dt-bindings: pinctrl: add bindings for MediaTek MT6779 SoC
[linux/fpc-iii.git] / kernel / time / timekeeping.c
blobd20d489841c8167e5f2256db86a995d3eaab2c08
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
5 */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
30 #define TK_CLEAR_NTP (1 << 0)
31 #define TK_MIRROR (1 << 1)
32 #define TK_CLOCK_WAS_SET (1 << 2)
34 enum timekeeping_adv_mode {
35 /* Update timekeeper when a tick has passed */
36 TK_ADV_TICK,
38 /* Update timekeeper on a direct frequency change */
39 TK_ADV_FREQ
43 * The most important data for readout fits into a single 64 byte
44 * cache line.
46 static struct {
47 seqcount_t seq;
48 struct timekeeper timekeeper;
49 } tk_core ____cacheline_aligned = {
50 .seq = SEQCNT_ZERO(tk_core.seq),
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
56 /**
57 * struct tk_fast - NMI safe timekeeper
58 * @seq: Sequence counter for protecting updates. The lowest bit
59 * is the index for the tk_read_base array
60 * @base: tk_read_base array. Access is indexed by the lowest bit of
61 * @seq.
63 * See @update_fast_timekeeper() below.
65 struct tk_fast {
66 seqcount_t seq;
67 struct tk_read_base base[2];
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
73 static u64 dummy_clock_read(struct clocksource *cs)
75 return cycles_at_suspend;
78 static struct clocksource dummy_clock = {
79 .read = dummy_clock_read,
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83 .base[0] = { .clock = &dummy_clock, },
84 .base[1] = { .clock = &dummy_clock, },
87 static struct tk_fast tk_fast_raw ____cacheline_aligned = {
88 .base[0] = { .clock = &dummy_clock, },
89 .base[1] = { .clock = &dummy_clock, },
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
95 static inline void tk_normalize_xtime(struct timekeeper *tk)
97 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99 tk->xtime_sec++;
101 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103 tk->raw_sec++;
107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
109 struct timespec64 ts;
111 ts.tv_sec = tk->xtime_sec;
112 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113 return ts;
116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
118 tk->xtime_sec = ts->tv_sec;
119 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
124 tk->xtime_sec += ts->tv_sec;
125 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126 tk_normalize_xtime(tk);
129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
131 struct timespec64 tmp;
134 * Verify consistency of: offset_real = -wall_to_monotonic
135 * before modifying anything
137 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138 -tk->wall_to_monotonic.tv_nsec);
139 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140 tk->wall_to_monotonic = wtm;
141 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142 tk->offs_real = timespec64_to_ktime(tmp);
143 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
148 tk->offs_boot = ktime_add(tk->offs_boot, delta);
150 * Timespec representation for VDSO update to avoid 64bit division
151 * on every update.
153 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
157 * tk_clock_read - atomic clocksource read() helper
159 * This helper is necessary to use in the read paths because, while the
160 * seqlock ensures we don't return a bad value while structures are updated,
161 * it doesn't protect from potential crashes. There is the possibility that
162 * the tkr's clocksource may change between the read reference, and the
163 * clock reference passed to the read function. This can cause crashes if
164 * the wrong clocksource is passed to the wrong read function.
165 * This isn't necessary to use when holding the timekeeper_lock or doing
166 * a read of the fast-timekeeper tkrs (which is protected by its own locking
167 * and update logic).
169 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
171 struct clocksource *clock = READ_ONCE(tkr->clock);
173 return clock->read(clock);
176 #ifdef CONFIG_DEBUG_TIMEKEEPING
177 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
179 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
182 u64 max_cycles = tk->tkr_mono.clock->max_cycles;
183 const char *name = tk->tkr_mono.clock->name;
185 if (offset > max_cycles) {
186 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
187 offset, name, max_cycles);
188 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
189 } else {
190 if (offset > (max_cycles >> 1)) {
191 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
192 offset, name, max_cycles >> 1);
193 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
197 if (tk->underflow_seen) {
198 if (jiffies - tk->last_warning > WARNING_FREQ) {
199 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
200 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
201 printk_deferred(" Your kernel is probably still fine.\n");
202 tk->last_warning = jiffies;
204 tk->underflow_seen = 0;
207 if (tk->overflow_seen) {
208 if (jiffies - tk->last_warning > WARNING_FREQ) {
209 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
210 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
211 printk_deferred(" Your kernel is probably still fine.\n");
212 tk->last_warning = jiffies;
214 tk->overflow_seen = 0;
218 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
220 struct timekeeper *tk = &tk_core.timekeeper;
221 u64 now, last, mask, max, delta;
222 unsigned int seq;
225 * Since we're called holding a seqlock, the data may shift
226 * under us while we're doing the calculation. This can cause
227 * false positives, since we'd note a problem but throw the
228 * results away. So nest another seqlock here to atomically
229 * grab the points we are checking with.
