1 // SPDX-License-Identifier: GPL-2.0
3 * Scheduler topology setup/handling methods
7 DEFINE_MUTEX(sched_domains_mutex
);
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask
;
11 static cpumask_var_t sched_domains_tmpmask2
;
13 #ifdef CONFIG_SCHED_DEBUG
15 static int __init
sched_debug_setup(char *str
)
17 sched_debug_enabled
= true;
21 early_param("sched_debug", sched_debug_setup
);
23 static inline bool sched_debug(void)
25 return sched_debug_enabled
;
28 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
29 struct cpumask
*groupmask
)
31 struct sched_group
*group
= sd
->groups
;
33 cpumask_clear(groupmask
);
35 printk(KERN_DEBUG
"%*s domain-%d: ", level
, "", level
);
36 printk(KERN_CONT
"span=%*pbl level=%s\n",
37 cpumask_pr_args(sched_domain_span(sd
)), sd
->name
);
39 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
40 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
42 if (group
&& !cpumask_test_cpu(cpu
, sched_group_span(group
))) {
43 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
46 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
50 printk(KERN_ERR
"ERROR: group is NULL\n");
54 if (!cpumask_weight(sched_group_span(group
))) {
55 printk(KERN_CONT
"\n");
56 printk(KERN_ERR
"ERROR: empty group\n");
60 if (!(sd
->flags
& SD_OVERLAP
) &&
61 cpumask_intersects(groupmask
, sched_group_span(group
))) {
62 printk(KERN_CONT
"\n");
63 printk(KERN_ERR
"ERROR: repeated CPUs\n");
67 cpumask_or(groupmask
, groupmask
, sched_group_span(group
));
69 printk(KERN_CONT
" %d:{ span=%*pbl",
71 cpumask_pr_args(sched_group_span(group
)));
73 if ((sd
->flags
& SD_OVERLAP
) &&
74 !cpumask_equal(group_balance_mask(group
), sched_group_span(group
))) {
75 printk(KERN_CONT
" mask=%*pbl",
76 cpumask_pr_args(group_balance_mask(group
)));
79 if (group
->sgc
->capacity
!= SCHED_CAPACITY_SCALE
)
80 printk(KERN_CONT
" cap=%lu", group
->sgc
->capacity
);
82 if (group
== sd
->groups
&& sd
->child
&&
83 !cpumask_equal(sched_domain_span(sd
->child
),
84 sched_group_span(group
))) {
85 printk(KERN_ERR
"ERROR: domain->groups does not match domain->child\n");
88 printk(KERN_CONT
" }");
92 if (group
!= sd
->groups
)
93 printk(KERN_CONT
",");
95 } while (group
!= sd
->groups
);
96 printk(KERN_CONT
"\n");
98 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
99 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
102 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
103 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
107 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
111 if (!sched_debug_enabled
)
115 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
119 printk(KERN_DEBUG
"CPU%d attaching sched-domain(s):\n", cpu
);
122 if (sched_domain_debug_one(sd
, cpu
, level
, sched_domains_tmpmask
))
130 #else /* !CONFIG_SCHED_DEBUG */
132 # define sched_debug_enabled 0
133 # define sched_domain_debug(sd, cpu) do { } while (0)
134 static inline bool sched_debug(void)
138 #endif /* CONFIG_SCHED_DEBUG */
140 static int sd_degenerate(struct sched_domain
*sd
)
142 if (cpumask_weight(sched_domain_span(sd
)) == 1)
145 /* Following flags need at least 2 groups */
146 if (sd
->flags
& (SD_BALANCE_NEWIDLE
|
149 SD_SHARE_CPUCAPACITY
|
150 SD_ASYM_CPUCAPACITY
|
151 SD_SHARE_PKG_RESOURCES
|
152 SD_SHARE_POWERDOMAIN
)) {
153 if (sd
->groups
!= sd
->groups
->next
)
157 /* Following flags don't use groups */
158 if (sd
->flags
& (SD_WAKE_AFFINE
))
165 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
167 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
169 if (sd_degenerate(parent
))
172 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
175 /* Flags needing groups don't count if only 1 group in parent */
176 if (parent
->groups
== parent
->groups
->next
) {
177 pflags
&= ~(SD_BALANCE_NEWIDLE
|
180 SD_ASYM_CPUCAPACITY
|
181 SD_SHARE_CPUCAPACITY
|
182 SD_SHARE_PKG_RESOURCES
|
184 SD_SHARE_POWERDOMAIN
);
185 if (nr_node_ids
== 1)
186 pflags
&= ~SD_SERIALIZE
;
188 if (~cflags
& pflags
)
194 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
195 DEFINE_STATIC_KEY_FALSE(sched_energy_present
);
196 unsigned int sysctl_sched_energy_aware
= 1;
197 DEFINE_MUTEX(sched_energy_mutex
);
198 bool sched_energy_update
;
200 #ifdef CONFIG_PROC_SYSCTL
201 int sched_energy_aware_handler(struct ctl_table
*table
, int write
,
202 void *buffer
, size_t *lenp
, loff_t
*ppos
)
206 if (write
&& !capable(CAP_SYS_ADMIN
))
209 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
211 state
= static_branch_unlikely(&sched_energy_present
);
212 if (state
!= sysctl_sched_energy_aware
) {
213 mutex_lock(&sched_energy_mutex
);
214 sched_energy_update
= 1;
215 rebuild_sched_domains();
216 sched_energy_update
= 0;
217 mutex_unlock(&sched_energy_mutex
);
225 static void free_pd(struct perf_domain
*pd
)
227 struct perf_domain
*tmp
;
236 static struct perf_domain
*find_pd(struct perf_domain
*pd
, int cpu
)
239 if (cpumask_test_cpu(cpu
, perf_domain_span(pd
)))
247 static struct perf_domain
*pd_init(int cpu
)
249 struct em_perf_domain
*obj
= em_cpu_get(cpu
);
250 struct perf_domain
*pd
;
254 pr_info("%s: no EM found for CPU%d\n", __func__
, cpu
);
258 pd
= kzalloc(sizeof(*pd
), GFP_KERNEL
);
266 static void perf_domain_debug(const struct cpumask
*cpu_map
,
267 struct perf_domain
*pd
)
269 if (!sched_debug() || !pd
)
272 printk(KERN_DEBUG
"root_domain %*pbl:", cpumask_pr_args(cpu_map
));
275 printk(KERN_CONT
" pd%d:{ cpus=%*pbl nr_cstate=%d }",
276 cpumask_first(perf_domain_span(pd
)),
277 cpumask_pr_args(perf_domain_span(pd
)),
278 em_pd_nr_cap_states(pd
->em_pd
));
282 printk(KERN_CONT
"\n");
285 static void destroy_perf_domain_rcu(struct rcu_head
*rp
)
287 struct perf_domain
*pd
;
289 pd
= container_of(rp
, struct perf_domain
, rcu
);
293 static void sched_energy_set(bool has_eas
)
295 if (!has_eas
&& static_branch_unlikely(&sched_energy_present
)) {
297 pr_info("%s: stopping EAS\n", __func__
);
298 static_branch_disable_cpuslocked(&sched_energy_present
);
299 } else if (has_eas
&& !static_branch_unlikely(&sched_energy_present
)) {
301 pr_info("%s: starting EAS\n", __func__
);
302 static_branch_enable_cpuslocked(&sched_energy_present
);
307 * EAS can be used on a root domain if it meets all the following conditions:
308 * 1. an Energy Model (EM) is available;
309 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
310 * 3. no SMT is detected.
