dt-bindings: pinctrl: add bindings for MediaTek MT6779 SoC
[linux/fpc-iii.git] / kernel / time / tick-sched.c
blob3e2dc9b8858c71664e85d7aa4550ec3d6a44fab9
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 * No idle tick implementation for low and high resolution timers
9 * Started by: Thomas Gleixner and Ingo Molnar
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/module.h>
24 #include <linux/irq_work.h>
25 #include <linux/posix-timers.h>
26 #include <linux/context_tracking.h>
27 #include <linux/mm.h>
29 #include <asm/irq_regs.h>
31 #include "tick-internal.h"
33 #include <trace/events/timer.h>
36 * Per-CPU nohz control structure
38 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
40 struct tick_sched *tick_get_tick_sched(int cpu)
42 return &per_cpu(tick_cpu_sched, cpu);
45 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
47 * The time, when the last jiffy update happened. Protected by jiffies_lock.
49 static ktime_t last_jiffies_update;
52 * Must be called with interrupts disabled !
54 static void tick_do_update_jiffies64(ktime_t now)
56 unsigned long ticks = 0;
57 ktime_t delta;
60 * Do a quick check without holding jiffies_lock:
61 * The READ_ONCE() pairs with two updates done later in this function.
63 delta = ktime_sub(now, READ_ONCE(last_jiffies_update));
64 if (delta < tick_period)
65 return;
67 /* Reevaluate with jiffies_lock held */
68 raw_spin_lock(&jiffies_lock);
69 write_seqcount_begin(&jiffies_seq);
71 delta = ktime_sub(now, last_jiffies_update);
72 if (delta >= tick_period) {
74 delta = ktime_sub(delta, tick_period);
75 /* Pairs with the lockless read in this function. */
76 WRITE_ONCE(last_jiffies_update,
77 ktime_add(last_jiffies_update, tick_period));
79 /* Slow path for long timeouts */
80 if (unlikely(delta >= tick_period)) {
81 s64 incr = ktime_to_ns(tick_period);
83 ticks = ktime_divns(delta, incr);
85 /* Pairs with the lockless read in this function. */
86 WRITE_ONCE(last_jiffies_update,
87 ktime_add_ns(last_jiffies_update,
88 incr * ticks));
90 do_timer(++ticks);
92 /* Keep the tick_next_period variable up to date */
93 tick_next_period = ktime_add(last_jiffies_update, tick_period);
94 } else {
95 write_seqcount_end(&jiffies_seq);
96 raw_spin_unlock(&jiffies_lock);
97 return;
99 write_seqcount_end(&jiffies_seq);
100 raw_spin_unlock(&jiffies_lock);
101 update_wall_time();
105 * Initialize and return retrieve the jiffies update.
107 static ktime_t tick_init_jiffy_update(void)
109 ktime_t period;
111 raw_spin_lock(&jiffies_lock);
112 write_seqcount_begin(&jiffies_seq);
113 /* Did we start the jiffies update yet ? */
114 if (last_jiffies_update == 0)
115 last_jiffies_update = tick_next_period;
116 period = last_jiffies_update;
117 write_seqcount_end(&jiffies_seq);
118 raw_spin_unlock(&jiffies_lock);
119 return period;
122 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
124 int cpu = smp_processor_id();
126 #ifdef CONFIG_NO_HZ_COMMON
128 * Check if the do_timer duty was dropped. We don't care about
129 * concurrency: This happens only when the CPU in charge went
130 * into a long sleep. If two CPUs happen to assign themselves to
131 * this duty, then the jiffies update is still serialized by
132 * jiffies_lock.
134 * If nohz_full is enabled, this should not happen because the
135 * tick_do_timer_cpu never relinquishes.
137 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
138 #ifdef CONFIG_NO_HZ_FULL
139 WARN_ON(tick_nohz_full_running);
140 #endif
141 tick_do_timer_cpu = cpu;
143 #endif
145 /* Check, if the jiffies need an update */
146 if (tick_do_timer_cpu == cpu)
147 tick_do_update_jiffies64(now);
149 if (ts->inidle)
150 ts->got_idle_tick = 1;
153 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
155 #ifdef CONFIG_NO_HZ_COMMON
157 * When we are idle and the tick is stopped, we have to touch
158 * the watchdog as we might not schedule for a really long
159 * time. This happens on complete idle SMP systems while
160 * waiting on the login prompt. We also increment the "start of
161 * idle" jiffy stamp so the idle accounting adjustment we do
162 * when we go busy again does not account too much ticks.