231 do {
232 seq = read_seqcount_begin(&tk_core.seq);
233 now = tk_clock_read(tkr);
234 last = tkr->cycle_last;
235 mask = tkr->mask;
236 max = tkr->clock->max_cycles;
237 } while (read_seqcount_retry(&tk_core.seq, seq));
239 delta = clocksource_delta(now, last, mask);
242 * Try to catch underflows by checking if we are seeing small
243 * mask-relative negative values.
245 if (unlikely((~delta & mask) < (mask >> 3))) {
246 tk->underflow_seen = 1;
247 delta = 0;
250 /* Cap delta value to the max_cycles values to avoid mult overflows */
251 if (unlikely(delta > max)) {
252 tk->overflow_seen = 1;
253 delta = tkr->clock->max_cycles;
256 return delta;
258 #else
259 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
262 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
264 u64 cycle_now, delta;
266 /* read clocksource */
267 cycle_now = tk_clock_read(tkr);
269 /* calculate the delta since the last update_wall_time */
270 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
272 return delta;
274 #endif
277 * tk_setup_internals - Set up internals to use clocksource clock.
279 * @tk: The target timekeeper to setup.
280 * @clock: Pointer to clocksource.
282 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
283 * pair and interval request.
285 * Unless you're the timekeeping code, you should not be using this!
287 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
289 u64 interval;
290 u64 tmp, ntpinterval;
291 struct clocksource *old_clock;
293 ++tk->cs_was_changed_seq;
294 old_clock = tk->tkr_mono.clock;
295 tk->tkr_mono.clock = clock;
296 tk->tkr_mono.mask = clock->mask;
297 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
299 tk->tkr_raw.clock = clock;
300 tk->tkr_raw.mask = clock->mask;
301 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
303 /* Do the ns -> cycle conversion first, using original mult */
304 tmp = NTP_INTERVAL_LENGTH;
305 tmp <<= clock->shift;
306 ntpinterval = tmp;
307 tmp += clock->mult/2;
308 do_div(tmp, clock->mult);
309 if (tmp == 0)
310 tmp = 1;
312 interval = (u64) tmp;
313 tk->cycle_interval = interval;
315 /* Go back from cycles -> shifted ns */
316 tk->xtime_interval = interval * clock->mult;
317 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
318 tk->raw_interval = interval * clock->mult;
320 /* if changing clocks, convert xtime_nsec shift units */
321 if (old_clock) {
322 int shift_change = clock->shift - old_clock->shift;
323 if (shift_change < 0) {
324 tk->tkr_mono.xtime_nsec >>= -shift_change;
325 tk->tkr_raw.xtime_nsec >>= -shift_change;
326 } else {
327 tk->tkr_mono.xtime_nsec <<= shift_change;
328 tk->tkr_raw.xtime_nsec <<= shift_change;
332 tk->tkr_mono.shift = clock->shift;
333 tk->tkr_raw.shift = clock->shift;
335 tk->ntp_error = 0;
336 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
337 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
340 * The timekeeper keeps its own mult values for the currently
341 * active clocksource. These value will be adjusted via NTP
342 * to counteract clock drifting.
344 tk->tkr_mono.mult = clock->mult;
345 tk->tkr_raw.mult = clock->mult;
346 tk->ntp_err_mult = 0;
347 tk->skip_second_overflow = 0;
350 /* Timekeeper helper functions. */
352 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
353 static u32 default_arch_gettimeoffset(void) { return 0; }
354 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
355 #else
356 static inline u32 arch_gettimeoffset(void) { return 0; }
357 #endif
359 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
361 u64 nsec;
363 nsec = delta * tkr->mult + tkr->xtime_nsec;
364 nsec >>= tkr->shift;
366 /* If arch requires, add in get_arch_timeoffset() */
367 return nsec + arch_gettimeoffset();
370 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
372 u64 delta;
374 delta = timekeeping_get_delta(tkr);
375 return timekeeping_delta_to_ns(tkr, delta);
378 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
380 u64 delta;
382 /* calculate the delta since the last update_wall_time */
383 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
384 return timekeeping_delta_to_ns(tkr, delta);
388 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
389 * @tkr: Timekeeping readout base from which we take the update
391 * We want to use this from any context including NMI and tracing /
392 * instrumenting the timekeeping code itself.