311 * 4. the EM complexity is low enough to keep scheduling overheads low;
312 * 5. schedutil is driving the frequency of all CPUs of the rd;
314 * The complexity of the Energy Model is defined as:
316 * C = nr_pd * (nr_cpus + nr_cs)
318 * with parameters defined as:
319 * - nr_pd: the number of performance domains
320 * - nr_cpus: the number of CPUs
321 * - nr_cs: the sum of the number of capacity states of all performance
322 * domains (for example, on a system with 2 performance domains,
323 * with 10 capacity states each, nr_cs = 2 * 10 = 20).
325 * It is generally not a good idea to use such a model in the wake-up path on
326 * very complex platforms because of the associated scheduling overheads. The
327 * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
328 * with per-CPU DVFS and less than 8 capacity states each, for example.
330 #define EM_MAX_COMPLEXITY 2048
332 extern struct cpufreq_governor schedutil_gov
;
333 static bool build_perf_domains(const struct cpumask
*cpu_map
)
335 int i
, nr_pd
= 0, nr_cs
= 0, nr_cpus
= cpumask_weight(cpu_map
);
336 struct perf_domain
*pd
= NULL
, *tmp
;
337 int cpu
= cpumask_first(cpu_map
);
338 struct root_domain
*rd
= cpu_rq(cpu
)->rd
;
339 struct cpufreq_policy
*policy
;
340 struct cpufreq_governor
*gov
;
342 if (!sysctl_sched_energy_aware
)
345 /* EAS is enabled for asymmetric CPU capacity topologies. */
346 if (!per_cpu(sd_asym_cpucapacity
, cpu
)) {
348 pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
349 cpumask_pr_args(cpu_map
));
354 /* EAS definitely does *not* handle SMT */
355 if (sched_smt_active()) {
356 pr_warn("rd %*pbl: Disabling EAS, SMT is not supported\n",
357 cpumask_pr_args(cpu_map
));
361 for_each_cpu(i
, cpu_map
) {
362 /* Skip already covered CPUs. */
366 /* Do not attempt EAS if schedutil is not being used. */
367 policy
= cpufreq_cpu_get(i
);
370 gov
= policy
->governor
;
371 cpufreq_cpu_put(policy
);
372 if (gov
!= &schedutil_gov
) {
374 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
375 cpumask_pr_args(cpu_map
));
379 /* Create the new pd and add it to the local list. */
387 * Count performance domains and capacity states for the
391 nr_cs
+= em_pd_nr_cap_states(pd
->em_pd
);
394 /* Bail out if the Energy Model complexity is too high. */
395 if (nr_pd
* (nr_cs
+ nr_cpus
) > EM_MAX_COMPLEXITY
) {
396 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
397 cpumask_pr_args(cpu_map
));
401 perf_domain_debug(cpu_map
, pd
);
403 /* Attach the new list of performance domains to the root domain. */
405 rcu_assign_pointer(rd
->pd
, pd
);
407 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
414 rcu_assign_pointer(rd
->pd
, NULL
);
416 call_rcu(&tmp
->rcu
, destroy_perf_domain_rcu
);
421 static void free_pd(struct perf_domain
*pd
) { }
422 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
424 static void free_rootdomain(struct rcu_head
*rcu
)
426 struct root_domain
*rd
= container_of(rcu
, struct root_domain
, rcu
);
428 cpupri_cleanup(&rd
->cpupri
);
429 cpudl_cleanup(&rd
->cpudl
);
430 free_cpumask_var(rd
->dlo_mask
);
431 free_cpumask_var(rd
->rto_mask
);
432 free_cpumask_var(rd
->online
);
433 free_cpumask_var(rd
->span
);
438 void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
440 struct root_domain
*old_rd
= NULL
;
443 raw_spin_lock_irqsave(&rq
->lock
, flags
);
448 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
451 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
454 * If we dont want to free the old_rd yet then
455 * set old_rd to NULL to skip the freeing later
458 if (!atomic_dec_and_test(&old_rd
->refcount
))
462 atomic_inc(&rd
->refcount
);
465 cpumask_set_cpu(rq
->cpu
, rd
->span
);
466 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
469 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
472 call_rcu(&old_rd
->rcu
, free_rootdomain
);
475 void sched_get_rd(struct root_domain
*rd
)
477 atomic_inc(&rd
->refcount
);
480 void sched_put_rd(struct root_domain
*rd
)
482 if (!atomic_dec_and_test(&rd
->refcount
))
485 call_rcu(&rd
->rcu
, free_rootdomain
);
488 static int init_rootdomain(struct root_domain
*rd
)
490 if (!zalloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
492 if (!zalloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
494 if (!zalloc_cpumask_var(&rd
->dlo_mask
, GFP_KERNEL
))
496 if (!zalloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
499 #ifdef HAVE_RT_PUSH_IPI
501 raw_spin_lock_init(&rd
->rto_lock
);
502 init_irq_work(&rd
->rto_push_work
, rto_push_irq_work_func
);
505 init_dl_bw(&rd
->dl_bw
);
506 if (cpudl_init(&rd
->cpudl
) != 0)
509 if (cpupri_init(&rd
->cpupri
) != 0)
514 cpudl_cleanup(&rd
->cpudl
);
516 free_cpumask_var(rd
->rto_mask
);
518 free_cpumask_var(rd
->dlo_mask
);
520 free_cpumask_var(rd
->online
);
522 free_cpumask_var(rd
->span
);
528 * By default the system creates a single root-domain with all CPUs as
529 * members (mimicking the global state we have today).
531 struct root_domain def_root_domain
;
533 void init_defrootdomain(void)
535 init_rootdomain(&def_root_domain
);
537 atomic_set(&def_root_domain
.refcount
, 1);
540 static struct root_domain
*alloc_rootdomain(void)
542 struct root_domain
*rd
;
544 rd
= kzalloc(sizeof(*rd
), GFP_KERNEL
);
548 if (init_rootdomain(rd
) != 0) {
556 static void free_sched_groups(struct sched_group
*sg
, int free_sgc
)
558 struct sched_group
*tmp
, *first
;
567 if (free_sgc
&& atomic_dec_and_test(&sg
->sgc
->ref
))
570 if (atomic_dec_and_test(&sg
->ref
))
573 } while (sg
!= first
);
576 static void destroy_sched_domain(struct sched_domain
*sd
)
579 * A normal sched domain may have multiple group references, an
580 * overlapping domain, having private groups, only one. Iterate,
581 * dropping group/capacity references, freeing where none remain.
583 free_sched_groups(sd
->groups
, 1);
585 if (sd
->shared
&& atomic_dec_and_test(&sd
->shared
->ref
))
590 static void destroy_sched_domains_rcu(struct rcu_head
*rcu
)
592 struct sched_domain
*sd
= container_of(rcu
, struct sched_domain
, rcu
);
595 struct sched_domain
*parent
= sd
->parent
;
596 destroy_sched_domain(sd
);
601 static void destroy_sched_domains(struct sched_domain
*sd
)
604 call_rcu(&sd
->rcu
, destroy_sched_domains_rcu
);
608 * Keep a special pointer to the highest sched_domain that has
609 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
610 * allows us to avoid some pointer chasing select_idle_sibling().
612 * Also keep a unique ID per domain (we use the first CPU number in
613 * the cpumask of the domain), this allows us to quickly tell if
614 * two CPUs are in the same cache domain, see cpus_share_cache().