164 if (ts->tick_stopped) {
165 touch_softlockup_watchdog_sched();
166 if (is_idle_task(current))
167 ts->idle_jiffies++;
169 * In case the current tick fired too early past its expected
170 * expiration, make sure we don't bypass the next clock reprogramming
171 * to the same deadline.
173 ts->next_tick = 0;
175 #endif
176 update_process_times(user_mode(regs));
177 profile_tick(CPU_PROFILING);
179 #endif
181 #ifdef CONFIG_NO_HZ_FULL
182 cpumask_var_t tick_nohz_full_mask;
183 bool tick_nohz_full_running;
184 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
185 static atomic_t tick_dep_mask;
187 static bool check_tick_dependency(atomic_t *dep)
189 int val = atomic_read(dep);
191 if (val & TICK_DEP_MASK_POSIX_TIMER) {
192 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
193 return true;
196 if (val & TICK_DEP_MASK_PERF_EVENTS) {
197 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
198 return true;
201 if (val & TICK_DEP_MASK_SCHED) {
202 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
203 return true;
206 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
207 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
208 return true;
211 if (val & TICK_DEP_MASK_RCU) {
212 trace_tick_stop(0, TICK_DEP_MASK_RCU);
213 return true;
216 return false;
219 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
221 lockdep_assert_irqs_disabled();
223 if (unlikely(!cpu_online(cpu)))
224 return false;
226 if (check_tick_dependency(&tick_dep_mask))
227 return false;
229 if (check_tick_dependency(&ts->tick_dep_mask))
230 return false;
232 if (check_tick_dependency(&current->tick_dep_mask))
233 return false;
235 if (check_tick_dependency(&current->signal->tick_dep_mask))
236 return false;
238 return true;
241 static void nohz_full_kick_func(struct irq_work *work)
243 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
246 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
247 .func = nohz_full_kick_func,
248 .flags = ATOMIC_INIT(IRQ_WORK_HARD_IRQ),
252 * Kick this CPU if it's full dynticks in order to force it to
253 * re-evaluate its dependency on the tick and restart it if necessary.
254 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
255 * is NMI safe.
257 static void tick_nohz_full_kick(void)
259 if (!tick_nohz_full_cpu(smp_processor_id()))
260 return;
262 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
266 * Kick the CPU if it's full dynticks in order to force it to
267 * re-evaluate its dependency on the tick and restart it if necessary.
269 void tick_nohz_full_kick_cpu(int cpu)
271 if (!tick_nohz_full_cpu(cpu))
272 return;
274 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
278 * Kick all full dynticks CPUs in order to force these to re-evaluate
279 * their dependency on the tick and restart it if necessary.
281 static void tick_nohz_full_kick_all(void)
283 int cpu;
285 if (!tick_nohz_full_running)
286 return;
288 preempt_disable();
289 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
290 tick_nohz_full_kick_cpu(cpu);
291 preempt_enable();
294 static void tick_nohz_dep_set_all(atomic_t *dep,
295 enum tick_dep_bits bit)
297 int prev;
299 prev = atomic_fetch_or(BIT(bit), dep);
300 if (!prev)
301 tick_nohz_full_kick_all();
305 * Set a global tick dependency. Used by perf events that rely on freq and
306 * by unstable clock.
308 void tick_nohz_dep_set(enum tick_dep_bits bit)
310 tick_nohz_dep_set_all(&tick_dep_mask, bit);
313 void tick_nohz_dep_clear(enum tick_dep_bits bit)
315 atomic_andnot(BIT(bit), &tick_dep_mask);
319 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
320 * manage events throttling.
322 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
324 int prev;
325 struct tick_sched *ts;
327 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
329 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
330 if (!prev) {
331 preempt_disable();
332 /* Perf needs local kick that is NMI safe */
333 if (cpu == smp_processor_id()) {
334 tick_nohz_full_kick();
335 } else {
336 /* Remote irq work not NMI-safe */
337 if (!WARN_ON_ONCE(in_nmi()))
338 tick_nohz_full_kick_cpu(cpu);
340 preempt_enable();
343 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
345 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
347 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
349 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
351 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
354 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
355 * per task timers.
