cgrp
))) {
401 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
403 if (cgroup_is_threaded(cgrp
))
410 /* subsystems visibly enabled on a cgroup */
411 static u16
cgroup_control(struct cgroup
*cgrp
)
413 struct cgroup
*parent
= cgroup_parent(cgrp
);
414 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
417 u16 ss_mask
= parent
->subtree_control
;
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp
))
421 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
425 if (cgroup_on_dfl(cgrp
))
426 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
427 cgrp_dfl_implicit_ss_mask
);
431 /* subsystems enabled on a cgroup */
432 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
434 struct cgroup
*parent
= cgroup_parent(cgrp
);
437 u16 ss_mask
= parent
->subtree_ss_mask
;
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp
))
441 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
445 return cgrp
->root
->subsys_mask
;
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
459 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
460 struct cgroup_subsys
*ss
)
463 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
464 lockdep_is_held(&cgroup_mutex
));
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
477 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
478 struct cgroup_subsys
*ss
)
480 struct cgroup_subsys_state
*css
;
483 css
= cgroup_css(cgrp
, ss
);
484 if (css
&& !css_tryget_online(css
))
492 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
501 static struct cgroup_subsys_state
*cgroup_e_css_by_mask(struct cgroup
*cgrp
,
502 struct cgroup_subsys
*ss
)
504 lockdep_assert_held(&cgroup_mutex
);
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
513 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
514 cgrp
= cgroup_parent(cgrp
);
519 return cgroup_css(cgrp
, ss
);
523 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
532 * The returned css is not guaranteed to be online, and therefore it is the
533 * callers responsiblity to tryget a reference for it.
535 struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
536 struct cgroup_subsys
*ss
)
538 struct cgroup_subsys_state
*css
;
541 css
= cgroup_css(cgrp
, ss
);
545 cgrp
= cgroup_parent(cgrp
);
548 return init_css_set
.subsys
[ss
->id
];
552 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
553 * @cgrp: the cgroup of interest
554 * @ss: the subsystem of interest
556 * Find and get the effective css of @cgrp for @ss. The effective css is
557 * defined as the matching css of the nearest ancestor including self which
558 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
559 * the root css is returned, so this function always returns a valid css.
560 * The returned css must be put using css_put().
562 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
563 struct cgroup_subsys
*ss
)
565 struct cgroup_subsys_state
*css
;
570 css
= cgroup_css(cgrp
, ss
);
572 if (css
&& css_tryget_online(css
))
574 cgrp
= cgroup_parent(cgrp
);
577 css
= init_css_set
.subsys
[ss
->id
];
584 static void cgroup_get_live(struct cgroup
*cgrp
)
586 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
587 css_get(&cgrp
->self
);
591 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
592 * is responsible for taking the css_set_lock.
593 * @cgrp: the cgroup in question
595 int __cgroup_task_count(const struct cgroup
*cgrp
)
598 struct cgrp_cset_link
*link
;
600 lockdep_assert_held(&css_set_lock
);
602 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
603 count
+= link
->cset
->nr_tasks
;
609 * cgroup_task_count - count the number of tasks in a cgroup.
610 * @cgrp: the cgroup in question
612 int cgroup_task_count(const struct cgroup
*cgrp
)
616 spin_lock_irq(&css_set_lock
);
617 count
= __cgroup_task_count(cgrp
);
618 spin_unlock_irq(&css_set_lock
);
623 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
625 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
626 struct cftype
*cft
= of_cft(of
);
629 * This is open and unprotected implementation of cgroup_css().
630 * seq_css() is only called from a kernfs file operation which has
631 * an active reference on the file. Because all the subsystem
632 * files are drained before a css is disassociated with a cgroup,
633 * the matching css from the cgroup's subsys table is guaranteed to
634 * be and stay valid until the enclosing operation is complete.
637 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
641 EXPORT_SYMBOL_GPL(of_css
);
644 * for_each_css - iterate all css's of a cgroup
645 * @css: the iteration cursor
646 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
647 * @cgrp: the target cgroup to iterate css's of
649 * Should be called under cgroup_[tree_]mutex.
651 #define for_each_css(css, ssid, cgrp) \
652 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
653 if (!((css) = rcu_dereference_check( \
654 (cgrp)->subsys[(ssid)], \
655 lockdep_is_held(&cgroup_mutex)))) { } \
659 * for_each_e_css - iterate all effective css's of a cgroup
660 * @css: the iteration cursor
661 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
662 * @cgrp: the target cgroup to iterate css's of
664 * Should be called under cgroup_[tree_]mutex.
666 #define for_each_e_css(css, ssid, cgrp) \
667 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
668 if (!((css) = cgroup_e_css_by_mask(cgrp, \
669 cgroup_subsys[(ssid)]))) \
674 * do_each_subsys_mask - filter for_each_subsys with a bitmask
675 * @ss: the iteration cursor
676 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
677 * @ss_mask: the bitmask
679 * The block will only run for cases where the ssid-th bit (1 << ssid) of
682 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
683 unsigned long __ss_mask = (ss_mask); \
684 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
688 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
689 (ss) = cgroup_subsys[ssid]; \
692 #define while_each_subsys_mask() \
697 /* iterate over child cgrps, lock should be held throughout iteration */
698 #define cgroup_for_each_live_child(child, cgrp) \
699 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
700 if (({ lockdep_assert_held(&cgroup_mutex); \
701 cgroup_is_dead(child); })) \
705 /* walk live descendants in preorder */
706 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
707 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
708 if (({ lockdep_assert_held(&cgroup_mutex); \
709 (dsct) = (d_css)->cgroup; \
710 cgroup_is_dead(dsct); })) \
714 /* walk live descendants in postorder */
715 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
716 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
717 if (({ lockdep_assert_held(&cgroup_mutex); \
718 (dsct) = (d_css)->cgroup; \
719 cgroup_is_dead(dsct); })) \
724 * The default css_set - used by init and its children prior to any
725 * hierarchies being mounted. It contains a pointer to the root state
726 * for each subsystem. Also used to anchor the list of css_sets. Not
727 * reference-counted, to improve performance when child cgroups
728 * haven't been created.
730 struct css_set init_css_set
= {
731 .refcount
= REFCOUNT_INIT(1),
732 .dom_cset
= &init_css_set
,
733 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
734 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
735 .dying_tasks
= LIST_HEAD_INIT(init_css_set
.dying_tasks
),
736 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
737 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
738 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
739 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
740 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
743 * The following field is re-initialized when this cset gets linked
744 * in cgroup_init(). However, let's initialize the field
745 * statically too so that the default cgroup can be accessed safely
748 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
751 static int css_set_count
= 1; /* 1 for init_css_set */
753 static bool css_set_threaded(struct css_set
*cset
)
755 return cset
->dom_cset
!= cset
;
759 * css_set_populated - does a css_set contain any tasks?
760 * @cset: target css_set
762 * css_set_populated() should be the same as !!cset->nr_tasks at steady
763 * state. However, css_set_populated() can be called while a task is being
764 * added to or removed from the linked list before the nr_tasks is
765 * properly updated. Hence, we can't just look at ->nr_tasks here.
767 static bool css_set_populated(struct css_set
*cset
)
769 lockdep_assert_held(&css_set_lock
);
771 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
775 * cgroup_update_populated - update the populated count of a cgroup
776 * @cgrp: the target cgroup
777 * @populated: inc or dec populated count
779 * One of the css_sets associated with @cgrp is either getting its first
780 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
781 * count is propagated towards root so that a given cgroup's
782 * nr_populated_children is zero iff none of its descendants contain any
785 * @cgrp's interface file "cgroup.populated" is zero if both
786 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
787 * 1 otherwise. When the sum changes from or to zero, userland is notified
788 * that the content of the interface file has changed. This can be used to
789 * detect when @cgrp and its descendants become populated or empty.
791 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
793 struct cgroup
*child
= NULL
;
794 int adj
= populated
? 1 : -1;
796 lockdep_assert_held(&css_set_lock
);
799 bool was_populated
= cgroup_is_populated(cgrp
);
802 cgrp
->nr_populated_csets
+= adj
;
804 if (cgroup_is_threaded(child
))
805 cgrp
->nr_populated_threaded_children
+= adj
;
807 cgrp
->nr_populated_domain_children
+= adj
;
810 if (was_populated
== cgroup_is_populated(cgrp
))
813 cgroup1_check_for_release(cgrp
);
814 TRACE_CGROUP_PATH(notify_populated
, cgrp
,
815 cgroup_is_populated(cgrp
));
816 cgroup_file_notify(&cgrp
->events_file
);
819 cgrp
= cgroup_parent(cgrp
);
824 * css_set_update_populated - update populated state of a css_set
825 * @cset: target css_set
826 * @populated: whether @cset is populated or depopulated
828 * @cset is either getting the first task or losing the last. Update the
829 * populated counters of all associated cgroups accordingly.
831 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
833 struct cgrp_cset_link
*link
;
835 lockdep_assert_held(&css_set_lock
);
837 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
838 cgroup_update_populated(link
->cgrp
, populated
);
842 * @task is leaving, advance task iterators which are pointing to it so
843 * that they can resume at the next position. Advancing an iterator might
844 * remove it from the list, use safe walk. See css_task_iter_skip() for
847 static void css_set_skip_task_iters(struct css_set
*cset
,
848 struct task_struct
*task
)
850 struct css_task_iter
*it
, *pos
;
852 list_for_each_entry_safe(it
, pos
, &cset
->task_iters
, iters_node
)
853 css_task_iter_skip(it
, task
);
857 * css_set_move_task - move a task from one css_set to another
858 * @task: task being moved
859 * @from_cset: css_set @task currently belongs to (may be NULL)
860 * @to_cset: new css_set @task is being moved to (may be NULL)
861 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
863 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
864 * css_set, @from_cset can be NULL. If @task is being disassociated
865 * instead of moved, @to_cset can be NULL.
867 * This function automatically handles populated counter updates and
868 * css_task_iter adjustments but the caller is responsible for managing
869 * @from_cset and @to_cset's reference counts.
871 static void css_set_move_task(struct task_struct
*task
,
872 struct css_set
*from_cset
, struct css_set
*to_cset
,
875 lockdep_assert_held(&css_set_lock
);
877 if (to_cset
&& !css_set_populated(to_cset
))
878 css_set_update_populated(to_cset
, true);
881 WARN_ON_ONCE(list_empty(&task
->cg_list
));
883 css_set_skip_task_iters(from_cset
, task
);
884 list_del_init(&task
->cg_list
);
885 if (!css_set_populated(from_cset
))
886 css_set_update_populated(from_cset
, false);
888 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
893 * We are synchronized through cgroup_threadgroup_rwsem
894 * against PF_EXITING setting such that we can't race
895 * against cgroup_exit()/cgroup_free() dropping the css_set.
897 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
899 cgroup_move_task(task
, to_cset
);
900 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
906 * hash table for cgroup groups. This improves the performance to find
907 * an existing css_set. This hash doesn't (currently) take into
908 * account cgroups in empty hierarchies.
910 #define CSS_SET_HASH_BITS 7
911 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
913 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
915 unsigned long key
= 0UL;
916 struct cgroup_subsys
*ss
;
919 for_each_subsys(ss
, i
)
920 key
+= (unsigned long)css
[i
];
921 key
= (key
>> 16) ^ key
;
926 void put_css_set_locked(struct css_set
*cset
)
928 struct cgrp_cset_link
*link
, *tmp_link
;
929 struct cgroup_subsys
*ss
;
932 lockdep_assert_held(&css_set_lock
);
934 if (!refcount_dec_and_test(&cset
->refcount
))
937 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
939 /* This css_set is dead. unlink it and release cgroup and css refs */
940 for_each_subsys(ss
, ssid
) {
941 list_del(&cset
->e_cset_node
[ssid
]);
942 css_put(cset
->subsys
[ssid
]);
944 hash_del(&cset
->hlist
);
947 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
948 list_del(&link
->cset_link
);
949 list_del(&link
->cgrp_link
);
950 if (cgroup_parent(link
->cgrp
))
951 cgroup_put(link
->cgrp
);
955 if (css_set_threaded(cset
)) {
956 list_del(&cset
->threaded_csets_node
);
957 put_css_set_locked(cset
->dom_cset
);
960 kfree_rcu(cset
, rcu_head
);
964 * compare_css_sets - helper function for find_existing_css_set().
965 * @cset: candidate css_set being tested
966 * @old_cset: existing css_set for a task
967 * @new_cgrp: cgroup that's being entered by the task
968 * @template: desired set of css pointers in css_set (pre-calculated)
970 * Returns true if "cset" matches "old_cset" except for the hierarchy
971 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
973 static bool compare_css_sets(struct css_set
*cset
,
974 struct css_set
*old_cset
,
975 struct cgroup
*new_cgrp
,
976 struct cgroup_subsys_state
*template[])
978 struct cgroup
*new_dfl_cgrp
;
979 struct list_head
*l1
, *l2
;
982 * On the default hierarchy, there can be csets which are
983 * associated with the same set of cgroups but different csses.
984 * Let's first ensure that csses match.
986 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
990 /* @cset's domain should match the default cgroup's */
991 if (cgroup_on_dfl(new_cgrp
))
992 new_dfl_cgrp
= new_cgrp
;
994 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
996 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
1000 * Compare cgroup pointers in order to distinguish between
1001 * different cgroups in hierarchies. As different cgroups may
1002 * share the same effective css, this comparison is always
1005 l1
= &cset
->cgrp_links
;
1006 l2
= &old_cset
->cgrp_links
;
1008 struct cgrp_cset_link
*link1
, *link2
;
1009 struct cgroup
*cgrp1
, *cgrp2
;
1013 /* See if we reached the end - both lists are equal length. */
1014 if (l1
== &cset
->cgrp_links
) {
1015 BUG_ON(l2
!= &old_cset
->cgrp_links
);
1018 BUG_ON(l2
== &old_cset
->cgrp_links
);
1020 /* Locate the cgroups associated with these links. */
1021 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
1022 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
1023 cgrp1
= link1
->cgrp
;
1024 cgrp2
= link2
->cgrp
;
1025 /* Hierarchies should be linked in the same order. */
1026 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
1029 * If this hierarchy is the hierarchy of the cgroup
1030 * that's changing, then we need to check that this
1031 * css_set points to the new cgroup; if it's any other
1032 * hierarchy, then this css_set should point to the
1033 * same cgroup as the old css_set.
1035 if (cgrp1
->root
== new_cgrp
->root
) {
1036 if (cgrp1
!= new_cgrp
)
1047 * find_existing_css_set - init css array and find the matching css_set
1048 * @old_cset: the css_set that we're using before the cgroup transition
1049 * @cgrp: the cgroup that we're moving into
1050 * @template: out param for the new set of csses, should be clear on entry
1052 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
1053 struct cgroup
*cgrp
,
1054 struct cgroup_subsys_state
*template[])
1056 struct cgroup_root
*root
= cgrp
->root
;
1057 struct cgroup_subsys
*ss
;
1058 struct css_set
*cset
;
1063 * Build the set of subsystem state objects that we want to see in the
1064 * new css_set. while subsystems can change globally, the entries here
1065 * won't change, so no need for locking.
1067 for_each_subsys(ss
, i
) {
1068 if (root
->subsys_mask
& (1UL << i
)) {
1070 * @ss is in this hierarchy, so we want the
1071 * effective css from @cgrp.
1073 template[i
] = cgroup_e_css_by_mask(cgrp
, ss
);
1076 * @ss is not in this hierarchy, so we don't want
1077 * to change the css.
1079 template[i
] = old_cset
->subsys
[i
];
1083 key
= css_set_hash(template);
1084 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1085 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1088 /* This css_set matches what we need */
1092 /* No existing cgroup group matched */
1096 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1098 struct cgrp_cset_link
*link
, *tmp_link
;
1100 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1101 list_del(&link
->cset_link
);
1107 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1108 * @count: the number of links to allocate
1109 * @tmp_links: list_head the allocated links are put on
1111 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1112 * through ->cset_link. Returns 0 on success or -errno.
1114 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1116 struct cgrp_cset_link
*link
;
1119 INIT_LIST_HEAD(tmp_links
);
1121 for (i
= 0; i
< count
; i
++) {
1122 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1124 free_cgrp_cset_links(tmp_links
);
1127 list_add(&link
->cset_link
, tmp_links
);
1133 * link_css_set - a helper function to link a css_set to a cgroup
1134 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1135 * @cset: the css_set to be linked
1136 * @cgrp: the destination cgroup
1138 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1139 struct cgroup
*cgrp
)
1141 struct cgrp_cset_link
*link
;
1143 BUG_ON(list_empty(tmp_links
));
1145 if (cgroup_on_dfl(cgrp
))
1146 cset
->dfl_cgrp
= cgrp
;
1148 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1153 * Always add links to the tail of the lists so that the lists are
1154 * in choronological order.
1156 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1157 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1159 if (cgroup_parent(cgrp
))
1160 cgroup_get_live(cgrp
);
1164 * find_css_set - return a new css_set with one cgroup updated
1165 * @old_cset: the baseline css_set
1166 * @cgrp: the cgroup to be updated
1168 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1169 * substituted into the appropriate hierarchy.
1171 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1172 struct cgroup
*cgrp
)
1174 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1175 struct css_set
*cset
;
1176 struct list_head tmp_links
;
1177 struct cgrp_cset_link
*link
;
1178 struct cgroup_subsys
*ss
;
1182 lockdep_assert_held(&cgroup_mutex
);
1184 /* First see if we already have a cgroup group that matches
1185 * the desired set */
1186 spin_lock_irq(&css_set_lock
);
1187 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1190 spin_unlock_irq(&css_set_lock
);
1195 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1199 /* Allocate all the cgrp_cset_link objects that we'll need */
1200 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1205 refcount_set(&cset
->refcount
, 1);
1206 cset
->dom_cset
= cset
;
1207 INIT_LIST_HEAD(&cset
->tasks
);
1208 INIT_LIST_HEAD(&cset
->mg_tasks
);
1209 INIT_LIST_HEAD(&cset
->dying_tasks
);
1210 INIT_LIST_HEAD(&cset
->task_iters
);
1211 INIT_LIST_HEAD(&cset
->threaded_csets
);
1212 INIT_HLIST_NODE(&cset
->hlist
);
1213 INIT_LIST_HEAD(&cset
->cgrp_links
);
1214 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1215 INIT_LIST_HEAD(&cset
->mg_node
);
1217 /* Copy the set of subsystem state objects generated in
1218 * find_existing_css_set() */
1219 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1221 spin_lock_irq(&css_set_lock
);
1222 /* Add reference counts and links from the new css_set. */
1223 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1224 struct cgroup
*c
= link
->cgrp
;
1226 if (c
->root
== cgrp
->root
)
1228 link_css_set(&tmp_links
, cset
, c
);
1231 BUG_ON(!list_empty(&tmp_links
));
1235 /* Add @cset to the hash table */
1236 key
= css_set_hash(cset
->subsys
);
1237 hash_add(css_set_table
, &cset
->hlist
, key
);
1239 for_each_subsys(ss
, ssid
) {
1240 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1242 list_add_tail(&cset
->e_cset_node
[ssid
],
1243 &css
->cgroup
->e_csets
[ssid
]);
1247 spin_unlock_irq(&css_set_lock
);
1250 * If @cset should be threaded, look up the matching dom_cset and
1251 * link them up. We first fully initialize @cset then look for the
1252 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1253 * to stay empty until we return.