616 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_llc
);
617 DEFINE_PER_CPU(int, sd_llc_size
);
618 DEFINE_PER_CPU(int, sd_llc_id
);
619 DEFINE_PER_CPU(struct sched_domain_shared __rcu
*, sd_llc_shared
);
620 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_numa
);
621 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_asym_packing
);
622 DEFINE_PER_CPU(struct sched_domain __rcu
*, sd_asym_cpucapacity
);
623 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity
);
625 static void update_top_cache_domain(int cpu
)
627 struct sched_domain_shared
*sds
= NULL
;
628 struct sched_domain
*sd
;
632 sd
= highest_flag_domain(cpu
, SD_SHARE_PKG_RESOURCES
);
634 id
= cpumask_first(sched_domain_span(sd
));
635 size
= cpumask_weight(sched_domain_span(sd
));
639 rcu_assign_pointer(per_cpu(sd_llc
, cpu
), sd
);
640 per_cpu(sd_llc_size
, cpu
) = size
;
641 per_cpu(sd_llc_id
, cpu
) = id
;
642 rcu_assign_pointer(per_cpu(sd_llc_shared
, cpu
), sds
);
644 sd
= lowest_flag_domain(cpu
, SD_NUMA
);
645 rcu_assign_pointer(per_cpu(sd_numa
, cpu
), sd
);
647 sd
= highest_flag_domain(cpu
, SD_ASYM_PACKING
);
648 rcu_assign_pointer(per_cpu(sd_asym_packing
, cpu
), sd
);
650 sd
= lowest_flag_domain(cpu
, SD_ASYM_CPUCAPACITY
);
651 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity
, cpu
), sd
);
655 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
656 * hold the hotplug lock.
659 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
661 struct rq
*rq
= cpu_rq(cpu
);
662 struct sched_domain
*tmp
;
664 /* Remove the sched domains which do not contribute to scheduling. */
665 for (tmp
= sd
; tmp
; ) {
666 struct sched_domain
*parent
= tmp
->parent
;
670 if (sd_parent_degenerate(tmp
, parent
)) {
671 tmp
->parent
= parent
->parent
;
673 parent
->parent
->child
= tmp
;
675 * Transfer SD_PREFER_SIBLING down in case of a
676 * degenerate parent; the spans match for this
677 * so the property transfers.
679 if (parent
->flags
& SD_PREFER_SIBLING
)
680 tmp
->flags
|= SD_PREFER_SIBLING
;
681 destroy_sched_domain(parent
);
686 if (sd
&& sd_degenerate(sd
)) {
689 destroy_sched_domain(tmp
);
694 sched_domain_debug(sd
, cpu
);
696 rq_attach_root(rq
, rd
);
698 rcu_assign_pointer(rq
->sd
, sd
);
699 dirty_sched_domain_sysctl(cpu
);
700 destroy_sched_domains(tmp
);
702 update_top_cache_domain(cpu
);
706 struct sched_domain
* __percpu
*sd
;
707 struct root_domain
*rd
;
718 * Return the canonical balance CPU for this group, this is the first CPU
719 * of this group that's also in the balance mask.
721 * The balance mask are all those CPUs that could actually end up at this
722 * group. See build_balance_mask().
724 * Also see should_we_balance().
726 int group_balance_cpu(struct sched_group
*sg
)
728 return cpumask_first(group_balance_mask(sg
));
733 * NUMA topology (first read the regular topology blurb below)
735 * Given a node-distance table, for example:
743 * which represents a 4 node ring topology like:
751 * We want to construct domains and groups to represent this. The way we go
752 * about doing this is to build the domains on 'hops'. For each NUMA level we
753 * construct the mask of all nodes reachable in @level hops.
755 * For the above NUMA topology that gives 3 levels:
757 * NUMA-2 0-3 0-3 0-3 0-3
758 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
760 * NUMA-1 0-1,3 0-2 1-3 0,2-3
761 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
766 * As can be seen; things don't nicely line up as with the regular topology.
767 * When we iterate a domain in child domain chunks some nodes can be
768 * represented multiple times -- hence the "overlap" naming for this part of
771 * In order to minimize this overlap, we only build enough groups to cover the
772 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
776 * - the first group of each domain is its child domain; this
777 * gets us the first 0-1,3
778 * - the only uncovered node is 2, who's child domain is 1-3.
780 * However, because of the overlap, computing a unique CPU for each group is
781 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
782 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
783 * end up at those groups (they would end up in group: 0-1,3).
785 * To correct this we have to introduce the group balance mask. This mask
786 * will contain those CPUs in the group that can reach this group given the
787 * (child) domain tree.
789 * With this we can once again compute balance_cpu and sched_group_capacity
792 * XXX include words on how balance_cpu is unique and therefore can be
793 * used for sched_group_capacity links.
796 * Another 'interesting' topology is:
804 * Which looks a little like:
812 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
815 * This leads to a few particularly weird cases where the sched_domain's are
816 * not of the same number for each CPU. Consider:
819 * groups: {0-2},{1-3} {1-3},{0-2}
821 * NUMA-1 0-2 0-3 0-3 1-3
829 * Build the balance mask; it contains only those CPUs that can arrive at this
830 * group and should be considered to continue balancing.
832 * We do this during the group creation pass, therefore the group information
833 * isn't complete yet, however since each group represents a (child) domain we
834 * can fully construct this using the sched_domain bits (which are already
838 build_balance_mask(struct sched_domain
*sd
, struct sched_group
*sg
, struct cpumask
*mask
)
840 const struct cpumask
*sg_span
= sched_group_span(sg
);
841 struct sd_data
*sdd
= sd
->private;
842 struct sched_domain
*sibling
;
847 for_each_cpu(i
, sg_span
) {
848 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
851 * Can happen in the asymmetric case, where these siblings are
852 * unused. The mask will not be empty because those CPUs that
853 * do have the top domain _should_ span the domain.
858 /* If we would not end up here, we can't continue from here */
859 if (!cpumask_equal(sg_span
, sched_domain_span(sibling
->child
)))
862 cpumask_set_cpu(i
, mask
);
865 /* We must not have empty masks here */
866 WARN_ON_ONCE(cpumask_empty(mask
));
870 * XXX: This creates per-node group entries; since the load-balancer will
871 * immediately access remote memory to construct this group's load-balance
872 * statistics having the groups node local is of dubious benefit.
874 static struct sched_group
*
875 build_group_from_child_sched_domain(struct sched_domain
*sd
, int cpu
)
877 struct sched_group
*sg
;
878 struct cpumask
*sg_span
;
880 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
881 GFP_KERNEL
, cpu_to_node(cpu
));
886 sg_span
= sched_group_span(sg
);
888 cpumask_copy(sg_span
, sched_domain_span(sd
->child
));
890 cpumask_copy(sg_span
, sched_domain_span(sd
));
892 atomic_inc(&sg
->ref
);
896 static void init_overlap_sched_group(struct sched_domain
*sd
,
897 struct sched_group
*sg
)
899 struct cpumask
*mask
= sched_domains_tmpmask2
;
900 struct sd_data
*sdd
= sd
->private;
901 struct cpumask
*sg_span
;
904 build_balance_mask(sd
, sg
, mask
);
905 cpu
= cpumask_first_and(sched_group_span(sg
), mask
);
907 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
908 if (atomic_inc_return(&sg
->sgc
->ref
) == 1)
909 cpumask_copy(group_balance_mask(sg
), mask
);
911 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg
), mask
));
914 * Initialize sgc->capacity such that even if we mess up the
915 * domains and no possible iteration will get us here, we won't
918 sg_span
= sched_group_span(sg
);
919 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sg_span
);
920 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
921 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
925 build_overlap_sched_groups(struct sched_domain
*sd
, int cpu
)
927 struct sched_group
*first
= NULL
, *last
= NULL
, *sg
;
928 const struct cpumask
*span
= sched_domain_span(sd
);
929 struct cpumask
*covered
= sched_domains_tmpmask
;
930 struct sd_data
*sdd
= sd
->private;
931 struct sched_domain
*sibling
;
934 cpumask_clear(covered
);
936 for_each_cpu_wrap(i
, span
, cpu
) {
937 struct cpumask
*sg_span
;
939 if (cpumask_test_cpu(i
, covered
))
942 sibling
= *per_cpu_ptr(sdd
->sd
, i
);
945 * Asymmetric node setups can result in situations where the
946 * domain tree is of unequal depth, make sure to skip domains
947 * that already cover the entire range.
