dt-bindings: pinctrl: add bindings for MediaTek MT6779 SoC
[linux/fpc-iii.git] / kernel / sched / core.c
blob8f360326861ec866d5ffb206f8a4c7bc47520350
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
5 * Core kernel scheduler code and related syscalls
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
11 #include <linux/nospec.h>
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
23 #include "pelt.h"
24 #include "smp.h"
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
30 * Export tracepoints that act as a bare tracehook (ie: have no trace event
31 * associated with them) to allow external modules to probe them.
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
44 * Debugging: various feature bits
46 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47 * sysctl_sched_features, defined in sched.h, to allow constants propagation
48 * at compile time and compiler optimization based on features default.
50 #define SCHED_FEAT(name, enabled) \
51 (1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
55 #undef SCHED_FEAT
56 #endif
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
65 * period over which we measure -rt task CPU usage in us.
66 * default: 1s
68 unsigned int sysctl_sched_rt_period = 1000000;
70 __read_mostly int scheduler_running;
73 * part of the period that we allow rt tasks to run in us.
74 * default: 0.95s
76 int sysctl_sched_rt_runtime = 950000;
79 * __task_rq_lock - lock the rq @p resides on.
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 __acquires(rq->lock)
84 struct rq *rq;
86 lockdep_assert_held(&p->pi_lock);
88 for (;;) {
89 rq = task_rq(p);
90 raw_spin_lock(&rq->lock);
91 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 rq_pin_lock(rq, rf);
93 return rq;
95 raw_spin_unlock(&rq->lock);
97 while (unlikely(task_on_rq_migrating(p)))
98 cpu_relax();
103 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 __acquires(p->pi_lock)
107 __acquires(rq->lock)
109 struct rq *rq;
111 for (;;) {
112 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 rq = task_rq(p);
114 raw_spin_lock(&rq->lock);
116 * move_queued_task() task_rq_lock()
118 * ACQUIRE (rq->lock)
119 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
120 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
121 * [S] ->cpu = new_cpu [L] task_rq()
122 * [L] ->on_rq
123 * RELEASE (rq->lock)
125 * If we observe the old CPU in task_rq_lock(), the acquire of
126 * the old rq->lock will fully serialize against the stores.
128 * If we observe the new CPU in task_rq_lock(), the address
129 * dependency headed by '[L] rq = task_rq()' and the acquire
130 * will pair with the WMB to ensure we then also see migrating.
132 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 rq_pin_lock(rq, rf);
134 return rq;
136 raw_spin_unlock(&rq->lock);
137 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
139 while (unlikely(task_on_rq_migrating(p)))
140 cpu_relax();
145 * RQ-clock updating methods:
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
151 * In theory, the compile should just see 0 here, and optimize out the call
152 * to sched_rt_avg_update. But I don't trust it...
154 s64 __maybe_unused steal = 0, irq_delta = 0;
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
160 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 * this case when a previous update_rq_clock() happened inside a
162 * {soft,}irq region.
164 * When this happens, we stop ->clock_task and only update the
165 * prev_irq_time stamp to account for the part that fit, so that a next
166 * update will consume the rest. This ensures ->clock_task is
167 * monotonic.
169 * It does however cause some slight miss-attribution of {soft,}irq
170 * time, a more accurate solution would be to update the irq_time using
171 * the current rq->clock timestamp, except that would require using
172 * atomic ops.
174 if (irq_delta > delta)
175 irq_delta = delta;
177 rq->prev_irq_time += irq_delta;
178 delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 if (static_key_false((&paravirt_steal_rq_enabled))) {
182 steal = paravirt_steal_clock(cpu_of(rq));
183 steal -= rq->prev_steal_time_rq;
185 if (unlikely(steal > delta))
186 steal = delta;
188 rq->prev_steal_time_rq += steal;
189 delta -= steal;
191 #endif
193 rq->clock_task += delta;
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 update_rq_clock_pelt(rq, delta);
202 void update_rq_clock(struct rq *rq)
204 s64 delta;
206 lockdep_assert_held(&rq->lock);
208 if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 return;
211 #ifdef CONFIG_SCHED_DEBUG
212 if (sched_feat(WARN_DOUBLE_CLOCK))
213 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
217 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 if (delta < 0)
219 return;
220 rq->clock += delta;
221 update_rq_clock_task(rq, delta);
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
227 csd->flags = 0;
228 csd->func = func;
229 csd->info = rq;
232 #ifdef CONFIG_SCHED_HRTICK
234 * Use HR-timers to deliver accurate preemption points.
237 static void hrtick_clear(struct rq *rq)
239 if (hrtimer_active(&rq->hrtick_timer))
240 hrtimer_cancel(&rq->hrtick_timer);
244 * High-resolution timer tick.
245 * Runs from hardirq context with interrupts disabled.
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
249 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 struct rq_flags rf;
252 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
254 rq_lock(rq, &rf);
255 update_rq_clock(rq);
256 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 rq_unlock(rq, &rf);
259 return HRTIMER_NORESTART;
262 #ifdef CONFIG_SMP
264 static void __hrtick_restart(struct rq *rq)
266 struct hrtimer *timer = &rq->hrtick_timer;
268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
272 * called from hardirq (IPI) context
274 static void __hrtick_start(void *arg)
276 struct rq *rq = arg;
277 struct rq_flags rf;
279 rq_lock(rq, &rf);
280 __hrtick_restart(rq);
281 rq_unlock(rq, &rf);
285 * Called to set the hrtick timer state.
287 * called with rq->lock held and irqs disabled
289 void hrtick_start(struct rq *rq, u64 delay)
291 struct hrtimer *timer = &rq->hrtick_timer;
292 ktime_t time;
293 s64 delta;
296 * Don't schedule slices shorter than 10000ns, that just
297 * doesn't make sense and can cause timer DoS.
299 delta = max_t(s64, delay, 10000LL);
300 time = ktime_add_ns(timer->base->get_time(), delta);
302 hrtimer_set_expires(timer, time);
304 if (rq == this_rq())
305 __hrtick_restart(rq);
306 else
307 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
310 #else
312 * Called to set the hrtick timer state.
314 * called with rq->lock held and irqs disabled
316 void hrtick_start(struct rq *rq, u64 delay)
319 * Don't schedule slices shorter than 10000ns, that just
320 * doesn't make sense. Rely on vruntime for fairness.
322 delay = max_t(u64, delay, 10000LL);
323 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 HRTIMER_MODE_REL_PINNED_HARD);
327 #endif /* CONFIG_SMP */
329 static void hrtick_rq_init(struct rq *rq)
331 #ifdef CONFIG_SMP
332 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 rq->hrtick_timer.function = hrtick;
337 #else /* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
342 static inline void hrtick_rq_init(struct rq *rq)
345 #endif /* CONFIG_SCHED_HRTICK */
348 * cmpxchg based fetch_or, macro so it works for different integer types
350 #define fetch_or(ptr, mask) \
351 ({ \
352 typeof(ptr) _ptr = (ptr); \
353 typeof(mask) _mask = (mask); \
354 typeof(*_ptr) _old, _val = *_ptr; \
356 for (;;) { \
357 _old = cmpxchg(_ptr, _val, _val | _mask); \
358 if (_old == _val) \
359 break; \
360 _val = _old; \
362 _old; \
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
367 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368 * this avoids any races wrt polling state changes and thereby avoids
369 * spurious IPIs.
371 static bool set_nr_and_not_polling(struct task_struct *p)
373 struct thread_info *ti = task_thread_info(p);
374 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
378 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
380 * If this returns true, then the idle task promises to call
381 * sched_ttwu_pending() and reschedule soon.
383 static bool set_nr_if_polling(struct task_struct *p)
385 struct thread_info *ti = task_thread_info(p);
386 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
388 for (;;) {
389 if (!(val & _TIF_POLLING_NRFLAG))
390 return false;
391 if (val & _TIF_NEED_RESCHED)
392 return true;
393 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 if (old == val)
395 break;
396 val = old;
398 return true;
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
404 set_tsk_need_resched(p);
405 return true;
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
411 return false;
413 #endif
414 #endif
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
418 struct wake_q_node *node = &task->wake_q;
421 * Atomically grab the task, if ->wake_q is !nil already it means
422 * its already queued (either by us or someone else) and will get the
423 * wakeup due to that.
425 * In order to ensure that a pending wakeup will observe our pending
426 * state, even in the failed case, an explicit smp_mb() must be used.
428 smp_mb__before_atomic();
429 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 return false;
433 * The head is context local, there can be no concurrency.
435 *head->lastp = node;
436 head->lastp = &node->next;
437 return true;
441 * wake_q_add() - queue a wakeup for 'later' waking.
442 * @head: the wake_q_head to add @task to
443 * @task: the task to queue for 'later' wakeup
445 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447 * instantly.
449 * This function must be used as-if it were wake_up_process(); IOW the task
450 * must be ready to be woken at this location.
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
454 if (__wake_q_add(head, task))
455 get_task_struct(task);
459 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460 * @head: the wake_q_head to add @task to
461 * @task: the task to queue for 'later' wakeup
463 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465 * instantly.
467 * This function must be used as-if it were wake_up_process(); IOW the task
468 * must be ready to be woken at this location.
470 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471 * that already hold reference to @task can call the 'safe' version and trust
472 * wake_q to do the right thing depending whether or not the @task is already
473 * queued for wakeup.
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
477 if (!__wake_q_add(head, task))
478 put_task_struct(task);
481 void wake_up_q(struct wake_q_head *head)
483 struct wake_q_node *node = head->first;
485 while (node != WAKE_Q_TAIL) {
486 struct task_struct *task;
488 task = container_of(node, struct task_struct, wake_q);
489 BUG_ON(!task);
490 /* Task can safely be re-inserted now: */
491 node = node->next;
492 task->wake_q.next = NULL;
495 * wake_up_process() executes a full barrier, which pairs with
496 * the queueing in wake_q_add() so as not to miss wakeups.
498 wake_up_process(task);
499 put_task_struct(task);
504 * resched_curr - mark rq's current task 'to be rescheduled now'.
506 * On UP this means the setting of the need_resched flag, on SMP it
507 * might also involve a cross-CPU call to trigger the scheduler on
508 * the target CPU.
510 void resched_curr(struct rq *rq)
512 struct task_struct *curr = rq->curr;
513 int cpu;
515 lockdep_assert_held(&rq->lock);
517 if (test_tsk_need_resched(curr))
518 return;
520 cpu = cpu_of(rq);
522 if (cpu == smp_processor_id()) {
523 set_tsk_need_resched(curr);
524 set_preempt_need_resched();
525 return;
528 if (set_nr_and_not_polling(curr))
529 smp_send_reschedule(cpu);
530 else
531 trace_sched_wake_idle_without_ipi(cpu);
534 void resched_cpu(int cpu)
536 struct rq *rq = cpu_rq(cpu);
537 unsigned long flags;
539 raw_spin_lock_irqsave(&rq->lock, flags);
540 if (cpu_online(cpu) || cpu == smp_processor_id())
541 resched_curr(rq);
542 raw_spin_unlock_irqrestore(&rq->lock, flags);
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
548 * In the semi idle case, use the nearest busy CPU for migrating timers
549 * from an idle CPU. This is good for power-savings.
551 * We don't do similar optimization for completely idle system, as
552 * selecting an idle CPU will add more delays to the timers than intended
553 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
555 int get_nohz_timer_target(void)
557 int i, cpu = smp_processor_id(), default_cpu = -1;
558 struct sched_domain *sd;
560 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 if (!idle_cpu(cpu))
562 return cpu;
563 default_cpu = cpu;
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu_and(i, sched_domain_span(sd),
569 housekeeping_cpumask(HK_FLAG_TIMER)) {
570 if (cpu == i)
571 continue;
573 if (!idle_cpu(i)) {
574 cpu = i;
575 goto unlock;
580 if (default_cpu == -1)
581 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 cpu = default_cpu;
583 unlock:
584 rcu_read_unlock();
585 return cpu;
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
598 static void wake_up_idle_cpu(int cpu)
600 struct rq *rq = cpu_rq(cpu);
602 if (cpu == smp_processor_id())
603 return;
605 if (set_nr_and_not_polling(rq->idle))
606 smp_send_reschedule(cpu);
607 else
608 trace_sched_wake_idle_without_ipi(cpu);
611 static bool wake_up_full_nohz_cpu(int cpu)
614 * We just need the target to call irq_exit() and re-evaluate
615 * the next tick. The nohz full kick at least implies that.
616 * If needed we can still optimize that later with an
617 * empty IRQ.
619 if (cpu_is_offline(cpu))
620 return true; /* Don't try to wake offline CPUs. */
621 if (tick_nohz_full_cpu(cpu)) {
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 tick_nohz_full_kick_cpu(cpu);
625 return true;
628 return false;
632 * Wake up the specified CPU. If the CPU is going offline, it is the
633 * caller's responsibility to deal with the lost wakeup, for example,
634 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
636 void wake_up_nohz_cpu(int cpu)
638 if (!wake_up_full_nohz_cpu(cpu))
639 wake_up_idle_cpu(cpu);
642 static void nohz_csd_func(void *info)
644 struct rq *rq = info;
645 int cpu = cpu_of(rq);
646 unsigned int flags;
649 * Release the rq::nohz_csd.
651 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 WARN_ON(!(flags & NOHZ_KICK_MASK));
654 rq->idle_balance = idle_cpu(cpu);
655 if (rq->idle_balance && !need_resched()) {
656 rq->nohz_idle_balance = flags;
657 raise_softirq_irqoff(SCHED_SOFTIRQ);
661 #endif /* CONFIG_NO_HZ_COMMON */
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
666 int fifo_nr_running;
668 /* Deadline tasks, even if single, need the tick */
669 if (rq->dl.dl_nr_running)
670 return false;
673 * If there are more than one RR tasks, we need the tick to effect the
674 * actual RR behaviour.
676 if (rq->rt.rr_nr_running) {
677 if (rq->rt.rr_nr_running == 1)
678 return true;
679 else
680 return false;
684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 * forced preemption between FIFO tasks.
687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 if (fifo_nr_running)
689 return true;
692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 * if there's more than one we need the tick for involuntary
694 * preemption.
696 if (rq->nr_running > 1)
697 return false;
699 return true;
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
710 * Caller must hold rcu_lock or sufficient equivalent.
712 int walk_tg_tree_from(struct task_group *from,
713 tg_visitor down, tg_visitor up, void *data)
715 struct task_group *parent, *child;
716 int ret;
718 parent = from;
720 down:
721 ret = (*down)(parent, data);
722 if (ret)
723 goto out;
724 list_for_each_entry_rcu(child, &parent->children, siblings) {
725 parent = child;
726 goto down;
729 continue;
731 ret = (*up)(parent, data);
732 if (ret || parent == from)
733 goto out;
735 child = parent;
736 parent = parent->parent;
737 if (parent)
738 goto up;
739 out:
740 return ret;
743 int tg_nop(struct task_group *tg, void *data)
745 return 0;
747 #endif
749 static void set_load_weight(struct task_struct *p, bool update_load)
751 int prio = p->static_prio - MAX_RT_PRIO;
752 struct load_weight *load = &p->se.load;
755 * SCHED_IDLE tasks get minimal weight:
757 if (task_has_idle_policy(p)) {
758 load->weight = scale_load(WEIGHT_IDLEPRIO);
759 load->inv_weight = WMULT_IDLEPRIO;
760 return;
764 * SCHED_OTHER tasks have to update their load when changing their
765 * weight
767 if (update_load && p->sched_class == &fair_sched_class) {
768 reweight_task(p, prio);
769 } else {
770 load->weight = scale_load(sched_prio_to_weight[prio]);
771 load->inv_weight = sched_prio_to_wmult[prio];
775 #ifdef CONFIG_UCLAMP_TASK
777 * Serializes updates of utilization clamp values
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
786 static DEFINE_MUTEX(uclamp_mutex);
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
800 #define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
805 return clamp_value / UCLAMP_BUCKET_DELTA;
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
842 return uclamp_none(UCLAMP_MIN);
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895 #endif
897 return uc_req;
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
918 return uc_req;
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
923 struct uclamp_se uc_eff;
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return (unsigned long)p->uclamp[clamp_id].value;
929 uc_eff = uclamp_eff_get(p, clamp_id);
931 return (unsigned long)uc_eff.value;
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
951 lockdep_assert_held(&rq->lock);
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
991 lockdep_assert_held(&rq->lock);
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1005 if (likely(bucket->tasks))
1006 return;
1008 rq_clamp = READ_ONCE(uc_rq->value);
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1022 enum uclamp_id clamp_id;
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1037 enum uclamp_id clamp_id;
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1049 struct rq_flags rf;
1050 struct rq *rq;
1053 * Lock the task and the rq where the task is (or was) queued.
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1060 rq = task_rq_lock(p, &rf);
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1073 task_rq_unlock(rq, p, &rf);
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1092 css_task_iter_end(&it);
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1098 struct task_group *tg = &root_task_group;
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void *buffer, size_t *lenp, loff_t *ppos)
1116 bool update_root_tg = false;
1117 int old_min, old_max;
1118 int result;
1120 mutex_lock(&uclamp_mutex);
1121 old_min = sysctl_sched_uclamp_util_min;
1122 old_max = sysctl_sched_uclamp_util_max;
1124 result = proc_dointvec(table, write, buffer, lenp, ppos);
1125 if (result)
1126 goto undo;
1127 if (!write)
1128 goto done;
1130 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1131 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1132 result = -EINVAL;
1133 goto undo;
1136 if (old_min != sysctl_sched_uclamp_util_min) {
1137 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1138 sysctl_sched_uclamp_util_min, false);
1139 update_root_tg = true;
1141 if (old_max != sysctl_sched_uclamp_util_max) {
1142 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1143 sysctl_sched_uclamp_util_max, false);
1144 update_root_tg = true;
1147 if (update_root_tg)
1148 uclamp_update_root_tg();
1151 * We update all RUNNABLE tasks only when task groups are in use.
1152 * Otherwise, keep it simple and do just a lazy update at each next
1153 * task enqueue time.
1156 goto done;
1158 undo:
1159 sysctl_sched_uclamp_util_min = old_min;
1160 sysctl_sched_uclamp_util_max = old_max;
1161 done:
1162 mutex_unlock(&uclamp_mutex);
1164 return result;
1167 static int uclamp_validate(struct task_struct *p,
1168 const struct sched_attr *attr)
1170 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1171 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1174 lower_bound = attr->sched_util_min;
1175 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1176 upper_bound = attr->sched_util_max;
1178 if (lower_bound > upper_bound)
1179 return -EINVAL;
1180 if (upper_bound > SCHED_CAPACITY_SCALE)
1181 return -EINVAL;
1183 return 0;
1186 static void __setscheduler_uclamp(struct task_struct *p,
1187 const struct sched_attr *attr)
1189 enum uclamp_id clamp_id;
1192 * On scheduling class change, reset to default clamps for tasks
1193 * without a task-specific value.
1195 for_each_clamp_id(clamp_id) {
1196 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1197 unsigned int clamp_value = uclamp_none(clamp_id);
1199 /* Keep using defined clamps across class changes */
1200 if (uc_se->user_defined)
1201 continue;
1203 /* By default, RT tasks always get 100% boost */
1204 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1205 clamp_value = uclamp_none(UCLAMP_MAX);
1207 uclamp_se_set(uc_se, clamp_value, false);
1210 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1211 return;
1213 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1214 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1215 attr->sched_util_min, true);
1218 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1219 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1220 attr->sched_util_max, true);
1224 static void uclamp_fork(struct task_struct *p)
1226 enum uclamp_id clamp_id;
1228 for_each_clamp_id(clamp_id)
1229 p->uclamp[clamp_id].active = false;
1231 if (likely(!p->sched_reset_on_fork))
1232 return;
1234 for_each_clamp_id(clamp_id) {
1235 uclamp_se_set(&p->uclamp_req[clamp_id],
1236 uclamp_none(clamp_id), false);
1240 static void __init init_uclamp(void)
1242 struct uclamp_se uc_max = {};
1243 enum uclamp_id clamp_id;
1244 int cpu;
1246 mutex_init(&uclamp_mutex);
1248 for_each_possible_cpu(cpu) {
1249 memset(&cpu_rq(cpu)->uclamp, 0,
1250 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1251 cpu_rq(cpu)->uclamp_flags = 0;
1254 for_each_clamp_id(clamp_id) {
1255 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1256 uclamp_none(clamp_id), false);
1259 /* System defaults allow max clamp values for both indexes */
1260 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1261 for_each_clamp_id(clamp_id) {
1262 uclamp_default[clamp_id] = uc_max;
1263 #ifdef CONFIG_UCLAMP_TASK_GROUP
1264 root_task_group.uclamp_req[clamp_id] = uc_max;
1265 root_task_group.uclamp[clamp_id] = uc_max;
1266 #endif
1270 #else /* CONFIG_UCLAMP_TASK */
1271 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1272 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1273 static inline int uclamp_validate(struct task_struct *p,
1274 const struct sched_attr *attr)
1276 return -EOPNOTSUPP;
1278 static void __setscheduler_uclamp(struct task_struct *p,
1279 const struct sched_attr *attr) { }
1280 static inline void uclamp_fork(struct task_struct *p) { }
1281 static inline void init_uclamp(void) { }
1282 #endif /* CONFIG_UCLAMP_TASK */
1284 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1286 if (!(flags & ENQUEUE_NOCLOCK))
1287 update_rq_clock(rq);
1289 if (!(flags & ENQUEUE_RESTORE)) {
1290 sched_info_queued(rq, p);
1291 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1294 uclamp_rq_inc(rq, p);
1295 p->sched_class->enqueue_task(rq, p, flags);
1298 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1300 if (!(flags & DEQUEUE_NOCLOCK))
1301 update_rq_clock(rq);
1303 if (!(flags & DEQUEUE_SAVE)) {
1304 sched_info_dequeued(rq, p);
1305 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1308 uclamp_rq_dec(rq, p);
1309 p->sched_class->dequeue_task(rq, p, flags);
1312 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1314 if (task_contributes_to_load(p))
1315 rq->nr_uninterruptible--;
1317 enqueue_task(rq, p, flags);
1319 p->on_rq = TASK_ON_RQ_QUEUED;
1322 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1324 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326 if (task_contributes_to_load(p))
1327 rq->nr_uninterruptible++;
1329 dequeue_task(rq, p, flags);
1333 * __normal_prio - return the priority that is based on the static prio
1335 static inline int __normal_prio(struct task_struct *p)
1337 return p->static_prio;
1341 * Calculate the expected normal priority: i.e. priority
1342 * without taking RT-inheritance into account. Might be
1343 * boosted by interactivity modifiers. Changes upon fork,
1344 * setprio syscalls, and whenever the interactivity
1345 * estimator recalculates.
1347 static inline int normal_prio(struct task_struct *p)
1349 int prio;
1351 if (task_has_dl_policy(p))
1352 prio = MAX_DL_PRIO-1;
1353 else if (task_has_rt_policy(p))
1354 prio = MAX_RT_PRIO-1 - p->rt_priority;
1355 else
1356 prio = __normal_prio(p);
1357 return prio;
1361 * Calculate the current priority, i.e. the priority
1362 * taken into account by the scheduler. This value might
1363 * be boosted by RT tasks, or might be boosted by
1364 * interactivity modifiers. Will be RT if the task got
1365 * RT-boosted. If not then it returns p->normal_prio.
1367 static int effective_prio(struct task_struct *p)
1369 p->normal_prio = normal_prio(p);
1371 * If we are RT tasks or we were boosted to RT priority,
1372 * keep the priority unchanged. Otherwise, update priority
1373 * to the normal priority:
1375 if (!rt_prio(p->prio))
1376 return p->normal_prio;
1377 return p->prio;
1381 * task_curr - is this task currently executing on a CPU?
1382 * @p: the task in question.
1384 * Return: 1 if the task is currently executing. 0 otherwise.
1386 inline int task_curr(const struct task_struct *p)
1388 return cpu_curr(task_cpu(p)) == p;
1392 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1393 * use the balance_callback list if you want balancing.
1395 * this means any call to check_class_changed() must be followed by a call to
1396 * balance_callback().
1398 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1399 const struct sched_class *prev_class,
1400 int oldprio)
1402 if (prev_class != p->sched_class) {
1403 if (prev_class->switched_from)
1404 prev_class->switched_from(rq, p);
1406 p->sched_class->switched_to(rq, p);
1407 } else if (oldprio != p->prio || dl_task(p))
1408 p->sched_class->prio_changed(rq, p, oldprio);
1411 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1413 const struct sched_class *class;
1415 if (p->sched_class == rq->curr->sched_class) {
1416 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1417 } else {
1418 for_each_class(class) {
1419 if (class == rq->curr->sched_class)
1420 break;
1421 if (class == p->sched_class) {
1422 resched_curr(rq);
1423 break;
1429 * A queue event has occurred, and we're going to schedule. In
1430 * this case, we can save a useless back to back clock update.