1255 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1256 struct css_set
*dcset
;
1258 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1264 spin_lock_irq(&css_set_lock
);
1265 cset
->dom_cset
= dcset
;
1266 list_add_tail(&cset
->threaded_csets_node
,
1267 &dcset
->threaded_csets
);
1268 spin_unlock_irq(&css_set_lock
);
1274 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1276 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1278 return root_cgrp
->root
;
1281 static int cgroup_init_root_id(struct cgroup_root
*root
)
1285 lockdep_assert_held(&cgroup_mutex
);
1287 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1291 root
->hierarchy_id
= id
;
1295 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1297 lockdep_assert_held(&cgroup_mutex
);
1299 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1302 void cgroup_free_root(struct cgroup_root
*root
)
1307 static void cgroup_destroy_root(struct cgroup_root
*root
)
1309 struct cgroup
*cgrp
= &root
->cgrp
;
1310 struct cgrp_cset_link
*link
, *tmp_link
;
1312 trace_cgroup_destroy_root(root
);
1314 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1316 BUG_ON(atomic_read(&root
->nr_cgrps
));
1317 BUG_ON(!list_empty(&cgrp
->self
.children
));
1319 /* Rebind all subsystems back to the default hierarchy */
1320 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1323 * Release all the links from cset_links to this hierarchy's
1326 spin_lock_irq(&css_set_lock
);
1328 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1329 list_del(&link
->cset_link
);
1330 list_del(&link
->cgrp_link
);
1334 spin_unlock_irq(&css_set_lock
);
1336 if (!list_empty(&root
->root_list
)) {
1337 list_del(&root
->root_list
);
1338 cgroup_root_count
--;
1341 cgroup_exit_root_id(root
);
1343 mutex_unlock(&cgroup_mutex
);
1345 kernfs_destroy_root(root
->kf_root
);
1346 cgroup_free_root(root
);
1350 * look up cgroup associated with current task's cgroup namespace on the
1351 * specified hierarchy
1353 static struct cgroup
*
1354 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1356 struct cgroup
*res
= NULL
;
1357 struct css_set
*cset
;
1359 lockdep_assert_held(&css_set_lock
);
1363 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1364 if (cset
== &init_css_set
) {
1366 } else if (root
== &cgrp_dfl_root
) {
1367 res
= cset
->dfl_cgrp
;
1369 struct cgrp_cset_link
*link
;
1371 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1372 struct cgroup
*c
= link
->cgrp
;
1374 if (c
->root
== root
) {
1386 /* look up cgroup associated with given css_set on the specified hierarchy */
1387 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1388 struct cgroup_root
*root
)
1390 struct cgroup
*res
= NULL
;
1392 lockdep_assert_held(&cgroup_mutex
);
1393 lockdep_assert_held(&css_set_lock
);
1395 if (cset
== &init_css_set
) {
1397 } else if (root
== &cgrp_dfl_root
) {
1398 res
= cset
->dfl_cgrp
;
1400 struct cgrp_cset_link
*link
;
1402 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1403 struct cgroup
*c
= link
->cgrp
;
1405 if (c
->root
== root
) {
1417 * Return the cgroup for "task" from the given hierarchy. Must be
1418 * called with cgroup_mutex and css_set_lock held.
1420 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1421 struct cgroup_root
*root
)
1424 * No need to lock the task - since we hold css_set_lock the
1425 * task can't change groups.
1427 return cset_cgroup_from_root(task_css_set(task
), root
);
1431 * A task must hold cgroup_mutex to modify cgroups.
1433 * Any task can increment and decrement the count field without lock.
1434 * So in general, code holding cgroup_mutex can't rely on the count
1435 * field not changing. However, if the count goes to zero, then only
1436 * cgroup_attach_task() can increment it again. Because a count of zero
1437 * means that no tasks are currently attached, therefore there is no
1438 * way a task attached to that cgroup can fork (the other way to
1439 * increment the count). So code holding cgroup_mutex can safely
1440 * assume that if the count is zero, it will stay zero. Similarly, if
1441 * a task holds cgroup_mutex on a cgroup with zero count, it
1442 * knows that the cgroup won't be removed, as cgroup_rmdir()
1445 * A cgroup can only be deleted if both its 'count' of using tasks
1446 * is zero, and its list of 'children' cgroups is empty. Since all
1447 * tasks in the system use _some_ cgroup, and since there is always at
1448 * least one task in the system (init, pid == 1), therefore, root cgroup
1449 * always has either children cgroups and/or using tasks. So we don't
1450 * need a special hack to ensure that root cgroup cannot be deleted.
1452 * P.S. One more locking exception. RCU is used to guard the
1453 * update of a tasks cgroup pointer by cgroup_attach_task()
1456 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1458 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1461 struct cgroup_subsys
*ss
= cft
->ss
;
1463 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1464 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
1465 const char *dbg
= (cft
->flags
& CFTYPE_DEBUG
) ? ".__DEBUG__." : "";
1467 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s%s.%s",
1468 dbg
, cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1471 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1477 * cgroup_file_mode - deduce file mode of a control file
1478 * @cft: the control file in question
1480 * S_IRUGO for read, S_IWUSR for write.
1482 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1486 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1489 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1490 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1500 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1501 * @subtree_control: the new subtree_control mask to consider
1502 * @this_ss_mask: available subsystems
1504 * On the default hierarchy, a subsystem may request other subsystems to be
1505 * enabled together through its ->depends_on mask. In such cases, more
1506 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1508 * This function calculates which subsystems need to be enabled if
1509 * @subtree_control is to be applied while restricted to @this_ss_mask.
1511 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1513 u16 cur_ss_mask
= subtree_control
;
1514 struct cgroup_subsys
*ss
;
1517 lockdep_assert_held(&cgroup_mutex
);
1519 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1522 u16 new_ss_mask
= cur_ss_mask
;
1524 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1525 new_ss_mask
|= ss
->depends_on
;
1526 } while_each_subsys_mask();
1529 * Mask out subsystems which aren't available. This can
1530 * happen only if some depended-upon subsystems were bound
1531 * to non-default hierarchies.
1533 new_ss_mask
&= this_ss_mask
;
1535 if (new_ss_mask
== cur_ss_mask
)
1537 cur_ss_mask
= new_ss_mask
;
1544 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1545 * @kn: the kernfs_node being serviced
1547 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1548 * the method finishes if locking succeeded. Note that once this function
1549 * returns the cgroup returned by cgroup_kn_lock_live() may become
1550 * inaccessible any time. If the caller intends to continue to access the
1551 * cgroup, it should pin it before invoking this function.
1553 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1555 struct cgroup
*cgrp
;
1557 if (kernfs_type(kn
) == KERNFS_DIR
)
1560 cgrp
= kn
->parent
->priv
;
1562 mutex_unlock(&cgroup_mutex
);
1564 kernfs_unbreak_active_protection(kn
);
1569 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1570 * @kn: the kernfs_node being serviced
1571 * @drain_offline: perform offline draining on the cgroup
1573 * This helper is to be used by a cgroup kernfs method currently servicing
1574 * @kn. It breaks the active protection, performs cgroup locking and
1575 * verifies that the associated cgroup is alive. Returns the cgroup if
1576 * alive; otherwise, %NULL. A successful return should be undone by a
1577 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1578 * cgroup is drained of offlining csses before return.
1580 * Any cgroup kernfs method implementation which requires locking the
1581 * associated cgroup should use this helper. It avoids nesting cgroup
1582 * locking under kernfs active protection and allows all kernfs operations
1583 * including self-removal.
1585 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1587 struct cgroup
*cgrp
;
1589 if (kernfs_type(kn
) == KERNFS_DIR
)
1592 cgrp
= kn
->parent
->priv
;
1595 * We're gonna grab cgroup_mutex which nests outside kernfs
1596 * active_ref. cgroup liveliness check alone provides enough
1597 * protection against removal. Ensure @cgrp stays accessible and
1598 * break the active_ref protection.
1600 if (!cgroup_tryget(cgrp
))
1602 kernfs_break_active_protection(kn
);
1605 cgroup_lock_and_drain_offline(cgrp
);
1607 mutex_lock(&cgroup_mutex
);
1609 if (!cgroup_is_dead(cgrp
))
1612 cgroup_kn_unlock(kn
);
1616 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1618 char name
[CGROUP_FILE_NAME_MAX
];
1620 lockdep_assert_held(&cgroup_mutex
);
1622 if (cft
->file_offset
) {
1623 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1624 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1626 spin_lock_irq(&cgroup_file_kn_lock
);
1628 spin_unlock_irq(&cgroup_file_kn_lock
);
1630 del_timer_sync(&cfile
->notify_timer
);
1633 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1637 * css_clear_dir - remove subsys files in a cgroup directory
1640 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1642 struct cgroup
*cgrp
= css
->cgroup
;
1643 struct cftype
*cfts
;
1645 if (!(css
->flags
& CSS_VISIBLE
))
1648 css
->flags
&= ~CSS_VISIBLE
;
1651 if (cgroup_on_dfl(cgrp
))
1652 cfts
= cgroup_base_files
;
1654 cfts
= cgroup1_base_files
;
1656 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1658 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1659 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1664 * css_populate_dir - create subsys files in a cgroup directory
1667 * On failure, no file is added.
1669 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1671 struct cgroup
*cgrp
= css
->cgroup
;
1672 struct cftype
*cfts
, *failed_cfts
;
1675 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1679 if (cgroup_on_dfl(cgrp
))
1680 cfts
= cgroup_base_files
;
1682 cfts
= cgroup1_base_files
;
1684 ret
= cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1688 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1689 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1697 css
->flags
|= CSS_VISIBLE
;
1701 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1702 if (cfts
== failed_cfts
)
1704 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1709 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1711 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1712 struct cgroup_subsys
*ss
;
1715 lockdep_assert_held(&cgroup_mutex
);
1717 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1719 * If @ss has non-root csses attached to it, can't move.
1720 * If @ss is an implicit controller, it is exempt from this
1721 * rule and can be stolen.
1723 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1724 !ss
->implicit_on_dfl
)
1727 /* can't move between two non-dummy roots either */
1728 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1730 } while_each_subsys_mask();
1732 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1733 struct cgroup_root
*src_root
= ss
->root
;
1734 struct cgroup
*scgrp
= &src_root
->cgrp
;
1735 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1736 struct css_set
*cset
;
1738 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1740 /* disable from the source */
1741 src_root
->subsys_mask
&= ~(1 << ssid
);
1742 WARN_ON(cgroup_apply_control(scgrp
));
1743 cgroup_finalize_control(scgrp
, 0);
1746 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1747 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1748 ss
->root
= dst_root
;
1749 css
->cgroup
= dcgrp
;
1751 spin_lock_irq(&css_set_lock
);
1752 hash_for_each(css_set_table
, i
, cset
, hlist
)
1753 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1754 &dcgrp
->e_csets
[ss
->id
]);
1755 spin_unlock_irq(&css_set_lock
);
1757 /* default hierarchy doesn't enable controllers by default */
1758 dst_root
->subsys_mask
|= 1 << ssid
;
1759 if (dst_root
== &cgrp_dfl_root
) {
1760 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1762 dcgrp
->subtree_control
|= 1 << ssid
;
1763 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1766 ret
= cgroup_apply_control(dcgrp
);
1768 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1773 } while_each_subsys_mask();
1775 kernfs_activate(dcgrp
->kn
);
1779 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1780 struct kernfs_root
*kf_root
)
1784 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1785 struct cgroup
*ns_cgroup
;
1787 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1791 spin_lock_irq(&css_set_lock
);
1792 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1793 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1794 spin_unlock_irq(&css_set_lock
);
1796 if (len
>= PATH_MAX
)
1799 seq_escape(sf
, buf
, " \t\n\\");
1806 enum cgroup2_param
{
1808 Opt_memory_localevents
,
1809 Opt_memory_recursiveprot
,
1813 static const struct fs_parameter_spec cgroup2_fs_parameters
[] = {
1814 fsparam_flag("nsdelegate", Opt_nsdelegate
),
1815 fsparam_flag("memory_localevents", Opt_memory_localevents
),
1816 fsparam_flag("memory_recursiveprot", Opt_memory_recursiveprot
),
1820 static int cgroup2_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1822 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1823 struct fs_parse_result result
;
1826 opt
= fs_parse(fc
, cgroup2_fs_parameters
, param
, &result
);
1831 case Opt_nsdelegate
:
1832 ctx
->flags
|= CGRP_ROOT_NS_DELEGATE
;
1834 case Opt_memory_localevents
:
1835 ctx
->flags
|= CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1837 case Opt_memory_recursiveprot
:
1838 ctx
->flags
|= CGRP_ROOT_MEMORY_RECURSIVE_PROT
;
1844 static void apply_cgroup_root_flags(unsigned int root_flags
)
1846 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1847 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1848 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1850 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1852 if (root_flags
& CGRP_ROOT_MEMORY_LOCAL_EVENTS
)
1853 cgrp_dfl_root
.flags
|= CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1855 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_MEMORY_LOCAL_EVENTS
;
1857 if (root_flags
& CGRP_ROOT_MEMORY_RECURSIVE_PROT
)
1858 cgrp_dfl_root
.flags
|= CGRP_ROOT_MEMORY_RECURSIVE_PROT
;
1860 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_MEMORY_RECURSIVE_PROT
;
1864 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1866 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1867 seq_puts(seq
, ",nsdelegate");
1868 if (cgrp_dfl_root
.flags
& CGRP_ROOT_MEMORY_LOCAL_EVENTS
)
1869 seq_puts(seq
, ",memory_localevents");
1870 if (cgrp_dfl_root
.flags
& CGRP_ROOT_MEMORY_RECURSIVE_PROT
)
1871 seq_puts(seq
, ",memory_recursiveprot");
1875 static int cgroup_reconfigure(struct fs_context
*fc
)
1877 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1879 apply_cgroup_root_flags(ctx
->flags
);
1883 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1885 struct cgroup_subsys
*ss
;
1888 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1889 INIT_LIST_HEAD(&cgrp
->self
.children
);
1890 INIT_LIST_HEAD(&cgrp
->cset_links
);
1891 INIT_LIST_HEAD(&cgrp
->pidlists
);
1892 mutex_init(&cgrp
->pidlist_mutex
);
1893 cgrp
->self
.cgroup
= cgrp
;
1894 cgrp
->self
.flags
|= CSS_ONLINE
;
1895 cgrp
->dom_cgrp
= cgrp
;
1896 cgrp
->max_descendants
= INT_MAX
;
1897 cgrp
->max_depth
= INT_MAX
;
1898 INIT_LIST_HEAD(&cgrp
->rstat_css_list
);
1899 prev_cputime_init(&cgrp
->prev_cputime
);
1901 for_each_subsys(ss
, ssid
)
1902 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1904 init_waitqueue_head(&cgrp
->offline_waitq
);
1905 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1908 void init_cgroup_root(struct cgroup_fs_context
*ctx
)
1910 struct cgroup_root
*root
= ctx
->root
;
1911 struct cgroup
*cgrp
= &root
->cgrp
;
1913 INIT_LIST_HEAD(&root
->root_list
);
1914 atomic_set(&root
->nr_cgrps
, 1);
1916 init_cgroup_housekeeping(cgrp
);
1918 root
->flags
= ctx
->flags
;
1919 if (ctx
->release_agent
)
1920 strscpy(root
->release_agent_path
, ctx
->release_agent
, PATH_MAX
);
1922 strscpy(root
->name
, ctx
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1923 if (ctx
->cpuset_clone_children
)
1924 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1927 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1929 LIST_HEAD(tmp_links
);
1930 struct cgroup
*root_cgrp
= &root
->cgrp
;
1931 struct kernfs_syscall_ops
*kf_sops
;
1932 struct css_set
*cset
;
1935 lockdep_assert_held(&cgroup_mutex
);
1937 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1943 * We're accessing css_set_count without locking css_set_lock here,
1944 * but that's OK - it can only be increased by someone holding
1945 * cgroup_lock, and that's us. Later rebinding may disable
1946 * controllers on the default hierarchy and thus create new csets,
1947 * which can't be more than the existing ones. Allocate 2x.
1949 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1953 ret
= cgroup_init_root_id(root
);
1957 kf_sops
= root
== &cgrp_dfl_root
?
1958 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
1960 root
->kf_root
= kernfs_create_root(kf_sops
,
1961 KERNFS_ROOT_CREATE_DEACTIVATED
|
1962 KERNFS_ROOT_SUPPORT_EXPORTOP
|
1963 KERNFS_ROOT_SUPPORT_USER_XATTR
,
1965 if (IS_ERR(root
->kf_root
)) {
1966 ret
= PTR_ERR(root
->kf_root
);
1969 root_cgrp
->kn
= root
->kf_root
->kn
;
1970 WARN_ON_ONCE(cgroup_ino(root_cgrp
) != 1);
1971 root_cgrp
->ancestor_ids
[0] = cgroup_id(root_cgrp
);
1973 ret
= css_populate_dir(&root_cgrp
->self
);
1977 ret
= rebind_subsystems(root
, ss_mask
);
1981 ret
= cgroup_bpf_inherit(root_cgrp
);
1984 trace_cgroup_setup_root(root
);
1987 * There must be no failure case after here, since rebinding takes
1988 * care of subsystems' refcounts, which are explicitly dropped in
1989 * the failure exit path.
