1 // SPDX-License-Identifier: GPL-2.0
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
16 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
18 struct sugov_tunables
{
19 struct gov_attr_set attr_set
;
20 unsigned int rate_limit_us
;
24 struct cpufreq_policy
*policy
;
26 struct sugov_tunables
*tunables
;
27 struct list_head tunables_hook
;
29 raw_spinlock_t update_lock
; /* For shared policies */
30 u64 last_freq_update_time
;
31 s64 freq_update_delay_ns
;
32 unsigned int next_freq
;
33 unsigned int cached_raw_freq
;
35 /* The next fields are only needed if fast switch cannot be used: */
36 struct irq_work irq_work
;
37 struct kthread_work work
;
38 struct mutex work_lock
;
39 struct kthread_worker worker
;
40 struct task_struct
*thread
;
41 bool work_in_progress
;
44 bool need_freq_update
;
48 struct update_util_data update_util
;
49 struct sugov_policy
*sg_policy
;
52 bool iowait_boost_pending
;
53 unsigned int iowait_boost
;
59 /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61 unsigned long saved_idle_calls
;
65 static DEFINE_PER_CPU(struct sugov_cpu
, sugov_cpu
);
67 /************************ Governor internals ***********************/
69 static bool sugov_should_update_freq(struct sugov_policy
*sg_policy
, u64 time
)
74 * Since cpufreq_update_util() is called with rq->lock held for
75 * the @target_cpu, our per-CPU data is fully serialized.
77 * However, drivers cannot in general deal with cross-CPU
78 * requests, so while get_next_freq() will work, our
79 * sugov_update_commit() call may not for the fast switching platforms.
81 * Hence stop here for remote requests if they aren't supported
82 * by the hardware, as calculating the frequency is pointless if
83 * we cannot in fact act on it.
85 * This is needed on the slow switching platforms too to prevent CPUs
86 * going offline from leaving stale IRQ work items behind.
88 if (!cpufreq_this_cpu_can_update(sg_policy
->policy
))
91 if (unlikely(sg_policy
->limits_changed
)) {
92 sg_policy
->limits_changed
= false;
93 sg_policy
->need_freq_update
= true;
97 delta_ns
= time
- sg_policy
->last_freq_update_time
;
99 return delta_ns
>= sg_policy
->freq_update_delay_ns
;
102 static bool sugov_update_next_freq(struct sugov_policy
*sg_policy
, u64 time
,
103 unsigned int next_freq
)
105 if (sg_policy
->next_freq
== next_freq
)
108 sg_policy
->next_freq
= next_freq
;
109 sg_policy
->last_freq_update_time
= time
;
114 static void sugov_fast_switch(struct sugov_policy
*sg_policy
, u64 time
,
115 unsigned int next_freq
)
117 struct cpufreq_policy
*policy
= sg_policy
->policy
;
120 if (!sugov_update_next_freq(sg_policy
, time
, next_freq
))
123 next_freq
= cpufreq_driver_fast_switch(policy
, next_freq
);
127 policy
->cur
= next_freq
;
129 if (trace_cpu_frequency_enabled()) {
130 for_each_cpu(cpu
, policy
->cpus
)
131 trace_cpu_frequency(next_freq
, cpu
);
135 static void sugov_deferred_update(struct sugov_policy
*sg_policy
, u64 time
,
136 unsigned int next_freq
)
138 if (!sugov_update_next_freq(sg_policy
, time
, next_freq
))
141 if (!sg_policy
->work_in_progress
) {
142 sg_policy
->work_in_progress
= true;
143 irq_work_queue(&sg_policy
->irq_work
);
148 * get_next_freq - Compute a new frequency for a given cpufreq policy.
149 * @sg_policy: schedutil policy object to compute the new frequency for.
150 * @util: Current CPU utilization.
151 * @max: CPU capacity.
153 * If the utilization is frequency-invariant, choose the new frequency to be
154 * proportional to it, that is
156 * next_freq = C * max_freq * util / max
158 * Otherwise, approximate the would-be frequency-invariant utilization by
159 * util_raw * (curr_freq / max_freq) which leads to
161 * next_freq = C * curr_freq * util_raw / max
163 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
165 * The lowest driver-supported frequency which is equal or greater than the raw
166 * next_freq (as calculated above) is returned, subject to policy min/max and
167 * cpufreq driver limitations.