357 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
360 * We could optimize this with just kicking the target running the task
361 * if that noise matters for nohz full users.
363 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
365 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
367 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
369 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
371 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
374 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
375 * per process timers.
377 void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
379 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
382 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
384 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
388 * Re-evaluate the need for the tick as we switch the current task.
389 * It might need the tick due to per task/process properties:
390 * perf events, posix CPU timers, ...
392 void __tick_nohz_task_switch(void)
394 unsigned long flags;
395 struct tick_sched *ts;
397 local_irq_save(flags);
399 if (!tick_nohz_full_cpu(smp_processor_id()))
400 goto out;
402 ts = this_cpu_ptr(&tick_cpu_sched);
404 if (ts->tick_stopped) {
405 if (atomic_read(&current->tick_dep_mask) ||
406 atomic_read(&current->signal->tick_dep_mask))
407 tick_nohz_full_kick();
409 out:
410 local_irq_restore(flags);
413 /* Get the boot-time nohz CPU list from the kernel parameters. */
414 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
416 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
417 cpumask_copy(tick_nohz_full_mask, cpumask);
418 tick_nohz_full_running = true;
420 EXPORT_SYMBOL_GPL(tick_nohz_full_setup);
422 static int tick_nohz_cpu_down(unsigned int cpu)
425 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
426 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
427 * CPUs. It must remain online when nohz full is enabled.
429 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
430 return -EBUSY;
431 return 0;
434 void __init tick_nohz_init(void)
436 int cpu, ret;
438 if (!tick_nohz_full_running)
439 return;
442 * Full dynticks uses irq work to drive the tick rescheduling on safe
443 * locking contexts. But then we need irq work to raise its own
444 * interrupts to avoid circular dependency on the tick
446 if (!arch_irq_work_has_interrupt()) {
447 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
448 cpumask_clear(tick_nohz_full_mask);
449 tick_nohz_full_running = false;
450 return;
453 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
454 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
455 cpu = smp_processor_id();
457 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
458 pr_warn("NO_HZ: Clearing %d from nohz_full range "
459 "for timekeeping\n", cpu);
460 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
464 for_each_cpu(cpu, tick_nohz_full_mask)
465 context_tracking_cpu_set(cpu);
467 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
468 "kernel/nohz:predown", NULL,
469 tick_nohz_cpu_down);
470 WARN_ON(ret < 0);
471 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
472 cpumask_pr_args(tick_nohz_full_mask));
474 #endif
477 * NOHZ - aka dynamic tick functionality
479 #ifdef CONFIG_NO_HZ_COMMON
481 * NO HZ enabled ?
483 bool tick_nohz_enabled __read_mostly = true;
484 unsigned long tick_nohz_active __read_mostly;
486 * Enable / Disable tickless mode
488 static int __init setup_tick_nohz(char *str)
490 return (kstrtobool(str, &tick_nohz_enabled) == 0);
493 __setup("nohz=", setup_tick_nohz);
495 bool tick_nohz_tick_stopped(void)
497 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
499 return ts->tick_stopped;
502 bool tick_nohz_tick_stopped_cpu(int cpu)
504 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
506 return ts->tick_stopped;
510 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
512 * Called from interrupt entry when the CPU was idle
514 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
515 * must be updated. Otherwise an interrupt handler could use a stale jiffy
516 * value. We do this unconditionally on any CPU, as we don't know whether the
517 * CPU, which has the update task assigned is in a long sleep.
519 static void tick_nohz_update_jiffies(ktime_t now)
521 unsigned long flags;
523 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
525 local_irq_save(flags);
526 tick_do_update_jiffies64(now);
527 local_irq_restore(flags);
529 touch_softlockup_watchdog_sched();
533 * Updates the per-CPU time idle statistics counters
535 static void
536 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
538 ktime_t delta;
540 if (ts->idle_active) {
541 delta = ktime_sub(now, ts->idle_entrytime);
542 if (nr_iowait_cpu(cpu) > 0)
543 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
544 else
545 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
546 ts->idle_entrytime = now;
549 if (last_update_time)
550 *last_update_time = ktime_to_us(now);
554 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
556 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
557 ts->idle_active = 0;
559 sched_clock_idle_wakeup_event();
562 static void tick_nohz_start_idle(struct tick_sched *ts)
564 ts->idle_entrytime = ktime_get();
565 ts->idle_active = 1;
566 sched_clock_idle_sleep_event();
570 * get_cpu_idle_time_us - get the total idle time of a CPU
571 * @cpu: CPU number to query
572 * @last_update_time: variable to store update time in. Do not update
573 * counters if NULL.