1432 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1433 rq_clock_skip_update(rq);
1436 #ifdef CONFIG_SMP
1439 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1440 * __set_cpus_allowed_ptr() and select_fallback_rq().
1442 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1444 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1445 return false;
1447 if (is_per_cpu_kthread(p))
1448 return cpu_online(cpu);
1450 return cpu_active(cpu);
1454 * This is how migration works:
1456 * 1) we invoke migration_cpu_stop() on the target CPU using
1457 * stop_one_cpu().
1458 * 2) stopper starts to run (implicitly forcing the migrated thread
1459 * off the CPU)
1460 * 3) it checks whether the migrated task is still in the wrong runqueue.
1461 * 4) if it's in the wrong runqueue then the migration thread removes
1462 * it and puts it into the right queue.
1463 * 5) stopper completes and stop_one_cpu() returns and the migration
1464 * is done.
1468 * move_queued_task - move a queued task to new rq.
1470 * Returns (locked) new rq. Old rq's lock is released.
1472 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1473 struct task_struct *p, int new_cpu)
1475 lockdep_assert_held(&rq->lock);
1477 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1478 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1479 set_task_cpu(p, new_cpu);
1480 rq_unlock(rq, rf);
1482 rq = cpu_rq(new_cpu);
1484 rq_lock(rq, rf);
1485 BUG_ON(task_cpu(p) != new_cpu);
1486 enqueue_task(rq, p, 0);
1487 p->on_rq = TASK_ON_RQ_QUEUED;
1488 check_preempt_curr(rq, p, 0);
1490 return rq;
1493 struct migration_arg {
1494 struct task_struct *task;
1495 int dest_cpu;
1499 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1500 * this because either it can't run here any more (set_cpus_allowed()
1501 * away from this CPU, or CPU going down), or because we're
1502 * attempting to rebalance this task on exec (sched_exec).
1504 * So we race with normal scheduler movements, but that's OK, as long
1505 * as the task is no longer on this CPU.
1507 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1508 struct task_struct *p, int dest_cpu)
1510 /* Affinity changed (again). */
1511 if (!is_cpu_allowed(p, dest_cpu))
1512 return rq;
1514 update_rq_clock(rq);
1515 rq = move_queued_task(rq, rf, p, dest_cpu);
1517 return rq;
1521 * migration_cpu_stop - this will be executed by a highprio stopper thread
1522 * and performs thread migration by bumping thread off CPU then
1523 * 'pushing' onto another runqueue.
1525 static int migration_cpu_stop(void *data)
1527 struct migration_arg *arg = data;
1528 struct task_struct *p = arg->task;
1529 struct rq *rq = this_rq();
1530 struct rq_flags rf;
1533 * The original target CPU might have gone down and we might
1534 * be on another CPU but it doesn't matter.
1536 local_irq_disable();
1538 * We need to explicitly wake pending tasks before running
1539 * __migrate_task() such that we will not miss enforcing cpus_ptr
1540 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1542 flush_smp_call_function_from_idle();
1544 raw_spin_lock(&p->pi_lock);
1545 rq_lock(rq, &rf);
1547 * If task_rq(p) != rq, it cannot be migrated here, because we're
1548 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1549 * we're holding p->pi_lock.
1551 if (task_rq(p) == rq) {
1552 if (task_on_rq_queued(p))
1553 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1554 else
1555 p->wake_cpu = arg->dest_cpu;
1557 rq_unlock(rq, &rf);
1558 raw_spin_unlock(&p->pi_lock);
1560 local_irq_enable();
1561 return 0;
1565 * sched_class::set_cpus_allowed must do the below, but is not required to
1566 * actually call this function.
1568 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1570 cpumask_copy(&p->cpus_mask, new_mask);
1571 p->nr_cpus_allowed = cpumask_weight(new_mask);
1574 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1576 struct rq *rq = task_rq(p);
1577 bool queued, running;
1579 lockdep_assert_held(&p->pi_lock);
1581 queued = task_on_rq_queued(p);
1582 running = task_current(rq, p);
1584 if (queued) {
1586 * Because __kthread_bind() calls this on blocked tasks without
1587 * holding rq->lock.
1589 lockdep_assert_held(&rq->lock);
1590 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1592 if (running)
1593 put_prev_task(rq, p);
1595 p->sched_class->set_cpus_allowed(p, new_mask);
1597 if (queued)
1598 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1599 if (running)
1600 set_next_task(rq, p);
1604 * Change a given task's CPU affinity. Migrate the thread to a
1605 * proper CPU and schedule it away if the CPU it's executing on
1606 * is removed from the allowed bitmask.
1608 * NOTE: the caller must have a valid reference to the task, the
1609 * task must not exit() & deallocate itself prematurely. The
1610 * call is not atomic; no spinlocks may be held.
1612 static int __set_cpus_allowed_ptr(struct task_struct *p,
1613 const struct cpumask *new_mask, bool check)
1615 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1616 unsigned int dest_cpu;
1617 struct rq_flags rf;
1618 struct rq *rq;
1619 int ret = 0;
1621 rq = task_rq_lock(p, &rf);
1622 update_rq_clock(rq);
1624 if (p->flags & PF_KTHREAD) {
1626 * Kernel threads are allowed on online && !active CPUs
1628 cpu_valid_mask = cpu_online_mask;
1632 * Must re-check here, to close a race against __kthread_bind(),
1633 * sched_setaffinity() is not guaranteed to observe the flag.
1635 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1636 ret = -EINVAL;
1637 goto out;
1640 if (cpumask_equal(p->cpus_ptr, new_mask))
1641 goto out;
1644 * Picking a ~random cpu helps in cases where we are changing affinity
1645 * for groups of tasks (ie. cpuset), so that load balancing is not
1646 * immediately required to distribute the tasks within their new mask.
1648 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1649 if (dest_cpu >= nr_cpu_ids) {
1650 ret = -EINVAL;
1651 goto out;
1654 do_set_cpus_allowed(p, new_mask);
1656 if (p->flags & PF_KTHREAD) {
1658 * For kernel threads that do indeed end up on online &&
1659 * !active we want to ensure they are strict per-CPU threads.
1661 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1662 !cpumask_intersects(new_mask, cpu_active_mask) &&
1663 p->nr_cpus_allowed != 1);
1666 /* Can the task run on the task's current CPU? If so, we're done */
1667 if (cpumask_test_cpu(task_cpu(p), new_mask))
1668 goto out;
1670 if (task_running(rq, p) || p->state == TASK_WAKING) {
1671 struct migration_arg arg = { p, dest_cpu };
1672 /* Need help from migration thread: drop lock and wait. */
1673 task_rq_unlock(rq, p, &rf);
1674 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1675 return 0;
1676 } else if (task_on_rq_queued(p)) {
1678 * OK, since we're going to drop the lock immediately
1679 * afterwards anyway.
1681 rq = move_queued_task(rq, &rf, p, dest_cpu);
1683 out:
1684 task_rq_unlock(rq, p, &rf);
1686 return ret;
1689 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1691 return __set_cpus_allowed_ptr(p, new_mask, false);
1693 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1695 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1697 #ifdef CONFIG_SCHED_DEBUG
1699 * We should never call set_task_cpu() on a blocked task,
1700 * ttwu() will sort out the placement.
1702 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1703 !p->on_rq);
1706 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1707 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1708 * time relying on p->on_rq.
1710 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1711 p->sched_class == &fair_sched_class &&
1712 (p->on_rq && !task_on_rq_migrating(p)));
1714 #ifdef CONFIG_LOCKDEP
1716 * The caller should hold either p->pi_lock or rq->lock, when changing
1717 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1719 * sched_move_task() holds both and thus holding either pins the cgroup,
1720 * see task_group().
1722 * Furthermore, all task_rq users should acquire both locks, see
1723 * task_rq_lock().
1725 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1726 lockdep_is_held(&task_rq(p)->lock)));
1727 #endif
1729 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1731 WARN_ON_ONCE(!cpu_online(new_cpu));
1732 #endif
1734 trace_sched_migrate_task(p, new_cpu);
1736 if (task_cpu(p) != new_cpu) {
1737 if (p->sched_class->migrate_task_rq)
1738 p->sched_class->migrate_task_rq(p, new_cpu);
1739 p->se.nr_migrations++;
1740 rseq_migrate(p);
1741 perf_event_task_migrate(p);
1744 __set_task_cpu(p, new_cpu);
1747 #ifdef CONFIG_NUMA_BALANCING
1748 static void __migrate_swap_task(struct task_struct *p, int cpu)
1750 if (task_on_rq_queued(p)) {
1751 struct rq *src_rq, *dst_rq;
1752 struct rq_flags srf, drf;
1754 src_rq = task_rq(p);
1755 dst_rq = cpu_rq(cpu);
1757 rq_pin_lock(src_rq, &srf);
1758 rq_pin_lock(dst_rq, &drf);
1760 deactivate_task(src_rq, p, 0);
1761 set_task_cpu(p, cpu);
1762 activate_task(dst_rq, p, 0);
1763 check_preempt_curr(dst_rq, p, 0);
1765 rq_unpin_lock(dst_rq, &drf);
1766 rq_unpin_lock(src_rq, &srf);
1768 } else {
1770 * Task isn't running anymore; make it appear like we migrated
1771 * it before it went to sleep. This means on wakeup we make the
1772 * previous CPU our target instead of where it really is.
1774 p->wake_cpu = cpu;
1778 struct migration_swap_arg {
1779 struct task_struct *src_task, *dst_task;
1780 int src_cpu, dst_cpu;
1783 static int migrate_swap_stop(void *data)
1785 struct migration_swap_arg *arg = data;
1786 struct rq *src_rq, *dst_rq;
1787 int ret = -EAGAIN;
1789 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1790 return -EAGAIN;
1792 src_rq = cpu_rq(arg->src_cpu);
1793 dst_rq = cpu_rq(arg->dst_cpu);
1795 double_raw_lock(&arg->src_task->pi_lock,
1796 &arg->dst_task->pi_lock);
1797 double_rq_lock(src_rq, dst_rq);
1799 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1800 goto unlock;
1802 if (task_cpu(arg->src_task) != arg->src_cpu)
1803 goto unlock;
1805 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1806 goto unlock;
1808 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1809 goto unlock;
1811 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1812 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1814 ret = 0;
1816 unlock:
1817 double_rq_unlock(src_rq, dst_rq);
1818 raw_spin_unlock(&arg->dst_task->pi_lock);
1819 raw_spin_unlock(&arg->src_task->pi_lock);
1821 return ret;
1825 * Cross migrate two tasks
1827 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1828 int target_cpu, int curr_cpu)
1830 struct migration_swap_arg arg;
1831 int ret = -EINVAL;
1833 arg = (struct migration_swap_arg){
1834 .src_task = cur,
1835 .src_cpu = curr_cpu,
1836 .dst_task = p,
1837 .dst_cpu = target_cpu,
1840 if (arg.src_cpu == arg.dst_cpu)
1841 goto out;
1844 * These three tests are all lockless; this is OK since all of them
1845 * will be re-checked with proper locks held further down the line.
1847 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1848 goto out;
1850 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1851 goto out;
1853 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1854 goto out;
1856 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1857 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1859 out:
1860 return ret;
1862 #endif /* CONFIG_NUMA_BALANCING */
1865 * wait_task_inactive - wait for a thread to unschedule.
1867 * If @match_state is nonzero, it's the @p->state value just checked and
1868 * not expected to change. If it changes, i.e. @p might have woken up,
1869 * then return zero. When we succeed in waiting for @p to be off its CPU,
1870 * we return a positive number (its total switch count). If a second call
1871 * a short while later returns the same number, the caller can be sure that
1872 * @p has remained unscheduled the whole time.
1874 * The caller must ensure that the task *will* unschedule sometime soon,
1875 * else this function might spin for a *long* time. This function can't
1876 * be called with interrupts off, or it may introduce deadlock with
1877 * smp_call_function() if an IPI is sent by the same process we are
1878 * waiting to become inactive.
1880 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1882 int running, queued;
1883 struct rq_flags rf;
1884 unsigned long ncsw;
1885 struct rq *rq;
1887 for (;;) {
1889 * We do the initial early heuristics without holding
1890 * any task-queue locks at all. We'll only try to get
1891 * the runqueue lock when things look like they will
1892 * work out!
1894 rq = task_rq(p);
1897 * If the task is actively running on another CPU
1898 * still, just relax and busy-wait without holding
1899 * any locks.
1901 * NOTE! Since we don't hold any locks, it's not
1902 * even sure that "rq" stays as the right runqueue!
1903 * But we don't care, since "task_running()" will
1904 * return false if the runqueue has changed and p
1905 * is actually now running somewhere else!
1907 while (task_running(rq, p)) {
1908 if (match_state && unlikely(p->state != match_state))
1909 return 0;
1910 cpu_relax();
1914 * Ok, time to look more closely! We need the rq
1915 * lock now, to be *sure*. If we're wrong, we'll
1916 * just go back and repeat.
1918 rq = task_rq_lock(p, &rf);
1919 trace_sched_wait_task(p);
1920 running = task_running(rq, p);
1921 queued = task_on_rq_queued(p);
1922 ncsw = 0;
1923 if (!match_state || p->state == match_state)
1924 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1925 task_rq_unlock(rq, p, &rf);
1928 * If it changed from the expected state, bail out now.
1930 if (unlikely(!ncsw))
1931 break;
1934 * Was it really running after all now that we
1935 * checked with the proper locks actually held?
1937 * Oops. Go back and try again..
1939 if (unlikely(running)) {
1940 cpu_relax();
1941 continue;
1945 * It's not enough that it's not actively running,
1946 * it must be off the runqueue _entirely_, and not
1947 * preempted!
1949 * So if it was still runnable (but just not actively
1950 * running right now), it's preempted, and we should
1951 * yield - it could be a while.
1953 if (unlikely(queued)) {
1954 ktime_t to = NSEC_PER_SEC / HZ;
1956 set_current_state(TASK_UNINTERRUPTIBLE);
1957 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1958 continue;
1962 * Ahh, all good. It wasn't running, and it wasn't
1963 * runnable, which means that it will never become
1964 * running in the future either. We're all done!
1966 break;
1969 return ncsw;
1972 /***
1973 * kick_process - kick a running thread to enter/exit the kernel
1974 * @p: the to-be-kicked thread
1976 * Cause a process which is running on another CPU to enter
1977 * kernel-mode, without any delay. (to get signals handled.)
1979 * NOTE: this function doesn't have to take the runqueue lock,
1980 * because all it wants to ensure is that the remote task enters
1981 * the kernel. If the IPI races and the task has been migrated
1982 * to another CPU then no harm is done and the purpose has been
1983 * achieved as well.
1985 void kick_process(struct task_struct *p)
1987 int cpu;
1989 preempt_disable();
1990 cpu = task_cpu(p);
1991 if ((cpu != smp_processor_id()) && task_curr(p))
1992 smp_send_reschedule(cpu);
1993 preempt_enable();
1995 EXPORT_SYMBOL_GPL(kick_process);
1998 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2000 * A few notes on cpu_active vs cpu_online:
2002 * - cpu_active must be a subset of cpu_online
2004 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2005 * see __set_cpus_allowed_ptr(). At this point the newly online
2006 * CPU isn't yet part of the sched domains, and balancing will not
2007 * see it.
2009 * - on CPU-down we clear cpu_active() to mask the sched domains and
2010 * avoid the load balancer to place new tasks on the to be removed
2011 * CPU. Existing tasks will remain running there and will be taken
2012 * off.
2014 * This means that fallback selection must not select !active CPUs.
2015 * And can assume that any active CPU must be online. Conversely
2016 * select_task_rq() below may allow selection of !active CPUs in order
2017 * to satisfy the above rules.
2019 static int select_fallback_rq(int cpu, struct task_struct *p)
2021 int nid = cpu_to_node(cpu);
2022 const struct cpumask *nodemask = NULL;
2023 enum { cpuset, possible, fail } state = cpuset;
2024 int dest_cpu;
2027 * If the node that the CPU is on has been offlined, cpu_to_node()
2028 * will return -1. There is no CPU on the node, and we should
2029 * select the CPU on the other node.
2031 if (nid != -1) {
2032 nodemask = cpumask_of_node(nid);
2034 /* Look for allowed, online CPU in same node. */
2035 for_each_cpu(dest_cpu, nodemask) {
2036 if (!cpu_active(dest_cpu))
2037 continue;
2038 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2039 return dest_cpu;
2043 for (;;) {
2044 /* Any allowed, online CPU? */
2045 for_each_cpu(dest_cpu, p->cpus_ptr) {
2046 if (!is_cpu_allowed(p, dest_cpu))
2047 continue;
2049 goto out;
2052 /* No more Mr. Nice Guy. */
2053 switch (state) {
2054 case cpuset:
2055 if (IS_ENABLED(CONFIG_CPUSETS)) {
2056 cpuset_cpus_allowed_fallback(p);
2057 state = possible;
2058 break;
2060 /* Fall-through */
2061 case possible:
2062 do_set_cpus_allowed(p, cpu_possible_mask);
2063 state = fail;
2064 break;
2066 case fail:
2067 BUG();
2068 break;
2072 out:
2073 if (state != cpuset) {
2075 * Don't tell them about moving exiting tasks or
2076 * kernel threads (both mm NULL), since they never
2077 * leave kernel.
2079 if (p->mm && printk_ratelimit()) {
2080 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2081 task_pid_nr(p), p->comm, cpu);
2085 return dest_cpu;
2089 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2091 static inline
2092 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2094 lockdep_assert_held(&p->pi_lock);
2096 if (p->nr_cpus_allowed > 1)
2097 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2098 else
2099 cpu = cpumask_any(p->cpus_ptr);
2102 * In order not to call set_task_cpu() on a blocking task we need
2103 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2104 * CPU.
2106 * Since this is common to all placement strategies, this lives here.
2108 * [ this allows ->select_task() to simply return task_cpu(p) and
2109 * not worry about this generic constraint ]
2111 if (unlikely(!is_cpu_allowed(p, cpu)))
2112 cpu = select_fallback_rq(task_cpu(p), p);
2114 return cpu;
2117 void sched_set_stop_task(int cpu, struct task_struct *stop)
2119 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2120 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2122 if (stop) {
2124 * Make it appear like a SCHED_FIFO task, its something
2125 * userspace knows about and won't get confused about.
2127 * Also, it will make PI more or less work without too
2128 * much confusion -- but then, stop work should not
2129 * rely on PI working anyway.
2131 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2133 stop->sched_class = &stop_sched_class;
2136 cpu_rq(cpu)->stop = stop;
2138 if (old_stop) {
2140 * Reset it back to a normal scheduling class so that
2141 * it can die in pieces.
2143 old_stop->sched_class = &rt_sched_class;
2147 #else
2149 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2150 const struct cpumask *new_mask, bool check)
2152 return set_cpus_allowed_ptr(p, new_mask);
2155 #endif /* CONFIG_SMP */
2157 static void
2158 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2160 struct rq *rq;
2162 if (!schedstat_enabled())
2163 return;
2165 rq = this_rq();
2167 #ifdef CONFIG_SMP
2168 if (cpu == rq->cpu) {
2169 __schedstat_inc(rq->ttwu_local);
2170 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2171 } else {
2172 struct sched_domain *sd;
2174 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2175 rcu_read_lock();
2176 for_each_domain(rq->cpu, sd) {
2177 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2178 __schedstat_inc(sd->ttwu_wake_remote);
2179 break;
2182 rcu_read_unlock();
2185 if (wake_flags & WF_MIGRATED)
2186 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2187 #endif /* CONFIG_SMP */
2189 __schedstat_inc(rq->ttwu_count);
2190 __schedstat_inc(p->se.statistics.nr_wakeups);
2192 if (wake_flags & WF_SYNC)
2193 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2197 * Mark the task runnable and perform wakeup-preemption.
2199 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2200 struct rq_flags *rf)
2202 check_preempt_curr(rq, p, wake_flags);
2203 p->state = TASK_RUNNING;
2204 trace_sched_wakeup(p);
2206 #ifdef CONFIG_SMP
2207 if (p->sched_class->task_woken) {
2209 * Our task @p is fully woken up and running; so its safe to
2210 * drop the rq->lock, hereafter rq is only used for statistics.
2212 rq_unpin_lock(rq, rf);
2213 p->sched_class->task_woken(rq, p);
2214 rq_repin_lock(rq, rf);
2217 if (rq->idle_stamp) {
2218 u64 delta = rq_clock(rq) - rq->idle_stamp;
2219 u64 max = 2*rq->max_idle_balance_cost;
2221 update_avg(&rq->avg_idle, delta);
2223 if (rq->avg_idle > max)
2224 rq->avg_idle = max;
2226 rq->idle_stamp = 0;
2228 #endif
2231 static void
2232 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2233 struct rq_flags *rf)
2235 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2237 lockdep_assert_held(&rq->lock);
2239 #ifdef CONFIG_SMP
2240 if (p->sched_contributes_to_load)
2241 rq->nr_uninterruptible--;
2243 if (wake_flags & WF_MIGRATED)
2244 en_flags |= ENQUEUE_MIGRATED;
2245 #endif
2247 activate_task(rq, p, en_flags);
2248 ttwu_do_wakeup(rq, p, wake_flags, rf);
2252 * Called in case the task @p isn't fully descheduled from its runqueue,
2253 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2254 * since all we need to do is flip p->state to TASK_RUNNING, since
2255 * the task is still ->on_rq.
2257 static int ttwu_remote(struct task_struct *p, int wake_flags)
2259 struct rq_flags rf;
2260 struct rq *rq;
2261 int ret = 0;
2263 rq = __task_rq_lock(p, &rf);
2264 if (task_on_rq_queued(p)) {
2265 /* check_preempt_curr() may use rq clock */
2266 update_rq_clock(rq);
2267 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2268 ret = 1;
2270 __task_rq_unlock(rq, &rf);
2272 return ret;
2275 #ifdef CONFIG_SMP
2276 void sched_ttwu_pending(void *arg)
2278 struct llist_node *llist = arg;
2279 struct rq *rq = this_rq();
2280 struct task_struct *p, *t;
2281 struct rq_flags rf;
2283 if (!llist)
2284 return;
2287 * rq::ttwu_pending racy indication of out-standing wakeups.
2288 * Races such that false-negatives are possible, since they
2289 * are shorter lived that false-positives would be.
2291 WRITE_ONCE(rq->ttwu_pending, 0);
2293 rq_lock_irqsave(rq, &rf);
2294 update_rq_clock(rq);
2296 llist_for_each_entry_safe(p, t, llist, wake_entry)
2297 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2299 rq_unlock_irqrestore(rq, &rf);
2302 void send_call_function_single_ipi(int cpu)
2304 struct rq *rq = cpu_rq(cpu);
2306 if (!set_nr_if_polling(rq->idle))
2307 arch_send_call_function_single_ipi(cpu);
2308 else
2309 trace_sched_wake_idle_without_ipi(cpu);
2313 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2314 * necessary. The wakee CPU on receipt of the IPI will queue the task
2315 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2316 * of the wakeup instead of the waker.
2318 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2320 struct rq *rq = cpu_rq(cpu);
2322 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2324 WRITE_ONCE(rq->ttwu_pending, 1);
2325 __smp_call_single_queue(cpu, &p->wake_entry);
2328 void wake_up_if_idle(int cpu)
2330 struct rq *rq = cpu_rq(cpu);
2331 struct rq_flags rf;
2333 rcu_read_lock();
2335 if (!is_idle_task(rcu_dereference(rq->curr)))
2336 goto out;
2338 if (set_nr_if_polling(rq->idle)) {
2339 trace_sched_wake_idle_without_ipi(cpu);
2340 } else {
2341 rq_lock_irqsave(rq, &rf);
2342 if (is_idle_task(rq->curr))
2343 smp_send_reschedule(cpu);
2344 /* Else CPU is not idle, do nothing here: */
2345 rq_unlock_irqrestore(rq, &rf);
2348 out:
2349 rcu_read_unlock();
2352 bool cpus_share_cache(int this_cpu, int that_cpu)
2354 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2357 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2360 * If the CPU does not share cache, then queue the task on the
2361 * remote rqs wakelist to avoid accessing remote data.
2363 if (!cpus_share_cache(smp_processor_id(), cpu))
2364 return true;
2367 * If the task is descheduling and the only running task on the
2368 * CPU then use the wakelist to offload the task activation to
2369 * the soon-to-be-idle CPU as the current CPU is likely busy.
2370 * nr_running is checked to avoid unnecessary task stacking.