1991 list_add(&root
->root_list
, &cgroup_roots
);
1992 cgroup_root_count
++;
1995 * Link the root cgroup in this hierarchy into all the css_set
1998 spin_lock_irq(&css_set_lock
);
1999 hash_for_each(css_set_table
, i
, cset
, hlist
) {
2000 link_css_set(&tmp_links
, cset
, root_cgrp
);
2001 if (css_set_populated(cset
))
2002 cgroup_update_populated(root_cgrp
, true);
2004 spin_unlock_irq(&css_set_lock
);
2006 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
2007 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
2009 kernfs_activate(root_cgrp
->kn
);
2014 kernfs_destroy_root(root
->kf_root
);
2015 root
->kf_root
= NULL
;
2017 cgroup_exit_root_id(root
);
2019 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2021 free_cgrp_cset_links(&tmp_links
);
2025 int cgroup_do_get_tree(struct fs_context
*fc
)
2027 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2030 ctx
->kfc
.root
= ctx
->root
->kf_root
;
2031 if (fc
->fs_type
== &cgroup2_fs_type
)
2032 ctx
->kfc
.magic
= CGROUP2_SUPER_MAGIC
;
2034 ctx
->kfc
.magic
= CGROUP_SUPER_MAGIC
;
2035 ret
= kernfs_get_tree(fc
);
2038 * In non-init cgroup namespace, instead of root cgroup's dentry,
2039 * we return the dentry corresponding to the cgroupns->root_cgrp.
2041 if (!ret
&& ctx
->ns
!= &init_cgroup_ns
) {
2042 struct dentry
*nsdentry
;
2043 struct super_block
*sb
= fc
->root
->d_sb
;
2044 struct cgroup
*cgrp
;
2046 mutex_lock(&cgroup_mutex
);
2047 spin_lock_irq(&css_set_lock
);
2049 cgrp
= cset_cgroup_from_root(ctx
->ns
->root_cset
, ctx
->root
);
2051 spin_unlock_irq(&css_set_lock
);
2052 mutex_unlock(&cgroup_mutex
);
2054 nsdentry
= kernfs_node_dentry(cgrp
->kn
, sb
);
2056 if (IS_ERR(nsdentry
)) {
2057 deactivate_locked_super(sb
);
2058 ret
= PTR_ERR(nsdentry
);
2061 fc
->root
= nsdentry
;
2064 if (!ctx
->kfc
.new_sb_created
)
2065 cgroup_put(&ctx
->root
->cgrp
);
2071 * Destroy a cgroup filesystem context.
2073 static void cgroup_fs_context_free(struct fs_context
*fc
)
2075 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2078 kfree(ctx
->release_agent
);
2079 put_cgroup_ns(ctx
->ns
);
2080 kernfs_free_fs_context(fc
);
2084 static int cgroup_get_tree(struct fs_context
*fc
)
2086 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2089 cgrp_dfl_visible
= true;
2090 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2091 ctx
->root
= &cgrp_dfl_root
;
2093 ret
= cgroup_do_get_tree(fc
);
2095 apply_cgroup_root_flags(ctx
->flags
);
2099 static const struct fs_context_operations cgroup_fs_context_ops
= {
2100 .free
= cgroup_fs_context_free
,
2101 .parse_param
= cgroup2_parse_param
,
2102 .get_tree
= cgroup_get_tree
,
2103 .reconfigure
= cgroup_reconfigure
,
2106 static const struct fs_context_operations cgroup1_fs_context_ops
= {
2107 .free
= cgroup_fs_context_free
,
2108 .parse_param
= cgroup1_parse_param
,
2109 .get_tree
= cgroup1_get_tree
,
2110 .reconfigure
= cgroup1_reconfigure
,
2114 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2115 * we select the namespace we're going to use.
2117 static int cgroup_init_fs_context(struct fs_context
*fc
)
2119 struct cgroup_fs_context
*ctx
;
2121 ctx
= kzalloc(sizeof(struct cgroup_fs_context
), GFP_KERNEL
);
2125 ctx
->ns
= current
->nsproxy
->cgroup_ns
;
2126 get_cgroup_ns(ctx
->ns
);
2127 fc
->fs_private
= &ctx
->kfc
;
2128 if (fc
->fs_type
== &cgroup2_fs_type
)
2129 fc
->ops
= &cgroup_fs_context_ops
;
2131 fc
->ops
= &cgroup1_fs_context_ops
;
2132 put_user_ns(fc
->user_ns
);
2133 fc
->user_ns
= get_user_ns(ctx
->ns
->user_ns
);
2138 static void cgroup_kill_sb(struct super_block
*sb
)
2140 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2141 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2144 * If @root doesn't have any children, start killing it.
2145 * This prevents new mounts by disabling percpu_ref_tryget_live().
2146 * cgroup_mount() may wait for @root's release.
2148 * And don't kill the default root.
2150 if (list_empty(&root
->cgrp
.self
.children
) && root
!= &cgrp_dfl_root
&&
2151 !percpu_ref_is_dying(&root
->cgrp
.self
.refcnt
))
2152 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2153 cgroup_put(&root
->cgrp
);
2157 struct file_system_type cgroup_fs_type
= {
2159 .init_fs_context
= cgroup_init_fs_context
,
2160 .parameters
= cgroup1_fs_parameters
,
2161 .kill_sb
= cgroup_kill_sb
,
2162 .fs_flags
= FS_USERNS_MOUNT
,
2165 static struct file_system_type cgroup2_fs_type
= {
2167 .init_fs_context
= cgroup_init_fs_context
,
2168 .parameters
= cgroup2_fs_parameters
,
2169 .kill_sb
= cgroup_kill_sb
,
2170 .fs_flags
= FS_USERNS_MOUNT
,
2173 #ifdef CONFIG_CPUSETS
2174 static const struct fs_context_operations cpuset_fs_context_ops
= {
2175 .get_tree
= cgroup1_get_tree
,
2176 .free
= cgroup_fs_context_free
,
2180 * This is ugly, but preserves the userspace API for existing cpuset
2181 * users. If someone tries to mount the "cpuset" filesystem, we
2182 * silently switch it to mount "cgroup" instead
2184 static int cpuset_init_fs_context(struct fs_context
*fc
)
2186 char *agent
= kstrdup("/sbin/cpuset_release_agent", GFP_USER
);
2187 struct cgroup_fs_context
*ctx
;
2190 err
= cgroup_init_fs_context(fc
);
2196 fc
->ops
= &cpuset_fs_context_ops
;
2198 ctx
= cgroup_fc2context(fc
);
2199 ctx
->subsys_mask
= 1 << cpuset_cgrp_id
;
2200 ctx
->flags
|= CGRP_ROOT_NOPREFIX
;
2201 ctx
->release_agent
= agent
;
2203 get_filesystem(&cgroup_fs_type
);
2204 put_filesystem(fc
->fs_type
);
2205 fc
->fs_type
= &cgroup_fs_type
;
2210 static struct file_system_type cpuset_fs_type
= {
2212 .init_fs_context
= cpuset_init_fs_context
,
2213 .fs_flags
= FS_USERNS_MOUNT
,
2217 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2218 struct cgroup_namespace
*ns
)
2220 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2222 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2225 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2226 struct cgroup_namespace
*ns
)
2230 mutex_lock(&cgroup_mutex
);
2231 spin_lock_irq(&css_set_lock
);
2233 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2235 spin_unlock_irq(&css_set_lock
);
2236 mutex_unlock(&cgroup_mutex
);
2240 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2243 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2244 * @task: target task
2245 * @buf: the buffer to write the path into
2246 * @buflen: the length of the buffer
2248 * Determine @task's cgroup on the first (the one with the lowest non-zero
2249 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2250 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2251 * cgroup controller callbacks.
2253 * Return value is the same as kernfs_path().
2255 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2257 struct cgroup_root
*root
;
2258 struct cgroup
*cgrp
;
2259 int hierarchy_id
= 1;
2262 mutex_lock(&cgroup_mutex
);
2263 spin_lock_irq(&css_set_lock
);
2265 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2268 cgrp
= task_cgroup_from_root(task
, root
);
2269 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2271 /* if no hierarchy exists, everyone is in "/" */
2272 ret
= strlcpy(buf
, "/", buflen
);
2275 spin_unlock_irq(&css_set_lock
);
2276 mutex_unlock(&cgroup_mutex
);
2279 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2282 * cgroup_migrate_add_task - add a migration target task to a migration context
2283 * @task: target task
2284 * @mgctx: target migration context
2286 * Add @task, which is a migration target, to @mgctx->tset. This function
2287 * becomes noop if @task doesn't need to be migrated. @task's css_set
2288 * should have been added as a migration source and @task->cg_list will be
2289 * moved from the css_set's tasks list to mg_tasks one.
2291 static void cgroup_migrate_add_task(struct task_struct
*task
,
2292 struct cgroup_mgctx
*mgctx
)
2294 struct css_set
*cset
;
2296 lockdep_assert_held(&css_set_lock
);
2298 /* @task either already exited or can't exit until the end */
2299 if (task
->flags
& PF_EXITING
)
2302 /* cgroup_threadgroup_rwsem protects racing against forks */
2303 WARN_ON_ONCE(list_empty(&task
->cg_list
));
2305 cset
= task_css_set(task
);
2306 if (!cset
->mg_src_cgrp
)
2309 mgctx
->tset
.nr_tasks
++;
2311 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2312 if (list_empty(&cset
->mg_node
))
2313 list_add_tail(&cset
->mg_node
,
2314 &mgctx
->tset
.src_csets
);
2315 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2316 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2317 &mgctx
->tset
.dst_csets
);
2321 * cgroup_taskset_first - reset taskset and return the first task
2322 * @tset: taskset of interest
2323 * @dst_cssp: output variable for the destination css
2325 * @tset iteration is initialized and the first task is returned.
2327 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2328 struct cgroup_subsys_state
**dst_cssp
)
2330 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2331 tset
->cur_task
= NULL
;
2333 return cgroup_taskset_next(tset
, dst_cssp
);
2337 * cgroup_taskset_next - iterate to the next task in taskset
2338 * @tset: taskset of interest
2339 * @dst_cssp: output variable for the destination css
2341 * Return the next task in @tset. Iteration must have been initialized
2342 * with cgroup_taskset_first().
2344 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2345 struct cgroup_subsys_state
**dst_cssp
)
2347 struct css_set
*cset
= tset
->cur_cset
;
2348 struct task_struct
*task
= tset
->cur_task
;
2350 while (&cset
->mg_node
!= tset
->csets
) {
2352 task
= list_first_entry(&cset
->mg_tasks
,
2353 struct task_struct
, cg_list
);
2355 task
= list_next_entry(task
, cg_list
);
2357 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2358 tset
->cur_cset
= cset
;
2359 tset
->cur_task
= task
;
2362 * This function may be called both before and
2363 * after cgroup_taskset_migrate(). The two cases
2364 * can be distinguished by looking at whether @cset
2365 * has its ->mg_dst_cset set.
2367 if (cset
->mg_dst_cset
)
2368 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2370 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2375 cset
= list_next_entry(cset
, mg_node
);
2383 * cgroup_taskset_migrate - migrate a taskset
2384 * @mgctx: migration context
2386 * Migrate tasks in @mgctx as setup by migration preparation functions.
2387 * This function fails iff one of the ->can_attach callbacks fails and
2388 * guarantees that either all or none of the tasks in @mgctx are migrated.
2389 * @mgctx is consumed regardless of success.
2391 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2393 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2394 struct cgroup_subsys
*ss
;
2395 struct task_struct
*task
, *tmp_task
;
2396 struct css_set
*cset
, *tmp_cset
;
2397 int ssid
, failed_ssid
, ret
;
2399 /* check that we can legitimately attach to the cgroup */
2400 if (tset
->nr_tasks
) {
2401 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2402 if (ss
->can_attach
) {
2404 ret
= ss
->can_attach(tset
);
2407 goto out_cancel_attach
;
2410 } while_each_subsys_mask();
2414 * Now that we're guaranteed success, proceed to move all tasks to
2415 * the new cgroup. There are no failure cases after here, so this
2416 * is the commit point.
2418 spin_lock_irq(&css_set_lock
);
2419 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2420 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2421 struct css_set
*from_cset
= task_css_set(task
);
2422 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2424 get_css_set(to_cset
);
2425 to_cset
->nr_tasks
++;
2426 css_set_move_task(task
, from_cset
, to_cset
, true);
2427 from_cset
->nr_tasks
--;
2429 * If the source or destination cgroup is frozen,
2430 * the task might require to change its state.
2432 cgroup_freezer_migrate_task(task
, from_cset
->dfl_cgrp
,
2434 put_css_set_locked(from_cset
);
2438 spin_unlock_irq(&css_set_lock
);
2441 * Migration is committed, all target tasks are now on dst_csets.
2442 * Nothing is sensitive to fork() after this point. Notify
2443 * controllers that migration is complete.
2445 tset
->csets
= &tset
->dst_csets
;
2447 if (tset
->nr_tasks
) {
2448 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2453 } while_each_subsys_mask();
2457 goto out_release_tset
;
2460 if (tset
->nr_tasks
) {
2461 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2462 if (ssid
== failed_ssid
)
2464 if (ss
->cancel_attach
) {
2466 ss
->cancel_attach(tset
);
2468 } while_each_subsys_mask();
2471 spin_lock_irq(&css_set_lock
);
2472 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2473 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2474 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2475 list_del_init(&cset
->mg_node
);
2477 spin_unlock_irq(&css_set_lock
);
2480 * Re-initialize the cgroup_taskset structure in case it is reused
2481 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2485 tset
->csets
= &tset
->src_csets
;
2490 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2491 * @dst_cgrp: destination cgroup to test
2493 * On the default hierarchy, except for the mixable, (possible) thread root
2494 * and threaded cgroups, subtree_control must be zero for migration
2495 * destination cgroups with tasks so that child cgroups don't compete
2498 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2500 /* v1 doesn't have any restriction */
2501 if (!cgroup_on_dfl(dst_cgrp
))
2504 /* verify @dst_cgrp can host resources */
2505 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2508 /* mixables don't care */
2509 if (cgroup_is_mixable(dst_cgrp
))
2513 * If @dst_cgrp is already or can become a thread root or is
2514 * threaded, it doesn't matter.
2516 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2519 /* apply no-internal-process constraint */
2520 if (dst_cgrp
->subtree_control
)
2527 * cgroup_migrate_finish - cleanup after attach
2528 * @mgctx: migration context
2530 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2531 * those functions for details.
2533 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2535 LIST_HEAD(preloaded
);
2536 struct css_set
*cset
, *tmp_cset
;
2538 lockdep_assert_held(&cgroup_mutex
);
2540 spin_lock_irq(&css_set_lock
);
2542 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2543 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2545 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2546 cset
->mg_src_cgrp
= NULL
;
2547 cset
->mg_dst_cgrp
= NULL
;
2548 cset
->mg_dst_cset
= NULL
;
2549 list_del_init(&cset
->mg_preload_node
);
2550 put_css_set_locked(cset
);
2553 spin_unlock_irq(&css_set_lock
);
2557 * cgroup_migrate_add_src - add a migration source css_set
2558 * @src_cset: the source css_set to add
2559 * @dst_cgrp: the destination cgroup
2560 * @mgctx: migration context
2562 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2563 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2564 * up by cgroup_migrate_finish().
2566 * This function may be called without holding cgroup_threadgroup_rwsem
2567 * even if the target is a process. Threads may be created and destroyed
2568 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2569 * into play and the preloaded css_sets are guaranteed to cover all
2572 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2573 struct cgroup
*dst_cgrp
,
2574 struct cgroup_mgctx
*mgctx
)
2576 struct cgroup
*src_cgrp
;
2578 lockdep_assert_held(&cgroup_mutex
);
2579 lockdep_assert_held(&css_set_lock
);
2582 * If ->dead, @src_set is associated with one or more dead cgroups
2583 * and doesn't contain any migratable tasks. Ignore it early so
2584 * that the rest of migration path doesn't get confused by it.
2589 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2591 if (!list_empty(&src_cset
->mg_preload_node
))
2594 WARN_ON(src_cset
->mg_src_cgrp
);
2595 WARN_ON(src_cset
->mg_dst_cgrp
);
2596 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2597 WARN_ON(!list_empty(&src_cset
->mg_node
));
2599 src_cset
->mg_src_cgrp
= src_cgrp
;
2600 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2601 get_css_set(src_cset
);
2602 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2606 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2607 * @mgctx: migration context
2609 * Tasks are about to be moved and all the source css_sets have been
2610 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2611 * pins all destination css_sets, links each to its source, and append them
2612 * to @mgctx->preloaded_dst_csets.
2614 * This function must be called after cgroup_migrate_add_src() has been
2615 * called on each migration source css_set. After migration is performed
2616 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2619 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2621 struct css_set
*src_cset
, *tmp_cset
;
2623 lockdep_assert_held(&cgroup_mutex
);
2625 /* look up the dst cset for each src cset and link it to src */
2626 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2628 struct css_set
*dst_cset
;
2629 struct cgroup_subsys
*ss
;
2632 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2636 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2639 * If src cset equals dst, it's noop. Drop the src.
2640 * cgroup_migrate() will skip the cset too. Note that we
2641 * can't handle src == dst as some nodes are used by both.
2643 if (src_cset
== dst_cset
) {
2644 src_cset
->mg_src_cgrp
= NULL
;
2645 src_cset
->mg_dst_cgrp
= NULL
;
2646 list_del_init(&src_cset
->mg_preload_node
);
2647 put_css_set(src_cset
);
2648 put_css_set(dst_cset
);
2652 src_cset
->mg_dst_cset
= dst_cset
;
2654 if (list_empty(&dst_cset
->mg_preload_node
))
2655 list_add_tail(&dst_cset
->mg_preload_node
,
2656 &mgctx
->preloaded_dst_csets
);
2658 put_css_set(dst_cset
);
2660 for_each_subsys(ss
, ssid
)
2661 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2662 mgctx
->ss_mask
|= 1 << ssid
;
2669 * cgroup_migrate - migrate a process or task to a cgroup
2670 * @leader: the leader of the process or the task to migrate
2671 * @threadgroup: whether @leader points to the whole process or a single task
2672 * @mgctx: migration context
2674 * Migrate a process or task denoted by @leader. If migrating a process,
2675 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2676 * responsible for invoking cgroup_migrate_add_src() and
2677 * cgroup_migrate_prepare_dst() on the targets before invoking this
2678 * function and following up with cgroup_migrate_finish().
2680 * As long as a controller's ->can_attach() doesn't fail, this function is
2681 * guaranteed to succeed. This means that, excluding ->can_attach()
2682 * failure, when migrating multiple targets, the success or failure can be
2683 * decided for all targets by invoking group_migrate_prepare_dst() before
2684 * actually starting migrating.