949 * In that case build_sched_domains() will have terminated the
950 * iteration early and our sibling sd spans will be empty.
951 * Domains should always include the CPU they're built on, so
954 if (!cpumask_test_cpu(i
, sched_domain_span(sibling
)))
957 sg
= build_group_from_child_sched_domain(sibling
, cpu
);
961 sg_span
= sched_group_span(sg
);
962 cpumask_or(covered
, covered
, sg_span
);
964 init_overlap_sched_group(sd
, sg
);
978 free_sched_groups(first
, 0);
985 * Package topology (also see the load-balance blurb in fair.c)
987 * The scheduler builds a tree structure to represent a number of important
988 * topology features. By default (default_topology[]) these include:
990 * - Simultaneous multithreading (SMT)
991 * - Multi-Core Cache (MC)
994 * Where the last one more or less denotes everything up to a NUMA node.
996 * The tree consists of 3 primary data structures:
998 * sched_domain -> sched_group -> sched_group_capacity
1002 * The sched_domains are per-CPU and have a two way link (parent & child) and
1003 * denote the ever growing mask of CPUs belonging to that level of topology.
1005 * Each sched_domain has a circular (double) linked list of sched_group's, each
1006 * denoting the domains of the level below (or individual CPUs in case of the
1007 * first domain level). The sched_group linked by a sched_domain includes the
1008 * CPU of that sched_domain [*].
1010 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1012 * CPU 0 1 2 3 4 5 6 7
1016 * SMT [ ] [ ] [ ] [ ]
1020 * DIE 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1021 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1022 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1024 * CPU 0 1 2 3 4 5 6 7
1026 * One way to think about it is: sched_domain moves you up and down among these
1027 * topology levels, while sched_group moves you sideways through it, at child
1028 * domain granularity.
1030 * sched_group_capacity ensures each unique sched_group has shared storage.
1032 * There are two related construction problems, both require a CPU that
1033 * uniquely identify each group (for a given domain):
1035 * - The first is the balance_cpu (see should_we_balance() and the
1036 * load-balance blub in fair.c); for each group we only want 1 CPU to
1037 * continue balancing at a higher domain.
1039 * - The second is the sched_group_capacity; we want all identical groups
1040 * to share a single sched_group_capacity.
1042 * Since these topologies are exclusive by construction. That is, its
1043 * impossible for an SMT thread to belong to multiple cores, and cores to
1044 * be part of multiple caches. There is a very clear and unique location
1045 * for each CPU in the hierarchy.
1047 * Therefore computing a unique CPU for each group is trivial (the iteration
1048 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1049 * group), we can simply pick the first CPU in each group.
1052 * [*] in other words, the first group of each domain is its child domain.
1055 static struct sched_group
*get_group(int cpu
, struct sd_data
*sdd
)
1057 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1058 struct sched_domain
*child
= sd
->child
;
1059 struct sched_group
*sg
;
1060 bool already_visited
;
1063 cpu
= cpumask_first(sched_domain_span(child
));
1065 sg
= *per_cpu_ptr(sdd
->sg
, cpu
);
1066 sg
->sgc
= *per_cpu_ptr(sdd
->sgc
, cpu
);
1068 /* Increase refcounts for claim_allocations: */
1069 already_visited
= atomic_inc_return(&sg
->ref
) > 1;
1070 /* sgc visits should follow a similar trend as sg */
1071 WARN_ON(already_visited
!= (atomic_inc_return(&sg
->sgc
->ref
) > 1));
1073 /* If we have already visited that group, it's already initialized. */
1074 if (already_visited
)
1078 cpumask_copy(sched_group_span(sg
), sched_domain_span(child
));
1079 cpumask_copy(group_balance_mask(sg
), sched_group_span(sg
));
1081 cpumask_set_cpu(cpu
, sched_group_span(sg
));
1082 cpumask_set_cpu(cpu
, group_balance_mask(sg
));
1085 sg
->sgc
->capacity
= SCHED_CAPACITY_SCALE
* cpumask_weight(sched_group_span(sg
));
1086 sg
->sgc
->min_capacity
= SCHED_CAPACITY_SCALE
;
1087 sg
->sgc
->max_capacity
= SCHED_CAPACITY_SCALE
;
1093 * build_sched_groups will build a circular linked list of the groups
1094 * covered by the given span, will set each group's ->cpumask correctly,
1095 * and will initialize their ->sgc.
1097 * Assumes the sched_domain tree is fully constructed
1100 build_sched_groups(struct sched_domain
*sd
, int cpu
)
1102 struct sched_group
*first
= NULL
, *last
= NULL
;
1103 struct sd_data
*sdd
= sd
->private;
1104 const struct cpumask
*span
= sched_domain_span(sd
);
1105 struct cpumask
*covered
;
1108 lockdep_assert_held(&sched_domains_mutex
);
1109 covered
= sched_domains_tmpmask
;
1111 cpumask_clear(covered
);
1113 for_each_cpu_wrap(i
, span
, cpu
) {
1114 struct sched_group
*sg
;
1116 if (cpumask_test_cpu(i
, covered
))
1119 sg
= get_group(i
, sdd
);
1121 cpumask_or(covered
, covered
, sched_group_span(sg
));
1136 * Initialize sched groups cpu_capacity.
1138 * cpu_capacity indicates the capacity of sched group, which is used while
1139 * distributing the load between different sched groups in a sched domain.
1140 * Typically cpu_capacity for all the groups in a sched domain will be same
1141 * unless there are asymmetries in the topology. If there are asymmetries,
1142 * group having more cpu_capacity will pickup more load compared to the
1143 * group having less cpu_capacity.
1145 static void init_sched_groups_capacity(int cpu
, struct sched_domain
*sd
)
1147 struct sched_group
*sg
= sd
->groups
;
1152 int cpu
, max_cpu
= -1;
1154 sg
->group_weight
= cpumask_weight(sched_group_span(sg
));
1156 if (!(sd
->flags
& SD_ASYM_PACKING
))
1159 for_each_cpu(cpu
, sched_group_span(sg
)) {
1162 else if (sched_asym_prefer(cpu
, max_cpu
))
1165 sg
->asym_prefer_cpu
= max_cpu
;
1169 } while (sg
!= sd
->groups
);
1171 if (cpu
!= group_balance_cpu(sg
))
1174 update_group_capacity(sd
, cpu
);
1178 * Initializers for schedule domains
1179 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1182 static int default_relax_domain_level
= -1;
1183 int sched_domain_level_max
;
1185 static int __init
setup_relax_domain_level(char *str
)
1187 if (kstrtoint(str
, 0, &default_relax_domain_level
))
1188 pr_warn("Unable to set relax_domain_level\n");
1192 __setup("relax_domain_level=", setup_relax_domain_level
);
1194 static void set_domain_attribute(struct sched_domain
*sd
,
1195 struct sched_domain_attr
*attr
)
1199 if (!attr
|| attr
->relax_domain_level
< 0) {
1200 if (default_relax_domain_level
< 0)
1202 request
= default_relax_domain_level
;
1204 request
= attr
->relax_domain_level
;
1206 if (sd
->level
> request
) {
1207 /* Turn off idle balance on this domain: */
1208 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
1212 static void __sdt_free(const struct cpumask
*cpu_map
);
1213 static int __sdt_alloc(const struct cpumask
*cpu_map
);
1215 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
1216 const struct cpumask
*cpu_map
)
1220 if (!atomic_read(&d
->rd
->refcount
))
1221 free_rootdomain(&d
->rd
->rcu
);
1227 __sdt_free(cpu_map
);
1235 __visit_domain_allocation_hell(struct s_data
*d
, const struct cpumask
*cpu_map
)
1237 memset(d
, 0, sizeof(*d
));
1239 if (__sdt_alloc(cpu_map
))
1240 return sa_sd_storage
;
1241 d
->sd
= alloc_percpu(struct sched_domain
*);
1243 return sa_sd_storage
;
1244 d
->rd
= alloc_rootdomain();
1248 return sa_rootdomain
;
1252 * NULL the sd_data elements we've used to build the sched_domain and
1253 * sched_group structure so that the subsequent __free_domain_allocs()
1254 * will not free the data we're using.