394 * Employ the latch technique; see @raw_write_seqcount_latch.
396 * So if a NMI hits the update of base[0] then it will use base[1]
397 * which is still consistent. In the worst case this can result is a
398 * slightly wrong timestamp (a few nanoseconds). See
399 * @ktime_get_mono_fast_ns.
401 static void update_fast_timekeeper(const struct tk_read_base *tkr,
402 struct tk_fast *tkf)
404 struct tk_read_base *base = tkf->base;
406 /* Force readers off to base[1] */
407 raw_write_seqcount_latch(&tkf->seq);
409 /* Update base[0] */
410 memcpy(base, tkr, sizeof(*base));
412 /* Force readers back to base[0] */
413 raw_write_seqcount_latch(&tkf->seq);
415 /* Update base[1] */
416 memcpy(base + 1, base, sizeof(*base));
420 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
422 * This timestamp is not guaranteed to be monotonic across an update.
423 * The timestamp is calculated by:
425 * now = base_mono + clock_delta * slope
427 * So if the update lowers the slope, readers who are forced to the
428 * not yet updated second array are still using the old steeper slope.
430 * tmono
432 * | o n
433 * | o n
434 * | u
435 * | o
436 * |o
437 * |12345678---> reader order
439 * o = old slope
440 * u = update
441 * n = new slope
443 * So reader 6 will observe time going backwards versus reader 5.
445 * While other CPUs are likely to be able observe that, the only way
446 * for a CPU local observation is when an NMI hits in the middle of
447 * the update. Timestamps taken from that NMI context might be ahead
448 * of the following timestamps. Callers need to be aware of that and
449 * deal with it.
451 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
453 struct tk_read_base *tkr;
454 unsigned int seq;
455 u64 now;
457 do {
458 seq = raw_read_seqcount_latch(&tkf->seq);
459 tkr = tkf->base + (seq & 0x01);
460 now = ktime_to_ns(tkr->base);
462 now += timekeeping_delta_to_ns(tkr,
463 clocksource_delta(
464 tk_clock_read(tkr),
465 tkr->cycle_last,
466 tkr->mask));
467 } while (read_seqcount_retry(&tkf->seq, seq));
469 return now;
472 u64 ktime_get_mono_fast_ns(void)
474 return __ktime_get_fast_ns(&tk_fast_mono);
476 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
478 u64 ktime_get_raw_fast_ns(void)
480 return __ktime_get_fast_ns(&tk_fast_raw);
482 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
485 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
487 * To keep it NMI safe since we're accessing from tracing, we're not using a
488 * separate timekeeper with updates to monotonic clock and boot offset
489 * protected with seqlocks. This has the following minor side effects:
491 * (1) Its possible that a timestamp be taken after the boot offset is updated
492 * but before the timekeeper is updated. If this happens, the new boot offset
493 * is added to the old timekeeping making the clock appear to update slightly
494 * earlier:
495 * CPU 0 CPU 1
496 * timekeeping_inject_sleeptime64()
497 * __timekeeping_inject_sleeptime(tk, delta);
498 * timestamp();
499 * timekeeping_update(tk, TK_CLEAR_NTP...);
501 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
502 * partially updated. Since the tk->offs_boot update is a rare event, this
503 * should be a rare occurrence which postprocessing should be able to handle.
505 u64 notrace ktime_get_boot_fast_ns(void)
507 struct timekeeper *tk = &tk_core.timekeeper;
509 return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
511 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
515 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
517 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
519 struct tk_read_base *tkr;
520 unsigned int seq;
521 u64 now;
523 do {
524 seq = raw_read_seqcount_latch(&tkf->seq);
525 tkr = tkf->base + (seq & 0x01);
526 now = ktime_to_ns(tkr->base_real);
528 now += timekeeping_delta_to_ns(tkr,
529 clocksource_delta(
530 tk_clock_read(tkr),
531 tkr->cycle_last,
532 tkr->mask));
533 } while (read_seqcount_retry(&tkf->seq, seq));
535 return now;
539 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
541 u64 ktime_get_real_fast_ns(void)
543 return __ktime_get_real_fast_ns(&tk_fast_mono);
545 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
548 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
549 * @tk: Timekeeper to snapshot.
551 * It generally is unsafe to access the clocksource after timekeeping has been
552 * suspended, so take a snapshot of the readout base of @tk and use it as the
553 * fast timekeeper's readout base while suspended. It will return the same
554 * number of cycles every time until timekeeping is resumed at which time the
555 * proper readout base for the fast timekeeper will be restored automatically.