169 static unsigned int get_next_freq(struct sugov_policy
*sg_policy
,
170 unsigned long util
, unsigned long max
)
172 struct cpufreq_policy
*policy
= sg_policy
->policy
;
173 unsigned int freq
= arch_scale_freq_invariant() ?
174 policy
->cpuinfo
.max_freq
: policy
->cur
;
176 freq
= map_util_freq(util
, freq
, max
);
178 if (freq
== sg_policy
->cached_raw_freq
&& !sg_policy
->need_freq_update
)
179 return sg_policy
->next_freq
;
181 sg_policy
->need_freq_update
= false;
182 sg_policy
->cached_raw_freq
= freq
;
183 return cpufreq_driver_resolve_freq(policy
, freq
);
187 * This function computes an effective utilization for the given CPU, to be
188 * used for frequency selection given the linear relation: f = u * f_max.
190 * The scheduler tracks the following metrics:
192 * cpu_util_{cfs,rt,dl,irq}()
195 * Where the cfs,rt and dl util numbers are tracked with the same metric and
196 * synchronized windows and are thus directly comparable.
198 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
199 * which excludes things like IRQ and steal-time. These latter are then accrued
200 * in the irq utilization.
202 * The DL bandwidth number otoh is not a measured metric but a value computed
203 * based on the task model parameters and gives the minimal utilization
204 * required to meet deadlines.
206 unsigned long schedutil_cpu_util(int cpu
, unsigned long util_cfs
,
207 unsigned long max
, enum schedutil_type type
,
208 struct task_struct
*p
)
210 unsigned long dl_util
, util
, irq
;
211 struct rq
*rq
= cpu_rq(cpu
);
213 if (!IS_BUILTIN(CONFIG_UCLAMP_TASK
) &&
214 type
== FREQUENCY_UTIL
&& rt_rq_is_runnable(&rq
->rt
)) {
219 * Early check to see if IRQ/steal time saturates the CPU, can be
220 * because of inaccuracies in how we track these -- see
221 * update_irq_load_avg().
223 irq
= cpu_util_irq(rq
);
224 if (unlikely(irq
>= max
))
228 * Because the time spend on RT/DL tasks is visible as 'lost' time to
229 * CFS tasks and we use the same metric to track the effective
230 * utilization (PELT windows are synchronized) we can directly add them
231 * to obtain the CPU's actual utilization.
233 * CFS and RT utilization can be boosted or capped, depending on
234 * utilization clamp constraints requested by currently RUNNABLE
236 * When there are no CFS RUNNABLE tasks, clamps are released and
237 * frequency will be gracefully reduced with the utilization decay.
239 util
= util_cfs
+ cpu_util_rt(rq
);
240 if (type
== FREQUENCY_UTIL
)
241 util
= uclamp_rq_util_with(rq
, util
, p
);
243 dl_util
= cpu_util_dl(rq
);
246 * For frequency selection we do not make cpu_util_dl() a permanent part
247 * of this sum because we want to use cpu_bw_dl() later on, but we need
248 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
249 * that we select f_max when there is no idle time.
251 * NOTE: numerical errors or stop class might cause us to not quite hit
252 * saturation when we should -- something for later.
254 if (util
+ dl_util
>= max
)
258 * OTOH, for energy computation we need the estimated running time, so
259 * include util_dl and ignore dl_bw.
261 if (type
== ENERGY_UTIL
)
265 * There is still idle time; further improve the number by using the
266 * irq metric. Because IRQ/steal time is hidden from the task clock we
267 * need to scale the task numbers:
270 * U' = irq + --------- * U
273 util
= scale_irq_capacity(util
, irq
, max
);
277 * Bandwidth required by DEADLINE must always be granted while, for
278 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
279 * to gracefully reduce the frequency when no tasks show up for longer
282 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
283 * bw_dl as requested freq. However, cpufreq is not yet ready for such
284 * an interface. So, we only do the latter for now.