2686 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2687 struct cgroup_mgctx
*mgctx
)
2689 struct task_struct
*task
;
2692 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2693 * already PF_EXITING could be freed from underneath us unless we
2694 * take an rcu_read_lock.
2696 spin_lock_irq(&css_set_lock
);
2700 cgroup_migrate_add_task(task
, mgctx
);
2703 } while_each_thread(leader
, task
);
2705 spin_unlock_irq(&css_set_lock
);
2707 return cgroup_migrate_execute(mgctx
);
2711 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2712 * @dst_cgrp: the cgroup to attach to
2713 * @leader: the task or the leader of the threadgroup to be attached
2714 * @threadgroup: attach the whole threadgroup?
2716 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2718 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2721 DEFINE_CGROUP_MGCTX(mgctx
);
2722 struct task_struct
*task
;
2725 /* look up all src csets */
2726 spin_lock_irq(&css_set_lock
);
2730 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2733 } while_each_thread(leader
, task
);
2735 spin_unlock_irq(&css_set_lock
);
2737 /* prepare dst csets and commit */
2738 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2740 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2742 cgroup_migrate_finish(&mgctx
);
2745 TRACE_CGROUP_PATH(attach_task
, dst_cgrp
, leader
, threadgroup
);
2750 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
,
2752 __acquires(&cgroup_threadgroup_rwsem
)
2754 struct task_struct
*tsk
;
2757 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2758 return ERR_PTR(-EINVAL
);
2761 * If we migrate a single thread, we don't care about threadgroup
2762 * stability. If the thread is `current`, it won't exit(2) under our
2763 * hands or change PID through exec(2). We exclude
2764 * cgroup_update_dfl_csses and other cgroup_{proc,thread}s_write
2765 * callers by cgroup_mutex.
2766 * Therefore, we can skip the global lock.
2768 lockdep_assert_held(&cgroup_mutex
);
2769 if (pid
|| threadgroup
) {
2770 percpu_down_write(&cgroup_threadgroup_rwsem
);
2778 tsk
= find_task_by_vpid(pid
);
2780 tsk
= ERR_PTR(-ESRCH
);
2781 goto out_unlock_threadgroup
;
2788 tsk
= tsk
->group_leader
;
2791 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2792 * If userland migrates such a kthread to a non-root cgroup, it can
2793 * become trapped in a cpuset, or RT kthread may be born in a
2794 * cgroup with no rt_runtime allocated. Just say no.
2796 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2797 tsk
= ERR_PTR(-EINVAL
);
2798 goto out_unlock_threadgroup
;
2801 get_task_struct(tsk
);
2802 goto out_unlock_rcu
;
2804 out_unlock_threadgroup
:
2806 percpu_up_write(&cgroup_threadgroup_rwsem
);
2814 void cgroup_procs_write_finish(struct task_struct
*task
, bool locked
)
2815 __releases(&cgroup_threadgroup_rwsem
)
2817 struct cgroup_subsys
*ss
;
2820 /* release reference from cgroup_procs_write_start() */
2821 put_task_struct(task
);
2824 percpu_up_write(&cgroup_threadgroup_rwsem
);
2825 for_each_subsys(ss
, ssid
)
2826 if (ss
->post_attach
)
2830 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2832 struct cgroup_subsys
*ss
;
2833 bool printed
= false;
2836 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2839 seq_puts(seq
, ss
->name
);
2841 } while_each_subsys_mask();
2843 seq_putc(seq
, '\n');
2846 /* show controllers which are enabled from the parent */
2847 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2849 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2851 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2855 /* show controllers which are enabled for a given cgroup's children */
2856 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2858 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2860 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2865 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2866 * @cgrp: root of the subtree to update csses for
2868 * @cgrp's control masks have changed and its subtree's css associations
2869 * need to be updated accordingly. This function looks up all css_sets
2870 * which are attached to the subtree, creates the matching updated css_sets
2871 * and migrates the tasks to the new ones.
2873 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2875 DEFINE_CGROUP_MGCTX(mgctx
);
2876 struct cgroup_subsys_state
*d_css
;
2877 struct cgroup
*dsct
;
2878 struct css_set
*src_cset
;
2881 lockdep_assert_held(&cgroup_mutex
);
2883 percpu_down_write(&cgroup_threadgroup_rwsem
);
2885 /* look up all csses currently attached to @cgrp's subtree */
2886 spin_lock_irq(&css_set_lock
);
2887 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2888 struct cgrp_cset_link
*link
;
2890 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2891 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2893 spin_unlock_irq(&css_set_lock
);
2895 /* NULL dst indicates self on default hierarchy */
2896 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2900 spin_lock_irq(&css_set_lock
);
2901 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2902 struct task_struct
*task
, *ntask
;
2904 /* all tasks in src_csets need to be migrated */
2905 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2906 cgroup_migrate_add_task(task
, &mgctx
);
2908 spin_unlock_irq(&css_set_lock
);
2910 ret
= cgroup_migrate_execute(&mgctx
);
2912 cgroup_migrate_finish(&mgctx
);
2913 percpu_up_write(&cgroup_threadgroup_rwsem
);
2918 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2919 * @cgrp: root of the target subtree
2921 * Because css offlining is asynchronous, userland may try to re-enable a
2922 * controller while the previous css is still around. This function grabs
2923 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2925 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2926 __acquires(&cgroup_mutex
)
2928 struct cgroup
*dsct
;
2929 struct cgroup_subsys_state
*d_css
;
2930 struct cgroup_subsys
*ss
;
2934 mutex_lock(&cgroup_mutex
);
2936 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2937 for_each_subsys(ss
, ssid
) {
2938 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2941 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2944 cgroup_get_live(dsct
);
2945 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2946 TASK_UNINTERRUPTIBLE
);
2948 mutex_unlock(&cgroup_mutex
);
2950 finish_wait(&dsct
->offline_waitq
, &wait
);
2959 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2960 * @cgrp: root of the target subtree
2962 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2963 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2966 static void cgroup_save_control(struct cgroup
*cgrp
)
2968 struct cgroup
*dsct
;
2969 struct cgroup_subsys_state
*d_css
;
2971 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2972 dsct
->old_subtree_control
= dsct
->subtree_control
;
2973 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2974 dsct
->old_dom_cgrp
= dsct
->dom_cgrp
;
2979 * cgroup_propagate_control - refresh control masks of a subtree
2980 * @cgrp: root of the target subtree
2982 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2983 * ->subtree_control and propagate controller availability through the
2984 * subtree so that descendants don't have unavailable controllers enabled.
2986 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2988 struct cgroup
*dsct
;
2989 struct cgroup_subsys_state
*d_css
;
2991 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2992 dsct
->subtree_control
&= cgroup_control(dsct
);
2993 dsct
->subtree_ss_mask
=
2994 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
2995 cgroup_ss_mask(dsct
));
3000 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
3001 * @cgrp: root of the target subtree
3003 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3004 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3007 static void cgroup_restore_control(struct cgroup
*cgrp
)
3009 struct cgroup
*dsct
;
3010 struct cgroup_subsys_state
*d_css
;
3012 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3013 dsct
->subtree_control
= dsct
->old_subtree_control
;
3014 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3015 dsct
->dom_cgrp
= dsct
->old_dom_cgrp
;
3019 static bool css_visible(struct cgroup_subsys_state
*css
)
3021 struct cgroup_subsys
*ss
= css
->ss
;
3022 struct cgroup
*cgrp
= css
->cgroup
;
3024 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3026 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3028 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3032 * cgroup_apply_control_enable - enable or show csses according to control
3033 * @cgrp: root of the target subtree
3035 * Walk @cgrp's subtree and create new csses or make the existing ones
3036 * visible. A css is created invisible if it's being implicitly enabled
3037 * through dependency. An invisible css is made visible when the userland
3038 * explicitly enables it.
3040 * Returns 0 on success, -errno on failure. On failure, csses which have
3041 * been processed already aren't cleaned up. The caller is responsible for
3042 * cleaning up with cgroup_apply_control_disable().
3044 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3046 struct cgroup
*dsct
;
3047 struct cgroup_subsys_state
*d_css
;
3048 struct cgroup_subsys
*ss
;
3051 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3052 for_each_subsys(ss
, ssid
) {
3053 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3055 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3059 css
= css_create(dsct
, ss
);
3061 return PTR_ERR(css
);
3064 WARN_ON_ONCE(percpu_ref_is_dying(&css
->refcnt
));
3066 if (css_visible(css
)) {
3067 ret
= css_populate_dir(css
);
3078 * cgroup_apply_control_disable - kill or hide csses according to control
3079 * @cgrp: root of the target subtree
3081 * Walk @cgrp's subtree and kill and hide csses so that they match
3082 * cgroup_ss_mask() and cgroup_visible_mask().
3084 * A css is hidden when the userland requests it to be disabled while other
3085 * subsystems are still depending on it. The css must not actively control
3086 * resources and be in the vanilla state if it's made visible again later.
3087 * Controllers which may be depended upon should provide ->css_reset() for
3090 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3092 struct cgroup
*dsct
;
3093 struct cgroup_subsys_state
*d_css
;
3094 struct cgroup_subsys
*ss
;
3097 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3098 for_each_subsys(ss
, ssid
) {
3099 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3104 WARN_ON_ONCE(percpu_ref_is_dying(&css
->refcnt
));
3107 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3109 } else if (!css_visible(css
)) {
3119 * cgroup_apply_control - apply control mask updates to the subtree
3120 * @cgrp: root of the target subtree
3122 * subsystems can be enabled and disabled in a subtree using the following
3125 * 1. Call cgroup_save_control() to stash the current state.
3126 * 2. Update ->subtree_control masks in the subtree as desired.
3127 * 3. Call cgroup_apply_control() to apply the changes.
3128 * 4. Optionally perform other related operations.
3129 * 5. Call cgroup_finalize_control() to finish up.
3131 * This function implements step 3 and propagates the mask changes
3132 * throughout @cgrp's subtree, updates csses accordingly and perform
3133 * process migrations.
3135 static int cgroup_apply_control(struct cgroup
*cgrp
)
3139 cgroup_propagate_control(cgrp
);
3141 ret
= cgroup_apply_control_enable(cgrp
);
3146 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3147 * making the following cgroup_update_dfl_csses() properly update
3148 * css associations of all tasks in the subtree.
3150 ret
= cgroup_update_dfl_csses(cgrp
);
3158 * cgroup_finalize_control - finalize control mask update
3159 * @cgrp: root of the target subtree
3160 * @ret: the result of the update
3162 * Finalize control mask update. See cgroup_apply_control() for more info.
3164 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3167 cgroup_restore_control(cgrp
);
3168 cgroup_propagate_control(cgrp
);
3171 cgroup_apply_control_disable(cgrp
);
3174 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3176 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3178 /* if nothing is getting enabled, nothing to worry about */
3182 /* can @cgrp host any resources? */
3183 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3186 /* mixables don't care */
3187 if (cgroup_is_mixable(cgrp
))
3190 if (domain_enable
) {
3191 /* can't enable domain controllers inside a thread subtree */
3192 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3196 * Threaded controllers can handle internal competitions
3197 * and are always allowed inside a (prospective) thread
3200 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3205 * Controllers can't be enabled for a cgroup with tasks to avoid
3206 * child cgroups competing against tasks.
3208 if (cgroup_has_tasks(cgrp
))
3214 /* change the enabled child controllers for a cgroup in the default hierarchy */
3215 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3216 char *buf
, size_t nbytes
,
3219 u16 enable
= 0, disable
= 0;
3220 struct cgroup
*cgrp
, *child
;
3221 struct cgroup_subsys
*ss
;
3226 * Parse input - space separated list of subsystem names prefixed
3227 * with either + or -.
3229 buf
= strstrip(buf
);
3230 while ((tok
= strsep(&buf
, " "))) {
3233 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3234 if (!cgroup_ssid_enabled(ssid
) ||
3235 strcmp(tok
+ 1, ss
->name
))
3239 enable
|= 1 << ssid
;
3240 disable
&= ~(1 << ssid
);
3241 } else if (*tok
== '-') {
3242 disable
|= 1 << ssid
;
3243 enable
&= ~(1 << ssid
);
3248 } while_each_subsys_mask();
3249 if (ssid
== CGROUP_SUBSYS_COUNT
)
3253 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3257 for_each_subsys(ss
, ssid
) {
3258 if (enable
& (1 << ssid
)) {
3259 if (cgrp
->subtree_control
& (1 << ssid
)) {
3260 enable
&= ~(1 << ssid
);
3264 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3268 } else if (disable
& (1 << ssid
)) {
3269 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3270 disable
&= ~(1 << ssid
);
3274 /* a child has it enabled? */
3275 cgroup_for_each_live_child(child
, cgrp
) {
3276 if (child
->subtree_control
& (1 << ssid
)) {
3284 if (!enable
&& !disable
) {
3289 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3293 /* save and update control masks and prepare csses */
3294 cgroup_save_control(cgrp
);
3296 cgrp
->subtree_control
|= enable
;
3297 cgrp
->subtree_control
&= ~disable
;
3299 ret
= cgroup_apply_control(cgrp
);
3300 cgroup_finalize_control(cgrp
, ret
);
3304 kernfs_activate(cgrp
->kn
);
3306 cgroup_kn_unlock(of
->kn
);
3307 return ret
?: nbytes
;
3311 * cgroup_enable_threaded - make @cgrp threaded
3312 * @cgrp: the target cgroup
3314 * Called when "threaded" is written to the cgroup.type interface file and
3315 * tries to make @cgrp threaded and join the parent's resource domain.
3316 * This function is never called on the root cgroup as cgroup.type doesn't
3319 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3321 struct cgroup
*parent
= cgroup_parent(cgrp
);
3322 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3323 struct cgroup
*dsct
;
3324 struct cgroup_subsys_state
*d_css
;
3327 lockdep_assert_held(&cgroup_mutex
);
3329 /* noop if already threaded */
3330 if (cgroup_is_threaded(cgrp
))
3334 * If @cgroup is populated or has domain controllers enabled, it
3335 * can't be switched. While the below cgroup_can_be_thread_root()
3336 * test can catch the same conditions, that's only when @parent is
3337 * not mixable, so let's check it explicitly.
3339 if (cgroup_is_populated(cgrp
) ||
3340 cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
3343 /* we're joining the parent's domain, ensure its validity */
3344 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3345 !cgroup_can_be_thread_root(dom_cgrp
))
3349 * The following shouldn't cause actual migrations and should
3352 cgroup_save_control(cgrp
);
3354 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
)
3355 if (dsct
== cgrp
|| cgroup_is_threaded(dsct
))
3356 dsct
->dom_cgrp
= dom_cgrp
;
3358 ret
= cgroup_apply_control(cgrp
);
3360 parent
->nr_threaded_children
++;
3362 cgroup_finalize_control(cgrp
, ret
);
3366 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3368 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3370 if (cgroup_is_threaded(cgrp
))
3371 seq_puts(seq
, "threaded\n");
3372 else if (!cgroup_is_valid_domain(cgrp
))
3373 seq_puts(seq
, "domain invalid\n");
3374 else if (cgroup_is_thread_root(cgrp
))
3375 seq_puts(seq
, "domain threaded\n");
3377 seq_puts(seq
, "domain\n");
3382 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3383 size_t nbytes
, loff_t off
)
3385 struct cgroup
*cgrp
;
3388 /* only switching to threaded mode is supported */
3389 if (strcmp(strstrip(buf
), "threaded"))
3392 /* drain dying csses before we re-apply (threaded) subtree control */
3393 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3397 /* threaded can only be enabled */
3398 ret
= cgroup_enable_threaded(cgrp
);
3400 cgroup_kn_unlock(of
->kn
);
3401 return ret
?: nbytes
;
3404 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3406 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3407 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3409 if (descendants
== INT_MAX
)
3410 seq_puts(seq
, "max\n");
3412 seq_printf(seq
, "%d\n", descendants
);
3417 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3418 char *buf
, size_t nbytes
, loff_t off
)
3420 struct cgroup
*cgrp
;
3424 buf
= strstrip(buf
);
3425 if (!strcmp(buf
, "max")) {
3426 descendants
= INT_MAX
;
3428 ret
= kstrtoint(buf
, 0, &descendants
);
3433 if (descendants
< 0)
3436 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3440 cgrp
->max_descendants
= descendants
;
3442 cgroup_kn_unlock(of
->kn
);
3447 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3449 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3450 int depth
= READ_ONCE(cgrp
->max_depth
);
3452 if (depth
== INT_MAX
)
3453 seq_puts(seq
, "max\n");
3455 seq_printf(seq
, "%d\n", depth
);
3460 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3461 char *buf
, size_t nbytes
, loff_t off
)
3463 struct cgroup
*cgrp
;
3467 buf
= strstrip(buf
);
3468 if (!strcmp(buf
, "max")) {
3471 ret
= kstrtoint(buf
, 0, &depth
);
3479 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3483 cgrp
->max_depth
= depth
;
3485 cgroup_kn_unlock(of
->kn
);
3490 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3492 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3494 seq_printf(seq
, "populated %d\n", cgroup_is_populated(cgrp
));
3495 seq_printf(seq
, "frozen %d\n", test_bit(CGRP_FROZEN
, &cgrp
->flags
));
3500 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3502 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3504 seq_printf(seq
, "nr_descendants %d\n",
3505 cgroup
->nr_descendants
);
3506 seq_printf(seq
, "nr_dying_descendants %d\n",
3507 cgroup
->nr_dying_descendants
);
3512 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3513 struct cgroup
*cgrp
, int ssid
)
3515 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3516 struct cgroup_subsys_state
*css
;
3519 if (!ss
->css_extra_stat_show
)
3522 css
= cgroup_tryget_css(cgrp
, ss
);
3526 ret
= ss
->css_extra_stat_show(seq
, css
);
3531 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3533 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3536 cgroup_base_stat_cputime_show(seq
);
3537 #ifdef CONFIG_CGROUP_SCHED
3538 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3544 static int cgroup_io_pressure_show(struct seq_file
*seq
, void *v
)
3546 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3547 struct psi_group
*psi
= cgroup_ino(cgrp
) == 1 ? &psi_system
: &cgrp
->psi
;
3549 return psi_show(seq
, psi
, PSI_IO
);
3551 static int cgroup_memory_pressure_show(struct seq_file
*seq
, void *v
)
3553 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3554 struct psi_group
*psi
= cgroup_ino(cgrp
) == 1 ? &psi_system
: &cgrp
->psi
;
3556 return psi_show(seq
, psi
, PSI_MEM
);
3558 static int cgroup_cpu_pressure_show(struct seq_file
*seq
, void *v
)
3560 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3561 struct psi_group
*psi
= cgroup_ino(cgrp
) == 1 ? &psi_system
: &cgrp
->psi
;
3563 return psi_show(seq
, psi
, PSI_CPU
);
3566 static ssize_t
cgroup_pressure_write(struct kernfs_open_file
*of
, char *buf
,
3567 size_t nbytes
, enum psi_res res
)
3569 struct psi_trigger
*new;
3570 struct cgroup
*cgrp
;
3572 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3577 cgroup_kn_unlock(of
->kn
);
3579 new = psi_trigger_create(&cgrp
->psi
, buf
, nbytes
, res
);
3582 return PTR_ERR(new);
3585 psi_trigger_replace(&of
->priv
, new);
3592 static ssize_t
cgroup_io_pressure_write(struct kernfs_open_file
*of
,
3593 char *buf
, size_t nbytes
,
3596 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_IO
);
3599 static ssize_t
cgroup_memory_pressure_write(struct kernfs_open_file
*of
,
3600 char *buf
, size_t nbytes
,
3603 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_MEM
);
3606 static ssize_t
cgroup_cpu_pressure_write(struct kernfs_open_file
*of
,
3607 char *buf
, size_t nbytes
,
3610 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_CPU
);
3613 static __poll_t
cgroup_pressure_poll(struct kernfs_open_file
*of
,
3616 return psi_trigger_poll(&of
->priv
, of
->file
, pt
);
3619 static void cgroup_pressure_release(struct kernfs_open_file
*of
)
3621 psi_trigger_replace(&of
->priv
, NULL
);
3623 #endif /* CONFIG_PSI */
3625 static int cgroup_freeze_show(struct seq_file
*seq
, void *v
)
3627 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3629 seq_printf(seq
, "%d\n", cgrp
->freezer
.freeze
);
3634 static ssize_t
cgroup_freeze_write(struct kernfs_open_file
*of
,
3635 char *buf
, size_t nbytes
, loff_t off
)
3637 struct cgroup
*cgrp
;
3641 ret
= kstrtoint(strstrip(buf
), 0, &freeze
);
3645 if (freeze
< 0 || freeze
> 1)
3648 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3652 cgroup_freeze(cgrp
, freeze
);
3654 cgroup_kn_unlock(of
->kn
);
3659 static int cgroup_file_open(struct kernfs_open_file
*of
)
3661 struct cftype
*cft
= of
->kn
->priv
;
3664 return cft
->open(of
);
3668 static void cgroup_file_release(struct kernfs_open_file
*of
)
3670 struct cftype
*cft
= of
->kn
->priv
;
3676 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3677 size_t nbytes
, loff_t off
)
3679 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3680 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3681 struct cftype
*cft
= of
->kn
->priv
;
3682 struct cgroup_subsys_state
*css
;
3686 * If namespaces are delegation boundaries, disallow writes to
3687 * files in an non-init namespace root from inside the namespace
3688 * except for the files explicitly marked delegatable -
3689 * cgroup.procs and cgroup.subtree_control.