1256 static void claim_allocations(int cpu
, struct sched_domain
*sd
)
1258 struct sd_data
*sdd
= sd
->private;
1260 WARN_ON_ONCE(*per_cpu_ptr(sdd
->sd
, cpu
) != sd
);
1261 *per_cpu_ptr(sdd
->sd
, cpu
) = NULL
;
1263 if (atomic_read(&(*per_cpu_ptr(sdd
->sds
, cpu
))->ref
))
1264 *per_cpu_ptr(sdd
->sds
, cpu
) = NULL
;
1266 if (atomic_read(&(*per_cpu_ptr(sdd
->sg
, cpu
))->ref
))
1267 *per_cpu_ptr(sdd
->sg
, cpu
) = NULL
;
1269 if (atomic_read(&(*per_cpu_ptr(sdd
->sgc
, cpu
))->ref
))
1270 *per_cpu_ptr(sdd
->sgc
, cpu
) = NULL
;
1274 enum numa_topology_type sched_numa_topology_type
;
1276 static int sched_domains_numa_levels
;
1277 static int sched_domains_curr_level
;
1279 int sched_max_numa_distance
;
1280 static int *sched_domains_numa_distance
;
1281 static struct cpumask
***sched_domains_numa_masks
;
1282 int __read_mostly node_reclaim_distance
= RECLAIM_DISTANCE
;
1286 * SD_flags allowed in topology descriptions.
1288 * These flags are purely descriptive of the topology and do not prescribe
1289 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1292 * SD_SHARE_CPUCAPACITY - describes SMT topologies
1293 * SD_SHARE_PKG_RESOURCES - describes shared caches
1294 * SD_NUMA - describes NUMA topologies
1295 * SD_SHARE_POWERDOMAIN - describes shared power domain
1297 * Odd one out, which beside describing the topology has a quirk also
1298 * prescribes the desired behaviour that goes along with it:
1300 * SD_ASYM_PACKING - describes SMT quirks
1302 #define TOPOLOGY_SD_FLAGS \
1303 (SD_SHARE_CPUCAPACITY | \
1304 SD_SHARE_PKG_RESOURCES | \
1307 SD_SHARE_POWERDOMAIN)
1309 static struct sched_domain
*
1310 sd_init(struct sched_domain_topology_level
*tl
,
1311 const struct cpumask
*cpu_map
,
1312 struct sched_domain
*child
, int dflags
, int cpu
)
1314 struct sd_data
*sdd
= &tl
->data
;
1315 struct sched_domain
*sd
= *per_cpu_ptr(sdd
->sd
, cpu
);
1316 int sd_id
, sd_weight
, sd_flags
= 0;
1320 * Ugly hack to pass state to sd_numa_mask()...
1322 sched_domains_curr_level
= tl
->numa_level
;
1325 sd_weight
= cpumask_weight(tl
->mask(cpu
));
1328 sd_flags
= (*tl
->sd_flags
)();
1329 if (WARN_ONCE(sd_flags
& ~TOPOLOGY_SD_FLAGS
,
1330 "wrong sd_flags in topology description\n"))
1331 sd_flags
&= ~TOPOLOGY_SD_FLAGS
;
1333 /* Apply detected topology flags */
1336 *sd
= (struct sched_domain
){
1337 .min_interval
= sd_weight
,
1338 .max_interval
= 2*sd_weight
,
1340 .imbalance_pct
= 125,
1342 .cache_nice_tries
= 0,
1344 .flags
= 1*SD_BALANCE_NEWIDLE
1349 | 0*SD_SHARE_CPUCAPACITY
1350 | 0*SD_SHARE_PKG_RESOURCES
1352 | 1*SD_PREFER_SIBLING
1357 .last_balance
= jiffies
,
1358 .balance_interval
= sd_weight
,
1359 .max_newidle_lb_cost
= 0,
1360 .next_decay_max_lb_cost
= jiffies
,
1362 #ifdef CONFIG_SCHED_DEBUG
1367 cpumask_and(sched_domain_span(sd
), cpu_map
, tl
->mask(cpu
));
1368 sd_id
= cpumask_first(sched_domain_span(sd
));
1371 * Convert topological properties into behaviour.
1374 /* Don't attempt to spread across CPUs of different capacities. */
1375 if ((sd
->flags
& SD_ASYM_CPUCAPACITY
) && sd
->child
)
1376 sd
->child
->flags
&= ~SD_PREFER_SIBLING
;
1378 if (sd
->flags
& SD_SHARE_CPUCAPACITY
) {
1379 sd
->imbalance_pct
= 110;
1381 } else if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1382 sd
->imbalance_pct
= 117;
1383 sd
->cache_nice_tries
= 1;
1386 } else if (sd
->flags
& SD_NUMA
) {
1387 sd
->cache_nice_tries
= 2;
1389 sd
->flags
&= ~SD_PREFER_SIBLING
;
1390 sd
->flags
|= SD_SERIALIZE
;
1391 if (sched_domains_numa_distance
[tl
->numa_level
] > node_reclaim_distance
) {
1392 sd
->flags
&= ~(SD_BALANCE_EXEC
|
1399 sd
->cache_nice_tries
= 1;
1403 * For all levels sharing cache; connect a sched_domain_shared
1406 if (sd
->flags
& SD_SHARE_PKG_RESOURCES
) {
1407 sd
->shared
= *per_cpu_ptr(sdd
->sds
, sd_id
);
1408 atomic_inc(&sd
->shared
->ref
);
1409 atomic_set(&sd
->shared
->nr_busy_cpus
, sd_weight
);
1418 * Topology list, bottom-up.
1420 static struct sched_domain_topology_level default_topology
[] = {
1421 #ifdef CONFIG_SCHED_SMT
1422 { cpu_smt_mask
, cpu_smt_flags
, SD_INIT_NAME(SMT
) },
1424 #ifdef CONFIG_SCHED_MC
1425 { cpu_coregroup_mask
, cpu_core_flags
, SD_INIT_NAME(MC
) },
1427 { cpu_cpu_mask
, SD_INIT_NAME(DIE
) },
1431 static struct sched_domain_topology_level
*sched_domain_topology
=
1434 #define for_each_sd_topology(tl) \
1435 for (tl = sched_domain_topology; tl->mask; tl++)
1437 void set_sched_topology(struct sched_domain_topology_level
*tl
)
1439 if (WARN_ON_ONCE(sched_smp_initialized
))
1442 sched_domain_topology
= tl
;
1447 static const struct cpumask
*sd_numa_mask(int cpu
)
1449 return sched_domains_numa_masks
[sched_domains_curr_level
][cpu_to_node(cpu
)];
1452 static void sched_numa_warn(const char *str
)
1454 static int done
= false;
1462 printk(KERN_WARNING
"ERROR: %s\n\n", str
);
1464 for (i
= 0; i
< nr_node_ids
; i
++) {
1465 printk(KERN_WARNING
" ");
1466 for (j
= 0; j
< nr_node_ids
; j
++)
1467 printk(KERN_CONT
"%02d ", node_distance(i
,j
));
1468 printk(KERN_CONT
"\n");
1470 printk(KERN_WARNING
"\n");
1473 bool find_numa_distance(int distance
)
1477 if (distance
== node_distance(0, 0))
1480 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1481 if (sched_domains_numa_distance
[i
] == distance
)
1489 * A system can have three types of NUMA topology:
1490 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1491 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1492 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1494 * The difference between a glueless mesh topology and a backplane
1495 * topology lies in whether communication between not directly
1496 * connected nodes goes through intermediary nodes (where programs
1497 * could run), or through backplane controllers. This affects
1498 * placement of programs.