286 if (type
== FREQUENCY_UTIL
)
287 util
+= cpu_bw_dl(rq
);
289 return min(max
, util
);
292 static unsigned long sugov_get_util(struct sugov_cpu
*sg_cpu
)
294 struct rq
*rq
= cpu_rq(sg_cpu
->cpu
);
295 unsigned long util
= cpu_util_cfs(rq
);
296 unsigned long max
= arch_scale_cpu_capacity(sg_cpu
->cpu
);
299 sg_cpu
->bw_dl
= cpu_bw_dl(rq
);
301 return schedutil_cpu_util(sg_cpu
->cpu
, util
, max
, FREQUENCY_UTIL
, NULL
);
305 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
306 * @sg_cpu: the sugov data for the CPU to boost
307 * @time: the update time from the caller
308 * @set_iowait_boost: true if an IO boost has been requested
310 * The IO wait boost of a task is disabled after a tick since the last update
311 * of a CPU. If a new IO wait boost is requested after more then a tick, then
312 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
313 * efficiency by ignoring sporadic wakeups from IO.
315 static bool sugov_iowait_reset(struct sugov_cpu
*sg_cpu
, u64 time
,
316 bool set_iowait_boost
)
318 s64 delta_ns
= time
- sg_cpu
->last_update
;
320 /* Reset boost only if a tick has elapsed since last request */
321 if (delta_ns
<= TICK_NSEC
)
324 sg_cpu
->iowait_boost
= set_iowait_boost
? IOWAIT_BOOST_MIN
: 0;
325 sg_cpu
->iowait_boost_pending
= set_iowait_boost
;
331 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
332 * @sg_cpu: the sugov data for the CPU to boost
333 * @time: the update time from the caller
334 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
336 * Each time a task wakes up after an IO operation, the CPU utilization can be
337 * boosted to a certain utilization which doubles at each "frequent and
338 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
339 * of the maximum OPP.
341 * To keep doubling, an IO boost has to be requested at least once per tick,
342 * otherwise we restart from the utilization of the minimum OPP.
344 static void sugov_iowait_boost(struct sugov_cpu
*sg_cpu
, u64 time
,
347 bool set_iowait_boost
= flags
& SCHED_CPUFREQ_IOWAIT
;
349 /* Reset boost if the CPU appears to have been idle enough */
350 if (sg_cpu
->iowait_boost
&&
351 sugov_iowait_reset(sg_cpu
, time
, set_iowait_boost
))
354 /* Boost only tasks waking up after IO */
355 if (!set_iowait_boost
)
358 /* Ensure boost doubles only one time at each request */
359 if (sg_cpu
->iowait_boost_pending
)
361 sg_cpu
->iowait_boost_pending
= true;
363 /* Double the boost at each request */
364 if (sg_cpu
->iowait_boost
) {
365 sg_cpu
->iowait_boost
=
366 min_t(unsigned int, sg_cpu
->iowait_boost
<< 1, SCHED_CAPACITY_SCALE
);
370 /* First wakeup after IO: start with minimum boost */
371 sg_cpu
->iowait_boost
= IOWAIT_BOOST_MIN
;
375 * sugov_iowait_apply() - Apply the IO boost to a CPU.
376 * @sg_cpu: the sugov data for the cpu to boost
377 * @time: the update time from the caller
378 * @util: the utilization to (eventually) boost
379 * @max: the maximum value the utilization can be boosted to
381 * A CPU running a task which woken up after an IO operation can have its
382 * utilization boosted to speed up the completion of those IO operations.
383 * The IO boost value is increased each time a task wakes up from IO, in
384 * sugov_iowait_apply(), and it's instead decreased by this function,
385 * each time an increase has not been requested (!iowait_boost_pending).
387 * A CPU which also appears to have been idle for at least one tick has also
388 * its IO boost utilization reset.
390 * This mechanism is designed to boost high frequently IO waiting tasks, while
391 * being more conservative on tasks which does sporadic IO operations.
393 static unsigned long sugov_iowait_apply(struct sugov_cpu
*sg_cpu
, u64 time
,
394 unsigned long util
, unsigned long max
)
398 /* No boost currently required */
399 if (!sg_cpu
->iowait_boost
)
402 /* Reset boost if the CPU appears to have been idle enough */
403 if (sugov_iowait_reset(sg_cpu
, time
, false))
406 if (!sg_cpu
->iowait_boost_pending
) {
408 * No boost pending; reduce the boost value.
410 sg_cpu
->iowait_boost
>>= 1;
411 if (sg_cpu
->iowait_boost
< IOWAIT_BOOST_MIN
) {
412 sg_cpu
->iowait_boost
= 0;
417 sg_cpu
->iowait_boost_pending
= false;
420 * @util is already in capacity scale; convert iowait_boost
421 * into the same scale so we can compare.