3691 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3692 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3693 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3697 return cft
->write(of
, buf
, nbytes
, off
);
3700 * kernfs guarantees that a file isn't deleted with operations in
3701 * flight, which means that the matching css is and stays alive and
3702 * doesn't need to be pinned. The RCU locking is not necessary
3703 * either. It's just for the convenience of using cgroup_css().
3706 css
= cgroup_css(cgrp
, cft
->ss
);
3709 if (cft
->write_u64
) {
3710 unsigned long long v
;
3711 ret
= kstrtoull(buf
, 0, &v
);
3713 ret
= cft
->write_u64(css
, cft
, v
);
3714 } else if (cft
->write_s64
) {
3716 ret
= kstrtoll(buf
, 0, &v
);
3718 ret
= cft
->write_s64(css
, cft
, v
);
3723 return ret
?: nbytes
;
3726 static __poll_t
cgroup_file_poll(struct kernfs_open_file
*of
, poll_table
*pt
)
3728 struct cftype
*cft
= of
->kn
->priv
;
3731 return cft
->poll(of
, pt
);
3733 return kernfs_generic_poll(of
, pt
);
3736 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3738 return seq_cft(seq
)->seq_start(seq
, ppos
);
3741 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3743 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3746 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3748 if (seq_cft(seq
)->seq_stop
)
3749 seq_cft(seq
)->seq_stop(seq
, v
);
3752 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3754 struct cftype
*cft
= seq_cft(m
);
3755 struct cgroup_subsys_state
*css
= seq_css(m
);
3758 return cft
->seq_show(m
, arg
);
3761 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3762 else if (cft
->read_s64
)
3763 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3769 static struct kernfs_ops cgroup_kf_single_ops
= {
3770 .atomic_write_len
= PAGE_SIZE
,
3771 .open
= cgroup_file_open
,
3772 .release
= cgroup_file_release
,
3773 .write
= cgroup_file_write
,
3774 .poll
= cgroup_file_poll
,
3775 .seq_show
= cgroup_seqfile_show
,
3778 static struct kernfs_ops cgroup_kf_ops
= {
3779 .atomic_write_len
= PAGE_SIZE
,
3780 .open
= cgroup_file_open
,
3781 .release
= cgroup_file_release
,
3782 .write
= cgroup_file_write
,
3783 .poll
= cgroup_file_poll
,
3784 .seq_start
= cgroup_seqfile_start
,
3785 .seq_next
= cgroup_seqfile_next
,
3786 .seq_stop
= cgroup_seqfile_stop
,
3787 .seq_show
= cgroup_seqfile_show
,
3790 /* set uid and gid of cgroup dirs and files to that of the creator */
3791 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3793 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3794 .ia_uid
= current_fsuid(),
3795 .ia_gid
= current_fsgid(), };
3797 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3798 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3801 return kernfs_setattr(kn
, &iattr
);
3804 static void cgroup_file_notify_timer(struct timer_list
*timer
)
3806 cgroup_file_notify(container_of(timer
, struct cgroup_file
,
3810 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3813 char name
[CGROUP_FILE_NAME_MAX
];
3814 struct kernfs_node
*kn
;
3815 struct lock_class_key
*key
= NULL
;
3818 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3819 key
= &cft
->lockdep_key
;
3821 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3822 cgroup_file_mode(cft
),
3823 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
3824 0, cft
->kf_ops
, cft
,
3829 ret
= cgroup_kn_set_ugid(kn
);
3835 if (cft
->file_offset
) {
3836 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3838 timer_setup(&cfile
->notify_timer
, cgroup_file_notify_timer
, 0);
3840 spin_lock_irq(&cgroup_file_kn_lock
);
3842 spin_unlock_irq(&cgroup_file_kn_lock
);
3849 * cgroup_addrm_files - add or remove files to a cgroup directory
3850 * @css: the target css
3851 * @cgrp: the target cgroup (usually css->cgroup)
3852 * @cfts: array of cftypes to be added
3853 * @is_add: whether to add or remove
3855 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3856 * For removals, this function never fails.
3858 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3859 struct cgroup
*cgrp
, struct cftype cfts
[],
3862 struct cftype
*cft
, *cft_end
= NULL
;
3865 lockdep_assert_held(&cgroup_mutex
);
3868 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3869 /* does cft->flags tell us to skip this file on @cgrp? */
3870 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3872 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3874 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3876 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3878 if ((cft
->flags
& CFTYPE_DEBUG
) && !cgroup_debug
)
3881 ret
= cgroup_add_file(css
, cgrp
, cft
);
3883 pr_warn("%s: failed to add %s, err=%d\n",
3884 __func__
, cft
->name
, ret
);
3890 cgroup_rm_file(cgrp
, cft
);
3896 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3898 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3899 struct cgroup
*root
= &ss
->root
->cgrp
;
3900 struct cgroup_subsys_state
*css
;
3903 lockdep_assert_held(&cgroup_mutex
);
3905 /* add/rm files for all cgroups created before */
3906 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3907 struct cgroup
*cgrp
= css
->cgroup
;
3909 if (!(css
->flags
& CSS_VISIBLE
))
3912 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3918 kernfs_activate(root
->kn
);
3922 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3926 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3927 /* free copy for custom atomic_write_len, see init_cftypes() */
3928 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3933 /* revert flags set by cgroup core while adding @cfts */
3934 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3938 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3942 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3943 struct kernfs_ops
*kf_ops
;
3945 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3948 kf_ops
= &cgroup_kf_ops
;
3950 kf_ops
= &cgroup_kf_single_ops
;
3953 * Ugh... if @cft wants a custom max_write_len, we need to
3954 * make a copy of kf_ops to set its atomic_write_len.
3956 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3957 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3959 cgroup_exit_cftypes(cfts
);
3962 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3965 cft
->kf_ops
= kf_ops
;
3972 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3974 lockdep_assert_held(&cgroup_mutex
);
3976 if (!cfts
|| !cfts
[0].ss
)
3979 list_del(&cfts
->node
);
3980 cgroup_apply_cftypes(cfts
, false);
3981 cgroup_exit_cftypes(cfts
);
3986 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3987 * @cfts: zero-length name terminated array of cftypes
3989 * Unregister @cfts. Files described by @cfts are removed from all
3990 * existing cgroups and all future cgroups won't have them either. This
3991 * function can be called anytime whether @cfts' subsys is attached or not.
3993 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3996 int cgroup_rm_cftypes(struct cftype
*cfts
)
4000 mutex_lock(&cgroup_mutex
);
4001 ret
= cgroup_rm_cftypes_locked(cfts
);
4002 mutex_unlock(&cgroup_mutex
);
4007 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4008 * @ss: target cgroup subsystem
4009 * @cfts: zero-length name terminated array of cftypes
4011 * Register @cfts to @ss. Files described by @cfts are created for all
4012 * existing cgroups to which @ss is attached and all future cgroups will
4013 * have them too. This function can be called anytime whether @ss is
4016 * Returns 0 on successful registration, -errno on failure. Note that this
4017 * function currently returns 0 as long as @cfts registration is successful
4018 * even if some file creation attempts on existing cgroups fail.
4020 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4024 if (!cgroup_ssid_enabled(ss
->id
))
4027 if (!cfts
|| cfts
[0].name
[0] == '\0')
4030 ret
= cgroup_init_cftypes(ss
, cfts
);
4034 mutex_lock(&cgroup_mutex
);
4036 list_add_tail(&cfts
->node
, &ss
->cfts
);
4037 ret
= cgroup_apply_cftypes(cfts
, true);
4039 cgroup_rm_cftypes_locked(cfts
);
4041 mutex_unlock(&cgroup_mutex
);
4046 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4047 * @ss: target cgroup subsystem
4048 * @cfts: zero-length name terminated array of cftypes
4050 * Similar to cgroup_add_cftypes() but the added files are only used for
4051 * the default hierarchy.
4053 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4057 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4058 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
4059 return cgroup_add_cftypes(ss
, cfts
);
4063 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4064 * @ss: target cgroup subsystem
4065 * @cfts: zero-length name terminated array of cftypes
4067 * Similar to cgroup_add_cftypes() but the added files are only used for
4068 * the legacy hierarchies.
4070 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4074 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4075 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
4076 return cgroup_add_cftypes(ss
, cfts
);
4080 * cgroup_file_notify - generate a file modified event for a cgroup_file
4081 * @cfile: target cgroup_file
4083 * @cfile must have been obtained by setting cftype->file_offset.
4085 void cgroup_file_notify(struct cgroup_file
*cfile
)
4087 unsigned long flags
;
4089 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
4091 unsigned long last
= cfile
->notified_at
;
4092 unsigned long next
= last
+ CGROUP_FILE_NOTIFY_MIN_INTV
;
4094 if (time_in_range(jiffies
, last
, next
)) {
4095 timer_reduce(&cfile
->notify_timer
, next
);
4097 kernfs_notify(cfile
->kn
);
4098 cfile
->notified_at
= jiffies
;
4101 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
4105 * css_next_child - find the next child of a given css
4106 * @pos: the current position (%NULL to initiate traversal)
4107 * @parent: css whose children to walk
4109 * This function returns the next child of @parent and should be called
4110 * under either cgroup_mutex or RCU read lock. The only requirement is
4111 * that @parent and @pos are accessible. The next sibling is guaranteed to
4112 * be returned regardless of their states.
4114 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4115 * css which finished ->css_online() is guaranteed to be visible in the
4116 * future iterations and will stay visible until the last reference is put.
4117 * A css which hasn't finished ->css_online() or already finished
4118 * ->css_offline() may show up during traversal. It's each subsystem's
4119 * responsibility to synchronize against on/offlining.
4121 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
4122 struct cgroup_subsys_state
*parent
)
4124 struct cgroup_subsys_state
*next
;
4126 cgroup_assert_mutex_or_rcu_locked();
4129 * @pos could already have been unlinked from the sibling list.
4130 * Once a cgroup is removed, its ->sibling.next is no longer
4131 * updated when its next sibling changes. CSS_RELEASED is set when
4132 * @pos is taken off list, at which time its next pointer is valid,
4133 * and, as releases are serialized, the one pointed to by the next
4134 * pointer is guaranteed to not have started release yet. This
4135 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4136 * critical section, the one pointed to by its next pointer is
4137 * guaranteed to not have finished its RCU grace period even if we
4138 * have dropped rcu_read_lock() inbetween iterations.
4140 * If @pos has CSS_RELEASED set, its next pointer can't be
4141 * dereferenced; however, as each css is given a monotonically
4142 * increasing unique serial number and always appended to the
4143 * sibling list, the next one can be found by walking the parent's
4144 * children until the first css with higher serial number than
4145 * @pos's. While this path can be slower, it happens iff iteration
4146 * races against release and the race window is very small.
4149 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
4150 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
4151 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
4153 list_for_each_entry_rcu(next
, &parent
->children
, sibling
,
4154 lockdep_is_held(&cgroup_mutex
))
4155 if (next
->serial_nr
> pos
->serial_nr
)
4160 * @next, if not pointing to the head, can be dereferenced and is
4163 if (&next
->sibling
!= &parent
->children
)
4169 * css_next_descendant_pre - find the next descendant for pre-order walk
4170 * @pos: the current position (%NULL to initiate traversal)
4171 * @root: css whose descendants to walk
4173 * To be used by css_for_each_descendant_pre(). Find the next descendant
4174 * to visit for pre-order traversal of @root's descendants. @root is
4175 * included in the iteration and the first node to be visited.
4177 * While this function requires cgroup_mutex or RCU read locking, it
4178 * doesn't require the whole traversal to be contained in a single critical
4179 * section. This function will return the correct next descendant as long
4180 * as both @pos and @root are accessible and @pos is a descendant of @root.
4182 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4183 * css which finished ->css_online() is guaranteed to be visible in the
4184 * future iterations and will stay visible until the last reference is put.
4185 * A css which hasn't finished ->css_online() or already finished
4186 * ->css_offline() may show up during traversal. It's each subsystem's
4187 * responsibility to synchronize against on/offlining.
4189 struct cgroup_subsys_state
*
4190 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
4191 struct cgroup_subsys_state
*root
)
4193 struct cgroup_subsys_state
*next
;
4195 cgroup_assert_mutex_or_rcu_locked();
4197 /* if first iteration, visit @root */
4201 /* visit the first child if exists */
4202 next
= css_next_child(NULL
, pos
);
4206 /* no child, visit my or the closest ancestor's next sibling */
4207 while (pos
!= root
) {
4208 next
= css_next_child(pos
, pos
->parent
);
4216 EXPORT_SYMBOL_GPL(css_next_descendant_pre
);
4219 * css_rightmost_descendant - return the rightmost descendant of a css
4220 * @pos: css of interest
4222 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4223 * is returned. This can be used during pre-order traversal to skip
4226 * While this function requires cgroup_mutex or RCU read locking, it
4227 * doesn't require the whole traversal to be contained in a single critical
4228 * section. This function will return the correct rightmost descendant as
4229 * long as @pos is accessible.
4231 struct cgroup_subsys_state
*
4232 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
4234 struct cgroup_subsys_state
*last
, *tmp
;
4236 cgroup_assert_mutex_or_rcu_locked();
4240 /* ->prev isn't RCU safe, walk ->next till the end */
4242 css_for_each_child(tmp
, last
)
4249 static struct cgroup_subsys_state
*
4250 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4252 struct cgroup_subsys_state
*last
;
4256 pos
= css_next_child(NULL
, pos
);
4263 * css_next_descendant_post - find the next descendant for post-order walk
4264 * @pos: the current position (%NULL to initiate traversal)
4265 * @root: css whose descendants to walk
4267 * To be used by css_for_each_descendant_post(). Find the next descendant
4268 * to visit for post-order traversal of @root's descendants. @root is
4269 * included in the iteration and the last node to be visited.
4271 * While this function requires cgroup_mutex or RCU read locking, it
4272 * doesn't require the whole traversal to be contained in a single critical
4273 * section. This function will return the correct next descendant as long
4274 * as both @pos and @cgroup are accessible and @pos is a descendant of
4277 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4278 * css which finished ->css_online() is guaranteed to be visible in the
4279 * future iterations and will stay visible until the last reference is put.
4280 * A css which hasn't finished ->css_online() or already finished
4281 * ->css_offline() may show up during traversal. It's each subsystem's
4282 * responsibility to synchronize against on/offlining.
4284 struct cgroup_subsys_state
*
4285 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4286 struct cgroup_subsys_state
*root
)
4288 struct cgroup_subsys_state
*next
;
4290 cgroup_assert_mutex_or_rcu_locked();
4292 /* if first iteration, visit leftmost descendant which may be @root */
4294 return css_leftmost_descendant(root
);
4296 /* if we visited @root, we're done */
4300 /* if there's an unvisited sibling, visit its leftmost descendant */
4301 next
= css_next_child(pos
, pos
->parent
);
4303 return css_leftmost_descendant(next
);
4305 /* no sibling left, visit parent */
4310 * css_has_online_children - does a css have online children
4311 * @css: the target css
4313 * Returns %true if @css has any online children; otherwise, %false. This
4314 * function can be called from any context but the caller is responsible
4315 * for synchronizing against on/offlining as necessary.