557 static void halt_fast_timekeeper(const struct timekeeper *tk)
559 static struct tk_read_base tkr_dummy;
560 const struct tk_read_base *tkr = &tk->tkr_mono;
562 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
563 cycles_at_suspend = tk_clock_read(tkr);
564 tkr_dummy.clock = &dummy_clock;
565 tkr_dummy.base_real = tkr->base + tk->offs_real;
566 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
568 tkr = &tk->tkr_raw;
569 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
570 tkr_dummy.clock = &dummy_clock;
571 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
574 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
576 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
578 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
582 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
584 int pvclock_gtod_register_notifier(struct notifier_block *nb)
586 struct timekeeper *tk = &tk_core.timekeeper;
587 unsigned long flags;
588 int ret;
590 raw_spin_lock_irqsave(&timekeeper_lock, flags);
591 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
592 update_pvclock_gtod(tk, true);
593 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
595 return ret;
597 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
600 * pvclock_gtod_unregister_notifier - unregister a pvclock
601 * timedata update listener
603 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
605 unsigned long flags;
606 int ret;
608 raw_spin_lock_irqsave(&timekeeper_lock, flags);
609 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
610 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
612 return ret;
614 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
617 * tk_update_leap_state - helper to update the next_leap_ktime
619 static inline void tk_update_leap_state(struct timekeeper *tk)
621 tk->next_leap_ktime = ntp_get_next_leap();
622 if (tk->next_leap_ktime != KTIME_MAX)
623 /* Convert to monotonic time */
624 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
628 * Update the ktime_t based scalar nsec members of the timekeeper
630 static inline void tk_update_ktime_data(struct timekeeper *tk)
632 u64 seconds;
633 u32 nsec;
636 * The xtime based monotonic readout is:
637 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
638 * The ktime based monotonic readout is:
639 * nsec = base_mono + now();
640 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
642 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
643 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
644 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
647 * The sum of the nanoseconds portions of xtime and
648 * wall_to_monotonic can be greater/equal one second. Take
649 * this into account before updating tk->ktime_sec.
651 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
652 if (nsec >= NSEC_PER_SEC)
653 seconds++;
654 tk->ktime_sec = seconds;
656 /* Update the monotonic raw base */
657 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
660 /* must hold timekeeper_lock */
661 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
663 if (action & TK_CLEAR_NTP) {
664 tk->ntp_error = 0;
665 ntp_clear();
668 tk_update_leap_state(tk);
669 tk_update_ktime_data(tk);
671 update_vsyscall(tk);
672 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
674 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
675 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
676 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
678 if (action & TK_CLOCK_WAS_SET)
679 tk->clock_was_set_seq++;
681 * The mirroring of the data to the shadow-timekeeper needs
682 * to happen last here to ensure we don't over-write the
683 * timekeeper structure on the next update with stale data
685 if (action & TK_MIRROR)
686 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
687 sizeof(tk_core.timekeeper));
691 * timekeeping_forward_now - update clock to the current time
693 * Forward the current clock to update its state since the last call to
694 * update_wall_time(). This is useful before significant clock changes,
695 * as it avoids having to deal with this time offset explicitly.
697 static void timekeeping_forward_now(struct timekeeper *tk)
699 u64 cycle_now, delta;
701 cycle_now = tk_clock_read(&tk->tkr_mono);
702 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
703 tk->tkr_mono.cycle_last = cycle_now;
704 tk->tkr_raw.cycle_last = cycle_now;
706 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
708 /* If arch requires, add in get_arch_timeoffset() */
709 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
712 tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
714 /* If arch requires, add in get_arch_timeoffset() */
715 tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
717 tk_normalize_xtime(tk);
721 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
722 * @ts: pointer to the timespec to be set
724 * Returns the time of day in a timespec64 (WARN if suspended).