2372 if ((wake_flags & WF_ON_RQ) && cpu_rq(cpu)->nr_running <= 1)
2373 return true;
2375 return false;
2378 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2380 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2381 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2382 __ttwu_queue_wakelist(p, cpu, wake_flags);
2383 return true;
2386 return false;
2388 #endif /* CONFIG_SMP */
2390 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2392 struct rq *rq = cpu_rq(cpu);
2393 struct rq_flags rf;
2395 #if defined(CONFIG_SMP)
2396 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2397 return;
2398 #endif
2400 rq_lock(rq, &rf);
2401 update_rq_clock(rq);
2402 ttwu_do_activate(rq, p, wake_flags, &rf);
2403 rq_unlock(rq, &rf);
2407 * Notes on Program-Order guarantees on SMP systems.
2409 * MIGRATION
2411 * The basic program-order guarantee on SMP systems is that when a task [t]
2412 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2413 * execution on its new CPU [c1].
2415 * For migration (of runnable tasks) this is provided by the following means:
2417 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2418 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2419 * rq(c1)->lock (if not at the same time, then in that order).
2420 * C) LOCK of the rq(c1)->lock scheduling in task
2422 * Release/acquire chaining guarantees that B happens after A and C after B.
2423 * Note: the CPU doing B need not be c0 or c1
2425 * Example:
2427 * CPU0 CPU1 CPU2
2429 * LOCK rq(0)->lock
2430 * sched-out X
2431 * sched-in Y
2432 * UNLOCK rq(0)->lock
2434 * LOCK rq(0)->lock // orders against CPU0
2435 * dequeue X
2436 * UNLOCK rq(0)->lock
2438 * LOCK rq(1)->lock
2439 * enqueue X
2440 * UNLOCK rq(1)->lock
2442 * LOCK rq(1)->lock // orders against CPU2
2443 * sched-out Z
2444 * sched-in X
2445 * UNLOCK rq(1)->lock
2448 * BLOCKING -- aka. SLEEP + WAKEUP
2450 * For blocking we (obviously) need to provide the same guarantee as for
2451 * migration. However the means are completely different as there is no lock
2452 * chain to provide order. Instead we do:
2454 * 1) smp_store_release(X->on_cpu, 0)
2455 * 2) smp_cond_load_acquire(!X->on_cpu)
2457 * Example:
2459 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2461 * LOCK rq(0)->lock LOCK X->pi_lock
2462 * dequeue X
2463 * sched-out X
2464 * smp_store_release(X->on_cpu, 0);
2466 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2467 * X->state = WAKING
2468 * set_task_cpu(X,2)
2470 * LOCK rq(2)->lock
2471 * enqueue X
2472 * X->state = RUNNING
2473 * UNLOCK rq(2)->lock
2475 * LOCK rq(2)->lock // orders against CPU1
2476 * sched-out Z
2477 * sched-in X
2478 * UNLOCK rq(2)->lock
2480 * UNLOCK X->pi_lock
2481 * UNLOCK rq(0)->lock
2484 * However, for wakeups there is a second guarantee we must provide, namely we
2485 * must ensure that CONDITION=1 done by the caller can not be reordered with
2486 * accesses to the task state; see try_to_wake_up() and set_current_state().
2490 * try_to_wake_up - wake up a thread
2491 * @p: the thread to be awakened
2492 * @state: the mask of task states that can be woken
2493 * @wake_flags: wake modifier flags (WF_*)
2495 * If (@state & @p->state) @p->state = TASK_RUNNING.
2497 * If the task was not queued/runnable, also place it back on a runqueue.
2499 * Atomic against schedule() which would dequeue a task, also see
2500 * set_current_state().
2502 * This function executes a full memory barrier before accessing the task
2503 * state; see set_current_state().
2505 * Return: %true if @p->state changes (an actual wakeup was done),
2506 * %false otherwise.
2508 static int
2509 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2511 unsigned long flags;
2512 int cpu, success = 0;
2514 preempt_disable();
2515 if (p == current) {
2517 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2518 * == smp_processor_id()'. Together this means we can special
2519 * case the whole 'p->on_rq && ttwu_remote()' case below
2520 * without taking any locks.
2522 * In particular:
2523 * - we rely on Program-Order guarantees for all the ordering,
2524 * - we're serialized against set_special_state() by virtue of
2525 * it disabling IRQs (this allows not taking ->pi_lock).
2527 if (!(p->state & state))
2528 goto out;
2530 success = 1;
2531 cpu = task_cpu(p);
2532 trace_sched_waking(p);
2533 p->state = TASK_RUNNING;
2534 trace_sched_wakeup(p);
2535 goto out;
2539 * If we are going to wake up a thread waiting for CONDITION we
2540 * need to ensure that CONDITION=1 done by the caller can not be
2541 * reordered with p->state check below. This pairs with mb() in
2542 * set_current_state() the waiting thread does.
2544 raw_spin_lock_irqsave(&p->pi_lock, flags);
2545 smp_mb__after_spinlock();
2546 if (!(p->state & state))
2547 goto unlock;
2549 trace_sched_waking(p);
2551 /* We're going to change ->state: */
2552 success = 1;
2553 cpu = task_cpu(p);
2556 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2557 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2558 * in smp_cond_load_acquire() below.
2560 * sched_ttwu_pending() try_to_wake_up()
2561 * STORE p->on_rq = 1 LOAD p->state
2562 * UNLOCK rq->lock
2564 * __schedule() (switch to task 'p')
2565 * LOCK rq->lock smp_rmb();
2566 * smp_mb__after_spinlock();
2567 * UNLOCK rq->lock
2569 * [task p]
2570 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2572 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2573 * __schedule(). See the comment for smp_mb__after_spinlock().
2575 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2577 smp_rmb();
2578 if (p->on_rq && ttwu_remote(p, wake_flags))
2579 goto unlock;
2581 if (p->in_iowait) {
2582 delayacct_blkio_end(p);
2583 atomic_dec(&task_rq(p)->nr_iowait);
2586 #ifdef CONFIG_SMP
2587 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2588 p->state = TASK_WAKING;
2591 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2592 * possible to, falsely, observe p->on_cpu == 0.
2594 * One must be running (->on_cpu == 1) in order to remove oneself
2595 * from the runqueue.
2597 * __schedule() (switch to task 'p') try_to_wake_up()
2598 * STORE p->on_cpu = 1 LOAD p->on_rq
2599 * UNLOCK rq->lock
2601 * __schedule() (put 'p' to sleep)
2602 * LOCK rq->lock smp_rmb();
2603 * smp_mb__after_spinlock();
2604 * STORE p->on_rq = 0 LOAD p->on_cpu
2606 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2607 * __schedule(). See the comment for smp_mb__after_spinlock().
2609 smp_rmb();
2612 * If the owning (remote) CPU is still in the middle of schedule() with
2613 * this task as prev, considering queueing p on the remote CPUs wake_list
2614 * which potentially sends an IPI instead of spinning on p->on_cpu to
2615 * let the waker make forward progress. This is safe because IRQs are
2616 * disabled and the IPI will deliver after on_cpu is cleared.
2618 if (READ_ONCE(p->on_cpu) && ttwu_queue_wakelist(p, cpu, wake_flags | WF_ON_RQ))
2619 goto unlock;
2622 * If the owning (remote) CPU is still in the middle of schedule() with
2623 * this task as prev, wait until its done referencing the task.
2625 * Pairs with the smp_store_release() in finish_task().
2627 * This ensures that tasks getting woken will be fully ordered against
2628 * their previous state and preserve Program Order.
2630 smp_cond_load_acquire(&p->on_cpu, !VAL);
2632 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2633 if (task_cpu(p) != cpu) {
2634 wake_flags |= WF_MIGRATED;
2635 psi_ttwu_dequeue(p);
2636 set_task_cpu(p, cpu);
2638 #endif /* CONFIG_SMP */
2640 ttwu_queue(p, cpu, wake_flags);
2641 unlock:
2642 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2643 out:
2644 if (success)
2645 ttwu_stat(p, cpu, wake_flags);
2646 preempt_enable();
2648 return success;
2652 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2653 * @p: Process for which the function is to be invoked.
2654 * @func: Function to invoke.
2655 * @arg: Argument to function.
2657 * If the specified task can be quickly locked into a definite state
2658 * (either sleeping or on a given runqueue), arrange to keep it in that
2659 * state while invoking @func(@arg). This function can use ->on_rq and
2660 * task_curr() to work out what the state is, if required. Given that
2661 * @func can be invoked with a runqueue lock held, it had better be quite
2662 * lightweight.
2664 * Returns:
2665 * @false if the task slipped out from under the locks.
2666 * @true if the task was locked onto a runqueue or is sleeping.
2667 * However, @func can override this by returning @false.
2669 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2671 bool ret = false;
2672 struct rq_flags rf;
2673 struct rq *rq;
2675 lockdep_assert_irqs_enabled();
2676 raw_spin_lock_irq(&p->pi_lock);
2677 if (p->on_rq) {
2678 rq = __task_rq_lock(p, &rf);
2679 if (task_rq(p) == rq)
2680 ret = func(p, arg);
2681 rq_unlock(rq, &rf);
2682 } else {
2683 switch (p->state) {
2684 case TASK_RUNNING:
2685 case TASK_WAKING:
2686 break;
2687 default:
2688 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2689 if (!p->on_rq)
2690 ret = func(p, arg);
2693 raw_spin_unlock_irq(&p->pi_lock);
2694 return ret;
2698 * wake_up_process - Wake up a specific process
2699 * @p: The process to be woken up.
2701 * Attempt to wake up the nominated process and move it to the set of runnable
2702 * processes.
2704 * Return: 1 if the process was woken up, 0 if it was already running.
2706 * This function executes a full memory barrier before accessing the task state.
2708 int wake_up_process(struct task_struct *p)
2710 return try_to_wake_up(p, TASK_NORMAL, 0);
2712 EXPORT_SYMBOL(wake_up_process);
2714 int wake_up_state(struct task_struct *p, unsigned int state)
2716 return try_to_wake_up(p, state, 0);
2720 * Perform scheduler related setup for a newly forked process p.
2721 * p is forked by current.
2723 * __sched_fork() is basic setup used by init_idle() too:
2725 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2727 p->on_rq = 0;
2729 p->se.on_rq = 0;
2730 p->se.exec_start = 0;
2731 p->se.sum_exec_runtime = 0;
2732 p->se.prev_sum_exec_runtime = 0;
2733 p->se.nr_migrations = 0;
2734 p->se.vruntime = 0;
2735 INIT_LIST_HEAD(&p->se.group_node);
2737 #ifdef CONFIG_FAIR_GROUP_SCHED
2738 p->se.cfs_rq = NULL;
2739 #endif
2741 #ifdef CONFIG_SCHEDSTATS
2742 /* Even if schedstat is disabled, there should not be garbage */
2743 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2744 #endif
2746 RB_CLEAR_NODE(&p->dl.rb_node);
2747 init_dl_task_timer(&p->dl);
2748 init_dl_inactive_task_timer(&p->dl);
2749 __dl_clear_params(p);
2751 INIT_LIST_HEAD(&p->rt.run_list);
2752 p->rt.timeout = 0;
2753 p->rt.time_slice = sched_rr_timeslice;
2754 p->rt.on_rq = 0;
2755 p->rt.on_list = 0;
2757 #ifdef CONFIG_PREEMPT_NOTIFIERS
2758 INIT_HLIST_HEAD(&p->preempt_notifiers);
2759 #endif
2761 #ifdef CONFIG_COMPACTION
2762 p->capture_control = NULL;
2763 #endif
2764 init_numa_balancing(clone_flags, p);
2765 #ifdef CONFIG_SMP
2766 p->wake_entry_type = CSD_TYPE_TTWU;
2767 #endif
2770 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2772 #ifdef CONFIG_NUMA_BALANCING
2774 void set_numabalancing_state(bool enabled)
2776 if (enabled)
2777 static_branch_enable(&sched_numa_balancing);
2778 else
2779 static_branch_disable(&sched_numa_balancing);
2782 #ifdef CONFIG_PROC_SYSCTL
2783 int sysctl_numa_balancing(struct ctl_table *table, int write,
2784 void *buffer, size_t *lenp, loff_t *ppos)
2786 struct ctl_table t;
2787 int err;
2788 int state = static_branch_likely(&sched_numa_balancing);
2790 if (write && !capable(CAP_SYS_ADMIN))
2791 return -EPERM;
2793 t = *table;
2794 t.data = &state;
2795 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2796 if (err < 0)
2797 return err;
2798 if (write)
2799 set_numabalancing_state(state);
2800 return err;
2802 #endif
2803 #endif
2805 #ifdef CONFIG_SCHEDSTATS
2807 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2808 static bool __initdata __sched_schedstats = false;
2810 static void set_schedstats(bool enabled)
2812 if (enabled)
2813 static_branch_enable(&sched_schedstats);
2814 else
2815 static_branch_disable(&sched_schedstats);
2818 void force_schedstat_enabled(void)
2820 if (!schedstat_enabled()) {
2821 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2822 static_branch_enable(&sched_schedstats);
2826 static int __init setup_schedstats(char *str)
2828 int ret = 0;
2829 if (!str)
2830 goto out;
2833 * This code is called before jump labels have been set up, so we can't
2834 * change the static branch directly just yet. Instead set a temporary
2835 * variable so init_schedstats() can do it later.
2837 if (!strcmp(str, "enable")) {
2838 __sched_schedstats = true;
2839 ret = 1;
2840 } else if (!strcmp(str, "disable")) {
2841 __sched_schedstats = false;
2842 ret = 1;
2844 out:
2845 if (!ret)
2846 pr_warn("Unable to parse schedstats=\n");
2848 return ret;
2850 __setup("schedstats=", setup_schedstats);
2852 static void __init init_schedstats(void)
2854 set_schedstats(__sched_schedstats);
2857 #ifdef CONFIG_PROC_SYSCTL
2858 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
2859 size_t *lenp, loff_t *ppos)
2861 struct ctl_table t;
2862 int err;
2863 int state = static_branch_likely(&sched_schedstats);
2865 if (write && !capable(CAP_SYS_ADMIN))
2866 return -EPERM;
2868 t = *table;
2869 t.data = &state;
2870 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2871 if (err < 0)
2872 return err;
2873 if (write)
2874 set_schedstats(state);
2875 return err;
2877 #endif /* CONFIG_PROC_SYSCTL */
2878 #else /* !CONFIG_SCHEDSTATS */
2879 static inline void init_schedstats(void) {}
2880 #endif /* CONFIG_SCHEDSTATS */
2883 * fork()/clone()-time setup:
2885 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2887 unsigned long flags;
2889 __sched_fork(clone_flags, p);
2891 * We mark the process as NEW here. This guarantees that
2892 * nobody will actually run it, and a signal or other external
2893 * event cannot wake it up and insert it on the runqueue either.
2895 p->state = TASK_NEW;
2898 * Make sure we do not leak PI boosting priority to the child.
2900 p->prio = current->normal_prio;
2902 uclamp_fork(p);
2905 * Revert to default priority/policy on fork if requested.
2907 if (unlikely(p->sched_reset_on_fork)) {
2908 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2909 p->policy = SCHED_NORMAL;
2910 p->static_prio = NICE_TO_PRIO(0);
2911 p->rt_priority = 0;
2912 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2913 p->static_prio = NICE_TO_PRIO(0);
2915 p->prio = p->normal_prio = __normal_prio(p);
2916 set_load_weight(p, false);
2919 * We don't need the reset flag anymore after the fork. It has
2920 * fulfilled its duty:
2922 p->sched_reset_on_fork = 0;
2925 if (dl_prio(p->prio))
2926 return -EAGAIN;
2927 else if (rt_prio(p->prio))
2928 p->sched_class = &rt_sched_class;
2929 else
2930 p->sched_class = &fair_sched_class;
2932 init_entity_runnable_average(&p->se);
2935 * The child is not yet in the pid-hash so no cgroup attach races,
2936 * and the cgroup is pinned to this child due to cgroup_fork()
2937 * is ran before sched_fork().
2939 * Silence PROVE_RCU.
2941 raw_spin_lock_irqsave(&p->pi_lock, flags);
2943 * We're setting the CPU for the first time, we don't migrate,
2944 * so use __set_task_cpu().
2946 __set_task_cpu(p, smp_processor_id());
2947 if (p->sched_class->task_fork)
2948 p->sched_class->task_fork(p);
2949 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2951 #ifdef CONFIG_SCHED_INFO
2952 if (likely(sched_info_on()))
2953 memset(&p->sched_info, 0, sizeof(p->sched_info));
2954 #endif
2955 #if defined(CONFIG_SMP)
2956 p->on_cpu = 0;
2957 #endif
2958 init_task_preempt_count(p);
2959 #ifdef CONFIG_SMP
2960 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2961 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2962 #endif
2963 return 0;
2966 unsigned long to_ratio(u64 period, u64 runtime)
2968 if (runtime == RUNTIME_INF)
2969 return BW_UNIT;
2972 * Doing this here saves a lot of checks in all
2973 * the calling paths, and returning zero seems
2974 * safe for them anyway.
2976 if (period == 0)
2977 return 0;
2979 return div64_u64(runtime << BW_SHIFT, period);
2983 * wake_up_new_task - wake up a newly created task for the first time.
2985 * This function will do some initial scheduler statistics housekeeping
2986 * that must be done for every newly created context, then puts the task
2987 * on the runqueue and wakes it.
2989 void wake_up_new_task(struct task_struct *p)
2991 struct rq_flags rf;
2992 struct rq *rq;
2994 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2995 p->state = TASK_RUNNING;
2996 #ifdef CONFIG_SMP
2998 * Fork balancing, do it here and not earlier because:
2999 * - cpus_ptr can change in the fork path
3000 * - any previously selected CPU might disappear through hotplug
3002 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3003 * as we're not fully set-up yet.
3005 p->recent_used_cpu = task_cpu(p);
3006 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3007 #endif
3008 rq = __task_rq_lock(p, &rf);
3009 update_rq_clock(rq);
3010 post_init_entity_util_avg(p);
3012 activate_task(rq, p, ENQUEUE_NOCLOCK);
3013 trace_sched_wakeup_new(p);
3014 check_preempt_curr(rq, p, WF_FORK);
3015 #ifdef CONFIG_SMP
3016 if (p->sched_class->task_woken) {
3018 * Nothing relies on rq->lock after this, so its fine to
3019 * drop it.
3021 rq_unpin_lock(rq, &rf);
3022 p->sched_class->task_woken(rq, p);
3023 rq_repin_lock(rq, &rf);
3025 #endif
3026 task_rq_unlock(rq, p, &rf);
3029 #ifdef CONFIG_PREEMPT_NOTIFIERS
3031 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3033 void preempt_notifier_inc(void)
3035 static_branch_inc(&preempt_notifier_key);
3037 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3039 void preempt_notifier_dec(void)
3041 static_branch_dec(&preempt_notifier_key);
3043 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3046 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3047 * @notifier: notifier struct to register
3049 void preempt_notifier_register(struct preempt_notifier *notifier)
3051 if (!static_branch_unlikely(&preempt_notifier_key))
3052 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3054 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3056 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3059 * preempt_notifier_unregister - no longer interested in preemption notifications
3060 * @notifier: notifier struct to unregister
3062 * This is *not* safe to call from within a preemption notifier.
3064 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3066 hlist_del(&notifier->link);
3068 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3070 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3072 struct preempt_notifier *notifier;
3074 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3075 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3078 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3080 if (static_branch_unlikely(&preempt_notifier_key))
3081 __fire_sched_in_preempt_notifiers(curr);
3084 static void
3085 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3086 struct task_struct *next)
3088 struct preempt_notifier *notifier;
3090 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3091 notifier->ops->sched_out(notifier, next);
3094 static __always_inline void
3095 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3096 struct task_struct *next)
3098 if (static_branch_unlikely(&preempt_notifier_key))
3099 __fire_sched_out_preempt_notifiers(curr, next);
3102 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3104 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3108 static inline void
3109 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3110 struct task_struct *next)
3114 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3116 static inline void prepare_task(struct task_struct *next)
3118 #ifdef CONFIG_SMP
3120 * Claim the task as running, we do this before switching to it
3121 * such that any running task will have this set.
3123 next->on_cpu = 1;
3124 #endif
3127 static inline void finish_task(struct task_struct *prev)
3129 #ifdef CONFIG_SMP
3131 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3132 * We must ensure this doesn't happen until the switch is completely
3133 * finished.
3135 * In particular, the load of prev->state in finish_task_switch() must
3136 * happen before this.
3138 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3140 smp_store_release(&prev->on_cpu, 0);
3141 #endif
3144 static inline void
3145 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3148 * Since the runqueue lock will be released by the next
3149 * task (which is an invalid locking op but in the case
3150 * of the scheduler it's an obvious special-case), so we
3151 * do an early lockdep release here:
3153 rq_unpin_lock(rq, rf);
3154 spin_release(&rq->lock.dep_map, _THIS_IP_);
3155 #ifdef CONFIG_DEBUG_SPINLOCK
3156 /* this is a valid case when another task releases the spinlock */
3157 rq->lock.owner = next;
3158 #endif
3161 static inline void finish_lock_switch(struct rq *rq)
3164 * If we are tracking spinlock dependencies then we have to
3165 * fix up the runqueue lock - which gets 'carried over' from
3166 * prev into current:
3168 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3169 raw_spin_unlock_irq(&rq->lock);
3173 * NOP if the arch has not defined these:
3176 #ifndef prepare_arch_switch
3177 # define prepare_arch_switch(next) do { } while (0)
3178 #endif
3180 #ifndef finish_arch_post_lock_switch
3181 # define finish_arch_post_lock_switch() do { } while (0)
3182 #endif
3185 * prepare_task_switch - prepare to switch tasks
3186 * @rq: the runqueue preparing to switch
3187 * @prev: the current task that is being switched out
3188 * @next: the task we are going to switch to.
3190 * This is called with the rq lock held and interrupts off. It must
3191 * be paired with a subsequent finish_task_switch after the context
3192 * switch.
3194 * prepare_task_switch sets up locking and calls architecture specific
3195 * hooks.
3197 static inline void
3198 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3199 struct task_struct *next)
3201 kcov_prepare_switch(prev);
3202 sched_info_switch(rq, prev, next);
3203 perf_event_task_sched_out(prev, next);
3204 rseq_preempt(prev);
3205 fire_sched_out_preempt_notifiers(prev, next);
3206 prepare_task(next);
3207 prepare_arch_switch(next);
3211 * finish_task_switch - clean up after a task-switch
3212 * @prev: the thread we just switched away from.
3214 * finish_task_switch must be called after the context switch, paired
3215 * with a prepare_task_switch call before the context switch.
3216 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3217 * and do any other architecture-specific cleanup actions.
3219 * Note that we may have delayed dropping an mm in context_switch(). If
3220 * so, we finish that here outside of the runqueue lock. (Doing it
3221 * with the lock held can cause deadlocks; see schedule() for
3222 * details.)
3224 * The context switch have flipped the stack from under us and restored the
3225 * local variables which were saved when this task called schedule() in the
3226 * past. prev == current is still correct but we need to recalculate this_rq
3227 * because prev may have moved to another CPU.
3229 static struct rq *finish_task_switch(struct task_struct *prev)
3230 __releases(rq->lock)
3232 struct rq *rq = this_rq();
3233 struct mm_struct *mm = rq->prev_mm;
3234 long prev_state;
3237 * The previous task will have left us with a preempt_count of 2
3238 * because it left us after:
3240 * schedule()
3241 * preempt_disable(); // 1
3242 * __schedule()
3243 * raw_spin_lock_irq(&rq->lock) // 2
3245 * Also, see FORK_PREEMPT_COUNT.
3247 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3248 "corrupted preempt_count: %s/%d/0x%x\n",
3249 current->comm, current->pid, preempt_count()))
3250 preempt_count_set(FORK_PREEMPT_COUNT);
3252 rq->prev_mm = NULL;
3255 * A task struct has one reference for the use as "current".
3256 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3257 * schedule one last time. The schedule call will never return, and
3258 * the scheduled task must drop that reference.
3260 * We must observe prev->state before clearing prev->on_cpu (in
3261 * finish_task), otherwise a concurrent wakeup can get prev
3262 * running on another CPU and we could rave with its RUNNING -> DEAD
3263 * transition, resulting in a double drop.
3265 prev_state = prev->state;
3266 vtime_task_switch(prev);
3267 perf_event_task_sched_in(prev, current);
3268 finish_task(prev);
3269 finish_lock_switch(rq);
3270 finish_arch_post_lock_switch();
3271 kcov_finish_switch(current);
3273 fire_sched_in_preempt_notifiers(current);
3275 * When switching through a kernel thread, the loop in
3276 * membarrier_{private,global}_expedited() may have observed that
3277 * kernel thread and not issued an IPI. It is therefore possible to
3278 * schedule between user->kernel->user threads without passing though
3279 * switch_mm(). Membarrier requires a barrier after storing to
3280 * rq->curr, before returning to userspace, so provide them here:
3282 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3283 * provided by mmdrop(),
3284 * - a sync_core for SYNC_CORE.