423 boost
= (sg_cpu
->iowait_boost
* max
) >> SCHED_CAPACITY_SHIFT
;
424 return max(boost
, util
);
427 #ifdef CONFIG_NO_HZ_COMMON
428 static bool sugov_cpu_is_busy(struct sugov_cpu
*sg_cpu
)
430 unsigned long idle_calls
= tick_nohz_get_idle_calls_cpu(sg_cpu
->cpu
);
431 bool ret
= idle_calls
== sg_cpu
->saved_idle_calls
;
433 sg_cpu
->saved_idle_calls
= idle_calls
;
437 static inline bool sugov_cpu_is_busy(struct sugov_cpu
*sg_cpu
) { return false; }
438 #endif /* CONFIG_NO_HZ_COMMON */
441 * Make sugov_should_update_freq() ignore the rate limit when DL
442 * has increased the utilization.
444 static inline void ignore_dl_rate_limit(struct sugov_cpu
*sg_cpu
, struct sugov_policy
*sg_policy
)
446 if (cpu_bw_dl(cpu_rq(sg_cpu
->cpu
)) > sg_cpu
->bw_dl
)
447 sg_policy
->limits_changed
= true;
450 static void sugov_update_single(struct update_util_data
*hook
, u64 time
,
453 struct sugov_cpu
*sg_cpu
= container_of(hook
, struct sugov_cpu
, update_util
);
454 struct sugov_policy
*sg_policy
= sg_cpu
->sg_policy
;
455 unsigned long util
, max
;
459 sugov_iowait_boost(sg_cpu
, time
, flags
);
460 sg_cpu
->last_update
= time
;
462 ignore_dl_rate_limit(sg_cpu
, sg_policy
);
464 if (!sugov_should_update_freq(sg_policy
, time
))
467 /* Limits may have changed, don't skip frequency update */
468 busy
= !sg_policy
->need_freq_update
&& sugov_cpu_is_busy(sg_cpu
);
470 util
= sugov_get_util(sg_cpu
);
472 util
= sugov_iowait_apply(sg_cpu
, time
, util
, max
);
473 next_f
= get_next_freq(sg_policy
, util
, max
);
475 * Do not reduce the frequency if the CPU has not been idle
476 * recently, as the reduction is likely to be premature then.
478 if (busy
&& next_f
< sg_policy
->next_freq
) {
479 next_f
= sg_policy
->next_freq
;
481 /* Reset cached freq as next_freq has changed */
482 sg_policy
->cached_raw_freq
= 0;
486 * This code runs under rq->lock for the target CPU, so it won't run
487 * concurrently on two different CPUs for the same target and it is not
488 * necessary to acquire the lock in the fast switch case.
490 if (sg_policy
->policy
->fast_switch_enabled
) {
491 sugov_fast_switch(sg_policy
, time
, next_f
);
493 raw_spin_lock(&sg_policy
->update_lock
);
494 sugov_deferred_update(sg_policy
, time
, next_f
);
495 raw_spin_unlock(&sg_policy
->update_lock
);
499 static unsigned int sugov_next_freq_shared(struct sugov_cpu
*sg_cpu
, u64 time
)
501 struct sugov_policy
*sg_policy
= sg_cpu
->sg_policy
;
502 struct cpufreq_policy
*policy
= sg_policy
->policy
;
503 unsigned long util
= 0, max
= 1;
506 for_each_cpu(j
, policy
->cpus
) {
507 struct sugov_cpu
*j_sg_cpu
= &per_cpu(sugov_cpu
, j
);
508 unsigned long j_util
, j_max
;
510 j_util
= sugov_get_util(j_sg_cpu
);
511 j_max
= j_sg_cpu
->max
;
512 j_util
= sugov_iowait_apply(j_sg_cpu
, time
, j_util
, j_max
);
514 if (j_util
* max
> j_max
* util
) {
520 return get_next_freq(sg_policy
, util
, max
);
524 sugov_update_shared(struct update_util_data
*hook
, u64 time
, unsigned int flags
)
526 struct sugov_cpu
*sg_cpu
= container_of(hook
, struct sugov_cpu
, update_util
);
527 struct sugov_policy
*sg_policy
= sg_cpu
->sg_policy
;
530 raw_spin_lock(&sg_policy
->update_lock
);
532 sugov_iowait_boost(sg_cpu
, time
, flags
);
533 sg_cpu
->last_update
= time
;
535 ignore_dl_rate_limit(sg_cpu
, sg_policy
);
537 if (sugov_should_update_freq(sg_policy
, time
)) {
538 next_f
= sugov_next_freq_shared(sg_cpu
, time
);
540 if (sg_policy
->policy
->fast_switch_enabled
)
541 sugov_fast_switch(sg_policy
, time
, next_f
);
543 sugov_deferred_update(sg_policy
, time
, next_f
);
546 raw_spin_unlock(&sg_policy
->update_lock
);
549 static void sugov_work(struct kthread_work
*work
)
551 struct sugov_policy
*sg_policy
= container_of(work
, struct sugov_policy
, work
);
556 * Hold sg_policy->update_lock shortly to handle the case where:
557 * incase sg_policy->next_freq is read here, and then updated by
558 * sugov_deferred_update() just before work_in_progress is set to false
559 * here, we may miss queueing the new update.