4317 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4319 struct cgroup_subsys_state
*child
;
4323 css_for_each_child(child
, css
) {
4324 if (child
->flags
& CSS_ONLINE
) {
4333 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4335 struct list_head
*l
;
4336 struct cgrp_cset_link
*link
;
4337 struct css_set
*cset
;
4339 lockdep_assert_held(&css_set_lock
);
4341 /* find the next threaded cset */
4342 if (it
->tcset_pos
) {
4343 l
= it
->tcset_pos
->next
;
4345 if (l
!= it
->tcset_head
) {
4347 return container_of(l
, struct css_set
,
4348 threaded_csets_node
);
4351 it
->tcset_pos
= NULL
;
4354 /* find the next cset */
4357 if (l
== it
->cset_head
) {
4358 it
->cset_pos
= NULL
;
4363 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4365 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4371 /* initialize threaded css_set walking */
4372 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4374 put_css_set_locked(it
->cur_dcset
);
4375 it
->cur_dcset
= cset
;
4378 it
->tcset_head
= &cset
->threaded_csets
;
4379 it
->tcset_pos
= &cset
->threaded_csets
;
4386 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4387 * @it: the iterator to advance
4389 * Advance @it to the next css_set to walk.
4391 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4393 struct css_set
*cset
;
4395 lockdep_assert_held(&css_set_lock
);
4397 /* Advance to the next non-empty css_set and find first non-empty tasks list*/
4398 while ((cset
= css_task_iter_next_css_set(it
))) {
4399 if (!list_empty(&cset
->tasks
)) {
4400 it
->cur_tasks_head
= &cset
->tasks
;
4402 } else if (!list_empty(&cset
->mg_tasks
)) {
4403 it
->cur_tasks_head
= &cset
->mg_tasks
;
4405 } else if (!list_empty(&cset
->dying_tasks
)) {
4406 it
->cur_tasks_head
= &cset
->dying_tasks
;
4411 it
->task_pos
= NULL
;
4414 it
->task_pos
= it
->cur_tasks_head
->next
;
4417 * We don't keep css_sets locked across iteration steps and thus
4418 * need to take steps to ensure that iteration can be resumed after
4419 * the lock is re-acquired. Iteration is performed at two levels -
4420 * css_sets and tasks in them.
4422 * Once created, a css_set never leaves its cgroup lists, so a
4423 * pinned css_set is guaranteed to stay put and we can resume
4424 * iteration afterwards.
4426 * Tasks may leave @cset across iteration steps. This is resolved
4427 * by registering each iterator with the css_set currently being
4428 * walked and making css_set_move_task() advance iterators whose
4429 * next task is leaving.
4432 list_del(&it
->iters_node
);
4433 put_css_set_locked(it
->cur_cset
);
4436 it
->cur_cset
= cset
;
4437 list_add(&it
->iters_node
, &cset
->task_iters
);
4440 static void css_task_iter_skip(struct css_task_iter
*it
,
4441 struct task_struct
*task
)
4443 lockdep_assert_held(&css_set_lock
);
4445 if (it
->task_pos
== &task
->cg_list
) {
4446 it
->task_pos
= it
->task_pos
->next
;
4447 it
->flags
|= CSS_TASK_ITER_SKIPPED
;
4451 static void css_task_iter_advance(struct css_task_iter
*it
)
4453 struct task_struct
*task
;
4455 lockdep_assert_held(&css_set_lock
);
4459 * Advance iterator to find next entry. We go through cset
4460 * tasks, mg_tasks and dying_tasks, when consumed we move onto
4463 if (it
->flags
& CSS_TASK_ITER_SKIPPED
)
4464 it
->flags
&= ~CSS_TASK_ITER_SKIPPED
;
4466 it
->task_pos
= it
->task_pos
->next
;
4468 if (it
->task_pos
== &it
->cur_cset
->tasks
) {
4469 it
->cur_tasks_head
= &it
->cur_cset
->mg_tasks
;
4470 it
->task_pos
= it
->cur_tasks_head
->next
;
4472 if (it
->task_pos
== &it
->cur_cset
->mg_tasks
) {
4473 it
->cur_tasks_head
= &it
->cur_cset
->dying_tasks
;
4474 it
->task_pos
= it
->cur_tasks_head
->next
;
4476 if (it
->task_pos
== &it
->cur_cset
->dying_tasks
)
4477 css_task_iter_advance_css_set(it
);
4479 /* called from start, proceed to the first cset */
4480 css_task_iter_advance_css_set(it
);
4486 task
= list_entry(it
->task_pos
, struct task_struct
, cg_list
);
4488 if (it
->flags
& CSS_TASK_ITER_PROCS
) {
4489 /* if PROCS, skip over tasks which aren't group leaders */
4490 if (!thread_group_leader(task
))
4493 /* and dying leaders w/o live member threads */
4494 if (it
->cur_tasks_head
== &it
->cur_cset
->dying_tasks
&&
4495 !atomic_read(&task
->signal
->live
))
4498 /* skip all dying ones */
4499 if (it
->cur_tasks_head
== &it
->cur_cset
->dying_tasks
)
4505 * css_task_iter_start - initiate task iteration
4506 * @css: the css to walk tasks of
4507 * @flags: CSS_TASK_ITER_* flags
4508 * @it: the task iterator to use
4510 * Initiate iteration through the tasks of @css. The caller can call
4511 * css_task_iter_next() to walk through the tasks until the function
4512 * returns NULL. On completion of iteration, css_task_iter_end() must be
4515 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4516 struct css_task_iter
*it
)
4518 memset(it
, 0, sizeof(*it
));
4520 spin_lock_irq(&css_set_lock
);
4526 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4528 it
->cset_pos
= &css
->cgroup
->cset_links
;
4530 it
->cset_head
= it
->cset_pos
;
4532 css_task_iter_advance(it
);
4534 spin_unlock_irq(&css_set_lock
);
4538 * css_task_iter_next - return the next task for the iterator
4539 * @it: the task iterator being iterated
4541 * The "next" function for task iteration. @it should have been
4542 * initialized via css_task_iter_start(). Returns NULL when the iteration
4545 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4548 put_task_struct(it
->cur_task
);
4549 it
->cur_task
= NULL
;
4552 spin_lock_irq(&css_set_lock
);
4554 /* @it may be half-advanced by skips, finish advancing */
4555 if (it
->flags
& CSS_TASK_ITER_SKIPPED
)
4556 css_task_iter_advance(it
);
4559 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4561 get_task_struct(it
->cur_task
);
4562 css_task_iter_advance(it
);
4565 spin_unlock_irq(&css_set_lock
);
4567 return it
->cur_task
;
4571 * css_task_iter_end - finish task iteration
4572 * @it: the task iterator to finish
4574 * Finish task iteration started by css_task_iter_start().
4576 void css_task_iter_end(struct css_task_iter
*it
)
4579 spin_lock_irq(&css_set_lock
);
4580 list_del(&it
->iters_node
);
4581 put_css_set_locked(it
->cur_cset
);
4582 spin_unlock_irq(&css_set_lock
);
4586 put_css_set(it
->cur_dcset
);
4589 put_task_struct(it
->cur_task
);
4592 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4595 css_task_iter_end(of
->priv
);
4600 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4602 struct kernfs_open_file
*of
= s
->private;
4603 struct css_task_iter
*it
= of
->priv
;
4608 return css_task_iter_next(it
);
4611 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4612 unsigned int iter_flags
)
4614 struct kernfs_open_file
*of
= s
->private;
4615 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4616 struct css_task_iter
*it
= of
->priv
;
4619 * When a seq_file is seeked, it's always traversed sequentially
4620 * from position 0, so we can simply keep iterating on !0 *pos.
4623 if (WARN_ON_ONCE((*pos
)))
4624 return ERR_PTR(-EINVAL
);
4626 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4628 return ERR_PTR(-ENOMEM
);
4630 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4631 } else if (!(*pos
)) {
4632 css_task_iter_end(it
);
4633 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4635 return it
->cur_task
;
4637 return cgroup_procs_next(s
, NULL
, NULL
);
4640 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4642 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4645 * All processes of a threaded subtree belong to the domain cgroup
4646 * of the subtree. Only threads can be distributed across the
4647 * subtree. Reject reads on cgroup.procs in the subtree proper.
4648 * They're always empty anyway.
4650 if (cgroup_is_threaded(cgrp
))
4651 return ERR_PTR(-EOPNOTSUPP
);
4653 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4654 CSS_TASK_ITER_THREADED
);
4657 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4659 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4663 static int cgroup_may_write(const struct cgroup
*cgrp
, struct super_block
*sb
)
4666 struct inode
*inode
;
4668 lockdep_assert_held(&cgroup_mutex
);
4670 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
4674 ret
= inode_permission(inode
, MAY_WRITE
);
4679 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4680 struct cgroup
*dst_cgrp
,
4681 struct super_block
*sb
)
4683 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4684 struct cgroup
*com_cgrp
= src_cgrp
;
4687 lockdep_assert_held(&cgroup_mutex
);
4689 /* find the common ancestor */
4690 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4691 com_cgrp
= cgroup_parent(com_cgrp
);
4693 /* %current should be authorized to migrate to the common ancestor */
4694 ret
= cgroup_may_write(com_cgrp
, sb
);
4699 * If namespaces are delegation boundaries, %current must be able
4700 * to see both source and destination cgroups from its namespace.
4702 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4703 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4704 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4710 static int cgroup_attach_permissions(struct cgroup
*src_cgrp
,
4711 struct cgroup
*dst_cgrp
,
4712 struct super_block
*sb
, bool threadgroup
)
4716 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
, sb
);
4720 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
4724 if (!threadgroup
&& (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
))
4730 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4731 char *buf
, size_t nbytes
, loff_t off
)
4733 struct cgroup
*src_cgrp
, *dst_cgrp
;
4734 struct task_struct
*task
;
4738 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4742 task
= cgroup_procs_write_start(buf
, true, &locked
);
4743 ret
= PTR_ERR_OR_ZERO(task
);
4747 /* find the source cgroup */
4748 spin_lock_irq(&css_set_lock
);
4749 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4750 spin_unlock_irq(&css_set_lock
);
4752 ret
= cgroup_attach_permissions(src_cgrp
, dst_cgrp
,
4753 of
->file
->f_path
.dentry
->d_sb
, true);
4757 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4760 cgroup_procs_write_finish(task
, locked
);
4762 cgroup_kn_unlock(of
->kn
);
4764 return ret
?: nbytes
;
4767 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4769 return __cgroup_procs_start(s
, pos
, 0);
4772 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4773 char *buf
, size_t nbytes
, loff_t off
)
4775 struct cgroup
*src_cgrp
, *dst_cgrp
;
4776 struct task_struct
*task
;
4780 buf
= strstrip(buf
);
4782 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4786 task
= cgroup_procs_write_start(buf
, false, &locked
);
4787 ret
= PTR_ERR_OR_ZERO(task
);
4791 /* find the source cgroup */
4792 spin_lock_irq(&css_set_lock
);
4793 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4794 spin_unlock_irq(&css_set_lock
);
4796 /* thread migrations follow the cgroup.procs delegation rule */
4797 ret
= cgroup_attach_permissions(src_cgrp
, dst_cgrp
,
4798 of
->file
->f_path
.dentry
->d_sb
, false);
4802 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4805 cgroup_procs_write_finish(task
, locked
);
4807 cgroup_kn_unlock(of
->kn
);
4809 return ret
?: nbytes
;
4812 /* cgroup core interface files for the default hierarchy */
4813 static struct cftype cgroup_base_files
[] = {
4815 .name
= "cgroup.type",
4816 .flags
= CFTYPE_NOT_ON_ROOT
,
4817 .seq_show
= cgroup_type_show
,
4818 .write
= cgroup_type_write
,
4821 .name
= "cgroup.procs",
4822 .flags
= CFTYPE_NS_DELEGATABLE
,
4823 .file_offset
= offsetof(struct cgroup
, procs_file
),
4824 .release
= cgroup_procs_release
,
4825 .seq_start
= cgroup_procs_start
,
4826 .seq_next
= cgroup_procs_next
,
4827 .seq_show
= cgroup_procs_show
,
4828 .write
= cgroup_procs_write
,
4831 .name
= "cgroup.threads",
4832 .flags
= CFTYPE_NS_DELEGATABLE
,
4833 .release
= cgroup_procs_release
,
4834 .seq_start
= cgroup_threads_start
,
4835 .seq_next
= cgroup_procs_next
,
4836 .seq_show
= cgroup_procs_show
,
4837 .write
= cgroup_threads_write
,
4840 .name
= "cgroup.controllers",
4841 .seq_show
= cgroup_controllers_show
,
4844 .name
= "cgroup.subtree_control",
4845 .flags
= CFTYPE_NS_DELEGATABLE
,
4846 .seq_show
= cgroup_subtree_control_show
,
4847 .write
= cgroup_subtree_control_write
,
4850 .name
= "cgroup.events",
4851 .flags
= CFTYPE_NOT_ON_ROOT
,
4852 .file_offset
= offsetof(struct cgroup
, events_file
),
4853 .seq_show
= cgroup_events_show
,
4856 .name
= "cgroup.max.descendants",
4857 .seq_show
= cgroup_max_descendants_show
,
4858 .write
= cgroup_max_descendants_write
,
4861 .name
= "cgroup.max.depth",
4862 .seq_show
= cgroup_max_depth_show
,
4863 .write
= cgroup_max_depth_write
,
4866 .name
= "cgroup.stat",
4867 .seq_show
= cgroup_stat_show
,
4870 .name
= "cgroup.freeze",
4871 .flags
= CFTYPE_NOT_ON_ROOT
,
4872 .seq_show
= cgroup_freeze_show
,
4873 .write
= cgroup_freeze_write
,
4877 .seq_show
= cpu_stat_show
,
4881 .name
= "io.pressure",
4882 .seq_show
= cgroup_io_pressure_show
,
4883 .write
= cgroup_io_pressure_write
,
4884 .poll
= cgroup_pressure_poll
,
4885 .release
= cgroup_pressure_release
,
4888 .name
= "memory.pressure",
4889 .seq_show
= cgroup_memory_pressure_show
,
4890 .write
= cgroup_memory_pressure_write
,
4891 .poll
= cgroup_pressure_poll
,
4892 .release
= cgroup_pressure_release
,
4895 .name
= "cpu.pressure",
4896 .seq_show
= cgroup_cpu_pressure_show
,
4897 .write
= cgroup_cpu_pressure_write
,
4898 .poll
= cgroup_pressure_poll
,
4899 .release
= cgroup_pressure_release
,
4901 #endif /* CONFIG_PSI */
4906 * css destruction is four-stage process.
4908 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4909 * Implemented in kill_css().
4911 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4912 * and thus css_tryget_online() is guaranteed to fail, the css can be
4913 * offlined by invoking offline_css(). After offlining, the base ref is
4914 * put. Implemented in css_killed_work_fn().
4916 * 3. When the percpu_ref reaches zero, the only possible remaining
4917 * accessors are inside RCU read sections. css_release() schedules the
4920 * 4. After the grace period, the css can be freed. Implemented in
4921 * css_free_work_fn().
4923 * It is actually hairier because both step 2 and 4 require process context
4924 * and thus involve punting to css->destroy_work adding two additional
4925 * steps to the already complex sequence.
4927 static void css_free_rwork_fn(struct work_struct
*work
)
4929 struct cgroup_subsys_state
*css
= container_of(to_rcu_work(work
),
4930 struct cgroup_subsys_state
, destroy_rwork
);
4931 struct cgroup_subsys
*ss
= css
->ss
;
4932 struct cgroup
*cgrp
= css
->cgroup
;
4934 percpu_ref_exit(&css
->refcnt
);
4938 struct cgroup_subsys_state
*parent
= css
->parent
;
4942 cgroup_idr_remove(&ss
->css_idr
, id
);
4948 /* cgroup free path */
4949 atomic_dec(&cgrp
->root
->nr_cgrps
);
4950 cgroup1_pidlist_destroy_all(cgrp
);
4951 cancel_work_sync(&cgrp
->release_agent_work
);
4953 if (cgroup_parent(cgrp
)) {
4955 * We get a ref to the parent, and put the ref when
4956 * this cgroup is being freed, so it's guaranteed
4957 * that the parent won't be destroyed before its
4960 cgroup_put(cgroup_parent(cgrp
));
4961 kernfs_put(cgrp
->kn
);
4962 psi_cgroup_free(cgrp
);
4963 if (cgroup_on_dfl(cgrp
))
4964 cgroup_rstat_exit(cgrp
);
4968 * This is root cgroup's refcnt reaching zero,
4969 * which indicates that the root should be
4972 cgroup_destroy_root(cgrp
->root
);
4977 static void css_release_work_fn(struct work_struct
*work
)
4979 struct cgroup_subsys_state
*css
=
4980 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4981 struct cgroup_subsys
*ss
= css
->ss
;
4982 struct cgroup
*cgrp
= css
->cgroup
;
4984 mutex_lock(&cgroup_mutex
);
4986 css
->flags
|= CSS_RELEASED
;
4987 list_del_rcu(&css
->sibling
);
4990 /* css release path */
4991 if (!list_empty(&css
->rstat_css_node
)) {
4992 cgroup_rstat_flush(cgrp
);
4993 list_del_rcu(&css
->rstat_css_node
);
4996 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4997 if (ss
->css_released
)
4998 ss
->css_released(css
);
5000 struct cgroup
*tcgrp
;
5002 /* cgroup release path */
5003 TRACE_CGROUP_PATH(release
, cgrp
);
5005 if (cgroup_on_dfl(cgrp
))
5006 cgroup_rstat_flush(cgrp
);
5008 spin_lock_irq(&css_set_lock
);
5009 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
5010 tcgrp
= cgroup_parent(tcgrp
))
5011 tcgrp
->nr_dying_descendants
--;
5012 spin_unlock_irq(&css_set_lock
);
5015 * There are two control paths which try to determine
5016 * cgroup from dentry without going through kernfs -
5017 * cgroupstats_build() and css_tryget_online_from_dir().
5018 * Those are supported by RCU protecting clearing of
5019 * cgrp->kn->priv backpointer.