575 * Return the cumulative idle time (since boot) for a given
576 * CPU, in microseconds.
578 * This time is measured via accounting rather than sampling,
579 * and is as accurate as ktime_get() is.
581 * This function returns -1 if NOHZ is not enabled.
583 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
585 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
586 ktime_t now, idle;
588 if (!tick_nohz_active)
589 return -1;
591 now = ktime_get();
592 if (last_update_time) {
593 update_ts_time_stats(cpu, ts, now, last_update_time);
594 idle = ts->idle_sleeptime;
595 } else {
596 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
597 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
599 idle = ktime_add(ts->idle_sleeptime, delta);
600 } else {
601 idle = ts->idle_sleeptime;
605 return ktime_to_us(idle);
608 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
611 * get_cpu_iowait_time_us - get the total iowait time of a CPU
612 * @cpu: CPU number to query
613 * @last_update_time: variable to store update time in. Do not update
614 * counters if NULL.
616 * Return the cumulative iowait time (since boot) for a given
617 * CPU, in microseconds.
619 * This time is measured via accounting rather than sampling,
620 * and is as accurate as ktime_get() is.
622 * This function returns -1 if NOHZ is not enabled.
624 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
626 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
627 ktime_t now, iowait;
629 if (!tick_nohz_active)
630 return -1;
632 now = ktime_get();
633 if (last_update_time) {
634 update_ts_time_stats(cpu, ts, now, last_update_time);
635 iowait = ts->iowait_sleeptime;
636 } else {
637 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
638 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
640 iowait = ktime_add(ts->iowait_sleeptime, delta);
641 } else {
642 iowait = ts->iowait_sleeptime;
646 return ktime_to_us(iowait);
648 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
650 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
652 hrtimer_cancel(&ts->sched_timer);
653 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
655 /* Forward the time to expire in the future */
656 hrtimer_forward(&ts->sched_timer, now, tick_period);
658 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
659 hrtimer_start_expires(&ts->sched_timer,
660 HRTIMER_MODE_ABS_PINNED_HARD);
661 } else {
662 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
666 * Reset to make sure next tick stop doesn't get fooled by past
667 * cached clock deadline.
669 ts->next_tick = 0;
672 static inline bool local_timer_softirq_pending(void)
674 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
677 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
679 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
680 unsigned long basejiff;
681 unsigned int seq;
683 /* Read jiffies and the time when jiffies were updated last */
684 do {
685 seq = read_seqcount_begin(&jiffies_seq);
686 basemono = last_jiffies_update;
687 basejiff = jiffies;
688 } while (read_seqcount_retry(&jiffies_seq, seq));
689 ts->last_jiffies = basejiff;
690 ts->timer_expires_base = basemono;
693 * Keep the periodic tick, when RCU, architecture or irq_work
694 * requests it.
695 * Aside of that check whether the local timer softirq is
696 * pending. If so its a bad idea to call get_next_timer_interrupt()
697 * because there is an already expired timer, so it will request
698 * immeditate expiry, which rearms the hardware timer with a
699 * minimal delta which brings us back to this place
700 * immediately. Lather, rinse and repeat...
702 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
703 irq_work_needs_cpu() || local_timer_softirq_pending()) {
704 next_tick = basemono + TICK_NSEC;
705 } else {
707 * Get the next pending timer. If high resolution
708 * timers are enabled this only takes the timer wheel
709 * timers into account. If high resolution timers are
710 * disabled this also looks at the next expiring
711 * hrtimer.
713 next_tmr = get_next_timer_interrupt(basejiff, basemono);
714 ts->next_timer = next_tmr;
715 /* Take the next rcu event into account */
716 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
720 * If the tick is due in the next period, keep it ticking or
721 * force prod the timer.
723 delta = next_tick - basemono;
724 if (delta <= (u64)TICK_NSEC) {
726 * Tell the timer code that the base is not idle, i.e. undo
727 * the effect of get_next_timer_interrupt():
729 timer_clear_idle();
731 * We've not stopped the tick yet, and there's a timer in the
732 * next period, so no point in stopping it either, bail.