561 * Note: If a work was queued after the update_lock is released,
562 * sugov_work() will just be called again by kthread_work code; and the
563 * request will be proceed before the sugov thread sleeps.
565 raw_spin_lock_irqsave(&sg_policy
->update_lock
, flags
);
566 freq
= sg_policy
->next_freq
;
567 sg_policy
->work_in_progress
= false;
568 raw_spin_unlock_irqrestore(&sg_policy
->update_lock
, flags
);
570 mutex_lock(&sg_policy
->work_lock
);
571 __cpufreq_driver_target(sg_policy
->policy
, freq
, CPUFREQ_RELATION_L
);
572 mutex_unlock(&sg_policy
->work_lock
);
575 static void sugov_irq_work(struct irq_work
*irq_work
)
577 struct sugov_policy
*sg_policy
;
579 sg_policy
= container_of(irq_work
, struct sugov_policy
, irq_work
);
581 kthread_queue_work(&sg_policy
->worker
, &sg_policy
->work
);
584 /************************** sysfs interface ************************/
586 static struct sugov_tunables
*global_tunables
;
587 static DEFINE_MUTEX(global_tunables_lock
);
589 static inline struct sugov_tunables
*to_sugov_tunables(struct gov_attr_set
*attr_set
)
591 return container_of(attr_set
, struct sugov_tunables
, attr_set
);
594 static ssize_t
rate_limit_us_show(struct gov_attr_set
*attr_set
, char *buf
)
596 struct sugov_tunables
*tunables
= to_sugov_tunables(attr_set
);
598 return sprintf(buf
, "%u\n", tunables
->rate_limit_us
);
602 rate_limit_us_store(struct gov_attr_set
*attr_set
, const char *buf
, size_t count
)
604 struct sugov_tunables
*tunables
= to_sugov_tunables(attr_set
);
605 struct sugov_policy
*sg_policy
;
606 unsigned int rate_limit_us
;
608 if (kstrtouint(buf
, 10, &rate_limit_us
))
611 tunables
->rate_limit_us
= rate_limit_us
;
613 list_for_each_entry(sg_policy
, &attr_set
->policy_list
, tunables_hook
)
614 sg_policy
->freq_update_delay_ns
= rate_limit_us
* NSEC_PER_USEC
;
619 static struct governor_attr rate_limit_us
= __ATTR_RW(rate_limit_us
);
621 static struct attribute
*sugov_attrs
[] = {
625 ATTRIBUTE_GROUPS(sugov
);
627 static struct kobj_type sugov_tunables_ktype
= {
628 .default_groups
= sugov_groups
,
629 .sysfs_ops
= &governor_sysfs_ops
,
632 /********************** cpufreq governor interface *********************/
634 struct cpufreq_governor schedutil_gov
;
636 static struct sugov_policy
*sugov_policy_alloc(struct cpufreq_policy
*policy
)
638 struct sugov_policy
*sg_policy
;
640 sg_policy
= kzalloc(sizeof(*sg_policy
), GFP_KERNEL
);
644 sg_policy
->policy
= policy
;
645 raw_spin_lock_init(&sg_policy
->update_lock
);
649 static void sugov_policy_free(struct sugov_policy
*sg_policy
)
654 static int sugov_kthread_create(struct sugov_policy
*sg_policy
)
656 struct task_struct
*thread
;
657 struct sched_attr attr
= {
658 .size
= sizeof(struct sched_attr
),
659 .sched_policy
= SCHED_DEADLINE
,
660 .sched_flags
= SCHED_FLAG_SUGOV
,
664 * Fake (unused) bandwidth; workaround to "fix"
665 * priority inheritance.