3286 if (mm) {
3287 membarrier_mm_sync_core_before_usermode(mm);
3288 mmdrop(mm);
3290 if (unlikely(prev_state == TASK_DEAD)) {
3291 if (prev->sched_class->task_dead)
3292 prev->sched_class->task_dead(prev);
3295 * Remove function-return probe instances associated with this
3296 * task and put them back on the free list.
3298 kprobe_flush_task(prev);
3300 /* Task is done with its stack. */
3301 put_task_stack(prev);
3303 put_task_struct_rcu_user(prev);
3306 tick_nohz_task_switch();
3307 return rq;
3310 #ifdef CONFIG_SMP
3312 /* rq->lock is NOT held, but preemption is disabled */
3313 static void __balance_callback(struct rq *rq)
3315 struct callback_head *head, *next;
3316 void (*func)(struct rq *rq);
3317 unsigned long flags;
3319 raw_spin_lock_irqsave(&rq->lock, flags);
3320 head = rq->balance_callback;
3321 rq->balance_callback = NULL;
3322 while (head) {
3323 func = (void (*)(struct rq *))head->func;
3324 next = head->next;
3325 head->next = NULL;
3326 head = next;
3328 func(rq);
3330 raw_spin_unlock_irqrestore(&rq->lock, flags);
3333 static inline void balance_callback(struct rq *rq)
3335 if (unlikely(rq->balance_callback))
3336 __balance_callback(rq);
3339 #else
3341 static inline void balance_callback(struct rq *rq)
3345 #endif
3348 * schedule_tail - first thing a freshly forked thread must call.
3349 * @prev: the thread we just switched away from.
3351 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3352 __releases(rq->lock)
3354 struct rq *rq;
3357 * New tasks start with FORK_PREEMPT_COUNT, see there and
3358 * finish_task_switch() for details.
3360 * finish_task_switch() will drop rq->lock() and lower preempt_count
3361 * and the preempt_enable() will end up enabling preemption (on
3362 * PREEMPT_COUNT kernels).
3365 rq = finish_task_switch(prev);
3366 balance_callback(rq);
3367 preempt_enable();
3369 if (current->set_child_tid)
3370 put_user(task_pid_vnr(current), current->set_child_tid);
3372 calculate_sigpending();
3376 * context_switch - switch to the new MM and the new thread's register state.
3378 static __always_inline struct rq *
3379 context_switch(struct rq *rq, struct task_struct *prev,
3380 struct task_struct *next, struct rq_flags *rf)
3382 prepare_task_switch(rq, prev, next);
3385 * For paravirt, this is coupled with an exit in switch_to to
3386 * combine the page table reload and the switch backend into
3387 * one hypercall.
3389 arch_start_context_switch(prev);
3392 * kernel -> kernel lazy + transfer active
3393 * user -> kernel lazy + mmgrab() active
3395 * kernel -> user switch + mmdrop() active
3396 * user -> user switch
3398 if (!next->mm) { // to kernel
3399 enter_lazy_tlb(prev->active_mm, next);
3401 next->active_mm = prev->active_mm;
3402 if (prev->mm) // from user
3403 mmgrab(prev->active_mm);
3404 else
3405 prev->active_mm = NULL;
3406 } else { // to user
3407 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3409 * sys_membarrier() requires an smp_mb() between setting
3410 * rq->curr / membarrier_switch_mm() and returning to userspace.
3412 * The below provides this either through switch_mm(), or in
3413 * case 'prev->active_mm == next->mm' through
3414 * finish_task_switch()'s mmdrop().
3416 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3418 if (!prev->mm) { // from kernel
3419 /* will mmdrop() in finish_task_switch(). */
3420 rq->prev_mm = prev->active_mm;
3421 prev->active_mm = NULL;
3425 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3427 prepare_lock_switch(rq, next, rf);
3429 /* Here we just switch the register state and the stack. */
3430 switch_to(prev, next, prev);
3431 barrier();
3433 return finish_task_switch(prev);
3437 * nr_running and nr_context_switches:
3439 * externally visible scheduler statistics: current number of runnable
3440 * threads, total number of context switches performed since bootup.
3442 unsigned long nr_running(void)
3444 unsigned long i, sum = 0;
3446 for_each_online_cpu(i)
3447 sum += cpu_rq(i)->nr_running;
3449 return sum;
3453 * Check if only the current task is running on the CPU.
3455 * Caution: this function does not check that the caller has disabled
3456 * preemption, thus the result might have a time-of-check-to-time-of-use
3457 * race. The caller is responsible to use it correctly, for example:
3459 * - from a non-preemptible section (of course)
3461 * - from a thread that is bound to a single CPU
3463 * - in a loop with very short iterations (e.g. a polling loop)
3465 bool single_task_running(void)
3467 return raw_rq()->nr_running == 1;
3469 EXPORT_SYMBOL(single_task_running);
3471 unsigned long long nr_context_switches(void)
3473 int i;
3474 unsigned long long sum = 0;
3476 for_each_possible_cpu(i)
3477 sum += cpu_rq(i)->nr_switches;
3479 return sum;
3483 * Consumers of these two interfaces, like for example the cpuidle menu
3484 * governor, are using nonsensical data. Preferring shallow idle state selection
3485 * for a CPU that has IO-wait which might not even end up running the task when
3486 * it does become runnable.
3489 unsigned long nr_iowait_cpu(int cpu)
3491 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3495 * IO-wait accounting, and how its mostly bollocks (on SMP).
3497 * The idea behind IO-wait account is to account the idle time that we could
3498 * have spend running if it were not for IO. That is, if we were to improve the
3499 * storage performance, we'd have a proportional reduction in IO-wait time.
3501 * This all works nicely on UP, where, when a task blocks on IO, we account
3502 * idle time as IO-wait, because if the storage were faster, it could've been
3503 * running and we'd not be idle.
3505 * This has been extended to SMP, by doing the same for each CPU. This however
3506 * is broken.
3508 * Imagine for instance the case where two tasks block on one CPU, only the one
3509 * CPU will have IO-wait accounted, while the other has regular idle. Even
3510 * though, if the storage were faster, both could've ran at the same time,
3511 * utilising both CPUs.
3513 * This means, that when looking globally, the current IO-wait accounting on
3514 * SMP is a lower bound, by reason of under accounting.
3516 * Worse, since the numbers are provided per CPU, they are sometimes
3517 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3518 * associated with any one particular CPU, it can wake to another CPU than it
3519 * blocked on. This means the per CPU IO-wait number is meaningless.
3521 * Task CPU affinities can make all that even more 'interesting'.
3524 unsigned long nr_iowait(void)
3526 unsigned long i, sum = 0;
3528 for_each_possible_cpu(i)
3529 sum += nr_iowait_cpu(i);
3531 return sum;
3534 #ifdef CONFIG_SMP
3537 * sched_exec - execve() is a valuable balancing opportunity, because at
3538 * this point the task has the smallest effective memory and cache footprint.
3540 void sched_exec(void)
3542 struct task_struct *p = current;
3543 unsigned long flags;
3544 int dest_cpu;
3546 raw_spin_lock_irqsave(&p->pi_lock, flags);
3547 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3548 if (dest_cpu == smp_processor_id())
3549 goto unlock;
3551 if (likely(cpu_active(dest_cpu))) {
3552 struct migration_arg arg = { p, dest_cpu };
3554 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3555 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3556 return;
3558 unlock:
3559 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3562 #endif
3564 DEFINE_PER_CPU(struct kernel_stat, kstat);
3565 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3567 EXPORT_PER_CPU_SYMBOL(kstat);
3568 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3571 * The function fair_sched_class.update_curr accesses the struct curr
3572 * and its field curr->exec_start; when called from task_sched_runtime(),
3573 * we observe a high rate of cache misses in practice.
3574 * Prefetching this data results in improved performance.
3576 static inline void prefetch_curr_exec_start(struct task_struct *p)
3578 #ifdef CONFIG_FAIR_GROUP_SCHED
3579 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3580 #else
3581 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3582 #endif
3583 prefetch(curr);
3584 prefetch(&curr->exec_start);
3588 * Return accounted runtime for the task.
3589 * In case the task is currently running, return the runtime plus current's
3590 * pending runtime that have not been accounted yet.
3592 unsigned long long task_sched_runtime(struct task_struct *p)
3594 struct rq_flags rf;
3595 struct rq *rq;
3596 u64 ns;
3598 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3600 * 64-bit doesn't need locks to atomically read a 64-bit value.
3601 * So we have a optimization chance when the task's delta_exec is 0.
3602 * Reading ->on_cpu is racy, but this is ok.
3604 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3605 * If we race with it entering CPU, unaccounted time is 0. This is
3606 * indistinguishable from the read occurring a few cycles earlier.
3607 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3608 * been accounted, so we're correct here as well.
3610 if (!p->on_cpu || !task_on_rq_queued(p))
3611 return p->se.sum_exec_runtime;
3612 #endif
3614 rq = task_rq_lock(p, &rf);
3616 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3617 * project cycles that may never be accounted to this
3618 * thread, breaking clock_gettime().
3620 if (task_current(rq, p) && task_on_rq_queued(p)) {
3621 prefetch_curr_exec_start(p);
3622 update_rq_clock(rq);
3623 p->sched_class->update_curr(rq);
3625 ns = p->se.sum_exec_runtime;
3626 task_rq_unlock(rq, p, &rf);
3628 return ns;
3631 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3633 void arch_set_thermal_pressure(struct cpumask *cpus,
3634 unsigned long th_pressure)
3636 int cpu;
3638 for_each_cpu(cpu, cpus)
3639 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3643 * This function gets called by the timer code, with HZ frequency.
3644 * We call it with interrupts disabled.
3646 void scheduler_tick(void)
3648 int cpu = smp_processor_id();
3649 struct rq *rq = cpu_rq(cpu);
3650 struct task_struct *curr = rq->curr;
3651 struct rq_flags rf;
3652 unsigned long thermal_pressure;
3654 arch_scale_freq_tick();
3655 sched_clock_tick();
3657 rq_lock(rq, &rf);
3659 update_rq_clock(rq);
3660 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3661 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3662 curr->sched_class->task_tick(rq, curr, 0);
3663 calc_global_load_tick(rq);
3664 psi_task_tick(rq);
3666 rq_unlock(rq, &rf);
3668 perf_event_task_tick();
3670 #ifdef CONFIG_SMP
3671 rq->idle_balance = idle_cpu(cpu);
3672 trigger_load_balance(rq);
3673 #endif
3676 #ifdef CONFIG_NO_HZ_FULL
3678 struct tick_work {
3679 int cpu;
3680 atomic_t state;
3681 struct delayed_work work;
3683 /* Values for ->state, see diagram below. */
3684 #define TICK_SCHED_REMOTE_OFFLINE 0
3685 #define TICK_SCHED_REMOTE_OFFLINING 1
3686 #define TICK_SCHED_REMOTE_RUNNING 2
3689 * State diagram for ->state:
3692 * TICK_SCHED_REMOTE_OFFLINE
3693 * | ^
3694 * | |
3695 * | | sched_tick_remote()
3696 * | |
3697 * | |
3698 * +--TICK_SCHED_REMOTE_OFFLINING
3699 * | ^
3700 * | |
3701 * sched_tick_start() | | sched_tick_stop()
3702 * | |
3703 * V |
3704 * TICK_SCHED_REMOTE_RUNNING
3707 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3708 * and sched_tick_start() are happy to leave the state in RUNNING.
3711 static struct tick_work __percpu *tick_work_cpu;
3713 static void sched_tick_remote(struct work_struct *work)
3715 struct delayed_work *dwork = to_delayed_work(work);
3716 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3717 int cpu = twork->cpu;
3718 struct rq *rq = cpu_rq(cpu);
3719 struct task_struct *curr;
3720 struct rq_flags rf;
3721 u64 delta;
3722 int os;
3725 * Handle the tick only if it appears the remote CPU is running in full
3726 * dynticks mode. The check is racy by nature, but missing a tick or
3727 * having one too much is no big deal because the scheduler tick updates
3728 * statistics and checks timeslices in a time-independent way, regardless
3729 * of when exactly it is running.
3731 if (!tick_nohz_tick_stopped_cpu(cpu))
3732 goto out_requeue;
3734 rq_lock_irq(rq, &rf);
3735 curr = rq->curr;
3736 if (cpu_is_offline(cpu))
3737 goto out_unlock;
3739 update_rq_clock(rq);
3741 if (!is_idle_task(curr)) {
3743 * Make sure the next tick runs within a reasonable
3744 * amount of time.
3746 delta = rq_clock_task(rq) - curr->se.exec_start;
3747 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3749 curr->sched_class->task_tick(rq, curr, 0);
3751 calc_load_nohz_remote(rq);
3752 out_unlock:
3753 rq_unlock_irq(rq, &rf);
3754 out_requeue:
3757 * Run the remote tick once per second (1Hz). This arbitrary
3758 * frequency is large enough to avoid overload but short enough
3759 * to keep scheduler internal stats reasonably up to date. But
3760 * first update state to reflect hotplug activity if required.
3762 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3763 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3764 if (os == TICK_SCHED_REMOTE_RUNNING)
3765 queue_delayed_work(system_unbound_wq, dwork, HZ);
3768 static void sched_tick_start(int cpu)
3770 int os;
3771 struct tick_work *twork;
3773 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3774 return;
3776 WARN_ON_ONCE(!tick_work_cpu);
3778 twork = per_cpu_ptr(tick_work_cpu, cpu);
3779 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3780 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3781 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3782 twork->cpu = cpu;
3783 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3784 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3788 #ifdef CONFIG_HOTPLUG_CPU
3789 static void sched_tick_stop(int cpu)
3791 struct tick_work *twork;
3792 int os;
3794 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3795 return;
3797 WARN_ON_ONCE(!tick_work_cpu);
3799 twork = per_cpu_ptr(tick_work_cpu, cpu);
3800 /* There cannot be competing actions, but don't rely on stop-machine. */
3801 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3802 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3803 /* Don't cancel, as this would mess up the state machine. */
3805 #endif /* CONFIG_HOTPLUG_CPU */
3807 int __init sched_tick_offload_init(void)
3809 tick_work_cpu = alloc_percpu(struct tick_work);
3810 BUG_ON(!tick_work_cpu);
3811 return 0;
3814 #else /* !CONFIG_NO_HZ_FULL */
3815 static inline void sched_tick_start(int cpu) { }
3816 static inline void sched_tick_stop(int cpu) { }
3817 #endif
3819 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3820 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3822 * If the value passed in is equal to the current preempt count
3823 * then we just disabled preemption. Start timing the latency.
3825 static inline void preempt_latency_start(int val)
3827 if (preempt_count() == val) {
3828 unsigned long ip = get_lock_parent_ip();
3829 #ifdef CONFIG_DEBUG_PREEMPT
3830 current->preempt_disable_ip = ip;
3831 #endif
3832 trace_preempt_off(CALLER_ADDR0, ip);
3836 void preempt_count_add(int val)
3838 #ifdef CONFIG_DEBUG_PREEMPT
3840 * Underflow?
3842 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3843 return;
3844 #endif
3845 __preempt_count_add(val);
3846 #ifdef CONFIG_DEBUG_PREEMPT
3848 * Spinlock count overflowing soon?
3850 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3851 PREEMPT_MASK - 10);
3852 #endif
3853 preempt_latency_start(val);
3855 EXPORT_SYMBOL(preempt_count_add);
3856 NOKPROBE_SYMBOL(preempt_count_add);
3859 * If the value passed in equals to the current preempt count
3860 * then we just enabled preemption. Stop timing the latency.
3862 static inline void preempt_latency_stop(int val)
3864 if (preempt_count() == val)
3865 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3868 void preempt_count_sub(int val)
3870 #ifdef CONFIG_DEBUG_PREEMPT
3872 * Underflow?
3874 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3875 return;
3877 * Is the spinlock portion underflowing?
3879 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3880 !(preempt_count() & PREEMPT_MASK)))
3881 return;
3882 #endif
3884 preempt_latency_stop(val);
3885 __preempt_count_sub(val);
3887 EXPORT_SYMBOL(preempt_count_sub);
3888 NOKPROBE_SYMBOL(preempt_count_sub);
3890 #else
3891 static inline void preempt_latency_start(int val) { }
3892 static inline void preempt_latency_stop(int val) { }
3893 #endif
3895 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3897 #ifdef CONFIG_DEBUG_PREEMPT
3898 return p->preempt_disable_ip;
3899 #else
3900 return 0;
3901 #endif
3905 * Print scheduling while atomic bug:
3907 static noinline void __schedule_bug(struct task_struct *prev)
3909 /* Save this before calling printk(), since that will clobber it */
3910 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3912 if (oops_in_progress)
3913 return;
3915 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3916 prev->comm, prev->pid, preempt_count());
3918 debug_show_held_locks(prev);
3919 print_modules();
3920 if (irqs_disabled())
3921 print_irqtrace_events(prev);
3922 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3923 && in_atomic_preempt_off()) {
3924 pr_err("Preemption disabled at:");
3925 print_ip_sym(KERN_ERR, preempt_disable_ip);
3927 if (panic_on_warn)
3928 panic("scheduling while atomic\n");
3930 dump_stack();
3931 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3935 * Various schedule()-time debugging checks and statistics:
3937 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3939 #ifdef CONFIG_SCHED_STACK_END_CHECK
3940 if (task_stack_end_corrupted(prev))
3941 panic("corrupted stack end detected inside scheduler\n");
3943 if (task_scs_end_corrupted(prev))
3944 panic("corrupted shadow stack detected inside scheduler\n");
3945 #endif
3947 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3948 if (!preempt && prev->state && prev->non_block_count) {
3949 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3950 prev->comm, prev->pid, prev->non_block_count);
3951 dump_stack();
3952 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3954 #endif
3956 if (unlikely(in_atomic_preempt_off())) {
3957 __schedule_bug(prev);
3958 preempt_count_set(PREEMPT_DISABLED);
3960 rcu_sleep_check();
3962 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3964 schedstat_inc(this_rq()->sched_count);
3967 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3968 struct rq_flags *rf)
3970 #ifdef CONFIG_SMP
3971 const struct sched_class *class;
3973 * We must do the balancing pass before put_prev_task(), such
3974 * that when we release the rq->lock the task is in the same
3975 * state as before we took rq->lock.
3977 * We can terminate the balance pass as soon as we know there is
3978 * a runnable task of @class priority or higher.
3980 for_class_range(class, prev->sched_class, &idle_sched_class) {
3981 if (class->balance(rq, prev, rf))
3982 break;
3984 #endif
3986 put_prev_task(rq, prev);
3990 * Pick up the highest-prio task:
3992 static inline struct task_struct *
3993 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3995 const struct sched_class *class;
3996 struct task_struct *p;
3999 * Optimization: we know that if all tasks are in the fair class we can
4000 * call that function directly, but only if the @prev task wasn't of a
4001 * higher scheduling class, because otherwise those loose the
4002 * opportunity to pull in more work from other CPUs.
4004 if (likely((prev->sched_class == &idle_sched_class ||
4005 prev->sched_class == &fair_sched_class) &&
4006 rq->nr_running == rq->cfs.h_nr_running)) {
4008 p = pick_next_task_fair(rq, prev, rf);
4009 if (unlikely(p == RETRY_TASK))
4010 goto restart;
4012 /* Assumes fair_sched_class->next == idle_sched_class */
4013 if (!p) {
4014 put_prev_task(rq, prev);
4015 p = pick_next_task_idle(rq);
4018 return p;
4021 restart:
4022 put_prev_task_balance(rq, prev, rf);
4024 for_each_class(class) {
4025 p = class->pick_next_task(rq);
4026 if (p)
4027 return p;
4030 /* The idle class should always have a runnable task: */
4031 BUG();
4035 * __schedule() is the main scheduler function.
4037 * The main means of driving the scheduler and thus entering this function are:
4039 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4041 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4042 * paths. For example, see arch/x86/entry_64.S.
4044 * To drive preemption between tasks, the scheduler sets the flag in timer
4045 * interrupt handler scheduler_tick().
4047 * 3. Wakeups don't really cause entry into schedule(). They add a
4048 * task to the run-queue and that's it.
4050 * Now, if the new task added to the run-queue preempts the current
4051 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4052 * called on the nearest possible occasion:
4054 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4056 * - in syscall or exception context, at the next outmost
4057 * preempt_enable(). (this might be as soon as the wake_up()'s
4058 * spin_unlock()!)
4060 * - in IRQ context, return from interrupt-handler to
4061 * preemptible context
4063 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4064 * then at the next:
4066 * - cond_resched() call
4067 * - explicit schedule() call
4068 * - return from syscall or exception to user-space
4069 * - return from interrupt-handler to user-space
4071 * WARNING: must be called with preemption disabled!
4073 static void __sched notrace __schedule(bool preempt)
4075 struct task_struct *prev, *next;
4076 unsigned long *switch_count;
4077 struct rq_flags rf;
4078 struct rq *rq;
4079 int cpu;
4081 cpu = smp_processor_id();
4082 rq = cpu_rq(cpu);
4083 prev = rq->curr;
4085 schedule_debug(prev, preempt);
4087 if (sched_feat(HRTICK))
4088 hrtick_clear(rq);
4090 local_irq_disable();
4091 rcu_note_context_switch(preempt);
4094 * Make sure that signal_pending_state()->signal_pending() below
4095 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4096 * done by the caller to avoid the race with signal_wake_up().
4098 * The membarrier system call requires a full memory barrier
4099 * after coming from user-space, before storing to rq->curr.
4101 rq_lock(rq, &rf);
4102 smp_mb__after_spinlock();
4104 /* Promote REQ to ACT */
4105 rq->clock_update_flags <<= 1;
4106 update_rq_clock(rq);
4108 switch_count = &prev->nivcsw;
4109 if (!preempt && prev->state) {
4110 if (signal_pending_state(prev->state, prev)) {
4111 prev->state = TASK_RUNNING;
4112 } else {
4113 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4115 if (prev->in_iowait) {
4116 atomic_inc(&rq->nr_iowait);
4117 delayacct_blkio_start();
4120 switch_count = &prev->nvcsw;
4123 next = pick_next_task(rq, prev, &rf);
4124 clear_tsk_need_resched(prev);
4125 clear_preempt_need_resched();
4127 if (likely(prev != next)) {
4128 rq->nr_switches++;
4130 * RCU users of rcu_dereference(rq->curr) may not see
4131 * changes to task_struct made by pick_next_task().
4133 RCU_INIT_POINTER(rq->curr, next);
4135 * The membarrier system call requires each architecture
4136 * to have a full memory barrier after updating
4137 * rq->curr, before returning to user-space.
4139 * Here are the schemes providing that barrier on the
4140 * various architectures:
4141 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4142 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4143 * - finish_lock_switch() for weakly-ordered
4144 * architectures where spin_unlock is a full barrier,
4145 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4146 * is a RELEASE barrier),
4148 ++*switch_count;
4150 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4152 trace_sched_switch(preempt, prev, next);
4154 /* Also unlocks the rq: */
4155 rq = context_switch(rq, prev, next, &rf);
4156 } else {
4157 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4158 rq_unlock_irq(rq, &rf);
4161 balance_callback(rq);
4164 void __noreturn do_task_dead(void)
4166 /* Causes final put_task_struct in finish_task_switch(): */
4167 set_special_state(TASK_DEAD);
4169 /* Tell freezer to ignore us: */
4170 current->flags |= PF_NOFREEZE;
4172 __schedule(false);
4173 BUG();
4175 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4176 for (;;)
4177 cpu_relax();
4180 static inline void sched_submit_work(struct task_struct *tsk)
4182 if (!tsk->state)
4183 return;
4186 * If a worker went to sleep, notify and ask workqueue whether
4187 * it wants to wake up a task to maintain concurrency.
4188 * As this function is called inside the schedule() context,
4189 * we disable preemption to avoid it calling schedule() again
4190 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4191 * requires it.
4193 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4194 preempt_disable();
4195 if (tsk->flags & PF_WQ_WORKER)
4196 wq_worker_sleeping(tsk);
4197 else
4198 io_wq_worker_sleeping(tsk);
4199 preempt_enable_no_resched();
4202 if (tsk_is_pi_blocked(tsk))
4203 return;
4206 * If we are going to sleep and we have plugged IO queued,
4207 * make sure to submit it to avoid deadlocks.
4209 if (blk_needs_flush_plug(tsk))
4210 blk_schedule_flush_plug(tsk);
4213 static void sched_update_worker(struct task_struct *tsk)
4215 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4216 if (tsk->flags & PF_WQ_WORKER)
4217 wq_worker_running(tsk);
4218 else
4219 io_wq_worker_running(tsk);
4223 asmlinkage __visible void __sched schedule(void)
4225 struct task_struct *tsk = current;
4227 sched_submit_work(tsk);
4228 do {
4229 preempt_disable();
4230 __schedule(false);
4231 sched_preempt_enable_no_resched();
4232 } while (need_resched());
4233 sched_update_worker(tsk);
4235 EXPORT_SYMBOL(schedule);
4238 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4239 * state (have scheduled out non-voluntarily) by making sure that all
4240 * tasks have either left the run queue or have gone into user space.