726 void ktime_get_real_ts64(struct timespec64 *ts)
728 struct timekeeper *tk = &tk_core.timekeeper;
729 unsigned int seq;
730 u64 nsecs;
732 WARN_ON(timekeeping_suspended);
734 do {
735 seq = read_seqcount_begin(&tk_core.seq);
737 ts->tv_sec = tk->xtime_sec;
738 nsecs = timekeeping_get_ns(&tk->tkr_mono);
740 } while (read_seqcount_retry(&tk_core.seq, seq));
742 ts->tv_nsec = 0;
743 timespec64_add_ns(ts, nsecs);
745 EXPORT_SYMBOL(ktime_get_real_ts64);
747 ktime_t ktime_get(void)
749 struct timekeeper *tk = &tk_core.timekeeper;
750 unsigned int seq;
751 ktime_t base;
752 u64 nsecs;
754 WARN_ON(timekeeping_suspended);
756 do {
757 seq = read_seqcount_begin(&tk_core.seq);
758 base = tk->tkr_mono.base;
759 nsecs = timekeeping_get_ns(&tk->tkr_mono);
761 } while (read_seqcount_retry(&tk_core.seq, seq));
763 return ktime_add_ns(base, nsecs);
765 EXPORT_SYMBOL_GPL(ktime_get);
767 u32 ktime_get_resolution_ns(void)
769 struct timekeeper *tk = &tk_core.timekeeper;
770 unsigned int seq;
771 u32 nsecs;
773 WARN_ON(timekeeping_suspended);
775 do {
776 seq = read_seqcount_begin(&tk_core.seq);
777 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
778 } while (read_seqcount_retry(&tk_core.seq, seq));
780 return nsecs;
782 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
784 static ktime_t *offsets[TK_OFFS_MAX] = {
785 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
786 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
787 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
790 ktime_t ktime_get_with_offset(enum tk_offsets offs)
792 struct timekeeper *tk = &tk_core.timekeeper;
793 unsigned int seq;
794 ktime_t base, *offset = offsets[offs];
795 u64 nsecs;
797 WARN_ON(timekeeping_suspended);
799 do {
800 seq = read_seqcount_begin(&tk_core.seq);
801 base = ktime_add(tk->tkr_mono.base, *offset);
802 nsecs = timekeeping_get_ns(&tk->tkr_mono);
804 } while (read_seqcount_retry(&tk_core.seq, seq));
806 return ktime_add_ns(base, nsecs);
809 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
811 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
813 struct timekeeper *tk = &tk_core.timekeeper;
814 unsigned int seq;
815 ktime_t base, *offset = offsets[offs];
816 u64 nsecs;
818 WARN_ON(timekeeping_suspended);
820 do {
821 seq = read_seqcount_begin(&tk_core.seq);
822 base = ktime_add(tk->tkr_mono.base, *offset);
823 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
825 } while (read_seqcount_retry(&tk_core.seq, seq));
827 return ktime_add_ns(base, nsecs);
829 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
832 * ktime_mono_to_any() - convert mononotic time to any other time
833 * @tmono: time to convert.
834 * @offs: which offset to use
836 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
838 ktime_t *offset = offsets[offs];
839 unsigned int seq;
840 ktime_t tconv;
842 do {
843 seq = read_seqcount_begin(&tk_core.seq);
844 tconv = ktime_add(tmono, *offset);
845 } while (read_seqcount_retry(&tk_core.seq, seq));
847 return tconv;
849 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
852 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
854 ktime_t ktime_get_raw(void)
856 struct timekeeper *tk = &tk_core.timekeeper;
857 unsigned int seq;
858 ktime_t base;
859 u64 nsecs;
861 do {
862 seq = read_seqcount_begin(&tk_core.seq);
863 base = tk->tkr_raw.base;
864 nsecs = timekeeping_get_ns(&tk->tkr_raw);
866 } while (read_seqcount_retry(&tk_core.seq, seq));
868 return ktime_add_ns(base, nsecs);
870 EXPORT_SYMBOL_GPL(ktime_get_raw);
873 * ktime_get_ts64 - get the monotonic clock in timespec64 format
874 * @ts: pointer to timespec variable
876 * The function calculates the monotonic clock from the realtime
877 * clock and the wall_to_monotonic offset and stores the result
878 * in normalized timespec64 format in the variable pointed to by @ts.
880 void ktime_get_ts64(struct timespec64 *ts)
882 struct timekeeper *tk = &tk_core.timekeeper;
883 struct timespec64 tomono;
884 unsigned int seq;
885 u64 nsec;
887 WARN_ON(timekeeping_suspended);
889 do {
890 seq = read_seqcount_begin(&tk_core.seq);
891 ts->tv_sec = tk->xtime_sec;
892 nsec = timekeeping_get_ns(&tk->tkr_mono);
893 tomono = tk->wall_to_monotonic;
895 } while (read_seqcount_retry(&tk_core.seq, seq));
897 ts->tv_sec += tomono.tv_sec;
898 ts->tv_nsec = 0;
899 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
901 EXPORT_SYMBOL_GPL(ktime_get_ts64);
904 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
906 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
907 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
908 * works on both 32 and 64 bit systems. On 32 bit systems the readout
909 * covers ~136 years of uptime which should be enough to prevent
910 * premature wrap arounds.