667 .sched_runtime
= 1000000,
668 .sched_deadline
= 10000000,
669 .sched_period
= 10000000,
671 struct cpufreq_policy
*policy
= sg_policy
->policy
;
674 /* kthread only required for slow path */
675 if (policy
->fast_switch_enabled
)
678 kthread_init_work(&sg_policy
->work
, sugov_work
);
679 kthread_init_worker(&sg_policy
->worker
);
680 thread
= kthread_create(kthread_worker_fn
, &sg_policy
->worker
,
682 cpumask_first(policy
->related_cpus
));
683 if (IS_ERR(thread
)) {
684 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread
));
685 return PTR_ERR(thread
);
688 ret
= sched_setattr_nocheck(thread
, &attr
);
690 kthread_stop(thread
);
691 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__
);
695 sg_policy
->thread
= thread
;
696 kthread_bind_mask(thread
, policy
->related_cpus
);
697 init_irq_work(&sg_policy
->irq_work
, sugov_irq_work
);
698 mutex_init(&sg_policy
->work_lock
);
700 wake_up_process(thread
);
705 static void sugov_kthread_stop(struct sugov_policy
*sg_policy
)
707 /* kthread only required for slow path */
708 if (sg_policy
->policy
->fast_switch_enabled
)
711 kthread_flush_worker(&sg_policy
->worker
);
712 kthread_stop(sg_policy
->thread
);
713 mutex_destroy(&sg_policy
->work_lock
);
716 static struct sugov_tunables
*sugov_tunables_alloc(struct sugov_policy
*sg_policy
)
718 struct sugov_tunables
*tunables
;
720 tunables
= kzalloc(sizeof(*tunables
), GFP_KERNEL
);
722 gov_attr_set_init(&tunables
->attr_set
, &sg_policy
->tunables_hook
);
723 if (!have_governor_per_policy())
724 global_tunables
= tunables
;
729 static void sugov_tunables_free(struct sugov_tunables
*tunables
)
731 if (!have_governor_per_policy())
732 global_tunables
= NULL
;
737 static int sugov_init(struct cpufreq_policy
*policy
)
739 struct sugov_policy
*sg_policy
;
740 struct sugov_tunables
*tunables
;
743 /* State should be equivalent to EXIT */
744 if (policy
->governor_data
)
747 cpufreq_enable_fast_switch(policy
);
749 sg_policy
= sugov_policy_alloc(policy
);
752 goto disable_fast_switch
;
755 ret
= sugov_kthread_create(sg_policy
);
759 mutex_lock(&global_tunables_lock
);
761 if (global_tunables
) {
762 if (WARN_ON(have_governor_per_policy())) {
766 policy
->governor_data
= sg_policy
;
767 sg_policy
->tunables
= global_tunables
;
769 gov_attr_set_get(&global_tunables
->attr_set
, &sg_policy
->tunables_hook
);
773 tunables
= sugov_tunables_alloc(sg_policy
);
779 tunables
->rate_limit_us
= cpufreq_policy_transition_delay_us(policy
);
781 policy
->governor_data
= sg_policy
;
782 sg_policy
->tunables
= tunables
;
784 ret
= kobject_init_and_add(&tunables
->attr_set
.kobj
, &sugov_tunables_ktype
,
785 get_governor_parent_kobj(policy
), "%s",
791 mutex_unlock(&global_tunables_lock
);
795 kobject_put(&tunables
->attr_set
.kobj
);
796 policy
->governor_data
= NULL
;
797 sugov_tunables_free(tunables
);
800 sugov_kthread_stop(sg_policy
);
801 mutex_unlock(&global_tunables_lock
);
804 sugov_policy_free(sg_policy
);
807 cpufreq_disable_fast_switch(policy
);
809 pr_err("initialization failed (error %d)\n", ret
);
813 static void sugov_exit(struct cpufreq_policy
*policy
)
815 struct sugov_policy
*sg_policy
= policy
->governor_data
;
816 struct sugov_tunables
*tunables
= sg_policy
->tunables
;
819 mutex_lock(&global_tunables_lock