5022 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
5026 mutex_unlock(&cgroup_mutex
);
5028 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5029 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5032 static void css_release(struct percpu_ref
*ref
)
5034 struct cgroup_subsys_state
*css
=
5035 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5037 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
5038 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5041 static void init_and_link_css(struct cgroup_subsys_state
*css
,
5042 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
5044 lockdep_assert_held(&cgroup_mutex
);
5046 cgroup_get_live(cgrp
);
5048 memset(css
, 0, sizeof(*css
));
5052 INIT_LIST_HEAD(&css
->sibling
);
5053 INIT_LIST_HEAD(&css
->children
);
5054 INIT_LIST_HEAD(&css
->rstat_css_node
);
5055 css
->serial_nr
= css_serial_nr_next
++;
5056 atomic_set(&css
->online_cnt
, 0);
5058 if (cgroup_parent(cgrp
)) {
5059 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
5060 css_get(css
->parent
);
5063 if (cgroup_on_dfl(cgrp
) && ss
->css_rstat_flush
)
5064 list_add_rcu(&css
->rstat_css_node
, &cgrp
->rstat_css_list
);
5066 BUG_ON(cgroup_css(cgrp
, ss
));
5069 /* invoke ->css_online() on a new CSS and mark it online if successful */
5070 static int online_css(struct cgroup_subsys_state
*css
)
5072 struct cgroup_subsys
*ss
= css
->ss
;
5075 lockdep_assert_held(&cgroup_mutex
);
5078 ret
= ss
->css_online(css
);
5080 css
->flags
|= CSS_ONLINE
;
5081 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5083 atomic_inc(&css
->online_cnt
);
5085 atomic_inc(&css
->parent
->online_cnt
);
5090 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5091 static void offline_css(struct cgroup_subsys_state
*css
)
5093 struct cgroup_subsys
*ss
= css
->ss
;
5095 lockdep_assert_held(&cgroup_mutex
);
5097 if (!(css
->flags
& CSS_ONLINE
))
5100 if (ss
->css_offline
)
5101 ss
->css_offline(css
);
5103 css
->flags
&= ~CSS_ONLINE
;
5104 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5106 wake_up_all(&css
->cgroup
->offline_waitq
);
5110 * css_create - create a cgroup_subsys_state
5111 * @cgrp: the cgroup new css will be associated with
5112 * @ss: the subsys of new css
5114 * Create a new css associated with @cgrp - @ss pair. On success, the new
5115 * css is online and installed in @cgrp. This function doesn't create the
5116 * interface files. Returns 0 on success, -errno on failure.
5118 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5119 struct cgroup_subsys
*ss
)
5121 struct cgroup
*parent
= cgroup_parent(cgrp
);
5122 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5123 struct cgroup_subsys_state
*css
;
5126 lockdep_assert_held(&cgroup_mutex
);
5128 css
= ss
->css_alloc(parent_css
);
5130 css
= ERR_PTR(-ENOMEM
);
5134 init_and_link_css(css
, ss
, cgrp
);
5136 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5140 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5145 /* @css is ready to be brought online now, make it visible */
5146 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5147 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5149 err
= online_css(css
);
5153 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5154 cgroup_parent(parent
)) {
5155 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5156 current
->comm
, current
->pid
, ss
->name
);
5157 if (!strcmp(ss
->name
, "memory"))
5158 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5159 ss
->warned_broken_hierarchy
= true;
5165 list_del_rcu(&css
->sibling
);
5167 list_del_rcu(&css
->rstat_css_node
);
5168 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5169 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5170 return ERR_PTR(err
);
5174 * The returned cgroup is fully initialized including its control mask, but
5175 * it isn't associated with its kernfs_node and doesn't have the control
5178 static struct cgroup
*cgroup_create(struct cgroup
*parent
, const char *name
,
5181 struct cgroup_root
*root
= parent
->root
;
5182 struct cgroup
*cgrp
, *tcgrp
;
5183 struct kernfs_node
*kn
;
5184 int level
= parent
->level
+ 1;
5187 /* allocate the cgroup and its ID, 0 is reserved for the root */
5188 cgrp
= kzalloc(struct_size(cgrp
, ancestor_ids
, (level
+ 1)),
5191 return ERR_PTR(-ENOMEM
);
5193 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5197 if (cgroup_on_dfl(parent
)) {
5198 ret
= cgroup_rstat_init(cgrp
);
5200 goto out_cancel_ref
;
5203 /* create the directory */
5204 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5211 init_cgroup_housekeeping(cgrp
);
5213 cgrp
->self
.parent
= &parent
->self
;
5215 cgrp
->level
= level
;
5217 ret
= psi_cgroup_alloc(cgrp
);
5219 goto out_kernfs_remove
;
5221 ret
= cgroup_bpf_inherit(cgrp
);
5226 * New cgroup inherits effective freeze counter, and
5227 * if the parent has to be frozen, the child has too.
5229 cgrp
->freezer
.e_freeze
= parent
->freezer
.e_freeze
;
5230 if (cgrp
->freezer
.e_freeze
) {
5232 * Set the CGRP_FREEZE flag, so when a process will be
5233 * attached to the child cgroup, it will become frozen.
5234 * At this point the new cgroup is unpopulated, so we can
5235 * consider it frozen immediately.
5237 set_bit(CGRP_FREEZE
, &cgrp
->flags
);
5238 set_bit(CGRP_FROZEN
, &cgrp
->flags
);
5241 spin_lock_irq(&css_set_lock
);
5242 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5243 cgrp
->ancestor_ids
[tcgrp
->level
] = cgroup_id(tcgrp
);
5245 if (tcgrp
!= cgrp
) {
5246 tcgrp
->nr_descendants
++;
5249 * If the new cgroup is frozen, all ancestor cgroups
5250 * get a new frozen descendant, but their state can't
5251 * change because of this.
5253 if (cgrp
->freezer
.e_freeze
)
5254 tcgrp
->freezer
.nr_frozen_descendants
++;
5257 spin_unlock_irq(&css_set_lock
);
5259 if (notify_on_release(parent
))
5260 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5262 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5263 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5265 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5267 /* allocation complete, commit to creation */
5268 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5269 atomic_inc(&root
->nr_cgrps
);
5270 cgroup_get_live(parent
);
5273 * On the default hierarchy, a child doesn't automatically inherit
5274 * subtree_control from the parent. Each is configured manually.
5276 if (!cgroup_on_dfl(cgrp
))
5277 cgrp
->subtree_control
= cgroup_control(cgrp
);
5279 cgroup_propagate_control(cgrp
);
5284 psi_cgroup_free(cgrp
);
5286 kernfs_remove(cgrp
->kn
);
5288 if (cgroup_on_dfl(parent
))
5289 cgroup_rstat_exit(cgrp
);
5291 percpu_ref_exit(&cgrp
->self
.refcnt
);
5294 return ERR_PTR(ret
);
5297 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
5299 struct cgroup
*cgroup
;
5303 lockdep_assert_held(&cgroup_mutex
);
5305 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
5306 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
5309 if (level
> cgroup
->max_depth
)
5320 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
5322 struct cgroup
*parent
, *cgrp
;
5325 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5326 if (strchr(name
, '\n'))
5329 parent
= cgroup_kn_lock_live(parent_kn
, false);
5333 if (!cgroup_check_hierarchy_limits(parent
)) {
5338 cgrp
= cgroup_create(parent
, name
, mode
);
5340 ret
= PTR_ERR(cgrp
);
5345 * This extra ref will be put in cgroup_free_fn() and guarantees
5346 * that @cgrp->kn is always accessible.
5348 kernfs_get(cgrp
->kn
);
5350 ret
= cgroup_kn_set_ugid(cgrp
->kn
);
5354 ret
= css_populate_dir(&cgrp
->self
);
5358 ret
= cgroup_apply_control_enable(cgrp
);
5362 TRACE_CGROUP_PATH(mkdir
, cgrp
);
5364 /* let's create and online css's */
5365 kernfs_activate(cgrp
->kn
);
5371 cgroup_destroy_locked(cgrp
);
5373 cgroup_kn_unlock(parent_kn
);
5378 * This is called when the refcnt of a css is confirmed to be killed.
5379 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5380 * initate destruction and put the css ref from kill_css().
5382 static void css_killed_work_fn(struct work_struct
*work
)
5384 struct cgroup_subsys_state
*css
=
5385 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5387 mutex_lock(&cgroup_mutex
);
5392 /* @css can't go away while we're holding cgroup_mutex */
5394 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5396 mutex_unlock(&cgroup_mutex
);
5399 /* css kill confirmation processing requires process context, bounce */
5400 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5402 struct cgroup_subsys_state
*css
=
5403 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5405 if (atomic_dec_and_test(&css
->online_cnt
)) {
5406 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5407 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5412 * kill_css - destroy a css
5413 * @css: css to destroy
5415 * This function initiates destruction of @css by removing cgroup interface
5416 * files and putting its base reference. ->css_offline() will be invoked
5417 * asynchronously once css_tryget_online() is guaranteed to fail and when
5418 * the reference count reaches zero, @css will be released.
5420 static void kill_css(struct cgroup_subsys_state
*css
)
5422 lockdep_assert_held(&cgroup_mutex
);
5424 if (css
->flags
& CSS_DYING
)
5427 css
->flags
|= CSS_DYING
;
5430 * This must happen before css is disassociated with its cgroup.
5431 * See seq_css() for details.
5436 * Killing would put the base ref, but we need to keep it alive
5437 * until after ->css_offline().
5442 * cgroup core guarantees that, by the time ->css_offline() is
5443 * invoked, no new css reference will be given out via
5444 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5445 * proceed to offlining css's because percpu_ref_kill() doesn't
5446 * guarantee that the ref is seen as killed on all CPUs on return.
5448 * Use percpu_ref_kill_and_confirm() to get notifications as each
5449 * css is confirmed to be seen as killed on all CPUs.
5451 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5455 * cgroup_destroy_locked - the first stage of cgroup destruction
5456 * @cgrp: cgroup to be destroyed
5458 * css's make use of percpu refcnts whose killing latency shouldn't be
5459 * exposed to userland and are RCU protected. Also, cgroup core needs to
5460 * guarantee that css_tryget_online() won't succeed by the time
5461 * ->css_offline() is invoked. To satisfy all the requirements,
5462 * destruction is implemented in the following two steps.
5464 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5465 * userland visible parts and start killing the percpu refcnts of
5466 * css's. Set up so that the next stage will be kicked off once all
5467 * the percpu refcnts are confirmed to be killed.
5469 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5470 * rest of destruction. Once all cgroup references are gone, the
5471 * cgroup is RCU-freed.
5473 * This function implements s1. After this step, @cgrp is gone as far as
5474 * the userland is concerned and a new cgroup with the same name may be
5475 * created. As cgroup doesn't care about the names internally, this
5476 * doesn't cause any problem.
5478 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5479 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5481 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5482 struct cgroup_subsys_state
*css
;
5483 struct cgrp_cset_link
*link
;
5486 lockdep_assert_held(&cgroup_mutex
);
5489 * Only migration can raise populated from zero and we're already
5490 * holding cgroup_mutex.
5492 if (cgroup_is_populated(cgrp
))
5496 * Make sure there's no live children. We can't test emptiness of
5497 * ->self.children as dead children linger on it while being
5498 * drained; otherwise, "rmdir parent/child parent" may fail.
5500 if (css_has_online_children(&cgrp
->self
))
5504 * Mark @cgrp and the associated csets dead. The former prevents
5505 * further task migration and child creation by disabling
5506 * cgroup_lock_live_group(). The latter makes the csets ignored by
5507 * the migration path.
5509 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5511 spin_lock_irq(&css_set_lock
);
5512 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5513 link
->cset
->dead
= true;
5514 spin_unlock_irq(&css_set_lock
);
5516 /* initiate massacre of all css's */
5517 for_each_css(css
, ssid
, cgrp
)
5520 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5521 css_clear_dir(&cgrp
->self
);
5522 kernfs_remove(cgrp
->kn
);
5524 if (parent
&& cgroup_is_threaded(cgrp
))
5525 parent
->nr_threaded_children
--;
5527 spin_lock_irq(&css_set_lock
);
5528 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5529 tcgrp
->nr_descendants
--;
5530 tcgrp
->nr_dying_descendants
++;
5532 * If the dying cgroup is frozen, decrease frozen descendants
5533 * counters of ancestor cgroups.
5535 if (test_bit(CGRP_FROZEN
, &cgrp
->flags
))
5536 tcgrp
->freezer
.nr_frozen_descendants
--;
5538 spin_unlock_irq(&css_set_lock
);
5540 cgroup1_check_for_release(parent
);
5542 cgroup_bpf_offline(cgrp
);
5544 /* put the base reference */
5545 percpu_ref_kill(&cgrp
->self
.refcnt
);
5550 int cgroup_rmdir(struct kernfs_node
*kn
)
5552 struct cgroup
*cgrp
;
5555 cgrp
= cgroup_kn_lock_live(kn
, false);
5559 ret
= cgroup_destroy_locked(cgrp
);
5561 TRACE_CGROUP_PATH(rmdir
, cgrp
);
5563 cgroup_kn_unlock(kn
);
5567 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5568 .show_options
= cgroup_show_options
,
5569 .mkdir
= cgroup_mkdir
,
5570 .rmdir
= cgroup_rmdir
,
5571 .show_path
= cgroup_show_path
,
5574 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5576 struct cgroup_subsys_state
*css
;
5578 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5580 mutex_lock(&cgroup_mutex
);
5582 idr_init(&ss
->css_idr
);
5583 INIT_LIST_HEAD(&ss
->cfts
);
5585 /* Create the root cgroup state for this subsystem */
5586 ss
->root
= &cgrp_dfl_root
;
5587 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5588 /* We don't handle early failures gracefully */
5589 BUG_ON(IS_ERR(css
));
5590 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5593 * Root csses are never destroyed and we can't initialize
5594 * percpu_ref during early init. Disable refcnting.
5596 css
->flags
|= CSS_NO_REF
;
5599 /* allocation can't be done safely during early init */
5602 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5603 BUG_ON(css
->id
< 0);
5606 /* Update the init_css_set to contain a subsys
5607 * pointer to this state - since the subsystem is
5608 * newly registered, all tasks and hence the
5609 * init_css_set is in the subsystem's root cgroup. */
5610 init_css_set
.subsys
[ss
->id
] = css
;
5612 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5613 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5614 have_release_callback
|= (bool)ss
->release
<< ss
->id
;
5615 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5617 /* At system boot, before all subsystems have been
5618 * registered, no tasks have been forked, so we don't
5619 * need to invoke fork callbacks here. */
5620 BUG_ON(!list_empty(&init_task
.tasks
));
5622 BUG_ON(online_css(css
));
5624 mutex_unlock(&cgroup_mutex
);
5628 * cgroup_init_early - cgroup initialization at system boot
5630 * Initialize cgroups at system boot, and initialize any
5631 * subsystems that request early init.
5633 int __init
cgroup_init_early(void)
5635 static struct cgroup_fs_context __initdata ctx
;
5636 struct cgroup_subsys
*ss
;
5639 ctx
.root
= &cgrp_dfl_root
;
5640 init_cgroup_root(&ctx
);
5641 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5643 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5645 for_each_subsys(ss
, i
) {
5646 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5647 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5648 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5650 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5651 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5654 ss
->name
= cgroup_subsys_name
[i
];
5655 if (!ss
->legacy_name
)
5656 ss
->legacy_name
= cgroup_subsys_name
[i
];
5659 cgroup_init_subsys(ss
, true);
5664 static u16 cgroup_disable_mask __initdata
;
5667 * cgroup_init - cgroup initialization
5669 * Register cgroup filesystem and /proc file, and initialize
5670 * any subsystems that didn't request early init.
5672 int __init
cgroup_init(void)
5674 struct cgroup_subsys
*ss
;
5677 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5678 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5679 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5681 cgroup_rstat_boot();
5684 * The latency of the synchronize_rcu() is too high for cgroups,
5685 * avoid it at the cost of forcing all readers into the slow path.
5687 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5689 get_user_ns(init_cgroup_ns
.user_ns
);
5691 mutex_lock(&cgroup_mutex
);
5694 * Add init_css_set to the hash table so that dfl_root can link to
5697 hash_add(css_set_table
, &init_css_set
.hlist
,
5698 css_set_hash(init_css_set
.subsys
));
5700 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5702 mutex_unlock(&cgroup_mutex
);
5704 for_each_subsys(ss
, ssid
) {
5705 if (ss
->early_init
) {
5706 struct cgroup_subsys_state
*css
=
5707 init_css_set
.subsys
[ss
->id
];
5709 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5711 BUG_ON(css
->id
< 0);
5713 cgroup_init_subsys(ss
, false);
5716 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5717 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5720 * Setting dfl_root subsys_mask needs to consider the
5721 * disabled flag and cftype registration needs kmalloc,
5722 * both of which aren't available during early_init.
5724 if (cgroup_disable_mask
& (1 << ssid
)) {
5725 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5726 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5731 if (cgroup1_ssid_disabled(ssid
))
5732 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5735 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5737 /* implicit controllers must be threaded too */
5738 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5740 if (ss
->implicit_on_dfl
)
5741 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5742 else if (!ss
->dfl_cftypes
)
5743 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5746 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5748 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5749 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5751 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5752 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5756 ss
->bind(init_css_set
.subsys
[ssid
]);
5758 mutex_lock(&cgroup_mutex
);
5759 css_populate_dir(init_css_set
.subsys
[ssid
]);
5760 mutex_unlock(&cgroup_mutex
);
5763 /* init_css_set.subsys[] has been updated, re-hash */
5764 hash_del(&init_css_set
.hlist
);
5765 hash_add(css_set_table
, &init_css_set
.hlist
,
5766 css_set_hash(init_css_set
.subsys
));
5768 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5769 WARN_ON(register_filesystem(&cgroup_fs_type
));
5770 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5771 WARN_ON(!proc_create_single("cgroups", 0, NULL
, proc_cgroupstats_show
));
5772 #ifdef CONFIG_CPUSETS
5773 WARN_ON(register_filesystem(&cpuset_fs_type
));
5779 static int __init
cgroup_wq_init(void)
5782 * There isn't much point in executing destruction path in
5783 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5784 * Use 1 for @max_active.
5786 * We would prefer to do this in cgroup_init() above, but that
5787 * is called before init_workqueues(): so leave this until after.
5789 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5790 BUG_ON(!cgroup_destroy_wq
);
5793 core_initcall(cgroup_wq_init
);
5795 void cgroup_path_from_kernfs_id(u64 id
, char *buf
, size_t buflen
)
5797 struct kernfs_node
*kn
;
5799 kn
= kernfs_find_and_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5802 kernfs_path(kn
, buf
, buflen
);
5807 * proc_cgroup_show()
5808 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5809 * - Used for /proc/<pid>/cgroup.