1500 * The type of topology can be discerned with the following tests:
1501 * - If the maximum distance between any nodes is 1 hop, the system
1502 * is directly connected.
1503 * - If for two nodes A and B, located N > 1 hops away from each other,
1504 * there is an intermediary node C, which is < N hops away from both
1505 * nodes A and B, the system is a glueless mesh.
1507 static void init_numa_topology_type(void)
1511 n
= sched_max_numa_distance
;
1513 if (sched_domains_numa_levels
<= 2) {
1514 sched_numa_topology_type
= NUMA_DIRECT
;
1518 for_each_online_node(a
) {
1519 for_each_online_node(b
) {
1520 /* Find two nodes furthest removed from each other. */
1521 if (node_distance(a
, b
) < n
)
1524 /* Is there an intermediary node between a and b? */
1525 for_each_online_node(c
) {
1526 if (node_distance(a
, c
) < n
&&
1527 node_distance(b
, c
) < n
) {
1528 sched_numa_topology_type
=
1534 sched_numa_topology_type
= NUMA_BACKPLANE
;
1540 void sched_init_numa(void)
1542 int next_distance
, curr_distance
= node_distance(0, 0);
1543 struct sched_domain_topology_level
*tl
;
1547 sched_domains_numa_distance
= kzalloc(sizeof(int) * (nr_node_ids
+ 1), GFP_KERNEL
);
1548 if (!sched_domains_numa_distance
)
1551 /* Includes NUMA identity node at level 0. */
1552 sched_domains_numa_distance
[level
++] = curr_distance
;
1553 sched_domains_numa_levels
= level
;
1556 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1557 * unique distances in the node_distance() table.
1559 * Assumes node_distance(0,j) includes all distances in
1560 * node_distance(i,j) in order to avoid cubic time.
1562 next_distance
= curr_distance
;
1563 for (i
= 0; i
< nr_node_ids
; i
++) {
1564 for (j
= 0; j
< nr_node_ids
; j
++) {
1565 for (k
= 0; k
< nr_node_ids
; k
++) {
1566 int distance
= node_distance(i
, k
);
1568 if (distance
> curr_distance
&&
1569 (distance
< next_distance
||
1570 next_distance
== curr_distance
))
1571 next_distance
= distance
;
1574 * While not a strong assumption it would be nice to know
1575 * about cases where if node A is connected to B, B is not
1576 * equally connected to A.
1578 if (sched_debug() && node_distance(k
, i
) != distance
)
1579 sched_numa_warn("Node-distance not symmetric");
1581 if (sched_debug() && i
&& !find_numa_distance(distance
))
1582 sched_numa_warn("Node-0 not representative");
1584 if (next_distance
!= curr_distance
) {
1585 sched_domains_numa_distance
[level
++] = next_distance
;
1586 sched_domains_numa_levels
= level
;
1587 curr_distance
= next_distance
;
1592 * In case of sched_debug() we verify the above assumption.
1599 * 'level' contains the number of unique distances
1601 * The sched_domains_numa_distance[] array includes the actual distance
1606 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1607 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1608 * the array will contain less then 'level' members. This could be
1609 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1610 * in other functions.
1612 * We reset it to 'level' at the end of this function.
1614 sched_domains_numa_levels
= 0;
1616 sched_domains_numa_masks
= kzalloc(sizeof(void *) * level
, GFP_KERNEL
);
1617 if (!sched_domains_numa_masks
)
1621 * Now for each level, construct a mask per node which contains all
1622 * CPUs of nodes that are that many hops away from us.
1624 for (i
= 0; i
< level
; i
++) {
1625 sched_domains_numa_masks
[i
] =
1626 kzalloc(nr_node_ids
* sizeof(void *), GFP_KERNEL
);
1627 if (!sched_domains_numa_masks
[i
])
1630 for (j
= 0; j
< nr_node_ids
; j
++) {
1631 struct cpumask
*mask
= kzalloc(cpumask_size(), GFP_KERNEL
);
1635 sched_domains_numa_masks
[i
][j
] = mask
;
1638 if (node_distance(j
, k
) > sched_domains_numa_distance
[i
])
1641 cpumask_or(mask
, mask
, cpumask_of_node(k
));
1646 /* Compute default topology size */
1647 for (i
= 0; sched_domain_topology
[i
].mask
; i
++);
1649 tl
= kzalloc((i
+ level
+ 1) *
1650 sizeof(struct sched_domain_topology_level
), GFP_KERNEL
);
1655 * Copy the default topology bits..
1657 for (i
= 0; sched_domain_topology
[i
].mask
; i
++)
1658 tl
[i
] = sched_domain_topology
[i
];
1661 * Add the NUMA identity distance, aka single NODE.
1663 tl
[i
++] = (struct sched_domain_topology_level
){
1664 .mask
= sd_numa_mask
,
1670 * .. and append 'j' levels of NUMA goodness.
1672 for (j
= 1; j
< level
; i
++, j
++) {
1673 tl
[i
] = (struct sched_domain_topology_level
){
1674 .mask
= sd_numa_mask
,
1675 .sd_flags
= cpu_numa_flags
,
1676 .flags
= SDTL_OVERLAP
,
1682 sched_domain_topology
= tl
;
1684 sched_domains_numa_levels
= level
;
1685 sched_max_numa_distance
= sched_domains_numa_distance
[level
- 1];
1687 init_numa_topology_type();
1690 void sched_domains_numa_masks_set(unsigned int cpu
)
1692 int node
= cpu_to_node(cpu
);
1695 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1696 for (j
= 0; j
< nr_node_ids
; j
++) {
1697 if (node_distance(j
, node
) <= sched_domains_numa_distance
[i
])
1698 cpumask_set_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1703 void sched_domains_numa_masks_clear(unsigned int cpu
)
1707 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1708 for (j
= 0; j
< nr_node_ids
; j
++)
1709 cpumask_clear_cpu(cpu
, sched_domains_numa_masks
[i
][j
]);
1714 * sched_numa_find_closest() - given the NUMA topology, find the cpu
1715 * closest to @cpu from @cpumask.
1716 * cpumask: cpumask to find a cpu from
1717 * cpu: cpu to be close to
1719 * returns: cpu, or nr_cpu_ids when nothing found.