734 if (!ts->tick_stopped) {
735 ts->timer_expires = 0;
736 goto out;
741 * If this CPU is the one which had the do_timer() duty last, we limit
742 * the sleep time to the timekeeping max_deferment value.
743 * Otherwise we can sleep as long as we want.
745 delta = timekeeping_max_deferment();
746 if (cpu != tick_do_timer_cpu &&
747 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
748 delta = KTIME_MAX;
750 /* Calculate the next expiry time */
751 if (delta < (KTIME_MAX - basemono))
752 expires = basemono + delta;
753 else
754 expires = KTIME_MAX;
756 ts->timer_expires = min_t(u64, expires, next_tick);
758 out:
759 return ts->timer_expires;
762 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
764 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
765 u64 basemono = ts->timer_expires_base;
766 u64 expires = ts->timer_expires;
767 ktime_t tick = expires;
769 /* Make sure we won't be trying to stop it twice in a row. */
770 ts->timer_expires_base = 0;
773 * If this CPU is the one which updates jiffies, then give up
774 * the assignment and let it be taken by the CPU which runs
775 * the tick timer next, which might be this CPU as well. If we
776 * don't drop this here the jiffies might be stale and
777 * do_timer() never invoked. Keep track of the fact that it
778 * was the one which had the do_timer() duty last.
780 if (cpu == tick_do_timer_cpu) {
781 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
782 ts->do_timer_last = 1;
783 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
784 ts->do_timer_last = 0;
787 /* Skip reprogram of event if its not changed */
788 if (ts->tick_stopped && (expires == ts->next_tick)) {
789 /* Sanity check: make sure clockevent is actually programmed */
790 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
791 return;
793 WARN_ON_ONCE(1);
794 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
795 basemono, ts->next_tick, dev->next_event,
796 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
800 * nohz_stop_sched_tick can be called several times before
801 * the nohz_restart_sched_tick is called. This happens when
802 * interrupts arrive which do not cause a reschedule. In the
803 * first call we save the current tick time, so we can restart
804 * the scheduler tick in nohz_restart_sched_tick.
806 if (!ts->tick_stopped) {
807 calc_load_nohz_start();
808 quiet_vmstat();
810 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
811 ts->tick_stopped = 1;
812 trace_tick_stop(1, TICK_DEP_MASK_NONE);
815 ts->next_tick = tick;
818 * If the expiration time == KTIME_MAX, then we simply stop
819 * the tick timer.
821 if (unlikely(expires == KTIME_MAX)) {
822 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
823 hrtimer_cancel(&ts->sched_timer);
824 return;
827 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
828 hrtimer_start(&ts->sched_timer, tick,
829 HRTIMER_MODE_ABS_PINNED_HARD);
830 } else {
831 hrtimer_set_expires(&ts->sched_timer, tick);
832 tick_program_event(tick, 1);
836 static void tick_nohz_retain_tick(struct tick_sched *ts)
838 ts->timer_expires_base = 0;
841 #ifdef CONFIG_NO_HZ_FULL
842 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
844 if (tick_nohz_next_event(ts, cpu))
845 tick_nohz_stop_tick(ts, cpu);
846 else
847 tick_nohz_retain_tick(ts);
849 #endif /* CONFIG_NO_HZ_FULL */
851 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
853 /* Update jiffies first */
854 tick_do_update_jiffies64(now);
857 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
858 * the clock forward checks in the enqueue path:
860 timer_clear_idle();
862 calc_load_nohz_stop();
863 touch_softlockup_watchdog_sched();
865 * Cancel the scheduled timer and restore the tick
867 ts->tick_stopped = 0;
868 ts->idle_exittime = now;
870 tick_nohz_restart(ts, now);
873 static void tick_nohz_full_update_tick(struct tick_sched *ts)
875 #ifdef CONFIG_NO_HZ_FULL
876 int cpu = smp_processor_id();
878 if (!tick_nohz_full_cpu(cpu))
879 return;
881 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
882 return;
884 if (can_stop_full_tick(cpu, ts))
885 tick_nohz_stop_sched_tick(ts, cpu);
886 else if (ts->tick_stopped)
887 tick_nohz_restart_sched_tick(ts, ktime_get());
888 #endif
891 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
894 * If this CPU is offline and it is the one which updates
895 * jiffies, then give up the assignment and let it be taken by
896 * the CPU which runs the tick timer next. If we don't drop
897 * this here the jiffies might be stale and do_timer() never
898 * invoked.