912 time64_t ktime_get_seconds(void)
914 struct timekeeper *tk = &tk_core.timekeeper;
916 WARN_ON(timekeeping_suspended);
917 return tk->ktime_sec;
919 EXPORT_SYMBOL_GPL(ktime_get_seconds);
922 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
924 * Returns the wall clock seconds since 1970. This replaces the
925 * get_seconds() interface which is not y2038 safe on 32bit systems.
927 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
928 * 32bit systems the access must be protected with the sequence
929 * counter to provide "atomic" access to the 64bit tk->xtime_sec
930 * value.
932 time64_t ktime_get_real_seconds(void)
934 struct timekeeper *tk = &tk_core.timekeeper;
935 time64_t seconds;
936 unsigned int seq;
938 if (IS_ENABLED(CONFIG_64BIT))
939 return tk->xtime_sec;
941 do {
942 seq = read_seqcount_begin(&tk_core.seq);
943 seconds = tk->xtime_sec;
945 } while (read_seqcount_retry(&tk_core.seq, seq));
947 return seconds;
949 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
952 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
953 * but without the sequence counter protect. This internal function
954 * is called just when timekeeping lock is already held.
956 noinstr time64_t __ktime_get_real_seconds(void)
958 struct timekeeper *tk = &tk_core.timekeeper;
960 return tk->xtime_sec;
964 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
965 * @systime_snapshot: pointer to struct receiving the system time snapshot
967 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
969 struct timekeeper *tk = &tk_core.timekeeper;
970 unsigned int seq;
971 ktime_t base_raw;
972 ktime_t base_real;
973 u64 nsec_raw;
974 u64 nsec_real;
975 u64 now;
977 WARN_ON_ONCE(timekeeping_suspended);
979 do {
980 seq = read_seqcount_begin(&tk_core.seq);
981 now = tk_clock_read(&tk->tkr_mono);
982 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
983 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
984 base_real = ktime_add(tk->tkr_mono.base,
985 tk_core.timekeeper.offs_real);
986 base_raw = tk->tkr_raw.base;
987 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
988 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
989 } while (read_seqcount_retry(&tk_core.seq, seq));
991 systime_snapshot->cycles = now;
992 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
993 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
995 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
997 /* Scale base by mult/div checking for overflow */
998 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
1000 u64 tmp, rem;
1002 tmp = div64_u64_rem(*base, div, &rem);
1004 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1005 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1006 return -EOVERFLOW;
1007 tmp *= mult;
1009 rem = div64_u64(rem * mult, div);
1010 *base = tmp + rem;
1011 return 0;
1015 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1016 * @history: Snapshot representing start of history
1017 * @partial_history_cycles: Cycle offset into history (fractional part)
1018 * @total_history_cycles: Total history length in cycles
1019 * @discontinuity: True indicates clock was set on history period
1020 * @ts: Cross timestamp that should be adjusted using
1021 * partial/total ratio
1023 * Helper function used by get_device_system_crosststamp() to correct the
1024 * crosstimestamp corresponding to the start of the current interval to the
1025 * system counter value (timestamp point) provided by the driver. The
1026 * total_history_* quantities are the total history starting at the provided
1027 * reference point and ending at the start of the current interval. The cycle
1028 * count between the driver timestamp point and the start of the current
1029 * interval is partial_history_cycles.
1031 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1032 u64 partial_history_cycles,
1033 u64 total_history_cycles,
1034 bool discontinuity,
1035 struct system_device_crosststamp *ts)
1037 struct timekeeper *tk = &tk_core.timekeeper;
1038 u64 corr_raw, corr_real;
1039 bool interp_forward;
1040 int ret;
1042 if (total_history_cycles == 0 || partial_history_cycles == 0)
1043 return 0;
1045 /* Interpolate shortest distance from beginning or end of history */
1046 interp_forward = partial_history_cycles > total_history_cycles / 2;
1047 partial_history_cycles = interp_forward ?