4241 * As idle tasks do not do either, they must not ever be preempted
4242 * (schedule out non-voluntarily).
4244 * schedule_idle() is similar to schedule_preempt_disable() except that it
4245 * never enables preemption because it does not call sched_submit_work().
4247 void __sched schedule_idle(void)
4250 * As this skips calling sched_submit_work(), which the idle task does
4251 * regardless because that function is a nop when the task is in a
4252 * TASK_RUNNING state, make sure this isn't used someplace that the
4253 * current task can be in any other state. Note, idle is always in the
4254 * TASK_RUNNING state.
4256 WARN_ON_ONCE(current->state);
4257 do {
4258 __schedule(false);
4259 } while (need_resched());
4262 #ifdef CONFIG_CONTEXT_TRACKING
4263 asmlinkage __visible void __sched schedule_user(void)
4266 * If we come here after a random call to set_need_resched(),
4267 * or we have been woken up remotely but the IPI has not yet arrived,
4268 * we haven't yet exited the RCU idle mode. Do it here manually until
4269 * we find a better solution.
4271 * NB: There are buggy callers of this function. Ideally we
4272 * should warn if prev_state != CONTEXT_USER, but that will trigger
4273 * too frequently to make sense yet.
4275 enum ctx_state prev_state = exception_enter();
4276 schedule();
4277 exception_exit(prev_state);
4279 #endif
4282 * schedule_preempt_disabled - called with preemption disabled
4284 * Returns with preemption disabled. Note: preempt_count must be 1
4286 void __sched schedule_preempt_disabled(void)
4288 sched_preempt_enable_no_resched();
4289 schedule();
4290 preempt_disable();
4293 static void __sched notrace preempt_schedule_common(void)
4295 do {
4297 * Because the function tracer can trace preempt_count_sub()
4298 * and it also uses preempt_enable/disable_notrace(), if
4299 * NEED_RESCHED is set, the preempt_enable_notrace() called
4300 * by the function tracer will call this function again and
4301 * cause infinite recursion.
4303 * Preemption must be disabled here before the function
4304 * tracer can trace. Break up preempt_disable() into two
4305 * calls. One to disable preemption without fear of being
4306 * traced. The other to still record the preemption latency,
4307 * which can also be traced by the function tracer.
4309 preempt_disable_notrace();
4310 preempt_latency_start(1);
4311 __schedule(true);
4312 preempt_latency_stop(1);
4313 preempt_enable_no_resched_notrace();
4316 * Check again in case we missed a preemption opportunity
4317 * between schedule and now.
4319 } while (need_resched());
4322 #ifdef CONFIG_PREEMPTION
4324 * This is the entry point to schedule() from in-kernel preemption
4325 * off of preempt_enable.
4327 asmlinkage __visible void __sched notrace preempt_schedule(void)
4330 * If there is a non-zero preempt_count or interrupts are disabled,
4331 * we do not want to preempt the current task. Just return..
4333 if (likely(!preemptible()))
4334 return;
4336 preempt_schedule_common();
4338 NOKPROBE_SYMBOL(preempt_schedule);
4339 EXPORT_SYMBOL(preempt_schedule);
4342 * preempt_schedule_notrace - preempt_schedule called by tracing
4344 * The tracing infrastructure uses preempt_enable_notrace to prevent
4345 * recursion and tracing preempt enabling caused by the tracing
4346 * infrastructure itself. But as tracing can happen in areas coming
4347 * from userspace or just about to enter userspace, a preempt enable
4348 * can occur before user_exit() is called. This will cause the scheduler
4349 * to be called when the system is still in usermode.
4351 * To prevent this, the preempt_enable_notrace will use this function
4352 * instead of preempt_schedule() to exit user context if needed before
4353 * calling the scheduler.
4355 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4357 enum ctx_state prev_ctx;
4359 if (likely(!preemptible()))
4360 return;
4362 do {
4364 * Because the function tracer can trace preempt_count_sub()
4365 * and it also uses preempt_enable/disable_notrace(), if
4366 * NEED_RESCHED is set, the preempt_enable_notrace() called
4367 * by the function tracer will call this function again and
4368 * cause infinite recursion.
4370 * Preemption must be disabled here before the function
4371 * tracer can trace. Break up preempt_disable() into two
4372 * calls. One to disable preemption without fear of being
4373 * traced. The other to still record the preemption latency,
4374 * which can also be traced by the function tracer.
4376 preempt_disable_notrace();
4377 preempt_latency_start(1);
4379 * Needs preempt disabled in case user_exit() is traced
4380 * and the tracer calls preempt_enable_notrace() causing
4381 * an infinite recursion.
4383 prev_ctx = exception_enter();
4384 __schedule(true);
4385 exception_exit(prev_ctx);
4387 preempt_latency_stop(1);
4388 preempt_enable_no_resched_notrace();
4389 } while (need_resched());
4391 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4393 #endif /* CONFIG_PREEMPTION */
4396 * This is the entry point to schedule() from kernel preemption
4397 * off of irq context.
4398 * Note, that this is called and return with irqs disabled. This will
4399 * protect us against recursive calling from irq.
4401 asmlinkage __visible void __sched preempt_schedule_irq(void)
4403 enum ctx_state prev_state;
4405 /* Catch callers which need to be fixed */
4406 BUG_ON(preempt_count() || !irqs_disabled());
4408 prev_state = exception_enter();
4410 do {
4411 preempt_disable();
4412 local_irq_enable();
4413 __schedule(true);
4414 local_irq_disable();
4415 sched_preempt_enable_no_resched();
4416 } while (need_resched());
4418 exception_exit(prev_state);
4421 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4422 void *key)
4424 return try_to_wake_up(curr->private, mode, wake_flags);
4426 EXPORT_SYMBOL(default_wake_function);
4428 #ifdef CONFIG_RT_MUTEXES
4430 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4432 if (pi_task)
4433 prio = min(prio, pi_task->prio);
4435 return prio;
4438 static inline int rt_effective_prio(struct task_struct *p, int prio)
4440 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4442 return __rt_effective_prio(pi_task, prio);
4446 * rt_mutex_setprio - set the current priority of a task
4447 * @p: task to boost
4448 * @pi_task: donor task
4450 * This function changes the 'effective' priority of a task. It does
4451 * not touch ->normal_prio like __setscheduler().
4453 * Used by the rt_mutex code to implement priority inheritance
4454 * logic. Call site only calls if the priority of the task changed.
4456 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4458 int prio, oldprio, queued, running, queue_flag =
4459 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4460 const struct sched_class *prev_class;
4461 struct rq_flags rf;
4462 struct rq *rq;
4464 /* XXX used to be waiter->prio, not waiter->task->prio */
4465 prio = __rt_effective_prio(pi_task, p->normal_prio);
4468 * If nothing changed; bail early.
4470 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4471 return;
4473 rq = __task_rq_lock(p, &rf);
4474 update_rq_clock(rq);
4476 * Set under pi_lock && rq->lock, such that the value can be used under
4477 * either lock.
4479 * Note that there is loads of tricky to make this pointer cache work
4480 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4481 * ensure a task is de-boosted (pi_task is set to NULL) before the
4482 * task is allowed to run again (and can exit). This ensures the pointer
4483 * points to a blocked task -- which guaratees the task is present.
4485 p->pi_top_task = pi_task;
4488 * For FIFO/RR we only need to set prio, if that matches we're done.
4490 if (prio == p->prio && !dl_prio(prio))
4491 goto out_unlock;
4494 * Idle task boosting is a nono in general. There is one
4495 * exception, when PREEMPT_RT and NOHZ is active:
4497 * The idle task calls get_next_timer_interrupt() and holds
4498 * the timer wheel base->lock on the CPU and another CPU wants
4499 * to access the timer (probably to cancel it). We can safely
4500 * ignore the boosting request, as the idle CPU runs this code
4501 * with interrupts disabled and will complete the lock
4502 * protected section without being interrupted. So there is no
4503 * real need to boost.
4505 if (unlikely(p == rq->idle)) {
4506 WARN_ON(p != rq->curr);
4507 WARN_ON(p->pi_blocked_on);
4508 goto out_unlock;
4511 trace_sched_pi_setprio(p, pi_task);
4512 oldprio = p->prio;
4514 if (oldprio == prio)
4515 queue_flag &= ~DEQUEUE_MOVE;
4517 prev_class = p->sched_class;
4518 queued = task_on_rq_queued(p);
4519 running = task_current(rq, p);
4520 if (queued)
4521 dequeue_task(rq, p, queue_flag);
4522 if (running)
4523 put_prev_task(rq, p);
4526 * Boosting condition are:
4527 * 1. -rt task is running and holds mutex A
4528 * --> -dl task blocks on mutex A
4530 * 2. -dl task is running and holds mutex A
4531 * --> -dl task blocks on mutex A and could preempt the
4532 * running task
4534 if (dl_prio(prio)) {
4535 if (!dl_prio(p->normal_prio) ||
4536 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4537 p->dl.dl_boosted = 1;
4538 queue_flag |= ENQUEUE_REPLENISH;
4539 } else
4540 p->dl.dl_boosted = 0;
4541 p->sched_class = &dl_sched_class;
4542 } else if (rt_prio(prio)) {
4543 if (dl_prio(oldprio))
4544 p->dl.dl_boosted = 0;
4545 if (oldprio < prio)
4546 queue_flag |= ENQUEUE_HEAD;
4547 p->sched_class = &rt_sched_class;
4548 } else {
4549 if (dl_prio(oldprio))
4550 p->dl.dl_boosted = 0;
4551 if (rt_prio(oldprio))
4552 p->rt.timeout = 0;
4553 p->sched_class = &fair_sched_class;
4556 p->prio = prio;
4558 if (queued)
4559 enqueue_task(rq, p, queue_flag);
4560 if (running)
4561 set_next_task(rq, p);
4563 check_class_changed(rq, p, prev_class, oldprio);
4564 out_unlock:
4565 /* Avoid rq from going away on us: */
4566 preempt_disable();
4567 __task_rq_unlock(rq, &rf);
4569 balance_callback(rq);
4570 preempt_enable();
4572 #else
4573 static inline int rt_effective_prio(struct task_struct *p, int prio)
4575 return prio;
4577 #endif
4579 void set_user_nice(struct task_struct *p, long nice)
4581 bool queued, running;
4582 int old_prio;
4583 struct rq_flags rf;
4584 struct rq *rq;
4586 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4587 return;
4589 * We have to be careful, if called from sys_setpriority(),
4590 * the task might be in the middle of scheduling on another CPU.
4592 rq = task_rq_lock(p, &rf);
4593 update_rq_clock(rq);
4596 * The RT priorities are set via sched_setscheduler(), but we still
4597 * allow the 'normal' nice value to be set - but as expected
4598 * it wont have any effect on scheduling until the task is
4599 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4601 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4602 p->static_prio = NICE_TO_PRIO(nice);
4603 goto out_unlock;
4605 queued = task_on_rq_queued(p);
4606 running = task_current(rq, p);
4607 if (queued)
4608 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4609 if (running)
4610 put_prev_task(rq, p);
4612 p->static_prio = NICE_TO_PRIO(nice);
4613 set_load_weight(p, true);
4614 old_prio = p->prio;
4615 p->prio = effective_prio(p);
4617 if (queued)
4618 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4619 if (running)
4620 set_next_task(rq, p);
4623 * If the task increased its priority or is running and
4624 * lowered its priority, then reschedule its CPU:
4626 p->sched_class->prio_changed(rq, p, old_prio);
4628 out_unlock:
4629 task_rq_unlock(rq, p, &rf);
4631 EXPORT_SYMBOL(set_user_nice);
4634 * can_nice - check if a task can reduce its nice value
4635 * @p: task
4636 * @nice: nice value
4638 int can_nice(const struct task_struct *p, const int nice)
4640 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4641 int nice_rlim = nice_to_rlimit(nice);
4643 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4644 capable(CAP_SYS_NICE));
4647 #ifdef __ARCH_WANT_SYS_NICE
4650 * sys_nice - change the priority of the current process.
4651 * @increment: priority increment
4653 * sys_setpriority is a more generic, but much slower function that
4654 * does similar things.
4656 SYSCALL_DEFINE1(nice, int, increment)
4658 long nice, retval;
4661 * Setpriority might change our priority at the same moment.
4662 * We don't have to worry. Conceptually one call occurs first
4663 * and we have a single winner.
4665 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4666 nice = task_nice(current) + increment;
4668 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4669 if (increment < 0 && !can_nice(current, nice))
4670 return -EPERM;
4672 retval = security_task_setnice(current, nice);
4673 if (retval)
4674 return retval;
4676 set_user_nice(current, nice);
4677 return 0;
4680 #endif
4683 * task_prio - return the priority value of a given task.
4684 * @p: the task in question.
4686 * Return: The priority value as seen by users in /proc.
4687 * RT tasks are offset by -200. Normal tasks are centered
4688 * around 0, value goes from -16 to +15.
4690 int task_prio(const struct task_struct *p)
4692 return p->prio - MAX_RT_PRIO;
4696 * idle_cpu - is a given CPU idle currently?
4697 * @cpu: the processor in question.
4699 * Return: 1 if the CPU is currently idle. 0 otherwise.
4701 int idle_cpu(int cpu)
4703 struct rq *rq = cpu_rq(cpu);
4705 if (rq->curr != rq->idle)
4706 return 0;
4708 if (rq->nr_running)
4709 return 0;
4711 #ifdef CONFIG_SMP
4712 if (rq->ttwu_pending)
4713 return 0;
4714 #endif
4716 return 1;
4720 * available_idle_cpu - is a given CPU idle for enqueuing work.
4721 * @cpu: the CPU in question.
4723 * Return: 1 if the CPU is currently idle. 0 otherwise.
4725 int available_idle_cpu(int cpu)
4727 if (!idle_cpu(cpu))
4728 return 0;
4730 if (vcpu_is_preempted(cpu))
4731 return 0;
4733 return 1;
4737 * idle_task - return the idle task for a given CPU.
4738 * @cpu: the processor in question.
4740 * Return: The idle task for the CPU @cpu.
4742 struct task_struct *idle_task(int cpu)
4744 return cpu_rq(cpu)->idle;
4748 * find_process_by_pid - find a process with a matching PID value.
4749 * @pid: the pid in question.
4751 * The task of @pid, if found. %NULL otherwise.
4753 static struct task_struct *find_process_by_pid(pid_t pid)
4755 return pid ? find_task_by_vpid(pid) : current;
4759 * sched_setparam() passes in -1 for its policy, to let the functions
4760 * it calls know not to change it.
4762 #define SETPARAM_POLICY -1
4764 static void __setscheduler_params(struct task_struct *p,
4765 const struct sched_attr *attr)
4767 int policy = attr->sched_policy;
4769 if (policy == SETPARAM_POLICY)
4770 policy = p->policy;
4772 p->policy = policy;
4774 if (dl_policy(policy))
4775 __setparam_dl(p, attr);
4776 else if (fair_policy(policy))
4777 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4780 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4781 * !rt_policy. Always setting this ensures that things like
4782 * getparam()/getattr() don't report silly values for !rt tasks.
4784 p->rt_priority = attr->sched_priority;
4785 p->normal_prio = normal_prio(p);
4786 set_load_weight(p, true);
4789 /* Actually do priority change: must hold pi & rq lock. */
4790 static void __setscheduler(struct rq *rq, struct task_struct *p,
4791 const struct sched_attr *attr, bool keep_boost)
4794 * If params can't change scheduling class changes aren't allowed
4795 * either.
4797 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4798 return;
4800 __setscheduler_params(p, attr);
4803 * Keep a potential priority boosting if called from
4804 * sched_setscheduler().
4806 p->prio = normal_prio(p);
4807 if (keep_boost)
4808 p->prio = rt_effective_prio(p, p->prio);
4810 if (dl_prio(p->prio))
4811 p->sched_class = &dl_sched_class;
4812 else if (rt_prio(p->prio))
4813 p->sched_class = &rt_sched_class;
4814 else
4815 p->sched_class = &fair_sched_class;
4819 * Check the target process has a UID that matches the current process's:
4821 static bool check_same_owner(struct task_struct *p)
4823 const struct cred *cred = current_cred(), *pcred;
4824 bool match;
4826 rcu_read_lock();
4827 pcred = __task_cred(p);
4828 match = (uid_eq(cred->euid, pcred->euid) ||
4829 uid_eq(cred->euid, pcred->uid));
4830 rcu_read_unlock();
4831 return match;
4834 static int __sched_setscheduler(struct task_struct *p,
4835 const struct sched_attr *attr,
4836 bool user, bool pi)
4838 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4839 MAX_RT_PRIO - 1 - attr->sched_priority;
4840 int retval, oldprio, oldpolicy = -1, queued, running;
4841 int new_effective_prio, policy = attr->sched_policy;
4842 const struct sched_class *prev_class;
4843 struct rq_flags rf;
4844 int reset_on_fork;
4845 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4846 struct rq *rq;
4848 /* The pi code expects interrupts enabled */
4849 BUG_ON(pi && in_interrupt());
4850 recheck:
4851 /* Double check policy once rq lock held: */
4852 if (policy < 0) {
4853 reset_on_fork = p->sched_reset_on_fork;
4854 policy = oldpolicy = p->policy;
4855 } else {
4856 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4858 if (!valid_policy(policy))
4859 return -EINVAL;
4862 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4863 return -EINVAL;
4866 * Valid priorities for SCHED_FIFO and SCHED_RR are
4867 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4868 * SCHED_BATCH and SCHED_IDLE is 0.
4870 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4871 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4872 return -EINVAL;
4873 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4874 (rt_policy(policy) != (attr->sched_priority != 0)))
4875 return -EINVAL;
4878 * Allow unprivileged RT tasks to decrease priority:
4880 if (user && !capable(CAP_SYS_NICE)) {
4881 if (fair_policy(policy)) {
4882 if (attr->sched_nice < task_nice(p) &&
4883 !can_nice(p, attr->sched_nice))
4884 return -EPERM;
4887 if (rt_policy(policy)) {
4888 unsigned long rlim_rtprio =
4889 task_rlimit(p, RLIMIT_RTPRIO);
4891 /* Can't set/change the rt policy: */
4892 if (policy != p->policy && !rlim_rtprio)
4893 return -EPERM;
4895 /* Can't increase priority: */
4896 if (attr->sched_priority > p->rt_priority &&
4897 attr->sched_priority > rlim_rtprio)
4898 return -EPERM;
4902 * Can't set/change SCHED_DEADLINE policy at all for now
4903 * (safest behavior); in the future we would like to allow
4904 * unprivileged DL tasks to increase their relative deadline
4905 * or reduce their runtime (both ways reducing utilization)
4907 if (dl_policy(policy))
4908 return -EPERM;
4911 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4912 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4914 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4915 if (!can_nice(p, task_nice(p)))
4916 return -EPERM;
4919 /* Can't change other user's priorities: */
4920 if (!check_same_owner(p))
4921 return -EPERM;
4923 /* Normal users shall not reset the sched_reset_on_fork flag: */
4924 if (p->sched_reset_on_fork && !reset_on_fork)
4925 return -EPERM;
4928 if (user) {
4929 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4930 return -EINVAL;
4932 retval = security_task_setscheduler(p);
4933 if (retval)
4934 return retval;
4937 /* Update task specific "requested" clamps */
4938 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4939 retval = uclamp_validate(p, attr);
4940 if (retval)
4941 return retval;
4944 if (pi)
4945 cpuset_read_lock();
4948 * Make sure no PI-waiters arrive (or leave) while we are
4949 * changing the priority of the task:
4951 * To be able to change p->policy safely, the appropriate
4952 * runqueue lock must be held.
4954 rq = task_rq_lock(p, &rf);
4955 update_rq_clock(rq);
4958 * Changing the policy of the stop threads its a very bad idea:
4960 if (p == rq->stop) {
4961 retval = -EINVAL;
4962 goto unlock;
4966 * If not changing anything there's no need to proceed further,
4967 * but store a possible modification of reset_on_fork.
4969 if (unlikely(policy == p->policy)) {
4970 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4971 goto change;
4972 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4973 goto change;
4974 if (dl_policy(policy) && dl_param_changed(p, attr))
4975 goto change;
4976 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4977 goto change;
4979 p->sched_reset_on_fork = reset_on_fork;
4980 retval = 0;
4981 goto unlock;
4983 change:
4985 if (user) {
4986 #ifdef CONFIG_RT_GROUP_SCHED
4988 * Do not allow realtime tasks into groups that have no runtime
4989 * assigned.
4991 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4992 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4993 !task_group_is_autogroup(task_group(p))) {
4994 retval = -EPERM;
4995 goto unlock;
4997 #endif
4998 #ifdef CONFIG_SMP
4999 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5000 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5001 cpumask_t *span = rq->rd->span;
5004 * Don't allow tasks with an affinity mask smaller than
5005 * the entire root_domain to become SCHED_DEADLINE. We
5006 * will also fail if there's no bandwidth available.
5008 if (!cpumask_subset(span, p->cpus_ptr) ||
5009 rq->rd->dl_bw.bw == 0) {
5010 retval = -EPERM;
5011 goto unlock;
5014 #endif
5017 /* Re-check policy now with rq lock held: */
5018 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5019 policy = oldpolicy = -1;
5020 task_rq_unlock(rq, p, &rf);
5021 if (pi)
5022 cpuset_read_unlock();
5023 goto recheck;
5027 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5028 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5029 * is available.
5031 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5032 retval = -EBUSY;
5033 goto unlock;
5036 p->sched_reset_on_fork = reset_on_fork;
5037 oldprio = p->prio;
5039 if (pi) {
5041 * Take priority boosted tasks into account. If the new
5042 * effective priority is unchanged, we just store the new
5043 * normal parameters and do not touch the scheduler class and
5044 * the runqueue. This will be done when the task deboost
5045 * itself.
5047 new_effective_prio = rt_effective_prio(p, newprio);
5048 if (new_effective_prio == oldprio)
5049 queue_flags &= ~DEQUEUE_MOVE;
5052 queued = task_on_rq_queued(p);
5053 running = task_current(rq, p);
5054 if (queued)
5055 dequeue_task(rq, p, queue_flags);
5056 if (running)
5057 put_prev_task(rq, p);
5059 prev_class = p->sched_class;
5061 __setscheduler(rq, p, attr, pi);
5062 __setscheduler_uclamp(p, attr);
5064 if (queued) {
5066 * We enqueue to tail when the priority of a task is
5067 * increased (user space view).
5069 if (oldprio < p->prio)
5070 queue_flags |= ENQUEUE_HEAD;
5072 enqueue_task(rq, p, queue_flags);
5074 if (running)
5075 set_next_task(rq, p);
5077 check_class_changed(rq, p, prev_class, oldprio);
5079 /* Avoid rq from going away on us: */
5080 preempt_disable();
5081 task_rq_unlock(rq, p, &rf);
5083 if (pi) {
5084 cpuset_read_unlock();
5085 rt_mutex_adjust_pi(p);
5088 /* Run balance callbacks after we've adjusted the PI chain: */
5089 balance_callback(rq);
5090 preempt_enable();
5092 return 0;
5094 unlock:
5095 task_rq_unlock(rq, p, &rf);
5096 if (pi)
5097 cpuset_read_unlock();
5098 return retval;
5101 static int _sched_setscheduler(struct task_struct *p, int policy,
5102 const struct sched_param *param, bool check)
5104 struct sched_attr attr = {
5105 .sched_policy = policy,
5106 .sched_priority = param->sched_priority,
5107 .sched_nice = PRIO_TO_NICE(p->static_prio),
5110 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5111 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5112 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5113 policy &= ~SCHED_RESET_ON_FORK;
5114 attr.sched_policy = policy;
5117 return __sched_setscheduler(p, &attr, check, true);
5120 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5121 * @p: the task in question.
5122 * @policy: new policy.
5123 * @param: structure containing the new RT priority.
5125 * Return: 0 on success. An error code otherwise.
5127 * NOTE that the task may be already dead.
5129 int sched_setscheduler(struct task_struct *p, int policy,
5130 const struct sched_param *param)
5132 return _sched_setscheduler(p, policy, param, true);
5134 EXPORT_SYMBOL_GPL(sched_setscheduler);
5136 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5138 return __sched_setscheduler(p, attr, true, true);
5140 EXPORT_SYMBOL_GPL(sched_setattr);
5142 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5144 return __sched_setscheduler(p, attr, false, true);
5148 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5149 * @p: the task in question.
5150 * @policy: new policy.
5151 * @param: structure containing the new RT priority.
5153 * Just like sched_setscheduler, only don't bother checking if the
5154 * current context has permission. For example, this is needed in
5155 * stop_machine(): we create temporary high priority worker threads,
5156 * but our caller might not have that capability.