1721 int sched_numa_find_closest(const struct cpumask
*cpus
, int cpu
)
1723 int i
, j
= cpu_to_node(cpu
);
1725 for (i
= 0; i
< sched_domains_numa_levels
; i
++) {
1726 cpu
= cpumask_any_and(cpus
, sched_domains_numa_masks
[i
][j
]);
1727 if (cpu
< nr_cpu_ids
)
1733 #endif /* CONFIG_NUMA */
1735 static int __sdt_alloc(const struct cpumask
*cpu_map
)
1737 struct sched_domain_topology_level
*tl
;
1740 for_each_sd_topology(tl
) {
1741 struct sd_data
*sdd
= &tl
->data
;
1743 sdd
->sd
= alloc_percpu(struct sched_domain
*);
1747 sdd
->sds
= alloc_percpu(struct sched_domain_shared
*);
1751 sdd
->sg
= alloc_percpu(struct sched_group
*);
1755 sdd
->sgc
= alloc_percpu(struct sched_group_capacity
*);
1759 for_each_cpu(j
, cpu_map
) {
1760 struct sched_domain
*sd
;
1761 struct sched_domain_shared
*sds
;
1762 struct sched_group
*sg
;
1763 struct sched_group_capacity
*sgc
;
1765 sd
= kzalloc_node(sizeof(struct sched_domain
) + cpumask_size(),
1766 GFP_KERNEL
, cpu_to_node(j
));
1770 *per_cpu_ptr(sdd
->sd
, j
) = sd
;
1772 sds
= kzalloc_node(sizeof(struct sched_domain_shared
),
1773 GFP_KERNEL
, cpu_to_node(j
));
1777 *per_cpu_ptr(sdd
->sds
, j
) = sds
;
1779 sg
= kzalloc_node(sizeof(struct sched_group
) + cpumask_size(),
1780 GFP_KERNEL
, cpu_to_node(j
));
1786 *per_cpu_ptr(sdd
->sg
, j
) = sg
;
1788 sgc
= kzalloc_node(sizeof(struct sched_group_capacity
) + cpumask_size(),
1789 GFP_KERNEL
, cpu_to_node(j
));
1793 #ifdef CONFIG_SCHED_DEBUG
1797 *per_cpu_ptr(sdd
->sgc
, j
) = sgc
;
1804 static void __sdt_free(const struct cpumask
*cpu_map
)
1806 struct sched_domain_topology_level
*tl
;
1809 for_each_sd_topology(tl
) {
1810 struct sd_data
*sdd
= &tl
->data
;
1812 for_each_cpu(j
, cpu_map
) {
1813 struct sched_domain
*sd
;
1816 sd
= *per_cpu_ptr(sdd
->sd
, j
);
1817 if (sd
&& (sd
->flags
& SD_OVERLAP
))
1818 free_sched_groups(sd
->groups
, 0);
1819 kfree(*per_cpu_ptr(sdd
->sd
, j
));
1823 kfree(*per_cpu_ptr(sdd
->sds
, j
));
1825 kfree(*per_cpu_ptr(sdd
->sg
, j
));
1827 kfree(*per_cpu_ptr(sdd
->sgc
, j
));
1829 free_percpu(sdd
->sd
);
1831 free_percpu(sdd
->sds
);
1833 free_percpu(sdd
->sg
);
1835 free_percpu(sdd
->sgc
);
1840 static struct sched_domain
*build_sched_domain(struct sched_domain_topology_level
*tl
,
1841 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
1842 struct sched_domain
*child
, int dflags
, int cpu
)
1844 struct sched_domain
*sd
= sd_init(tl
, cpu_map
, child
, dflags
, cpu
);
1847 sd
->level
= child
->level
+ 1;
1848 sched_domain_level_max
= max(sched_domain_level_max
, sd
->level
);
1851 if (!cpumask_subset(sched_domain_span(child
),
1852 sched_domain_span(sd
))) {
1853 pr_err("BUG: arch topology borken\n");
1854 #ifdef CONFIG_SCHED_DEBUG
1855 pr_err(" the %s domain not a subset of the %s domain\n",
1856 child
->name
, sd
->name
);
1858 /* Fixup, ensure @sd has at least @child CPUs. */
1859 cpumask_or(sched_domain_span(sd
),
1860 sched_domain_span(sd
),
1861 sched_domain_span(child
));
1865 set_domain_attribute(sd
, attr
);
1871 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
1872 * any two given CPUs at this (non-NUMA) topology level.
1874 static bool topology_span_sane(struct sched_domain_topology_level
*tl
,
1875 const struct cpumask
*cpu_map
, int cpu
)
1879 /* NUMA levels are allowed to overlap */
1880 if (tl
->flags
& SDTL_OVERLAP
)
1884 * Non-NUMA levels cannot partially overlap - they must be either
1885 * completely equal or completely disjoint. Otherwise we can end up
1886 * breaking the sched_group lists - i.e. a later get_group() pass
1887 * breaks the linking done for an earlier span.
1889 for_each_cpu(i
, cpu_map
) {
1893 * We should 'and' all those masks with 'cpu_map' to exactly
1894 * match the topology we're about to build, but that can only
1895 * remove CPUs, which only lessens our ability to detect
1898 if (!cpumask_equal(tl
->mask(cpu
), tl
->mask(i
)) &&
1899 cpumask_intersects(tl
->mask(cpu
), tl
->mask(i
)))
1907 * Find the sched_domain_topology_level where all CPU capacities are visible
1910 static struct sched_domain_topology_level
1911 *asym_cpu_capacity_level(const struct cpumask
*cpu_map
)
1913 int i
, j
, asym_level
= 0;
1915 struct sched_domain_topology_level
*tl
, *asym_tl
= NULL
;
1918 /* Is there any asymmetry? */
1919 cap
= arch_scale_cpu_capacity(cpumask_first(cpu_map
));
1921 for_each_cpu(i
, cpu_map
) {
1922 if (arch_scale_cpu_capacity(i
) != cap
) {
1932 * Examine topology from all CPU's point of views to detect the lowest
1933 * sched_domain_topology_level where a highest capacity CPU is visible
1936 for_each_cpu(i
, cpu_map
) {
1937 unsigned long max_capacity
= arch_scale_cpu_capacity(i
);
1940 for_each_sd_topology(tl
) {
1941 if (tl_id
< asym_level
)
1944 for_each_cpu_and(j
, tl
->mask(i
), cpu_map
) {
1945 unsigned long capacity
;
1947 capacity
= arch_scale_cpu_capacity(j
);
1949 if (capacity
<= max_capacity
)
1952 max_capacity
= capacity
;
1966 * Build sched domains for a given set of CPUs and attach the sched domains
1967 * to the individual CPUs
1970 build_sched_domains(const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
)
1972 enum s_alloc alloc_state
= sa_none
;
1973 struct sched_domain
*sd
;
1975 struct rq
*rq
= NULL
;
1976 int i
, ret
= -ENOMEM
;
1977 struct sched_domain_topology_level
*tl_asym
;
1978 bool has_asym
= false;
1980 if (WARN_ON(cpumask_empty(cpu_map
)))
1983 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
1984 if (alloc_state
!= sa_rootdomain
)
1987 tl_asym
= asym_cpu_capacity_level(cpu_map
);
1989 /* Set up domains for CPUs specified by the cpu_map: */
1990 for_each_cpu(i
, cpu_map
) {
1991 struct sched_domain_topology_level
*tl
;
1994 for_each_sd_topology(tl
) {
1997 if (tl
== tl_asym
) {
1998 dflags
|= SD_ASYM_CPUCAPACITY
;
2002 if (WARN_ON(!topology_span_sane(tl
, cpu_map
, i
)))
2005 sd
= build_sched_domain(tl
, cpu_map
, attr
, sd
, dflags
, i
);
2007 if (tl
== sched_domain_topology
)
2008 *per_cpu_ptr(d
.sd
, i
) = sd
;
2009 if (tl
->flags
& SDTL_OVERLAP
)
2010 sd
->flags
|= SD_OVERLAP
;
2011 if (cpumask_equal(cpu_map
, sched_domain_span(sd
)))
2016 /* Build the groups for the domains */
2017 for_each_cpu(i
, cpu_map
) {
2018 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
2019 sd
->span_weight
= cpumask_weight(sched_domain_span(sd
));
2020 if (sd
->flags
& SD_OVERLAP
) {
2021 if (build_overlap_sched_groups(sd
, i
))
2024 if (build_sched_groups(sd
, i
))
2030 /* Calculate CPU capacity for physical packages and nodes */
2031 for (i
= nr_cpumask_bits
-1; i
>= 0; i
--) {
2032 if (!cpumask_test_cpu(i
, cpu_map
))
2035 for (sd
= *per_cpu_ptr(d
.sd
, i
); sd
; sd
= sd
->parent
) {
2036 claim_allocations(i
, sd
);
2037 init_sched_groups_capacity(i
, sd
);
2041 /* Attach the domains */
2043 for_each_cpu(i
, cpu_map
) {
2045 sd
= *per_cpu_ptr(d
.sd
, i
);
2047 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2048 if (rq
->cpu_capacity_orig
> READ_ONCE(d
.rd
->max_cpu_capacity
))
2049 WRITE_ONCE(d
.rd
->max_cpu_capacity
, rq
->cpu_capacity_orig
);
2051 cpu_attach_domain(sd
, d
.rd
, i
);
2056 static_branch_inc_cpuslocked(&sched_asym_cpucapacity
);
2058 if (rq
&& sched_debug_enabled
) {
2059 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2060 cpumask_pr_args(cpu_map
), rq
->rd
->max_cpu_capacity
);
2065 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
2070 /* Current sched domains: */
2071 static cpumask_var_t
*doms_cur
;
2073 /* Number of sched domains in 'doms_cur': */
2074 static int ndoms_cur
;
2076 /* Attribues of custom domains in 'doms_cur' */
2077 static struct sched_domain_attr
*dattr_cur
;
2080 * Special case: If a kmalloc() of a doms_cur partition (array of
2081 * cpumask) fails, then fallback to a single sched domain,
2082 * as determined by the single cpumask fallback_doms.