1048 total_history_cycles - partial_history_cycles :
1049 partial_history_cycles;
1052 * Scale the monotonic raw time delta by:
1053 * partial_history_cycles / total_history_cycles
1055 corr_raw = (u64)ktime_to_ns(
1056 ktime_sub(ts->sys_monoraw, history->raw));
1057 ret = scale64_check_overflow(partial_history_cycles,
1058 total_history_cycles, &corr_raw);
1059 if (ret)
1060 return ret;
1063 * If there is a discontinuity in the history, scale monotonic raw
1064 * correction by:
1065 * mult(real)/mult(raw) yielding the realtime correction
1066 * Otherwise, calculate the realtime correction similar to monotonic
1067 * raw calculation
1069 if (discontinuity) {
1070 corr_real = mul_u64_u32_div
1071 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1072 } else {
1073 corr_real = (u64)ktime_to_ns(
1074 ktime_sub(ts->sys_realtime, history->real));
1075 ret = scale64_check_overflow(partial_history_cycles,
1076 total_history_cycles, &corr_real);
1077 if (ret)
1078 return ret;
1081 /* Fixup monotonic raw and real time time values */
1082 if (interp_forward) {
1083 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1084 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1085 } else {
1086 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1087 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1090 return 0;
1094 * cycle_between - true if test occurs chronologically between before and after
1096 static bool cycle_between(u64 before, u64 test, u64 after)
1098 if (test > before && test < after)
1099 return true;
1100 if (test < before && before > after)
1101 return true;
1102 return false;
1106 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1107 * @get_time_fn: Callback to get simultaneous device time and
1108 * system counter from the device driver
1109 * @ctx: Context passed to get_time_fn()
1110 * @history_begin: Historical reference point used to interpolate system
1111 * time when counter provided by the driver is before the current interval
1112 * @xtstamp: Receives simultaneously captured system and device time
1114 * Reads a timestamp from a device and correlates it to system time
1116 int get_device_system_crosststamp(int (*get_time_fn)
1117 (ktime_t *device_time,
1118 struct system_counterval_t *sys_counterval,
1119 void *ctx),
1120 void *ctx,
1121 struct system_time_snapshot *history_begin,
1122 struct system_device_crosststamp *xtstamp)
1124 struct system_counterval_t system_counterval;
1125 struct timekeeper *tk = &tk_core.timekeeper;
1126 u64 cycles, now, interval_start;
1127 unsigned int clock_was_set_seq = 0;
1128 ktime_t base_real, base_raw;
1129 u64 nsec_real, nsec_raw;
1130 u8 cs_was_changed_seq;
1131 unsigned int seq;
1132 bool do_interp;
1133 int ret;
1135 do {
1136 seq = read_seqcount_begin(&tk_core.seq);
1138 * Try to synchronously capture device time and a system
1139 * counter value calling back into the device driver
1141 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1142 if (ret)
1143 return ret;
1146 * Verify that the clocksource associated with the captured
1147 * system counter value is the same as the currently installed
1148 * timekeeper clocksource
1150 if (tk->tkr_mono.clock != system_counterval.cs)
1151 return -ENODEV;
1152 cycles = system_counterval.cycles;
1155 * Check whether the system counter value provided by the
1156 * device driver is on the current timekeeping interval.
1158 now = tk_clock_read(&tk->tkr_mono);
1159 interval_start = tk->tkr_mono.cycle_last;
1160 if (!cycle_between(interval_start, cycles, now)) {
1161 clock_was_set_seq = tk->clock_was_set_seq;
1162 cs_was_changed_seq = tk->cs_was_changed_seq;
1163 cycles = interval_start;
1164 do_interp = true;
1165 } else {
1166 do_interp = false;
1169 base_real = ktime_add(tk->tkr_mono.base,
1170 tk_core.timekeeper.offs_real);
1171 base_raw = tk->tkr_raw.base;
1173 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1174 system_counterval.cycles);
1175 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1176 system_counterval.cycles);
1177 } while (read_seqcount_retry(&tk_core.seq, seq));
1179 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1180 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1183 * Interpolate if necessary, adjusting back from the start of the
1184 * current interval
1186 if (do_interp) {
1187 u64 partial_history_cycles, total_history_cycles;
1188 bool discontinuity;
1191 * Check that the counter value occurs after the provided
1192 * history reference and that the history doesn't cross a
1193 * clocksource change
1195 if (!history_begin ||
1196 !cycle_between(history_begin->cycles,
1197 system_counterval.cycles, cycles) ||
1198 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1199 return -EINVAL;
1200 partial_history_cycles = cycles - system_counterval.cycles;
1201 total_history_cycles = cycles - history_begin->cycles;
1202 discontinuity =
1203 history_begin->clock_was_set_seq != clock_was_set_seq;
1205 ret = adjust_historical_crosststamp(history_begin,
1206 partial_history_cycles,
1207 total_history_cycles,
1208 discontinuity, xtstamp);
1209 if (ret)
1210 return ret;
1213 return 0;
1215 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1218 * do_settimeofday64 - Sets the time of day.