900 if (unlikely(!cpu_online(cpu))) {
901 if (cpu == tick_do_timer_cpu)
902 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
904 * Make sure the CPU doesn't get fooled by obsolete tick
905 * deadline if it comes back online later.
907 ts->next_tick = 0;
908 return false;
911 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
912 return false;
914 if (need_resched())
915 return false;
917 if (unlikely(local_softirq_pending())) {
918 static int ratelimit;
920 if (ratelimit < 10 &&
921 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
922 pr_warn("NOHZ: local_softirq_pending %02x\n",
923 (unsigned int) local_softirq_pending());
924 ratelimit++;
926 return false;
929 if (tick_nohz_full_enabled()) {
931 * Keep the tick alive to guarantee timekeeping progression
932 * if there are full dynticks CPUs around
934 if (tick_do_timer_cpu == cpu)
935 return false;
937 * Boot safety: make sure the timekeeping duty has been
938 * assigned before entering dyntick-idle mode,
939 * tick_do_timer_cpu is TICK_DO_TIMER_BOOT
941 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_BOOT))
942 return false;
944 /* Should not happen for nohz-full */
945 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
946 return false;
949 return true;
952 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
954 ktime_t expires;
955 int cpu = smp_processor_id();
958 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
959 * tick timer expiration time is known already.
961 if (ts->timer_expires_base)
962 expires = ts->timer_expires;
963 else if (can_stop_idle_tick(cpu, ts))
964 expires = tick_nohz_next_event(ts, cpu);
965 else
966 return;
968 ts->idle_calls++;
970 if (expires > 0LL) {
971 int was_stopped = ts->tick_stopped;
973 tick_nohz_stop_tick(ts, cpu);
975 ts->idle_sleeps++;
976 ts->idle_expires = expires;
978 if (!was_stopped && ts->tick_stopped) {
979 ts->idle_jiffies = ts->last_jiffies;
980 nohz_balance_enter_idle(cpu);
982 } else {
983 tick_nohz_retain_tick(ts);
988 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
990 * When the next event is more than a tick into the future, stop the idle tick
992 void tick_nohz_idle_stop_tick(void)
994 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
997 void tick_nohz_idle_retain_tick(void)
999 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1001 * Undo the effect of get_next_timer_interrupt() called from
1002 * tick_nohz_next_event().
1004 timer_clear_idle();
1008 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1010 * Called when we start the idle loop.
1012 void tick_nohz_idle_enter(void)
1014 struct tick_sched *ts;
1016 lockdep_assert_irqs_enabled();
1018 local_irq_disable();
1020 ts = this_cpu_ptr(&tick_cpu_sched);
1022 WARN_ON_ONCE(ts->timer_expires_base);
1024 ts->inidle = 1;
1025 tick_nohz_start_idle(ts);
1027 local_irq_enable();
1031 * tick_nohz_irq_exit - update next tick event from interrupt exit
1033 * When an interrupt fires while we are idle and it doesn't cause
1034 * a reschedule, it may still add, modify or delete a timer, enqueue
1035 * an RCU callback, etc...
1036 * So we need to re-calculate and reprogram the next tick event.
1038 void tick_nohz_irq_exit(void)
1040 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1042 if (ts->inidle)
1043 tick_nohz_start_idle(ts);
1044 else
1045 tick_nohz_full_update_tick(ts);
1049 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1051 bool tick_nohz_idle_got_tick(void)
1053 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1055 if (ts->got_idle_tick) {
1056 ts->got_idle_tick = 0;
1057 return true;
1059 return false;
1063 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1064 * or the tick, whatever that expires first. Note that, if the tick has been
1065 * stopped, it returns the next hrtimer.
1067 * Called from power state control code with interrupts disabled
1069 ktime_t tick_nohz_get_next_hrtimer(void)
1071 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1075 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1076 * @delta_next: duration until the next event if the tick cannot be stopped
1078 * Called from power state control code with interrupts disabled
1080 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1082 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1083 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1084 int cpu = smp_processor_id();
1086 * The idle entry time is expected to be a sufficient approximation of
1087 * the current time at this point.