5811 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5812 struct pid
*pid
, struct task_struct
*tsk
)
5816 struct cgroup_root
*root
;
5819 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5823 mutex_lock(&cgroup_mutex
);
5824 spin_lock_irq(&css_set_lock
);
5826 for_each_root(root
) {
5827 struct cgroup_subsys
*ss
;
5828 struct cgroup
*cgrp
;
5829 int ssid
, count
= 0;
5831 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5834 seq_printf(m
, "%d:", root
->hierarchy_id
);
5835 if (root
!= &cgrp_dfl_root
)
5836 for_each_subsys(ss
, ssid
)
5837 if (root
->subsys_mask
& (1 << ssid
))
5838 seq_printf(m
, "%s%s", count
++ ? "," : "",
5840 if (strlen(root
->name
))
5841 seq_printf(m
, "%sname=%s", count
? "," : "",
5845 cgrp
= task_cgroup_from_root(tsk
, root
);
5848 * On traditional hierarchies, all zombie tasks show up as
5849 * belonging to the root cgroup. On the default hierarchy,
5850 * while a zombie doesn't show up in "cgroup.procs" and
5851 * thus can't be migrated, its /proc/PID/cgroup keeps
5852 * reporting the cgroup it belonged to before exiting. If
5853 * the cgroup is removed before the zombie is reaped,
5854 * " (deleted)" is appended to the cgroup path.
5856 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5857 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5858 current
->nsproxy
->cgroup_ns
);
5859 if (retval
>= PATH_MAX
)
5860 retval
= -ENAMETOOLONG
;
5869 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5870 seq_puts(m
, " (deleted)\n");
5877 spin_unlock_irq(&css_set_lock
);
5878 mutex_unlock(&cgroup_mutex
);
5885 * cgroup_fork - initialize cgroup related fields during copy_process()
5886 * @child: pointer to task_struct of forking parent process.
5888 * A task is associated with the init_css_set until cgroup_post_fork()
5889 * attaches it to the target css_set.
5891 void cgroup_fork(struct task_struct
*child
)
5893 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5894 INIT_LIST_HEAD(&child
->cg_list
);
5897 static struct cgroup
*cgroup_get_from_file(struct file
*f
)
5899 struct cgroup_subsys_state
*css
;
5900 struct cgroup
*cgrp
;
5902 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
5904 return ERR_CAST(css
);
5907 if (!cgroup_on_dfl(cgrp
)) {
5909 return ERR_PTR(-EBADF
);
5916 * cgroup_css_set_fork - find or create a css_set for a child process
5917 * @kargs: the arguments passed to create the child process
5919 * This functions finds or creates a new css_set which the child
5920 * process will be attached to in cgroup_post_fork(). By default,
5921 * the child process will be given the same css_set as its parent.
5923 * If CLONE_INTO_CGROUP is specified this function will try to find an
5924 * existing css_set which includes the requested cgroup and if not create
5925 * a new css_set that the child will be attached to later. If this function
5926 * succeeds it will hold cgroup_threadgroup_rwsem on return. If
5927 * CLONE_INTO_CGROUP is requested this function will grab cgroup mutex
5928 * before grabbing cgroup_threadgroup_rwsem and will hold a reference
5929 * to the target cgroup.
5931 static int cgroup_css_set_fork(struct kernel_clone_args
*kargs
)
5932 __acquires(&cgroup_mutex
) __acquires(&cgroup_threadgroup_rwsem
)
5935 struct cgroup
*dst_cgrp
= NULL
;
5936 struct css_set
*cset
;
5937 struct super_block
*sb
;
5940 if (kargs
->flags
& CLONE_INTO_CGROUP
)
5941 mutex_lock(&cgroup_mutex
);
5943 cgroup_threadgroup_change_begin(current
);
5945 spin_lock_irq(&css_set_lock
);
5946 cset
= task_css_set(current
);
5948 spin_unlock_irq(&css_set_lock
);
5950 if (!(kargs
->flags
& CLONE_INTO_CGROUP
)) {
5955 f
= fget_raw(kargs
->cgroup
);
5960 sb
= f
->f_path
.dentry
->d_sb
;
5962 dst_cgrp
= cgroup_get_from_file(f
);
5963 if (IS_ERR(dst_cgrp
)) {
5964 ret
= PTR_ERR(dst_cgrp
);
5969 if (cgroup_is_dead(dst_cgrp
)) {
5975 * Verify that we the target cgroup is writable for us. This is
5976 * usually done by the vfs layer but since we're not going through
5977 * the vfs layer here we need to do it "manually".
5979 ret
= cgroup_may_write(dst_cgrp
, sb
);
5983 ret
= cgroup_attach_permissions(cset
->dfl_cgrp
, dst_cgrp
, sb
,
5984 !(kargs
->flags
& CLONE_THREAD
));
5988 kargs
->cset
= find_css_set(cset
, dst_cgrp
);
5996 kargs
->cgrp
= dst_cgrp
;
6000 cgroup_threadgroup_change_end(current
);
6001 mutex_unlock(&cgroup_mutex
);
6005 cgroup_put(dst_cgrp
);
6008 put_css_set(kargs
->cset
);
6013 * cgroup_css_set_put_fork - drop references we took during fork
6014 * @kargs: the arguments passed to create the child process
6016 * Drop references to the prepared css_set and target cgroup if
6017 * CLONE_INTO_CGROUP was requested.
6019 static void cgroup_css_set_put_fork(struct kernel_clone_args
*kargs
)
6020 __releases(&cgroup_threadgroup_rwsem
) __releases(&cgroup_mutex
)
6022 cgroup_threadgroup_change_end(current
);
6024 if (kargs
->flags
& CLONE_INTO_CGROUP
) {
6025 struct cgroup
*cgrp
= kargs
->cgrp
;
6026 struct css_set
*cset
= kargs
->cset
;
6028 mutex_unlock(&cgroup_mutex
);
6043 * cgroup_can_fork - called on a new task before the process is exposed
6044 * @child: the child process
6046 * This prepares a new css_set for the child process which the child will
6047 * be attached to in cgroup_post_fork().
6048 * This calls the subsystem can_fork() callbacks. If the cgroup_can_fork()
6049 * callback returns an error, the fork aborts with that error code. This
6050 * allows for a cgroup subsystem to conditionally allow or deny new forks.
6052 int cgroup_can_fork(struct task_struct
*child
, struct kernel_clone_args
*kargs
)
6054 struct cgroup_subsys
*ss
;
6057 ret
= cgroup_css_set_fork(kargs
);
6061 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
6062 ret
= ss
->can_fork(child
, kargs
->cset
);
6065 } while_each_subsys_mask();
6070 for_each_subsys(ss
, j
) {
6073 if (ss
->cancel_fork
)
6074 ss
->cancel_fork(child
, kargs
->cset
);
6077 cgroup_css_set_put_fork(kargs
);
6083 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
6084 * @child: the child process
6085 * @kargs: the arguments passed to create the child process
6087 * This calls the cancel_fork() callbacks if a fork failed *after*
6088 * cgroup_can_fork() succeded and cleans up references we took to
6089 * prepare a new css_set for the child process in cgroup_can_fork().
6091 void cgroup_cancel_fork(struct task_struct
*child
,
6092 struct kernel_clone_args
*kargs
)
6094 struct cgroup_subsys
*ss
;
6097 for_each_subsys(ss
, i
)
6098 if (ss
->cancel_fork
)
6099 ss
->cancel_fork(child
, kargs
->cset
);
6101 cgroup_css_set_put_fork(kargs
);
6105 * cgroup_post_fork - finalize cgroup setup for the child process
6106 * @child: the child process
6108 * Attach the child process to its css_set calling the subsystem fork()
6111 void cgroup_post_fork(struct task_struct
*child
,
6112 struct kernel_clone_args
*kargs
)
6113 __releases(&cgroup_threadgroup_rwsem
) __releases(&cgroup_mutex
)
6115 struct cgroup_subsys
*ss
;
6116 struct css_set
*cset
;
6122 spin_lock_irq(&css_set_lock
);
6124 /* init tasks are special, only link regular threads */
6125 if (likely(child
->pid
)) {
6126 WARN_ON_ONCE(!list_empty(&child
->cg_list
));
6128 css_set_move_task(child
, NULL
, cset
, false);
6135 * If the cgroup has to be frozen, the new task has too. Let's set
6136 * the JOBCTL_TRAP_FREEZE jobctl bit to get the task into the
6139 if (unlikely(cgroup_task_freeze(child
))) {
6140 spin_lock(&child
->sighand
->siglock
);
6141 WARN_ON_ONCE(child
->frozen
);
6142 child
->jobctl
|= JOBCTL_TRAP_FREEZE
;
6143 spin_unlock(&child
->sighand
->siglock
);
6146 * Calling cgroup_update_frozen() isn't required here,
6147 * because it will be called anyway a bit later from
6148 * do_freezer_trap(). So we avoid cgroup's transient switch
6149 * from the frozen state and back.
6153 spin_unlock_irq(&css_set_lock
);
6156 * Call ss->fork(). This must happen after @child is linked on
6157 * css_set; otherwise, @child might change state between ->fork()
6158 * and addition to css_set.
6160 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
6162 } while_each_subsys_mask();
6164 /* Make the new cset the root_cset of the new cgroup namespace. */
6165 if (kargs
->flags
& CLONE_NEWCGROUP
) {
6166 struct css_set
*rcset
= child
->nsproxy
->cgroup_ns
->root_cset
;
6169 child
->nsproxy
->cgroup_ns
->root_cset
= cset
;
6173 cgroup_css_set_put_fork(kargs
);
6177 * cgroup_exit - detach cgroup from exiting task
6178 * @tsk: pointer to task_struct of exiting process
6180 * Description: Detach cgroup from @tsk.
6183 void cgroup_exit(struct task_struct
*tsk
)
6185 struct cgroup_subsys
*ss
;
6186 struct css_set
*cset
;
6189 spin_lock_irq(&css_set_lock
);
6191 WARN_ON_ONCE(list_empty(&tsk
->cg_list
));
6192 cset
= task_css_set(tsk
);
6193 css_set_move_task(tsk
, cset
, NULL
, false);
6194 list_add_tail(&tsk
->cg_list
, &cset
->dying_tasks
);
6197 WARN_ON_ONCE(cgroup_task_frozen(tsk
));
6198 if (unlikely(cgroup_task_freeze(tsk
)))
6199 cgroup_update_frozen(task_dfl_cgroup(tsk
));
6201 spin_unlock_irq(&css_set_lock
);
6203 /* see cgroup_post_fork() for details */
6204 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
6206 } while_each_subsys_mask();
6209 void cgroup_release(struct task_struct
*task
)
6211 struct cgroup_subsys
*ss
;
6214 do_each_subsys_mask(ss
, ssid
, have_release_callback
) {
6216 } while_each_subsys_mask();
6218 spin_lock_irq(&css_set_lock
);
6219 css_set_skip_task_iters(task_css_set(task
), task
);
6220 list_del_init(&task
->cg_list
);
6221 spin_unlock_irq(&css_set_lock
);
6224 void cgroup_free(struct task_struct
*task
)
6226 struct css_set
*cset
= task_css_set(task
);
6230 static int __init
cgroup_disable(char *str
)
6232 struct cgroup_subsys
*ss
;
6236 while ((token
= strsep(&str
, ",")) != NULL
) {
6240 for_each_subsys(ss
, i
) {
6241 if (strcmp(token
, ss
->name
) &&
6242 strcmp(token
, ss
->legacy_name
))
6244 cgroup_disable_mask
|= 1 << i
;
6249 __setup("cgroup_disable=", cgroup_disable
);
6251 void __init __weak
enable_debug_cgroup(void) { }
6253 static int __init
enable_cgroup_debug(char *str
)
6255 cgroup_debug
= true;
6256 enable_debug_cgroup();
6259 __setup("cgroup_debug", enable_cgroup_debug
);
6262 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6263 * @dentry: directory dentry of interest
6264 * @ss: subsystem of interest
6266 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6267 * to get the corresponding css and return it. If such css doesn't exist
6268 * or can't be pinned, an ERR_PTR value is returned.
6270 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6271 struct cgroup_subsys
*ss
)
6273 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6274 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6275 struct cgroup_subsys_state
*css
= NULL
;
6276 struct cgroup
*cgrp
;
6278 /* is @dentry a cgroup dir? */
6279 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6280 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6281 return ERR_PTR(-EBADF
);
6286 * This path doesn't originate from kernfs and @kn could already
6287 * have been or be removed at any point. @kn->priv is RCU
6288 * protected for this access. See css_release_work_fn() for details.
6290 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
6292 css
= cgroup_css(cgrp
, ss
);
6294 if (!css
|| !css_tryget_online(css
))
6295 css
= ERR_PTR(-ENOENT
);
6302 * css_from_id - lookup css by id
6303 * @id: the cgroup id
6304 * @ss: cgroup subsys to be looked into
6306 * Returns the css if there's valid one with @id, otherwise returns NULL.
6307 * Should be called under rcu_read_lock().
6309 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6311 WARN_ON_ONCE(!rcu_read_lock_held());
6312 return idr_find(&ss
->css_idr
, id
);
6316 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6317 * @path: path on the default hierarchy
6319 * Find the cgroup at @path on the default hierarchy, increment its
6320 * reference count and return it. Returns pointer to the found cgroup on
6321 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6322 * if @path points to a non-directory.
6324 struct cgroup
*cgroup_get_from_path(const char *path
)
6326 struct kernfs_node
*kn
;
6327 struct cgroup
*cgrp
;
6329 mutex_lock(&cgroup_mutex
);
6331 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6333 if (kernfs_type(kn
) == KERNFS_DIR
) {
6335 cgroup_get_live(cgrp
);
6337 cgrp
= ERR_PTR(-ENOTDIR
);
6341 cgrp
= ERR_PTR(-ENOENT
);
6344 mutex_unlock(&cgroup_mutex
);
6347 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6350 * cgroup_get_from_fd - get a cgroup pointer from a fd
6351 * @fd: fd obtained by open(cgroup2_dir)
6353 * Find the cgroup from a fd which should be obtained
6354 * by opening a cgroup directory. Returns a pointer to the
6355 * cgroup on success. ERR_PTR is returned if the cgroup
6358 struct cgroup
*cgroup_get_from_fd(int fd
)
6360 struct cgroup
*cgrp
;
6365 return ERR_PTR(-EBADF
);
6367 cgrp
= cgroup_get_from_file(f
);
6371 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
6373 static u64
power_of_ten(int power
)
6382 * cgroup_parse_float - parse a floating number
6383 * @input: input string
6384 * @dec_shift: number of decimal digits to shift
6387 * Parse a decimal floating point number in @input and store the result in
6388 * @v with decimal point right shifted @dec_shift times. For example, if
6389 * @input is "12.3456" and @dec_shift is 3, *@v will be set to 12345.
6390 * Returns 0 on success, -errno otherwise.
6392 * There's nothing cgroup specific about this function except that it's
6393 * currently the only user.
6395 int cgroup_parse_float(const char *input
, unsigned dec_shift
, s64
*v
)
6397 s64 whole
, frac
= 0;
6398 int fstart
= 0, fend
= 0, flen
;
6400 if (!sscanf(input
, "%lld.%n%lld%n", &whole
, &fstart
, &frac
, &fend
))
6405 flen
= fend
> fstart
? fend
- fstart
: 0;
6406 if (flen
< dec_shift
)
6407 frac
*= power_of_ten(dec_shift
- flen
);
6409 frac
= DIV_ROUND_CLOSEST_ULL(frac
, power_of_ten(flen
- dec_shift
));
6411 *v
= whole
* power_of_ten(dec_shift
) + frac
;
6416 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6417 * definition in cgroup-defs.h.
6419 #ifdef CONFIG_SOCK_CGROUP_DATA
6421 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6423 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6424 static bool cgroup_sk_alloc_disabled __read_mostly
;
6426 void cgroup_sk_alloc_disable(void)
6428 if (cgroup_sk_alloc_disabled
)
6430 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6431 cgroup_sk_alloc_disabled
= true;
6436 #define cgroup_sk_alloc_disabled false
6440 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6442 if (cgroup_sk_alloc_disabled
)
6445 /* Socket clone path */
6448 * We might be cloning a socket which is left in an empty
6449 * cgroup and the cgroup might have already been rmdir'd.
6450 * Don't use cgroup_get_live().
6452 cgroup_get(sock_cgroup_ptr(skcd
));
6453 cgroup_bpf_get(sock_cgroup_ptr(skcd
));
6457 /* Don't associate the sock with unrelated interrupted task's cgroup. */
6464 struct css_set
*cset
;
6466 cset
= task_css_set(current
);
6467 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6468 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6469 cgroup_bpf_get(cset
->dfl_cgrp
);
6478 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6480 struct cgroup
*cgrp
= sock_cgroup_ptr(skcd
);
6482 cgroup_bpf_put(cgrp
);
6486 #endif /* CONFIG_SOCK_CGROUP_DATA */
6488 #ifdef CONFIG_CGROUP_BPF
6489 int cgroup_bpf_attach(struct cgroup
*cgrp
,
6490 struct bpf_prog
*prog
, struct bpf_prog
*replace_prog
,
6491 struct bpf_cgroup_link
*link
,
6492 enum bpf_attach_type type
,
6497 mutex_lock(&cgroup_mutex
);
6498 ret
= __cgroup_bpf_attach(cgrp
, prog
, replace_prog
, link
, type
, flags
);
6499 mutex_unlock(&cgroup_mutex
);
6503 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
6504 enum bpf_attach_type type
)
6508 mutex_lock(&cgroup_mutex
);
6509 ret
= __cgroup_bpf_detach(cgrp
, prog
, NULL
, type
);
6510 mutex_unlock(&cgroup_mutex
);
6514 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
6515 union bpf_attr __user
*uattr
)
6519 mutex_lock(&cgroup_mutex
);
6520 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
6521 mutex_unlock(&cgroup_mutex
);
6524 #endif /* CONFIG_CGROUP_BPF */
6527 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
6528 ssize_t size
, const char *prefix
)
6533 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
6534 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
6538 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
6540 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
6542 if (WARN_ON(ret
>= size
))
6549 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6552 struct cgroup_subsys
*ss
;
6556 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
6559 for_each_subsys(ss
, ssid
)
6560 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
6562 cgroup_subsys_name
[ssid
]);
6566 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
6568 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6571 return snprintf(buf
, PAGE_SIZE
,
6573 "memory_localevents\n"
6574 "memory_recursiveprot\n");
6576 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
6578 static struct attribute
*cgroup_sysfs_attrs
[] = {
6579 &cgroup_delegate_attr
.attr
,
6580 &cgroup_features_attr
.attr
,
6584 static const struct attribute_group cgroup_sysfs_attr_group
= {
6585 .attrs
= cgroup_sysfs_attrs
,
6589 static int __init
cgroup_sysfs_init(void)
6591 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
6593 subsys_initcall(cgroup_sysfs_init
);
6595 #endif /* CONFIG_SYSFS */