5158 * Return: 0 on success. An error code otherwise.
5160 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5161 const struct sched_param *param)
5163 return _sched_setscheduler(p, policy, param, false);
5165 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5167 static int
5168 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5170 struct sched_param lparam;
5171 struct task_struct *p;
5172 int retval;
5174 if (!param || pid < 0)
5175 return -EINVAL;
5176 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5177 return -EFAULT;
5179 rcu_read_lock();
5180 retval = -ESRCH;
5181 p = find_process_by_pid(pid);
5182 if (likely(p))
5183 get_task_struct(p);
5184 rcu_read_unlock();
5186 if (likely(p)) {
5187 retval = sched_setscheduler(p, policy, &lparam);
5188 put_task_struct(p);
5191 return retval;
5195 * Mimics kernel/events/core.c perf_copy_attr().
5197 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5199 u32 size;
5200 int ret;
5202 /* Zero the full structure, so that a short copy will be nice: */
5203 memset(attr, 0, sizeof(*attr));
5205 ret = get_user(size, &uattr->size);
5206 if (ret)
5207 return ret;
5209 /* ABI compatibility quirk: */
5210 if (!size)
5211 size = SCHED_ATTR_SIZE_VER0;
5212 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5213 goto err_size;
5215 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5216 if (ret) {
5217 if (ret == -E2BIG)
5218 goto err_size;
5219 return ret;
5222 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5223 size < SCHED_ATTR_SIZE_VER1)
5224 return -EINVAL;
5227 * XXX: Do we want to be lenient like existing syscalls; or do we want
5228 * to be strict and return an error on out-of-bounds values?
5230 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5232 return 0;
5234 err_size:
5235 put_user(sizeof(*attr), &uattr->size);
5236 return -E2BIG;
5240 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5241 * @pid: the pid in question.
5242 * @policy: new policy.
5243 * @param: structure containing the new RT priority.
5245 * Return: 0 on success. An error code otherwise.
5247 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5249 if (policy < 0)
5250 return -EINVAL;
5252 return do_sched_setscheduler(pid, policy, param);
5256 * sys_sched_setparam - set/change the RT priority of a thread
5257 * @pid: the pid in question.
5258 * @param: structure containing the new RT priority.
5260 * Return: 0 on success. An error code otherwise.
5262 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5264 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5268 * sys_sched_setattr - same as above, but with extended sched_attr
5269 * @pid: the pid in question.
5270 * @uattr: structure containing the extended parameters.
5271 * @flags: for future extension.
5273 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5274 unsigned int, flags)
5276 struct sched_attr attr;
5277 struct task_struct *p;
5278 int retval;
5280 if (!uattr || pid < 0 || flags)
5281 return -EINVAL;
5283 retval = sched_copy_attr(uattr, &attr);
5284 if (retval)
5285 return retval;
5287 if ((int)attr.sched_policy < 0)
5288 return -EINVAL;
5289 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5290 attr.sched_policy = SETPARAM_POLICY;
5292 rcu_read_lock();
5293 retval = -ESRCH;
5294 p = find_process_by_pid(pid);
5295 if (likely(p))
5296 get_task_struct(p);
5297 rcu_read_unlock();
5299 if (likely(p)) {
5300 retval = sched_setattr(p, &attr);
5301 put_task_struct(p);
5304 return retval;
5308 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5309 * @pid: the pid in question.
5311 * Return: On success, the policy of the thread. Otherwise, a negative error
5312 * code.
5314 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5316 struct task_struct *p;
5317 int retval;
5319 if (pid < 0)
5320 return -EINVAL;
5322 retval = -ESRCH;
5323 rcu_read_lock();
5324 p = find_process_by_pid(pid);
5325 if (p) {
5326 retval = security_task_getscheduler(p);
5327 if (!retval)
5328 retval = p->policy
5329 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5331 rcu_read_unlock();
5332 return retval;
5336 * sys_sched_getparam - get the RT priority of a thread
5337 * @pid: the pid in question.
5338 * @param: structure containing the RT priority.
5340 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5341 * code.
5343 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5345 struct sched_param lp = { .sched_priority = 0 };
5346 struct task_struct *p;
5347 int retval;
5349 if (!param || pid < 0)
5350 return -EINVAL;
5352 rcu_read_lock();
5353 p = find_process_by_pid(pid);
5354 retval = -ESRCH;
5355 if (!p)
5356 goto out_unlock;
5358 retval = security_task_getscheduler(p);
5359 if (retval)
5360 goto out_unlock;
5362 if (task_has_rt_policy(p))
5363 lp.sched_priority = p->rt_priority;
5364 rcu_read_unlock();
5367 * This one might sleep, we cannot do it with a spinlock held ...
5369 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5371 return retval;
5373 out_unlock:
5374 rcu_read_unlock();
5375 return retval;
5379 * Copy the kernel size attribute structure (which might be larger
5380 * than what user-space knows about) to user-space.
5382 * Note that all cases are valid: user-space buffer can be larger or
5383 * smaller than the kernel-space buffer. The usual case is that both
5384 * have the same size.
5386 static int
5387 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5388 struct sched_attr *kattr,
5389 unsigned int usize)
5391 unsigned int ksize = sizeof(*kattr);
5393 if (!access_ok(uattr, usize))
5394 return -EFAULT;
5397 * sched_getattr() ABI forwards and backwards compatibility:
5399 * If usize == ksize then we just copy everything to user-space and all is good.
5401 * If usize < ksize then we only copy as much as user-space has space for,
5402 * this keeps ABI compatibility as well. We skip the rest.
5404 * If usize > ksize then user-space is using a newer version of the ABI,
5405 * which part the kernel doesn't know about. Just ignore it - tooling can
5406 * detect the kernel's knowledge of attributes from the attr->size value
5407 * which is set to ksize in this case.
5409 kattr->size = min(usize, ksize);
5411 if (copy_to_user(uattr, kattr, kattr->size))
5412 return -EFAULT;
5414 return 0;
5418 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5419 * @pid: the pid in question.
5420 * @uattr: structure containing the extended parameters.
5421 * @usize: sizeof(attr) for fwd/bwd comp.
5422 * @flags: for future extension.
5424 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5425 unsigned int, usize, unsigned int, flags)
5427 struct sched_attr kattr = { };
5428 struct task_struct *p;
5429 int retval;
5431 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5432 usize < SCHED_ATTR_SIZE_VER0 || flags)
5433 return -EINVAL;
5435 rcu_read_lock();
5436 p = find_process_by_pid(pid);
5437 retval = -ESRCH;
5438 if (!p)
5439 goto out_unlock;
5441 retval = security_task_getscheduler(p);
5442 if (retval)
5443 goto out_unlock;
5445 kattr.sched_policy = p->policy;
5446 if (p->sched_reset_on_fork)
5447 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5448 if (task_has_dl_policy(p))
5449 __getparam_dl(p, &kattr);
5450 else if (task_has_rt_policy(p))
5451 kattr.sched_priority = p->rt_priority;
5452 else
5453 kattr.sched_nice = task_nice(p);
5455 #ifdef CONFIG_UCLAMP_TASK
5456 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5457 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5458 #endif
5460 rcu_read_unlock();
5462 return sched_attr_copy_to_user(uattr, &kattr, usize);
5464 out_unlock:
5465 rcu_read_unlock();
5466 return retval;
5469 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5471 cpumask_var_t cpus_allowed, new_mask;
5472 struct task_struct *p;
5473 int retval;
5475 rcu_read_lock();
5477 p = find_process_by_pid(pid);
5478 if (!p) {
5479 rcu_read_unlock();
5480 return -ESRCH;
5483 /* Prevent p going away */
5484 get_task_struct(p);
5485 rcu_read_unlock();
5487 if (p->flags & PF_NO_SETAFFINITY) {
5488 retval = -EINVAL;
5489 goto out_put_task;
5491 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5492 retval = -ENOMEM;
5493 goto out_put_task;
5495 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5496 retval = -ENOMEM;
5497 goto out_free_cpus_allowed;
5499 retval = -EPERM;
5500 if (!check_same_owner(p)) {
5501 rcu_read_lock();
5502 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5503 rcu_read_unlock();
5504 goto out_free_new_mask;
5506 rcu_read_unlock();
5509 retval = security_task_setscheduler(p);
5510 if (retval)
5511 goto out_free_new_mask;
5514 cpuset_cpus_allowed(p, cpus_allowed);
5515 cpumask_and(new_mask, in_mask, cpus_allowed);
5518 * Since bandwidth control happens on root_domain basis,
5519 * if admission test is enabled, we only admit -deadline
5520 * tasks allowed to run on all the CPUs in the task's
5521 * root_domain.
5523 #ifdef CONFIG_SMP
5524 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5525 rcu_read_lock();
5526 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5527 retval = -EBUSY;
5528 rcu_read_unlock();
5529 goto out_free_new_mask;
5531 rcu_read_unlock();
5533 #endif
5534 again:
5535 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5537 if (!retval) {
5538 cpuset_cpus_allowed(p, cpus_allowed);
5539 if (!cpumask_subset(new_mask, cpus_allowed)) {
5541 * We must have raced with a concurrent cpuset
5542 * update. Just reset the cpus_allowed to the
5543 * cpuset's cpus_allowed
5545 cpumask_copy(new_mask, cpus_allowed);
5546 goto again;
5549 out_free_new_mask:
5550 free_cpumask_var(new_mask);
5551 out_free_cpus_allowed:
5552 free_cpumask_var(cpus_allowed);
5553 out_put_task:
5554 put_task_struct(p);
5555 return retval;
5558 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5559 struct cpumask *new_mask)
5561 if (len < cpumask_size())
5562 cpumask_clear(new_mask);
5563 else if (len > cpumask_size())
5564 len = cpumask_size();
5566 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5570 * sys_sched_setaffinity - set the CPU affinity of a process
5571 * @pid: pid of the process
5572 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5573 * @user_mask_ptr: user-space pointer to the new CPU mask
5575 * Return: 0 on success. An error code otherwise.
5577 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5578 unsigned long __user *, user_mask_ptr)
5580 cpumask_var_t new_mask;
5581 int retval;
5583 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5584 return -ENOMEM;
5586 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5587 if (retval == 0)
5588 retval = sched_setaffinity(pid, new_mask);
5589 free_cpumask_var(new_mask);
5590 return retval;
5593 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5595 struct task_struct *p;
5596 unsigned long flags;
5597 int retval;
5599 rcu_read_lock();
5601 retval = -ESRCH;
5602 p = find_process_by_pid(pid);
5603 if (!p)
5604 goto out_unlock;
5606 retval = security_task_getscheduler(p);
5607 if (retval)
5608 goto out_unlock;
5610 raw_spin_lock_irqsave(&p->pi_lock, flags);
5611 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5612 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5614 out_unlock:
5615 rcu_read_unlock();
5617 return retval;
5621 * sys_sched_getaffinity - get the CPU affinity of a process
5622 * @pid: pid of the process
5623 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5624 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5626 * Return: size of CPU mask copied to user_mask_ptr on success. An
5627 * error code otherwise.
5629 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5630 unsigned long __user *, user_mask_ptr)
5632 int ret;
5633 cpumask_var_t mask;
5635 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5636 return -EINVAL;
5637 if (len & (sizeof(unsigned long)-1))
5638 return -EINVAL;
5640 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5641 return -ENOMEM;
5643 ret = sched_getaffinity(pid, mask);
5644 if (ret == 0) {
5645 unsigned int retlen = min(len, cpumask_size());
5647 if (copy_to_user(user_mask_ptr, mask, retlen))
5648 ret = -EFAULT;
5649 else
5650 ret = retlen;
5652 free_cpumask_var(mask);
5654 return ret;
5658 * sys_sched_yield - yield the current processor to other threads.
5660 * This function yields the current CPU to other tasks. If there are no
5661 * other threads running on this CPU then this function will return.
5663 * Return: 0.
5665 static void do_sched_yield(void)
5667 struct rq_flags rf;
5668 struct rq *rq;
5670 rq = this_rq_lock_irq(&rf);
5672 schedstat_inc(rq->yld_count);
5673 current->sched_class->yield_task(rq);
5676 * Since we are going to call schedule() anyway, there's
5677 * no need to preempt or enable interrupts:
5679 preempt_disable();
5680 rq_unlock(rq, &rf);
5681 sched_preempt_enable_no_resched();
5683 schedule();
5686 SYSCALL_DEFINE0(sched_yield)
5688 do_sched_yield();
5689 return 0;
5692 #ifndef CONFIG_PREEMPTION
5693 int __sched _cond_resched(void)
5695 if (should_resched(0)) {
5696 preempt_schedule_common();
5697 return 1;
5699 rcu_all_qs();
5700 return 0;
5702 EXPORT_SYMBOL(_cond_resched);
5703 #endif
5706 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5707 * call schedule, and on return reacquire the lock.
5709 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5710 * operations here to prevent schedule() from being called twice (once via
5711 * spin_unlock(), once by hand).
5713 int __cond_resched_lock(spinlock_t *lock)
5715 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5716 int ret = 0;
5718 lockdep_assert_held(lock);
5720 if (spin_needbreak(lock) || resched) {
5721 spin_unlock(lock);
5722 if (resched)
5723 preempt_schedule_common();
5724 else
5725 cpu_relax();
5726 ret = 1;
5727 spin_lock(lock);
5729 return ret;
5731 EXPORT_SYMBOL(__cond_resched_lock);
5734 * yield - yield the current processor to other threads.
5736 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5738 * The scheduler is at all times free to pick the calling task as the most
5739 * eligible task to run, if removing the yield() call from your code breaks
5740 * it, its already broken.
5742 * Typical broken usage is:
5744 * while (!event)
5745 * yield();
5747 * where one assumes that yield() will let 'the other' process run that will
5748 * make event true. If the current task is a SCHED_FIFO task that will never
5749 * happen. Never use yield() as a progress guarantee!!
5751 * If you want to use yield() to wait for something, use wait_event().
5752 * If you want to use yield() to be 'nice' for others, use cond_resched().
5753 * If you still want to use yield(), do not!
5755 void __sched yield(void)
5757 set_current_state(TASK_RUNNING);
5758 do_sched_yield();
5760 EXPORT_SYMBOL(yield);
5763 * yield_to - yield the current processor to another thread in
5764 * your thread group, or accelerate that thread toward the
5765 * processor it's on.
5766 * @p: target task
5767 * @preempt: whether task preemption is allowed or not
5769 * It's the caller's job to ensure that the target task struct
5770 * can't go away on us before we can do any checks.
5772 * Return:
5773 * true (>0) if we indeed boosted the target task.
5774 * false (0) if we failed to boost the target.
5775 * -ESRCH if there's no task to yield to.
5777 int __sched yield_to(struct task_struct *p, bool preempt)
5779 struct task_struct *curr = current;
5780 struct rq *rq, *p_rq;
5781 unsigned long flags;
5782 int yielded = 0;
5784 local_irq_save(flags);
5785 rq = this_rq();
5787 again:
5788 p_rq = task_rq(p);
5790 * If we're the only runnable task on the rq and target rq also
5791 * has only one task, there's absolutely no point in yielding.
5793 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5794 yielded = -ESRCH;
5795 goto out_irq;
5798 double_rq_lock(rq, p_rq);
5799 if (task_rq(p) != p_rq) {
5800 double_rq_unlock(rq, p_rq);
5801 goto again;
5804 if (!curr->sched_class->yield_to_task)
5805 goto out_unlock;
5807 if (curr->sched_class != p->sched_class)
5808 goto out_unlock;
5810 if (task_running(p_rq, p) || p->state)
5811 goto out_unlock;
5813 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5814 if (yielded) {
5815 schedstat_inc(rq->yld_count);
5817 * Make p's CPU reschedule; pick_next_entity takes care of
5818 * fairness.
5820 if (preempt && rq != p_rq)
5821 resched_curr(p_rq);
5824 out_unlock:
5825 double_rq_unlock(rq, p_rq);
5826 out_irq:
5827 local_irq_restore(flags);
5829 if (yielded > 0)
5830 schedule();
5832 return yielded;
5834 EXPORT_SYMBOL_GPL(yield_to);
5836 int io_schedule_prepare(void)
5838 int old_iowait = current->in_iowait;
5840 current->in_iowait = 1;
5841 blk_schedule_flush_plug(current);
5843 return old_iowait;
5846 void io_schedule_finish(int token)
5848 current->in_iowait = token;
5852 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5853 * that process accounting knows that this is a task in IO wait state.
5855 long __sched io_schedule_timeout(long timeout)
5857 int token;
5858 long ret;
5860 token = io_schedule_prepare();
5861 ret = schedule_timeout(timeout);
5862 io_schedule_finish(token);
5864 return ret;
5866 EXPORT_SYMBOL(io_schedule_timeout);
5868 void __sched io_schedule(void)
5870 int token;
5872 token = io_schedule_prepare();
5873 schedule();
5874 io_schedule_finish(token);
5876 EXPORT_SYMBOL(io_schedule);
5879 * sys_sched_get_priority_max - return maximum RT priority.
5880 * @policy: scheduling class.
5882 * Return: On success, this syscall returns the maximum
5883 * rt_priority that can be used by a given scheduling class.
5884 * On failure, a negative error code is returned.
5886 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5888 int ret = -EINVAL;
5890 switch (policy) {
5891 case SCHED_FIFO:
5892 case SCHED_RR:
5893 ret = MAX_USER_RT_PRIO-1;
5894 break;
5895 case SCHED_DEADLINE:
5896 case SCHED_NORMAL:
5897 case SCHED_BATCH:
5898 case SCHED_IDLE:
5899 ret = 0;
5900 break;
5902 return ret;
5906 * sys_sched_get_priority_min - return minimum RT priority.
5907 * @policy: scheduling class.
5909 * Return: On success, this syscall returns the minimum
5910 * rt_priority that can be used by a given scheduling class.
5911 * On failure, a negative error code is returned.
5913 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5915 int ret = -EINVAL;
5917 switch (policy) {
5918 case SCHED_FIFO:
5919 case SCHED_RR:
5920 ret = 1;
5921 break;
5922 case SCHED_DEADLINE:
5923 case SCHED_NORMAL:
5924 case SCHED_BATCH:
5925 case SCHED_IDLE:
5926 ret = 0;
5928 return ret;
5931 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5933 struct task_struct *p;
5934 unsigned int time_slice;
5935 struct rq_flags rf;
5936 struct rq *rq;
5937 int retval;
5939 if (pid < 0)
5940 return -EINVAL;
5942 retval = -ESRCH;
5943 rcu_read_lock();
5944 p = find_process_by_pid(pid);
5945 if (!p)
5946 goto out_unlock;
5948 retval = security_task_getscheduler(p);
5949 if (retval)
5950 goto out_unlock;
5952 rq = task_rq_lock(p, &rf);
5953 time_slice = 0;
5954 if (p->sched_class->get_rr_interval)
5955 time_slice = p->sched_class->get_rr_interval(rq, p);
5956 task_rq_unlock(rq, p, &rf);
5958 rcu_read_unlock();
5959 jiffies_to_timespec64(time_slice, t);
5960 return 0;
5962 out_unlock:
5963 rcu_read_unlock();
5964 return retval;
5968 * sys_sched_rr_get_interval - return the default timeslice of a process.
5969 * @pid: pid of the process.
5970 * @interval: userspace pointer to the timeslice value.
5972 * this syscall writes the default timeslice value of a given process
5973 * into the user-space timespec buffer. A value of '0' means infinity.
5975 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5976 * an error code.
5978 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5979 struct __kernel_timespec __user *, interval)
5981 struct timespec64 t;
5982 int retval = sched_rr_get_interval(pid, &t);
5984 if (retval == 0)
5985 retval = put_timespec64(&t, interval);
5987 return retval;
5990 #ifdef CONFIG_COMPAT_32BIT_TIME
5991 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5992 struct old_timespec32 __user *, interval)
5994 struct timespec64 t;
5995 int retval = sched_rr_get_interval(pid, &t);
5997 if (retval == 0)
5998 retval = put_old_timespec32(&t, interval);
5999 return retval;
6001 #endif
6003 void sched_show_task(struct task_struct *p)
6005 unsigned long free = 0;
6006 int ppid;
6008 if (!try_get_task_stack(p))
6009 return;
6011 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6013 if (p->state == TASK_RUNNING)
6014 printk(KERN_CONT " running task ");
6015 #ifdef CONFIG_DEBUG_STACK_USAGE
6016 free = stack_not_used(p);
6017 #endif
6018 ppid = 0;
6019 rcu_read_lock();
6020 if (pid_alive(p))
6021 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6022 rcu_read_unlock();
6023 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6024 task_pid_nr(p), ppid,
6025 (unsigned long)task_thread_info(p)->flags);
6027 print_worker_info(KERN_INFO, p);
6028 show_stack(p, NULL, KERN_INFO);
6029 put_task_stack(p);
6031 EXPORT_SYMBOL_GPL(sched_show_task);
6033 static inline bool
6034 state_filter_match(unsigned long state_filter, struct task_struct *p)
6036 /* no filter, everything matches */
6037 if (!state_filter)
6038 return true;
6040 /* filter, but doesn't match */
6041 if (!(p->state & state_filter))
6042 return false;
6045 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6046 * TASK_KILLABLE).
6048 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6049 return false;
6051 return true;
6055 void show_state_filter(unsigned long state_filter)
6057 struct task_struct *g, *p;
6059 #if BITS_PER_LONG == 32
6060 printk(KERN_INFO
6061 " task PC stack pid father\n");
6062 #else
6063 printk(KERN_INFO
6064 " task PC stack pid father\n");
6065 #endif
6066 rcu_read_lock();
6067 for_each_process_thread(g, p) {
6069 * reset the NMI-timeout, listing all files on a slow
6070 * console might take a lot of time:
6071 * Also, reset softlockup watchdogs on all CPUs, because
6072 * another CPU might be blocked waiting for us to process
6073 * an IPI.
6075 touch_nmi_watchdog();
6076 touch_all_softlockup_watchdogs();
6077 if (state_filter_match(state_filter, p))
6078 sched_show_task(p);
6081 #ifdef CONFIG_SCHED_DEBUG
6082 if (!state_filter)
6083 sysrq_sched_debug_show();
6084 #endif
6085 rcu_read_unlock();
6087 * Only show locks if all tasks are dumped:
6089 if (!state_filter)
6090 debug_show_all_locks();
6094 * init_idle - set up an idle thread for a given CPU
6095 * @idle: task in question
6096 * @cpu: CPU the idle task belongs to
6098 * NOTE: this function does not set the idle thread's NEED_RESCHED
6099 * flag, to make booting more robust.
6101 void init_idle(struct task_struct *idle, int cpu)
6103 struct rq *rq = cpu_rq(cpu);
6104 unsigned long flags;
6106 __sched_fork(0, idle);
6108 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6109 raw_spin_lock(&rq->lock);
6111 idle->state = TASK_RUNNING;
6112 idle->se.exec_start = sched_clock();
6113 idle->flags |= PF_IDLE;
6115 scs_task_reset(idle);
6116 kasan_unpoison_task_stack(idle);
6118 #ifdef CONFIG_SMP
6120 * Its possible that init_idle() gets called multiple times on a task,
6121 * in that case do_set_cpus_allowed() will not do the right thing.
6123 * And since this is boot we can forgo the serialization.
6125 set_cpus_allowed_common(idle, cpumask_of(cpu));
6126 #endif
6128 * We're having a chicken and egg problem, even though we are
6129 * holding rq->lock, the CPU isn't yet set to this CPU so the
6130 * lockdep check in task_group() will fail.
6132 * Similar case to sched_fork(). / Alternatively we could
6133 * use task_rq_lock() here and obtain the other rq->lock.
6135 * Silence PROVE_RCU
6137 rcu_read_lock();
6138 __set_task_cpu(idle, cpu);
6139 rcu_read_unlock();
6141 rq->idle = idle;
6142 rcu_assign_pointer(rq->curr, idle);
6143 idle->on_rq = TASK_ON_RQ_QUEUED;
6144 #ifdef CONFIG_SMP
6145 idle->on_cpu = 1;
6146 #endif
6147 raw_spin_unlock(&rq->lock);
6148 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6150 /* Set the preempt count _outside_ the spinlocks! */
6151 init_idle_preempt_count(idle, cpu);
6154 * The idle tasks have their own, simple scheduling class:
6156 idle->sched_class = &idle_sched_class;
6157 ftrace_graph_init_idle_task(idle, cpu);
6158 vtime_init_idle(idle, cpu);
6159 #ifdef CONFIG_SMP
6160 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6161 #endif
6164 #ifdef CONFIG_SMP
6166 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6167 const struct cpumask *trial)
6169 int ret = 1;
6171 if (!cpumask_weight(cur))
6172 return ret;
6174 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6176 return ret;
6179 int task_can_attach(struct task_struct *p,
6180 const struct cpumask *cs_cpus_allowed)
6182 int ret = 0;
6185 * Kthreads which disallow setaffinity shouldn't be moved
6186 * to a new cpuset; we don't want to change their CPU
6187 * affinity and isolating such threads by their set of
6188 * allowed nodes is unnecessary. Thus, cpusets are not
6189 * applicable for such threads. This prevents checking for
6190 * success of set_cpus_allowed_ptr() on all attached tasks
6191 * before cpus_mask may be changed.