1089 ktime_t now = ts->idle_entrytime;
1090 ktime_t next_event;
1092 WARN_ON_ONCE(!ts->inidle);
1094 *delta_next = ktime_sub(dev->next_event, now);
1096 if (!can_stop_idle_tick(cpu, ts))
1097 return *delta_next;
1099 next_event = tick_nohz_next_event(ts, cpu);
1100 if (!next_event)
1101 return *delta_next;
1104 * If the next highres timer to expire is earlier than next_event, the
1105 * idle governor needs to know that.
1107 next_event = min_t(u64, next_event,
1108 hrtimer_next_event_without(&ts->sched_timer));
1110 return ktime_sub(next_event, now);
1114 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1115 * for a particular CPU.
1117 * Called from the schedutil frequency scaling governor in scheduler context.
1119 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1121 struct tick_sched *ts = tick_get_tick_sched(cpu);
1123 return ts->idle_calls;
1127 * tick_nohz_get_idle_calls - return the current idle calls counter value
1129 * Called from the schedutil frequency scaling governor in scheduler context.
1131 unsigned long tick_nohz_get_idle_calls(void)
1133 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1135 return ts->idle_calls;
1138 static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
1140 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1141 unsigned long ticks;
1143 if (vtime_accounting_enabled_this_cpu())
1144 return;
1146 * We stopped the tick in idle. Update process times would miss the
1147 * time we slept as update_process_times does only a 1 tick
1148 * accounting. Enforce that this is accounted to idle !
1150 ticks = jiffies - ts->idle_jiffies;
1152 * We might be one off. Do not randomly account a huge number of ticks!
1154 if (ticks && ticks < LONG_MAX)
1155 account_idle_ticks(ticks);
1156 #endif
1159 static void __tick_nohz_idle_restart_tick(struct tick_sched *ts, ktime_t now)
1161 tick_nohz_restart_sched_tick(ts, now);
1162 tick_nohz_account_idle_ticks(ts);
1165 void tick_nohz_idle_restart_tick(void)
1167 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1169 if (ts->tick_stopped)
1170 __tick_nohz_idle_restart_tick(ts, ktime_get());
1174 * tick_nohz_idle_exit - restart the idle tick from the idle task
1176 * Restart the idle tick when the CPU is woken up from idle
1177 * This also exit the RCU extended quiescent state. The CPU
1178 * can use RCU again after this function is called.
1180 void tick_nohz_idle_exit(void)
1182 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1183 bool idle_active, tick_stopped;
1184 ktime_t now;
1186 local_irq_disable();
1188 WARN_ON_ONCE(!ts->inidle);
1189 WARN_ON_ONCE(ts->timer_expires_base);
1191 ts->inidle = 0;
1192 idle_active = ts->idle_active;
1193 tick_stopped = ts->tick_stopped;
1195 if (idle_active || tick_stopped)
1196 now = ktime_get();
1198 if (idle_active)
1199 tick_nohz_stop_idle(ts, now);
1201 if (tick_stopped)
1202 __tick_nohz_idle_restart_tick(ts, now);
1204 local_irq_enable();
1208 * The nohz low res interrupt handler
1210 static void tick_nohz_handler(struct clock_event_device *dev)
1212 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1213 struct pt_regs *regs = get_irq_regs();
1214 ktime_t now = ktime_get();
1216 dev->next_event = KTIME_MAX;
1218 tick_sched_do_timer(ts, now);
1219 tick_sched_handle(ts, regs);
1221 /* No need to reprogram if we are running tickless */
1222 if (unlikely(ts->tick_stopped))
1223 return;
1225 hrtimer_forward(&ts->sched_timer, now, tick_period);
1226 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1229 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1231 if (!tick_nohz_enabled)
1232 return;
1233 ts->nohz_mode = mode;
1234 /* One update is enough */
1235 if (!test_and_set_bit(0, &tick_nohz_active))
1236 timers_update_nohz();
1240 * tick_nohz_switch_to_nohz - switch to nohz mode
1242 static void tick_nohz_switch_to_nohz(void)
1244 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1245 ktime_t next;
1247 if (!tick_nohz_enabled)
1248 return;
1250 if (tick_switch_to_oneshot(tick_nohz_handler))
1251 return;
1254 * Recycle the hrtimer in ts, so we can share the
1255 * hrtimer_forward with the highres code.