);
821 count
= gov_attr_set_put(&tunables
->attr_set
, &sg_policy
->tunables_hook
);
822 policy
->governor_data
= NULL
;
824 sugov_tunables_free(tunables
);
826 mutex_unlock(&global_tunables_lock
);
828 sugov_kthread_stop(sg_policy
);
829 sugov_policy_free(sg_policy
);
830 cpufreq_disable_fast_switch(policy
);
833 static int sugov_start(struct cpufreq_policy
*policy
)
835 struct sugov_policy
*sg_policy
= policy
->governor_data
;
838 sg_policy
->freq_update_delay_ns
= sg_policy
->tunables
->rate_limit_us
* NSEC_PER_USEC
;
839 sg_policy
->last_freq_update_time
= 0;
840 sg_policy
->next_freq
= 0;
841 sg_policy
->work_in_progress
= false;
842 sg_policy
->limits_changed
= false;
843 sg_policy
->need_freq_update
= false;
844 sg_policy
->cached_raw_freq
= 0;
846 for_each_cpu(cpu
, policy
->cpus
) {
847 struct sugov_cpu
*sg_cpu
= &per_cpu(sugov_cpu
, cpu
);
849 memset(sg_cpu
, 0, sizeof(*sg_cpu
));
851 sg_cpu
->sg_policy
= sg_policy
;
854 for_each_cpu(cpu
, policy
->cpus
) {
855 struct sugov_cpu
*sg_cpu
= &per_cpu(sugov_cpu
, cpu
);
857 cpufreq_add_update_util_hook(cpu
, &sg_cpu
->update_util
,
858 policy_is_shared(policy
) ?
859 sugov_update_shared
:
860 sugov_update_single
);
865 static void sugov_stop(struct cpufreq_policy
*policy
)
867 struct sugov_policy
*sg_policy
= policy
->governor_data
;
870 for_each_cpu(cpu
, policy
->cpus
)
871 cpufreq_remove_update_util_hook(cpu
);
875 if (!policy
->fast_switch_enabled
) {
876 irq_work_sync(&sg_policy
->irq_work
);
877 kthread_cancel_work_sync(&sg_policy
->work
);
881 static void sugov_limits(struct cpufreq_policy
*policy
)
883 struct sugov_policy
*sg_policy
= policy
->governor_data
;
885 if (!policy
->fast_switch_enabled
) {
886 mutex_lock(&sg_policy
->work_lock
);
887 cpufreq_policy_apply_limits(policy
);
888 mutex_unlock(&sg_policy
->work_lock
);
891 sg_policy
->limits_changed
= true;
894 struct cpufreq_governor schedutil_gov
= {
896 .owner
= THIS_MODULE
,
897 .dynamic_switching
= true,
900 .start
= sugov_start
,
902 .limits
= sugov_limits
,
905 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
906 struct cpufreq_governor
*cpufreq_default_governor(void)
908 return &schedutil_gov
;
912 static int __init
sugov_register(void)
914 return cpufreq_register_governor(&schedutil_gov
);
916 core_initcall(sugov_register
);
918 #ifdef CONFIG_ENERGY_MODEL
919 extern bool sched_energy_update
;
920 extern struct mutex sched_energy_mutex
;
922 static void rebuild_sd_workfn(struct work_struct
*work
)
924 mutex_lock(&sched_energy_mutex
);
925 sched_energy_update
= true;
926 rebuild_sched_domains();
927 sched_energy_update
= false;
928 mutex_unlock(&sched_energy_mutex
);
930 static DECLARE_WORK(rebuild_sd_work
, rebuild_sd_workfn
);
933 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
934 * on governor changes to make sure the scheduler knows about it.
936 void sched_cpufreq_governor_change(struct cpufreq_policy
*policy
,
937 struct cpufreq_governor
*old_gov
)
939 if (old_gov
== &schedutil_gov
|| policy
->governor
== &schedutil_gov
) {
941 * When called from the cpufreq_register_driver() path, the
942 * cpu_hotplug_lock is already held, so use a work item to
943 * avoid nested locking in rebuild_sched_domains().
945 schedule_work(&rebuild_sd_work
);