6193 if (p->flags & PF_NO_SETAFFINITY) {
6194 ret = -EINVAL;
6195 goto out;
6198 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6199 cs_cpus_allowed))
6200 ret = dl_task_can_attach(p, cs_cpus_allowed);
6202 out:
6203 return ret;
6206 bool sched_smp_initialized __read_mostly;
6208 #ifdef CONFIG_NUMA_BALANCING
6209 /* Migrate current task p to target_cpu */
6210 int migrate_task_to(struct task_struct *p, int target_cpu)
6212 struct migration_arg arg = { p, target_cpu };
6213 int curr_cpu = task_cpu(p);
6215 if (curr_cpu == target_cpu)
6216 return 0;
6218 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6219 return -EINVAL;
6221 /* TODO: This is not properly updating schedstats */
6223 trace_sched_move_numa(p, curr_cpu, target_cpu);
6224 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6228 * Requeue a task on a given node and accurately track the number of NUMA
6229 * tasks on the runqueues
6231 void sched_setnuma(struct task_struct *p, int nid)
6233 bool queued, running;
6234 struct rq_flags rf;
6235 struct rq *rq;
6237 rq = task_rq_lock(p, &rf);
6238 queued = task_on_rq_queued(p);
6239 running = task_current(rq, p);
6241 if (queued)
6242 dequeue_task(rq, p, DEQUEUE_SAVE);
6243 if (running)
6244 put_prev_task(rq, p);
6246 p->numa_preferred_nid = nid;
6248 if (queued)
6249 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6250 if (running)
6251 set_next_task(rq, p);
6252 task_rq_unlock(rq, p, &rf);
6254 #endif /* CONFIG_NUMA_BALANCING */
6256 #ifdef CONFIG_HOTPLUG_CPU
6258 * Ensure that the idle task is using init_mm right before its CPU goes
6259 * offline.
6261 void idle_task_exit(void)
6263 struct mm_struct *mm = current->active_mm;
6265 BUG_ON(cpu_online(smp_processor_id()));
6266 BUG_ON(current != this_rq()->idle);
6268 if (mm != &init_mm) {
6269 switch_mm(mm, &init_mm, current);
6270 finish_arch_post_lock_switch();
6273 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6277 * Since this CPU is going 'away' for a while, fold any nr_active delta
6278 * we might have. Assumes we're called after migrate_tasks() so that the
6279 * nr_active count is stable. We need to take the teardown thread which
6280 * is calling this into account, so we hand in adjust = 1 to the load
6281 * calculation.
6283 * Also see the comment "Global load-average calculations".
6285 static void calc_load_migrate(struct rq *rq)
6287 long delta = calc_load_fold_active(rq, 1);
6288 if (delta)
6289 atomic_long_add(delta, &calc_load_tasks);
6292 static struct task_struct *__pick_migrate_task(struct rq *rq)
6294 const struct sched_class *class;
6295 struct task_struct *next;
6297 for_each_class(class) {
6298 next = class->pick_next_task(rq);
6299 if (next) {
6300 next->sched_class->put_prev_task(rq, next);
6301 return next;
6305 /* The idle class should always have a runnable task */
6306 BUG();
6310 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6311 * try_to_wake_up()->select_task_rq().
6313 * Called with rq->lock held even though we'er in stop_machine() and
6314 * there's no concurrency possible, we hold the required locks anyway
6315 * because of lock validation efforts.
6317 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6319 struct rq *rq = dead_rq;
6320 struct task_struct *next, *stop = rq->stop;
6321 struct rq_flags orf = *rf;
6322 int dest_cpu;
6325 * Fudge the rq selection such that the below task selection loop
6326 * doesn't get stuck on the currently eligible stop task.
6328 * We're currently inside stop_machine() and the rq is either stuck
6329 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6330 * either way we should never end up calling schedule() until we're
6331 * done here.
6333 rq->stop = NULL;
6336 * put_prev_task() and pick_next_task() sched
6337 * class method both need to have an up-to-date
6338 * value of rq->clock[_task]
6340 update_rq_clock(rq);
6342 for (;;) {
6344 * There's this thread running, bail when that's the only
6345 * remaining thread:
6347 if (rq->nr_running == 1)
6348 break;
6350 next = __pick_migrate_task(rq);
6353 * Rules for changing task_struct::cpus_mask are holding
6354 * both pi_lock and rq->lock, such that holding either
6355 * stabilizes the mask.
6357 * Drop rq->lock is not quite as disastrous as it usually is
6358 * because !cpu_active at this point, which means load-balance
6359 * will not interfere. Also, stop-machine.
6361 rq_unlock(rq, rf);
6362 raw_spin_lock(&next->pi_lock);
6363 rq_relock(rq, rf);
6366 * Since we're inside stop-machine, _nothing_ should have
6367 * changed the task, WARN if weird stuff happened, because in
6368 * that case the above rq->lock drop is a fail too.
6370 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6371 raw_spin_unlock(&next->pi_lock);
6372 continue;
6375 /* Find suitable destination for @next, with force if needed. */
6376 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6377 rq = __migrate_task(rq, rf, next, dest_cpu);
6378 if (rq != dead_rq) {
6379 rq_unlock(rq, rf);
6380 rq = dead_rq;
6381 *rf = orf;
6382 rq_relock(rq, rf);
6384 raw_spin_unlock(&next->pi_lock);
6387 rq->stop = stop;
6389 #endif /* CONFIG_HOTPLUG_CPU */
6391 void set_rq_online(struct rq *rq)
6393 if (!rq->online) {
6394 const struct sched_class *class;
6396 cpumask_set_cpu(rq->cpu, rq->rd->online);
6397 rq->online = 1;
6399 for_each_class(class) {
6400 if (class->rq_online)
6401 class->rq_online(rq);
6406 void set_rq_offline(struct rq *rq)
6408 if (rq->online) {
6409 const struct sched_class *class;
6411 for_each_class(class) {
6412 if (class->rq_offline)
6413 class->rq_offline(rq);
6416 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6417 rq->online = 0;
6422 * used to mark begin/end of suspend/resume:
6424 static int num_cpus_frozen;
6427 * Update cpusets according to cpu_active mask. If cpusets are
6428 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6429 * around partition_sched_domains().
6431 * If we come here as part of a suspend/resume, don't touch cpusets because we
6432 * want to restore it back to its original state upon resume anyway.
6434 static void cpuset_cpu_active(void)
6436 if (cpuhp_tasks_frozen) {
6438 * num_cpus_frozen tracks how many CPUs are involved in suspend
6439 * resume sequence. As long as this is not the last online
6440 * operation in the resume sequence, just build a single sched
6441 * domain, ignoring cpusets.
6443 partition_sched_domains(1, NULL, NULL);
6444 if (--num_cpus_frozen)
6445 return;
6447 * This is the last CPU online operation. So fall through and
6448 * restore the original sched domains by considering the
6449 * cpuset configurations.
6451 cpuset_force_rebuild();
6453 cpuset_update_active_cpus();
6456 static int cpuset_cpu_inactive(unsigned int cpu)
6458 if (!cpuhp_tasks_frozen) {
6459 if (dl_cpu_busy(cpu))
6460 return -EBUSY;
6461 cpuset_update_active_cpus();
6462 } else {
6463 num_cpus_frozen++;
6464 partition_sched_domains(1, NULL, NULL);
6466 return 0;
6469 int sched_cpu_activate(unsigned int cpu)
6471 struct rq *rq = cpu_rq(cpu);
6472 struct rq_flags rf;
6474 #ifdef CONFIG_SCHED_SMT
6476 * When going up, increment the number of cores with SMT present.
6478 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6479 static_branch_inc_cpuslocked(&sched_smt_present);
6480 #endif
6481 set_cpu_active(cpu, true);
6483 if (sched_smp_initialized) {
6484 sched_domains_numa_masks_set(cpu);
6485 cpuset_cpu_active();
6489 * Put the rq online, if not already. This happens:
6491 * 1) In the early boot process, because we build the real domains
6492 * after all CPUs have been brought up.
6494 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6495 * domains.
6497 rq_lock_irqsave(rq, &rf);
6498 if (rq->rd) {
6499 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6500 set_rq_online(rq);
6502 rq_unlock_irqrestore(rq, &rf);
6504 return 0;
6507 int sched_cpu_deactivate(unsigned int cpu)
6509 int ret;
6511 set_cpu_active(cpu, false);
6513 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6514 * users of this state to go away such that all new such users will
6515 * observe it.
6517 * Do sync before park smpboot threads to take care the rcu boost case.
6519 synchronize_rcu();
6521 #ifdef CONFIG_SCHED_SMT
6523 * When going down, decrement the number of cores with SMT present.
6525 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6526 static_branch_dec_cpuslocked(&sched_smt_present);
6527 #endif
6529 if (!sched_smp_initialized)
6530 return 0;
6532 ret = cpuset_cpu_inactive(cpu);
6533 if (ret) {
6534 set_cpu_active(cpu, true);
6535 return ret;
6537 sched_domains_numa_masks_clear(cpu);
6538 return 0;
6541 static void sched_rq_cpu_starting(unsigned int cpu)
6543 struct rq *rq = cpu_rq(cpu);
6545 rq->calc_load_update = calc_load_update;
6546 update_max_interval();
6549 int sched_cpu_starting(unsigned int cpu)
6551 sched_rq_cpu_starting(cpu);
6552 sched_tick_start(cpu);
6553 return 0;
6556 #ifdef CONFIG_HOTPLUG_CPU
6557 int sched_cpu_dying(unsigned int cpu)
6559 struct rq *rq = cpu_rq(cpu);
6560 struct rq_flags rf;
6562 /* Handle pending wakeups and then migrate everything off */
6563 sched_tick_stop(cpu);
6565 rq_lock_irqsave(rq, &rf);
6566 if (rq->rd) {
6567 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6568 set_rq_offline(rq);
6570 migrate_tasks(rq, &rf);
6571 BUG_ON(rq->nr_running != 1);
6572 rq_unlock_irqrestore(rq, &rf);
6574 calc_load_migrate(rq);
6575 update_max_interval();
6576 nohz_balance_exit_idle(rq);
6577 hrtick_clear(rq);
6578 return 0;
6580 #endif
6582 void __init sched_init_smp(void)
6584 sched_init_numa();
6587 * There's no userspace yet to cause hotplug operations; hence all the
6588 * CPU masks are stable and all blatant races in the below code cannot
6589 * happen.
6591 mutex_lock(&sched_domains_mutex);
6592 sched_init_domains(cpu_active_mask);
6593 mutex_unlock(&sched_domains_mutex);
6595 /* Move init over to a non-isolated CPU */
6596 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6597 BUG();
6598 sched_init_granularity();
6600 init_sched_rt_class();
6601 init_sched_dl_class();
6603 sched_smp_initialized = true;
6606 static int __init migration_init(void)
6608 sched_cpu_starting(smp_processor_id());
6609 return 0;
6611 early_initcall(migration_init);
6613 #else
6614 void __init sched_init_smp(void)
6616 sched_init_granularity();
6618 #endif /* CONFIG_SMP */
6620 int in_sched_functions(unsigned long addr)
6622 return in_lock_functions(addr) ||
6623 (addr >= (unsigned long)__sched_text_start
6624 && addr < (unsigned long)__sched_text_end);
6627 #ifdef CONFIG_CGROUP_SCHED
6629 * Default task group.
6630 * Every task in system belongs to this group at bootup.
6632 struct task_group root_task_group;
6633 LIST_HEAD(task_groups);
6635 /* Cacheline aligned slab cache for task_group */
6636 static struct kmem_cache *task_group_cache __read_mostly;
6637 #endif
6639 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6640 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6642 void __init sched_init(void)
6644 unsigned long ptr = 0;
6645 int i;
6647 wait_bit_init();
6649 #ifdef CONFIG_FAIR_GROUP_SCHED
6650 ptr += 2 * nr_cpu_ids * sizeof(void **);
6651 #endif
6652 #ifdef CONFIG_RT_GROUP_SCHED
6653 ptr += 2 * nr_cpu_ids * sizeof(void **);
6654 #endif
6655 if (ptr) {
6656 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6658 #ifdef CONFIG_FAIR_GROUP_SCHED
6659 root_task_group.se = (struct sched_entity **)ptr;
6660 ptr += nr_cpu_ids * sizeof(void **);
6662 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6663 ptr += nr_cpu_ids * sizeof(void **);
6665 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6666 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6667 #endif /* CONFIG_FAIR_GROUP_SCHED */
6668 #ifdef CONFIG_RT_GROUP_SCHED
6669 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6670 ptr += nr_cpu_ids * sizeof(void **);
6672 root_task_group.rt_rq = (struct rt_rq **)ptr;
6673 ptr += nr_cpu_ids * sizeof(void **);
6675 #endif /* CONFIG_RT_GROUP_SCHED */
6677 #ifdef CONFIG_CPUMASK_OFFSTACK
6678 for_each_possible_cpu(i) {
6679 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6680 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6681 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6682 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6684 #endif /* CONFIG_CPUMASK_OFFSTACK */
6686 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6687 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6689 #ifdef CONFIG_SMP
6690 init_defrootdomain();
6691 #endif
6693 #ifdef CONFIG_RT_GROUP_SCHED
6694 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6695 global_rt_period(), global_rt_runtime());
6696 #endif /* CONFIG_RT_GROUP_SCHED */
6698 #ifdef CONFIG_CGROUP_SCHED
6699 task_group_cache = KMEM_CACHE(task_group, 0);
6701 list_add(&root_task_group.list, &task_groups);
6702 INIT_LIST_HEAD(&root_task_group.children);
6703 INIT_LIST_HEAD(&root_task_group.siblings);
6704 autogroup_init(&init_task);
6705 #endif /* CONFIG_CGROUP_SCHED */
6707 for_each_possible_cpu(i) {
6708 struct rq *rq;
6710 rq = cpu_rq(i);
6711 raw_spin_lock_init(&rq->lock);
6712 rq->nr_running = 0;
6713 rq->calc_load_active = 0;
6714 rq->calc_load_update = jiffies + LOAD_FREQ;
6715 init_cfs_rq(&rq->cfs);
6716 init_rt_rq(&rq->rt);
6717 init_dl_rq(&rq->dl);
6718 #ifdef CONFIG_FAIR_GROUP_SCHED
6719 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6720 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6722 * How much CPU bandwidth does root_task_group get?
6724 * In case of task-groups formed thr' the cgroup filesystem, it
6725 * gets 100% of the CPU resources in the system. This overall
6726 * system CPU resource is divided among the tasks of
6727 * root_task_group and its child task-groups in a fair manner,
6728 * based on each entity's (task or task-group's) weight
6729 * (se->load.weight).
6731 * In other words, if root_task_group has 10 tasks of weight
6732 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6733 * then A0's share of the CPU resource is:
6735 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6737 * We achieve this by letting root_task_group's tasks sit
6738 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6740 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6741 #endif /* CONFIG_FAIR_GROUP_SCHED */
6743 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6744 #ifdef CONFIG_RT_GROUP_SCHED
6745 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6746 #endif
6747 #ifdef CONFIG_SMP
6748 rq->sd = NULL;
6749 rq->rd = NULL;
6750 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6751 rq->balance_callback = NULL;
6752 rq->active_balance = 0;
6753 rq->next_balance = jiffies;
6754 rq->push_cpu = 0;
6755 rq->cpu = i;
6756 rq->online = 0;
6757 rq->idle_stamp = 0;
6758 rq->avg_idle = 2*sysctl_sched_migration_cost;
6759 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6761 INIT_LIST_HEAD(&rq->cfs_tasks);
6763 rq_attach_root(rq, &def_root_domain);
6764 #ifdef CONFIG_NO_HZ_COMMON
6765 rq->last_blocked_load_update_tick = jiffies;
6766 atomic_set(&rq->nohz_flags, 0);
6768 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6769 #endif
6770 #endif /* CONFIG_SMP */
6771 hrtick_rq_init(rq);
6772 atomic_set(&rq->nr_iowait, 0);
6775 set_load_weight(&init_task, false);
6778 * The boot idle thread does lazy MMU switching as well:
6780 mmgrab(&init_mm);
6781 enter_lazy_tlb(&init_mm, current);
6784 * Make us the idle thread. Technically, schedule() should not be
6785 * called from this thread, however somewhere below it might be,
6786 * but because we are the idle thread, we just pick up running again
6787 * when this runqueue becomes "idle".
6789 init_idle(current, smp_processor_id());
6791 calc_load_update = jiffies + LOAD_FREQ;
6793 #ifdef CONFIG_SMP
6794 idle_thread_set_boot_cpu();
6795 #endif
6796 init_sched_fair_class();
6798 init_schedstats();
6800 psi_init();
6802 init_uclamp();
6804 scheduler_running = 1;
6807 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6808 static inline int preempt_count_equals(int preempt_offset)
6810 int nested = preempt_count() + rcu_preempt_depth();
6812 return (nested == preempt_offset);
6815 void __might_sleep(const char *file, int line, int preempt_offset)
6818 * Blocking primitives will set (and therefore destroy) current->state,
6819 * since we will exit with TASK_RUNNING make sure we enter with it,
6820 * otherwise we will destroy state.
6822 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6823 "do not call blocking ops when !TASK_RUNNING; "
6824 "state=%lx set at [<%p>] %pS\n",
6825 current->state,
6826 (void *)current->task_state_change,
6827 (void *)current->task_state_change);
6829 ___might_sleep(file, line, preempt_offset);
6831 EXPORT_SYMBOL(__might_sleep);
6833 void ___might_sleep(const char *file, int line, int preempt_offset)
6835 /* Ratelimiting timestamp: */
6836 static unsigned long prev_jiffy;
6838 unsigned long preempt_disable_ip;
6840 /* WARN_ON_ONCE() by default, no rate limit required: */
6841 rcu_sleep_check();
6843 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6844 !is_idle_task(current) && !current->non_block_count) ||
6845 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6846 oops_in_progress)
6847 return;
6849 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6850 return;
6851 prev_jiffy = jiffies;
6853 /* Save this before calling printk(), since that will clobber it: */
6854 preempt_disable_ip = get_preempt_disable_ip(current);
6856 printk(KERN_ERR
6857 "BUG: sleeping function called from invalid context at %s:%d\n",
6858 file, line);
6859 printk(KERN_ERR
6860 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6861 in_atomic(), irqs_disabled(), current->non_block_count,
6862 current->pid, current->comm);
6864 if (task_stack_end_corrupted(current))
6865 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6867 debug_show_held_locks(current);
6868 if (irqs_disabled())
6869 print_irqtrace_events(current);
6870 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6871 && !preempt_count_equals(preempt_offset)) {
6872 pr_err("Preemption disabled at:");
6873 print_ip_sym(KERN_ERR, preempt_disable_ip);
6875 dump_stack();
6876 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6878 EXPORT_SYMBOL(___might_sleep);
6880 void __cant_sleep(const char *file, int line, int preempt_offset)
6882 static unsigned long prev_jiffy;
6884 if (irqs_disabled())
6885 return;
6887 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6888 return;
6890 if (preempt_count() > preempt_offset)
6891 return;
6893 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6894 return;
6895 prev_jiffy = jiffies;
6897 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6898 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6899 in_atomic(), irqs_disabled(),
6900 current->pid, current->comm);
6902 debug_show_held_locks(current);
6903 dump_stack();
6904 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6906 EXPORT_SYMBOL_GPL(__cant_sleep);
6907 #endif
6909 #ifdef CONFIG_MAGIC_SYSRQ
6910 void normalize_rt_tasks(void)
6912 struct task_struct *g, *p;
6913 struct sched_attr attr = {
6914 .sched_policy = SCHED_NORMAL,
6917 read_lock(&tasklist_lock);
6918 for_each_process_thread(g, p) {
6920 * Only normalize user tasks:
6922 if (p->flags & PF_KTHREAD)
6923 continue;
6925 p->se.exec_start = 0;
6926 schedstat_set(p->se.statistics.wait_start, 0);
6927 schedstat_set(p->se.statistics.sleep_start, 0);
6928 schedstat_set(p->se.statistics.block_start, 0);
6930 if (!dl_task(p) && !rt_task(p)) {
6932 * Renice negative nice level userspace
6933 * tasks back to 0:
6935 if (task_nice(p) < 0)
6936 set_user_nice(p, 0);
6937 continue;
6940 __sched_setscheduler(p, &attr, false, false);
6942 read_unlock(&tasklist_lock);
6945 #endif /* CONFIG_MAGIC_SYSRQ */
6947 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6949 * These functions are only useful for the IA64 MCA handling, or kdb.
6951 * They can only be called when the whole system has been
6952 * stopped - every CPU needs to be quiescent, and no scheduling
6953 * activity can take place. Using them for anything else would
6954 * be a serious bug, and as a result, they aren't even visible
6955 * under any other configuration.
6959 * curr_task - return the current task for a given CPU.
6960 * @cpu: the processor in question.
6962 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6964 * Return: The current task for @cpu.
6966 struct task_struct *curr_task(int cpu)
6968 return cpu_curr(cpu);
6971 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6973 #ifdef CONFIG_IA64
6975 * ia64_set_curr_task - set the current task for a given CPU.
6976 * @cpu: the processor in question.
6977 * @p: the task pointer to set.
6979 * Description: This function must only be used when non-maskable interrupts
6980 * are serviced on a separate stack. It allows the architecture to switch the
6981 * notion of the current task on a CPU in a non-blocking manner. This function
6982 * must be called with all CPU's synchronized, and interrupts disabled, the
6983 * and caller must save the original value of the current task (see
6984 * curr_task() above) and restore that value before reenabling interrupts and
6985 * re-starting the system.
6987 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6989 void ia64_set_curr_task(int cpu, struct task_struct *p)
6991 cpu_curr(cpu) = p;
6994 #endif
6996 #ifdef CONFIG_CGROUP_SCHED
6997 /* task_group_lock serializes the addition/removal of task groups */
6998 static DEFINE_SPINLOCK(task_group_lock);
7000 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7001 struct task_group *parent)
7003 #ifdef CONFIG_UCLAMP_TASK_GROUP
7004 enum uclamp_id clamp_id;
7006 for_each_clamp_id(clamp_id) {
7007 uclamp_se_set(&tg->uclamp_req[clamp_id],
7008 uclamp_none(clamp_id), false);
7009 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7011 #endif
7014 static void sched_free_group(struct task_group *tg)
7016 free_fair_sched_group(tg);
7017 free_rt_sched_group(tg);
7018 autogroup_free(tg);
7019 kmem_cache_free(task_group_cache, tg);
7022 /* allocate runqueue etc for a new task group */
7023 struct task_group *sched_create_group(struct task_group *parent)
7025 struct task_group *tg;
7027 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7028 if (!tg)
7029 return ERR_PTR(-ENOMEM);
7031 if (!alloc_fair_sched_group(tg, parent))
7032 goto err;
7034 if (!alloc_rt_sched_group(tg, parent))
7035 goto err;
7037 alloc_uclamp_sched_group(tg, parent);
7039 return tg;
7041 err:
7042 sched_free_group(tg);
7043 return ERR_PTR(-ENOMEM);
7046 void sched_online_group(struct task_group *tg, struct task_group *parent)
7048 unsigned long flags;
7050 spin_lock_irqsave(&task_group_lock, flags);
7051 list_add_rcu(&tg->list, &task_groups);
7053 /* Root should already exist: */
7054 WARN_ON(!parent);
7056 tg->parent = parent;
7057 INIT_LIST_HEAD(&tg->children);
7058 list_add_rcu(&tg->siblings, &parent->children);
7059 spin_unlock_irqrestore(&task_group_lock, flags);
7061 online_fair_sched_group(tg);
7064 /* rcu callback to free various structures associated with a task group */
7065 static void sched_free_group_rcu(struct rcu_head *rhp)
7067 /* Now it should be safe to free those cfs_rqs: */
7068 sched_free_group(container_of(rhp, struct task_group, rcu));
7071 void sched_destroy_group(struct task_group *tg)
7073 /* Wait for possible concurrent references to cfs_rqs complete: */
7074 call_rcu(&tg->rcu, sched_free_group_rcu);
7077 void sched_offline_group(struct task_group *tg)
7079 unsigned long flags;
7081 /* End participation in shares distribution: */
7082 unregister_fair_sched_group(tg);
7084 spin_lock_irqsave(&task_group_lock, flags);
7085 list_del_rcu(&tg->list);
7086 list_del_rcu(&tg->siblings);
7087 spin_unlock_irqrestore(&task_group_lock, flags);
7090 static void sched_change_group(struct task_struct *tsk, int type)
7092 struct task_group *tg;
7095 * All callers are synchronized by task_rq_lock(); we do not use RCU
7096 * which is pointless here. Thus, we pass "true" to task_css_check()
7097 * to prevent lockdep warnings.