2084 static cpumask_var_t fallback_doms
;
2087 * arch_update_cpu_topology lets virtualized architectures update the
2088 * CPU core maps. It is supposed to return 1 if the topology changed
2089 * or 0 if it stayed the same.
2091 int __weak
arch_update_cpu_topology(void)
2096 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
2099 cpumask_var_t
*doms
;
2101 doms
= kmalloc_array(ndoms
, sizeof(*doms
), GFP_KERNEL
);
2104 for (i
= 0; i
< ndoms
; i
++) {
2105 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
2106 free_sched_domains(doms
, i
);
2113 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
2116 for (i
= 0; i
< ndoms
; i
++)
2117 free_cpumask_var(doms
[i
]);
2122 * Set up scheduler domains and groups. For now this just excludes isolated
2123 * CPUs, but could be used to exclude other special cases in the future.
2125 int sched_init_domains(const struct cpumask
*cpu_map
)
2129 zalloc_cpumask_var(&sched_domains_tmpmask
, GFP_KERNEL
);
2130 zalloc_cpumask_var(&sched_domains_tmpmask2
, GFP_KERNEL
);
2131 zalloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
2133 arch_update_cpu_topology();
2135 doms_cur
= alloc_sched_domains(ndoms_cur
);
2137 doms_cur
= &fallback_doms
;
2138 cpumask_and(doms_cur
[0], cpu_map
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
2139 err
= build_sched_domains(doms_cur
[0], NULL
);
2140 register_sched_domain_sysctl();
2146 * Detach sched domains from a group of CPUs specified in cpu_map
2147 * These CPUs will now be attached to the NULL domain
2149 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
2151 unsigned int cpu
= cpumask_any(cpu_map
);
2154 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity
, cpu
)))
2155 static_branch_dec_cpuslocked(&sched_asym_cpucapacity
);
2158 for_each_cpu(i
, cpu_map
)
2159 cpu_attach_domain(NULL
, &def_root_domain
, i
);
2163 /* handle null as "default" */
2164 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
2165 struct sched_domain_attr
*new, int idx_new
)
2167 struct sched_domain_attr tmp
;
2175 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
2176 new ? (new + idx_new
) : &tmp
,
2177 sizeof(struct sched_domain_attr
));
2181 * Partition sched domains as specified by the 'ndoms_new'
2182 * cpumasks in the array doms_new[] of cpumasks. This compares
2183 * doms_new[] to the current sched domain partitioning, doms_cur[].
2184 * It destroys each deleted domain and builds each new domain.
2186 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2187 * The masks don't intersect (don't overlap.) We should setup one
2188 * sched domain for each mask. CPUs not in any of the cpumasks will
2189 * not be load balanced. If the same cpumask appears both in the
2190 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2193 * The passed in 'doms_new' should be allocated using
2194 * alloc_sched_domains. This routine takes ownership of it and will
2195 * free_sched_domains it when done with it. If the caller failed the
2196 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2197 * and partition_sched_domains() will fallback to the single partition
2198 * 'fallback_doms', it also forces the domains to be rebuilt.
2200 * If doms_new == NULL it will be replaced with cpu_online_mask.
2201 * ndoms_new == 0 is a special case for destroying existing domains,
2202 * and it will not create the default domain.
2204 * Call with hotplug lock and sched_domains_mutex held
2206 void partition_sched_domains_locked(int ndoms_new
, cpumask_var_t doms_new
[],
2207 struct sched_domain_attr
*dattr_new
)
2209 bool __maybe_unused has_eas
= false;
2213 lockdep_assert_held(&sched_domains_mutex
);
2215 /* Always unregister in case we don't destroy any domains: */
2216 unregister_sched_domain_sysctl();
2218 /* Let the architecture update CPU core mappings: */
2219 new_topology
= arch_update_cpu_topology();
2222 WARN_ON_ONCE(dattr_new
);
2224 doms_new
= alloc_sched_domains(1);
2227 cpumask_and(doms_new
[0], cpu_active_mask
,
2228 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2234 /* Destroy deleted domains: */
2235 for (i
= 0; i
< ndoms_cur
; i
++) {
2236 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2237 if (cpumask_equal(doms_cur
[i
], doms_new
[j
]) &&
2238 dattrs_equal(dattr_cur
, i
, dattr_new
, j
)) {
2239 struct root_domain
*rd
;
2242 * This domain won't be destroyed and as such
2243 * its dl_bw->total_bw needs to be cleared. It
2244 * will be recomputed in function
2245 * update_tasks_root_domain().
2247 rd
= cpu_rq(cpumask_any(doms_cur
[i
]))->rd
;
2248 dl_clear_root_domain(rd
);
2252 /* No match - a current sched domain not in new doms_new[] */
2253 detach_destroy_domains(doms_cur
[i
]);
2261 doms_new
= &fallback_doms
;
2262 cpumask_and(doms_new
[0], cpu_active_mask
,
2263 housekeeping_cpumask(HK_FLAG_DOMAIN
));
2266 /* Build new domains: */
2267 for (i
= 0; i
< ndoms_new
; i
++) {
2268 for (j
= 0; j
< n
&& !new_topology
; j
++) {
2269 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2270 dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
2273 /* No match - add a new doms_new */
2274 build_sched_domains(doms_new
[i
], dattr_new
? dattr_new
+ i
: NULL
);
2279 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2280 /* Build perf. domains: */
2281 for (i
= 0; i
< ndoms_new
; i
++) {
2282 for (j
= 0; j
< n
&& !sched_energy_update
; j
++) {
2283 if (cpumask_equal(doms_new
[i
], doms_cur
[j
]) &&
2284 cpu_rq(cpumask_first(doms_cur
[j
]))->rd
->pd
) {
2289 /* No match - add perf. domains for a new rd */
2290 has_eas
|= build_perf_domains(doms_new
[i
]);
2294 sched_energy_set(has_eas
);
2297 /* Remember the new sched domains: */
2298 if (doms_cur
!= &fallback_doms
)
2299 free_sched_domains(doms_cur
, ndoms_cur
);
2302 doms_cur
= doms_new
;
2303 dattr_cur
= dattr_new
;
2304 ndoms_cur
= ndoms_new
;
2306 register_sched_domain_sysctl();
2310 * Call with hotplug lock held
2312 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
2313 struct sched_domain_attr
*dattr_new
)
2315 mutex_lock(&sched_domains_mutex
);
2316 partition_sched_domains_locked(ndoms_new
, doms_new
, dattr_new
);
2317 mutex_unlock(&sched_domains_mutex
);