1257 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1258 /* Get the next period */
1259 next = tick_init_jiffy_update();
1261 hrtimer_set_expires(&ts->sched_timer, next);
1262 hrtimer_forward_now(&ts->sched_timer, tick_period);
1263 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1264 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1267 static inline void tick_nohz_irq_enter(void)
1269 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1270 ktime_t now;
1272 if (!ts->idle_active && !ts->tick_stopped)
1273 return;
1274 now = ktime_get();
1275 if (ts->idle_active)
1276 tick_nohz_stop_idle(ts, now);
1277 if (ts->tick_stopped)
1278 tick_nohz_update_jiffies(now);
1281 #else
1283 static inline void tick_nohz_switch_to_nohz(void) { }
1284 static inline void tick_nohz_irq_enter(void) { }
1285 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1287 #endif /* CONFIG_NO_HZ_COMMON */
1290 * Called from irq_enter to notify about the possible interruption of idle()
1292 void tick_irq_enter(void)
1294 tick_check_oneshot_broadcast_this_cpu();
1295 tick_nohz_irq_enter();
1299 * High resolution timer specific code
1301 #ifdef CONFIG_HIGH_RES_TIMERS
1303 * We rearm the timer until we get disabled by the idle code.
1304 * Called with interrupts disabled.
1306 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1308 struct tick_sched *ts =
1309 container_of(timer, struct tick_sched, sched_timer);
1310 struct pt_regs *regs = get_irq_regs();
1311 ktime_t now = ktime_get();
1313 tick_sched_do_timer(ts, now);
1316 * Do not call, when we are not in irq context and have
1317 * no valid regs pointer
1319 if (regs)
1320 tick_sched_handle(ts, regs);
1321 else
1322 ts->next_tick = 0;
1324 /* No need to reprogram if we are in idle or full dynticks mode */
1325 if (unlikely(ts->tick_stopped))
1326 return HRTIMER_NORESTART;
1328 hrtimer_forward(timer, now, tick_period);
1330 return HRTIMER_RESTART;
1333 static int sched_skew_tick;
1335 static int __init skew_tick(char *str)
1337 get_option(&str, &sched_skew_tick);
1339 return 0;
1341 early_param("skew_tick", skew_tick);
1344 * tick_setup_sched_timer - setup the tick emulation timer
1346 void tick_setup_sched_timer(void)
1348 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1349 ktime_t now = ktime_get();
1352 * Emulate tick processing via per-CPU hrtimers:
1354 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1355 ts->sched_timer.function = tick_sched_timer;
1357 /* Get the next period (per-CPU) */
1358 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1360 /* Offset the tick to avert jiffies_lock contention. */
1361 if (sched_skew_tick) {
1362 u64 offset = ktime_to_ns(tick_period) >> 1;
1363 do_div(offset, num_possible_cpus());
1364 offset *= smp_processor_id();
1365 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1368 hrtimer_forward(&ts->sched_timer, now, tick_period);
1369 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1370 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1372 #endif /* HIGH_RES_TIMERS */
1374 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1375 void tick_cancel_sched_timer(int cpu)
1377 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1379 # ifdef CONFIG_HIGH_RES_TIMERS
1380 if (ts->sched_timer.base)
1381 hrtimer_cancel(&ts->sched_timer);
1382 # endif
1384 memset(ts, 0, sizeof(*ts));
1386 #endif
1389 * Async notification about clocksource changes
1391 void tick_clock_notify(void)
1393 int cpu;
1395 for_each_possible_cpu(cpu)
1396 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1400 * Async notification about clock event changes
1402 void tick_oneshot_notify(void)
1404 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1406 set_bit(0, &ts->check_clocks);
1410 * Check, if a change happened, which makes oneshot possible.
1412 * Called cyclic from the hrtimer softirq (driven by the timer
1413 * softirq) allow_nohz signals, that we can switch into low-res nohz
1414 * mode, because high resolution timers are disabled (either compile
1415 * or runtime). Called with interrupts disabled.
1417 int tick_check_oneshot_change(int allow_nohz)
1419 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1421 if (!test_and_clear_bit(0, &ts->check_clocks))
1422 return 0;
1424 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1425 return 0;
1427 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1428 return 0;
1430 if (!allow_nohz)
1431 return 1;
1433 tick_nohz_switch_to_nohz();
1434 return 0;