7099 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7100 struct task_group, css);
7101 tg = autogroup_task_group(tsk, tg);
7102 tsk->sched_task_group = tg;
7104 #ifdef CONFIG_FAIR_GROUP_SCHED
7105 if (tsk->sched_class->task_change_group)
7106 tsk->sched_class->task_change_group(tsk, type);
7107 else
7108 #endif
7109 set_task_rq(tsk, task_cpu(tsk));
7113 * Change task's runqueue when it moves between groups.
7115 * The caller of this function should have put the task in its new group by
7116 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7117 * its new group.
7119 void sched_move_task(struct task_struct *tsk)
7121 int queued, running, queue_flags =
7122 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7123 struct rq_flags rf;
7124 struct rq *rq;
7126 rq = task_rq_lock(tsk, &rf);
7127 update_rq_clock(rq);
7129 running = task_current(rq, tsk);
7130 queued = task_on_rq_queued(tsk);
7132 if (queued)
7133 dequeue_task(rq, tsk, queue_flags);
7134 if (running)
7135 put_prev_task(rq, tsk);
7137 sched_change_group(tsk, TASK_MOVE_GROUP);
7139 if (queued)
7140 enqueue_task(rq, tsk, queue_flags);
7141 if (running) {
7142 set_next_task(rq, tsk);
7144 * After changing group, the running task may have joined a
7145 * throttled one but it's still the running task. Trigger a
7146 * resched to make sure that task can still run.
7148 resched_curr(rq);
7151 task_rq_unlock(rq, tsk, &rf);
7154 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7156 return css ? container_of(css, struct task_group, css) : NULL;
7159 static struct cgroup_subsys_state *
7160 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7162 struct task_group *parent = css_tg(parent_css);
7163 struct task_group *tg;
7165 if (!parent) {
7166 /* This is early initialization for the top cgroup */
7167 return &root_task_group.css;
7170 tg = sched_create_group(parent);
7171 if (IS_ERR(tg))
7172 return ERR_PTR(-ENOMEM);
7174 return &tg->css;
7177 /* Expose task group only after completing cgroup initialization */
7178 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7180 struct task_group *tg = css_tg(css);
7181 struct task_group *parent = css_tg(css->parent);
7183 if (parent)
7184 sched_online_group(tg, parent);
7186 #ifdef CONFIG_UCLAMP_TASK_GROUP
7187 /* Propagate the effective uclamp value for the new group */
7188 cpu_util_update_eff(css);
7189 #endif
7191 return 0;
7194 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7196 struct task_group *tg = css_tg(css);
7198 sched_offline_group(tg);
7201 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7203 struct task_group *tg = css_tg(css);
7206 * Relies on the RCU grace period between css_released() and this.
7208 sched_free_group(tg);
7212 * This is called before wake_up_new_task(), therefore we really only
7213 * have to set its group bits, all the other stuff does not apply.
7215 static void cpu_cgroup_fork(struct task_struct *task)
7217 struct rq_flags rf;
7218 struct rq *rq;
7220 rq = task_rq_lock(task, &rf);
7222 update_rq_clock(rq);
7223 sched_change_group(task, TASK_SET_GROUP);
7225 task_rq_unlock(rq, task, &rf);
7228 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7230 struct task_struct *task;
7231 struct cgroup_subsys_state *css;
7232 int ret = 0;
7234 cgroup_taskset_for_each(task, css, tset) {
7235 #ifdef CONFIG_RT_GROUP_SCHED
7236 if (!sched_rt_can_attach(css_tg(css), task))
7237 return -EINVAL;
7238 #endif
7240 * Serialize against wake_up_new_task() such that if its
7241 * running, we're sure to observe its full state.
7243 raw_spin_lock_irq(&task->pi_lock);
7245 * Avoid calling sched_move_task() before wake_up_new_task()
7246 * has happened. This would lead to problems with PELT, due to
7247 * move wanting to detach+attach while we're not attached yet.
7249 if (task->state == TASK_NEW)
7250 ret = -EINVAL;
7251 raw_spin_unlock_irq(&task->pi_lock);
7253 if (ret)
7254 break;
7256 return ret;
7259 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7261 struct task_struct *task;
7262 struct cgroup_subsys_state *css;
7264 cgroup_taskset_for_each(task, css, tset)
7265 sched_move_task(task);
7268 #ifdef CONFIG_UCLAMP_TASK_GROUP
7269 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7271 struct cgroup_subsys_state *top_css = css;
7272 struct uclamp_se *uc_parent = NULL;
7273 struct uclamp_se *uc_se = NULL;
7274 unsigned int eff[UCLAMP_CNT];
7275 enum uclamp_id clamp_id;
7276 unsigned int clamps;
7278 css_for_each_descendant_pre(css, top_css) {
7279 uc_parent = css_tg(css)->parent
7280 ? css_tg(css)->parent->uclamp : NULL;
7282 for_each_clamp_id(clamp_id) {
7283 /* Assume effective clamps matches requested clamps */
7284 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7285 /* Cap effective clamps with parent's effective clamps */
7286 if (uc_parent &&
7287 eff[clamp_id] > uc_parent[clamp_id].value) {
7288 eff[clamp_id] = uc_parent[clamp_id].value;
7291 /* Ensure protection is always capped by limit */
7292 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7294 /* Propagate most restrictive effective clamps */
7295 clamps = 0x0;
7296 uc_se = css_tg(css)->uclamp;
7297 for_each_clamp_id(clamp_id) {
7298 if (eff[clamp_id] == uc_se[clamp_id].value)
7299 continue;
7300 uc_se[clamp_id].value = eff[clamp_id];
7301 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7302 clamps |= (0x1 << clamp_id);
7304 if (!clamps) {
7305 css = css_rightmost_descendant(css);
7306 continue;
7309 /* Immediately update descendants RUNNABLE tasks */
7310 uclamp_update_active_tasks(css, clamps);
7315 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7316 * C expression. Since there is no way to convert a macro argument (N) into a
7317 * character constant, use two levels of macros.
7319 #define _POW10(exp) ((unsigned int)1e##exp)
7320 #define POW10(exp) _POW10(exp)
7322 struct uclamp_request {
7323 #define UCLAMP_PERCENT_SHIFT 2
7324 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7325 s64 percent;
7326 u64 util;
7327 int ret;
7330 static inline struct uclamp_request
7331 capacity_from_percent(char *buf)
7333 struct uclamp_request req = {
7334 .percent = UCLAMP_PERCENT_SCALE,
7335 .util = SCHED_CAPACITY_SCALE,
7336 .ret = 0,
7339 buf = strim(buf);
7340 if (strcmp(buf, "max")) {
7341 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7342 &req.percent);
7343 if (req.ret)
7344 return req;
7345 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7346 req.ret = -ERANGE;
7347 return req;
7350 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7351 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7354 return req;
7357 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7358 size_t nbytes, loff_t off,
7359 enum uclamp_id clamp_id)
7361 struct uclamp_request req;
7362 struct task_group *tg;
7364 req = capacity_from_percent(buf);
7365 if (req.ret)
7366 return req.ret;
7368 mutex_lock(&uclamp_mutex);
7369 rcu_read_lock();
7371 tg = css_tg(of_css(of));
7372 if (tg->uclamp_req[clamp_id].value != req.util)
7373 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7376 * Because of not recoverable conversion rounding we keep track of the
7377 * exact requested value
7379 tg->uclamp_pct[clamp_id] = req.percent;
7381 /* Update effective clamps to track the most restrictive value */
7382 cpu_util_update_eff(of_css(of));
7384 rcu_read_unlock();
7385 mutex_unlock(&uclamp_mutex);
7387 return nbytes;
7390 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7391 char *buf, size_t nbytes,
7392 loff_t off)
7394 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7397 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7398 char *buf, size_t nbytes,
7399 loff_t off)
7401 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7404 static inline void cpu_uclamp_print(struct seq_file *sf,
7405 enum uclamp_id clamp_id)
7407 struct task_group *tg;
7408 u64 util_clamp;
7409 u64 percent;
7410 u32 rem;
7412 rcu_read_lock();
7413 tg = css_tg(seq_css(sf));
7414 util_clamp = tg->uclamp_req[clamp_id].value;
7415 rcu_read_unlock();
7417 if (util_clamp == SCHED_CAPACITY_SCALE) {
7418 seq_puts(sf, "max\n");
7419 return;
7422 percent = tg->uclamp_pct[clamp_id];
7423 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7424 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7427 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7429 cpu_uclamp_print(sf, UCLAMP_MIN);
7430 return 0;
7433 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7435 cpu_uclamp_print(sf, UCLAMP_MAX);
7436 return 0;
7438 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7440 #ifdef CONFIG_FAIR_GROUP_SCHED
7441 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7442 struct cftype *cftype, u64 shareval)
7444 if (shareval > scale_load_down(ULONG_MAX))
7445 shareval = MAX_SHARES;
7446 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7449 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7450 struct cftype *cft)
7452 struct task_group *tg = css_tg(css);
7454 return (u64) scale_load_down(tg->shares);
7457 #ifdef CONFIG_CFS_BANDWIDTH
7458 static DEFINE_MUTEX(cfs_constraints_mutex);
7460 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7461 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7462 /* More than 203 days if BW_SHIFT equals 20. */
7463 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7465 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7467 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7469 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7470 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7472 if (tg == &root_task_group)
7473 return -EINVAL;
7476 * Ensure we have at some amount of bandwidth every period. This is
7477 * to prevent reaching a state of large arrears when throttled via
7478 * entity_tick() resulting in prolonged exit starvation.
7480 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7481 return -EINVAL;
7484 * Likewise, bound things on the otherside by preventing insane quota
7485 * periods. This also allows us to normalize in computing quota
7486 * feasibility.
7488 if (period > max_cfs_quota_period)
7489 return -EINVAL;
7492 * Bound quota to defend quota against overflow during bandwidth shift.
7494 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7495 return -EINVAL;
7498 * Prevent race between setting of cfs_rq->runtime_enabled and
7499 * unthrottle_offline_cfs_rqs().
7501 get_online_cpus();
7502 mutex_lock(&cfs_constraints_mutex);
7503 ret = __cfs_schedulable(tg, period, quota);
7504 if (ret)
7505 goto out_unlock;
7507 runtime_enabled = quota != RUNTIME_INF;
7508 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7510 * If we need to toggle cfs_bandwidth_used, off->on must occur
7511 * before making related changes, and on->off must occur afterwards
7513 if (runtime_enabled && !runtime_was_enabled)
7514 cfs_bandwidth_usage_inc();
7515 raw_spin_lock_irq(&cfs_b->lock);
7516 cfs_b->period = ns_to_ktime(period);
7517 cfs_b->quota = quota;
7519 __refill_cfs_bandwidth_runtime(cfs_b);
7521 /* Restart the period timer (if active) to handle new period expiry: */
7522 if (runtime_enabled)
7523 start_cfs_bandwidth(cfs_b);
7525 raw_spin_unlock_irq(&cfs_b->lock);
7527 for_each_online_cpu(i) {
7528 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7529 struct rq *rq = cfs_rq->rq;
7530 struct rq_flags rf;
7532 rq_lock_irq(rq, &rf);
7533 cfs_rq->runtime_enabled = runtime_enabled;
7534 cfs_rq->runtime_remaining = 0;
7536 if (cfs_rq->throttled)
7537 unthrottle_cfs_rq(cfs_rq);
7538 rq_unlock_irq(rq, &rf);
7540 if (runtime_was_enabled && !runtime_enabled)
7541 cfs_bandwidth_usage_dec();
7542 out_unlock:
7543 mutex_unlock(&cfs_constraints_mutex);
7544 put_online_cpus();
7546 return ret;
7549 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7551 u64 quota, period;
7553 period = ktime_to_ns(tg->cfs_bandwidth.period);
7554 if (cfs_quota_us < 0)
7555 quota = RUNTIME_INF;
7556 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7557 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7558 else
7559 return -EINVAL;
7561 return tg_set_cfs_bandwidth(tg, period, quota);
7564 static long tg_get_cfs_quota(struct task_group *tg)
7566 u64 quota_us;
7568 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7569 return -1;
7571 quota_us = tg->cfs_bandwidth.quota;
7572 do_div(quota_us, NSEC_PER_USEC);
7574 return quota_us;
7577 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7579 u64 quota, period;
7581 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7582 return -EINVAL;
7584 period = (u64)cfs_period_us * NSEC_PER_USEC;
7585 quota = tg->cfs_bandwidth.quota;
7587 return tg_set_cfs_bandwidth(tg, period, quota);
7590 static long tg_get_cfs_period(struct task_group *tg)
7592 u64 cfs_period_us;
7594 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7595 do_div(cfs_period_us, NSEC_PER_USEC);
7597 return cfs_period_us;
7600 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7601 struct cftype *cft)
7603 return tg_get_cfs_quota(css_tg(css));
7606 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7607 struct cftype *cftype, s64 cfs_quota_us)
7609 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7612 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7613 struct cftype *cft)
7615 return tg_get_cfs_period(css_tg(css));
7618 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7619 struct cftype *cftype, u64 cfs_period_us)
7621 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7624 struct cfs_schedulable_data {
7625 struct task_group *tg;
7626 u64 period, quota;
7630 * normalize group quota/period to be quota/max_period
7631 * note: units are usecs
7633 static u64 normalize_cfs_quota(struct task_group *tg,
7634 struct cfs_schedulable_data *d)
7636 u64 quota, period;
7638 if (tg == d->tg) {
7639 period = d->period;
7640 quota = d->quota;
7641 } else {
7642 period = tg_get_cfs_period(tg);
7643 quota = tg_get_cfs_quota(tg);
7646 /* note: these should typically be equivalent */
7647 if (quota == RUNTIME_INF || quota == -1)
7648 return RUNTIME_INF;
7650 return to_ratio(period, quota);
7653 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7655 struct cfs_schedulable_data *d = data;
7656 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7657 s64 quota = 0, parent_quota = -1;
7659 if (!tg->parent) {
7660 quota = RUNTIME_INF;
7661 } else {
7662 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7664 quota = normalize_cfs_quota(tg, d);
7665 parent_quota = parent_b->hierarchical_quota;
7668 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7669 * always take the min. On cgroup1, only inherit when no
7670 * limit is set:
7672 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7673 quota = min(quota, parent_quota);
7674 } else {
7675 if (quota == RUNTIME_INF)
7676 quota = parent_quota;
7677 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7678 return -EINVAL;
7681 cfs_b->hierarchical_quota = quota;
7683 return 0;
7686 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7688 int ret;
7689 struct cfs_schedulable_data data = {
7690 .tg = tg,
7691 .period = period,
7692 .quota = quota,
7695 if (quota != RUNTIME_INF) {
7696 do_div(data.period, NSEC_PER_USEC);
7697 do_div(data.quota, NSEC_PER_USEC);
7700 rcu_read_lock();
7701 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7702 rcu_read_unlock();
7704 return ret;
7707 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7709 struct task_group *tg = css_tg(seq_css(sf));
7710 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7712 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7713 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7714 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7716 if (schedstat_enabled() && tg != &root_task_group) {
7717 u64 ws = 0;
7718 int i;
7720 for_each_possible_cpu(i)
7721 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7723 seq_printf(sf, "wait_sum %llu\n", ws);
7726 return 0;
7728 #endif /* CONFIG_CFS_BANDWIDTH */
7729 #endif /* CONFIG_FAIR_GROUP_SCHED */
7731 #ifdef CONFIG_RT_GROUP_SCHED
7732 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7733 struct cftype *cft, s64 val)
7735 return sched_group_set_rt_runtime(css_tg(css), val);
7738 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7739 struct cftype *cft)
7741 return sched_group_rt_runtime(css_tg(css));
7744 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7745 struct cftype *cftype, u64 rt_period_us)
7747 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7750 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7751 struct cftype *cft)
7753 return sched_group_rt_period(css_tg(css));
7755 #endif /* CONFIG_RT_GROUP_SCHED */
7757 static struct cftype cpu_legacy_files[] = {
7758 #ifdef CONFIG_FAIR_GROUP_SCHED
7760 .name = "shares",
7761 .read_u64 = cpu_shares_read_u64,
7762 .write_u64 = cpu_shares_write_u64,
7764 #endif
7765 #ifdef CONFIG_CFS_BANDWIDTH
7767 .name = "cfs_quota_us",
7768 .read_s64 = cpu_cfs_quota_read_s64,
7769 .write_s64 = cpu_cfs_quota_write_s64,
7772 .name = "cfs_period_us",
7773 .read_u64 = cpu_cfs_period_read_u64,
7774 .write_u64 = cpu_cfs_period_write_u64,
7777 .name = "stat",
7778 .seq_show = cpu_cfs_stat_show,
7780 #endif
7781 #ifdef CONFIG_RT_GROUP_SCHED
7783 .name = "rt_runtime_us",
7784 .read_s64 = cpu_rt_runtime_read,
7785 .write_s64 = cpu_rt_runtime_write,
7788 .name = "rt_period_us",
7789 .read_u64 = cpu_rt_period_read_uint,
7790 .write_u64 = cpu_rt_period_write_uint,
7792 #endif
7793 #ifdef CONFIG_UCLAMP_TASK_GROUP
7795 .name = "uclamp.min",
7796 .flags = CFTYPE_NOT_ON_ROOT,
7797 .seq_show = cpu_uclamp_min_show,
7798 .write = cpu_uclamp_min_write,
7801 .name = "uclamp.max",
7802 .flags = CFTYPE_NOT_ON_ROOT,
7803 .seq_show = cpu_uclamp_max_show,
7804 .write = cpu_uclamp_max_write,
7806 #endif
7807 { } /* Terminate */
7810 static int cpu_extra_stat_show(struct seq_file *sf,
7811 struct cgroup_subsys_state *css)
7813 #ifdef CONFIG_CFS_BANDWIDTH
7815 struct task_group *tg = css_tg(css);
7816 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7817 u64 throttled_usec;
7819 throttled_usec = cfs_b->throttled_time;
7820 do_div(throttled_usec, NSEC_PER_USEC);
7822 seq_printf(sf, "nr_periods %d\n"
7823 "nr_throttled %d\n"
7824 "throttled_usec %llu\n",
7825 cfs_b->nr_periods, cfs_b->nr_throttled,
7826 throttled_usec);
7828 #endif
7829 return 0;
7832 #ifdef CONFIG_FAIR_GROUP_SCHED
7833 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7834 struct cftype *cft)
7836 struct task_group *tg = css_tg(css);
7837 u64 weight = scale_load_down(tg->shares);
7839 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7842 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7843 struct cftype *cft, u64 weight)
7846 * cgroup weight knobs should use the common MIN, DFL and MAX
7847 * values which are 1, 100 and 10000 respectively. While it loses
7848 * a bit of range on both ends, it maps pretty well onto the shares
7849 * value used by scheduler and the round-trip conversions preserve
7850 * the original value over the entire range.
7852 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7853 return -ERANGE;
7855 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7857 return sched_group_set_shares(css_tg(css), scale_load(weight));
7860 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7861 struct cftype *cft)
7863 unsigned long weight = scale_load_down(css_tg(css)->shares);
7864 int last_delta = INT_MAX;
7865 int prio, delta;
7867 /* find the closest nice value to the current weight */
7868 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7869 delta = abs(sched_prio_to_weight[prio] - weight);
7870 if (delta >= last_delta)
7871 break;
7872 last_delta = delta;
7875 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7878 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7879 struct cftype *cft, s64 nice)
7881 unsigned long weight;
7882 int idx;
7884 if (nice < MIN_NICE || nice > MAX_NICE)
7885 return -ERANGE;
7887 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7888 idx = array_index_nospec(idx, 40);
7889 weight = sched_prio_to_weight[idx];
7891 return sched_group_set_shares(css_tg(css), scale_load(weight));
7893 #endif
7895 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7896 long period, long quota)
7898 if (quota < 0)
7899 seq_puts(sf, "max");
7900 else
7901 seq_printf(sf, "%ld", quota);
7903 seq_printf(sf, " %ld\n", period);
7906 /* caller should put the current value in *@periodp before calling */
7907 static int __maybe_unused cpu_period_quota_parse(char *buf,
7908 u64 *periodp, u64 *quotap)
7910 char tok[21]; /* U64_MAX */
7912 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7913 return -EINVAL;
7915 *periodp *= NSEC_PER_USEC;
7917 if (sscanf(tok, "%llu", quotap))
7918 *quotap *= NSEC_PER_USEC;
7919 else if (!strcmp(tok, "max"))
7920 *quotap = RUNTIME_INF;
7921 else
7922 return -EINVAL;
7924 return 0;
7927 #ifdef CONFIG_CFS_BANDWIDTH
7928 static int cpu_max_show(struct seq_file *sf, void *v)
7930 struct task_group *tg = css_tg(seq_css(sf));
7932 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7933 return 0;
7936 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7937 char *buf, size_t nbytes, loff_t off)
7939 struct task_group *tg = css_tg(of_css(of));
7940 u64 period = tg_get_cfs_period(tg);
7941 u64 quota;
7942 int ret;
7944 ret = cpu_period_quota_parse(buf, &period, &quota);
7945 if (!ret)
7946 ret = tg_set_cfs_bandwidth(tg, period, quota);
7947 return ret ?: nbytes;
7949 #endif
7951 static struct cftype cpu_files[] = {
7952 #ifdef CONFIG_FAIR_GROUP_SCHED
7954 .name = "weight",
7955 .flags = CFTYPE_NOT_ON_ROOT,
7956 .read_u64 = cpu_weight_read_u64,
7957 .write_u64 = cpu_weight_write_u64,
7960 .name = "weight.nice",
7961 .flags = CFTYPE_NOT_ON_ROOT,
7962 .read_s64 = cpu_weight_nice_read_s64,
7963 .write_s64 = cpu_weight_nice_write_s64,
7965 #endif
7966 #ifdef CONFIG_CFS_BANDWIDTH
7968 .name = "max",
7969 .flags = CFTYPE_NOT_ON_ROOT,
7970 .seq_show = cpu_max_show,
7971 .write = cpu_max_write,
7973 #endif
7974 #ifdef CONFIG_UCLAMP_TASK_GROUP
7976 .name = "uclamp.min",
7977 .flags = CFTYPE_NOT_ON_ROOT,
7978 .seq_show = cpu_uclamp_min_show,
7979 .write = cpu_uclamp_min_write,
7982 .name = "uclamp.max",
7983 .flags = CFTYPE_NOT_ON_ROOT,
7984 .seq_show = cpu_uclamp_max_show,
7985 .write = cpu_uclamp_max_write,
7987 #endif
7988 { } /* terminate */
7991 struct cgroup_subsys cpu_cgrp_subsys = {
7992 .css_alloc = cpu_cgroup_css_alloc,
7993 .css_online = cpu_cgroup_css_online,
7994 .css_released = cpu_cgroup_css_released,
7995 .css_free = cpu_cgroup_css_free,
7996 .css_extra_stat_show = cpu_extra_stat_show,
7997 .fork = cpu_cgroup_fork,
7998 .can_attach = cpu_cgroup_can_attach,
7999 .attach = cpu_cgroup_attach,
8000 .legacy_cftypes = cpu_legacy_files,
8001 .dfl_cftypes = cpu_files,
8002 .early_init = true,
8003 .threaded = true,
8006 #endif /* CONFIG_CGROUP_SCHED */
8008 void dump_cpu_task(int cpu)
8010 pr_info("Task dump for CPU %d:\n", cpu);
8011 sched_show_task(cpu_curr(cpu));
8015 * Nice levels are multiplicative, with a gentle 10% change for every
8016 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8017 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8018 * that remained on nice 0.
8020 * The "10% effect" is relative and cumulative: from _any_ nice level,
8021 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8022 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8023 * If a task goes up by ~10% and another task goes down by ~10% then
8024 * the relative distance between them is ~25%.)
8026 const int sched_prio_to_weight[40] = {
8027 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8028 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8029 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8030 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8031 /* 0 */ 1024, 820, 655, 526, 423,
8032 /* 5 */ 335, 272, 215, 172, 137,
8033 /* 10 */ 110, 87, 70, 56, 45,
8034 /* 15 */ 36, 29, 23, 18, 15,
8038 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8040 * In cases where the weight does not change often, we can use the
8041 * precalculated inverse to speed up arithmetics by turning divisions
8042 * into multiplications:
8044 const u32 sched_prio_to_wmult[40] = {
8045 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8046 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8047 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8048 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8049 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8050 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8051 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8052 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8055 #undef CREATE_TRACE_POINTS