1219 * @ts: pointer to the timespec64 variable containing the new time
1221 * Sets the time of day to the new time and update NTP and notify hrtimers
1223 int do_settimeofday64(const struct timespec64 *ts)
1225 struct timekeeper *tk = &tk_core.timekeeper;
1226 struct timespec64 ts_delta, xt;
1227 unsigned long flags;
1228 int ret = 0;
1230 if (!timespec64_valid_settod(ts))
1231 return -EINVAL;
1233 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1234 write_seqcount_begin(&tk_core.seq);
1236 timekeeping_forward_now(tk);
1238 xt = tk_xtime(tk);
1239 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1240 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1242 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1243 ret = -EINVAL;
1244 goto out;
1247 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1249 tk_set_xtime(tk, ts);
1250 out:
1251 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1253 write_seqcount_end(&tk_core.seq);
1254 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1256 /* signal hrtimers about time change */
1257 clock_was_set();
1259 if (!ret)
1260 audit_tk_injoffset(ts_delta);
1262 return ret;
1264 EXPORT_SYMBOL(do_settimeofday64);
1267 * timekeeping_inject_offset - Adds or subtracts from the current time.
1268 * @tv: pointer to the timespec variable containing the offset
1270 * Adds or subtracts an offset value from the current time.
1272 static int timekeeping_inject_offset(const struct timespec64 *ts)
1274 struct timekeeper *tk = &tk_core.timekeeper;
1275 unsigned long flags;
1276 struct timespec64 tmp;
1277 int ret = 0;
1279 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1280 return -EINVAL;
1282 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1283 write_seqcount_begin(&tk_core.seq);
1285 timekeeping_forward_now(tk);
1287 /* Make sure the proposed value is valid */
1288 tmp = timespec64_add(tk_xtime(tk), *ts);
1289 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1290 !timespec64_valid_settod(&tmp)) {
1291 ret = -EINVAL;
1292 goto error;
1295 tk_xtime_add(tk, ts);
1296 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1298 error: /* even if we error out, we forwarded the time, so call update */
1299 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1301 write_seqcount_end(&tk_core.seq);
1302 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1304 /* signal hrtimers about time change */
1305 clock_was_set();
1307 return ret;
1311 * Indicates if there is an offset between the system clock and the hardware
1312 * clock/persistent clock/rtc.
1314 int persistent_clock_is_local;
1317 * Adjust the time obtained from the CMOS to be UTC time instead of
1318 * local time.
1320 * This is ugly, but preferable to the alternatives. Otherwise we
1321 * would either need to write a program to do it in /etc/rc (and risk
1322 * confusion if the program gets run more than once; it would also be
1323 * hard to make the program warp the clock precisely n hours) or
1324 * compile in the timezone information into the kernel. Bad, bad....
1326 * - TYT, 1992-01-01
1328 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1329 * as real UNIX machines always do it. This avoids all headaches about
1330 * daylight saving times and warping kernel clocks.
1332 void timekeeping_warp_clock(void)
1334 if (sys_tz.tz_minuteswest != 0) {
1335 struct timespec64 adjust;
1337 persistent_clock_is_local = 1;
1338 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1339 adjust.tv_nsec = 0;
1340 timekeeping_inject_offset(&adjust);
1345 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1348 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1350 tk->tai_offset = tai_offset;
1351 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1355 * change_clocksource - Swaps clocksources if a new one is available
1357 * Accumulates current time interval and initializes new clocksource
1359 static int change_clocksource(void *data)
1361 struct timekeeper *tk = &tk_core.timekeeper;
1362 struct clocksource *new, *old;
1363 unsigned long flags;
1365 new = (struct clocksource *) data;
1367 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1368 write_seqcount_begin(&tk_core.seq);
1370 timekeeping_forward_now(tk);
1372 * If the cs is in module, get a module reference. Succeeds
1373 * for built-in code (owner == NULL) as well.
1375 if (try_module_get(new->owner)) {
1376 if (!new->enable || new->enable(new) == 0) {
1377 old = tk->tkr_mono.clock;
1378 tk_setup_internals(tk, new);
1379 if (old->disable)
1380 old->disable(old);
1381 module_put(old->owner);
1382 } else {
1383 module_put(new->owner);
1386 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1388 write_seqcount_end(&tk_core.seq);
1389 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1391 return 0;
1395 * timekeeping_notify - Install a new clock source
1396 * @clock: pointer to the clock source
1398 * This function is called from clocksource.c after a new, better clock
1399 * source has been registered. The caller holds the clocksource_mutex.
1401 int timekeeping_notify(struct clocksource *clock)
1403 struct timekeeper *tk = &tk_core.timekeeper;
1405 if (tk->tkr_mono.clock == clock)
1406 return 0;
1407 stop_machine(change_clocksource, clock, NULL);
1408 tick_clock_notify();
1409 return tk->tkr_mono.clock == clock ? 0 : -1;
1413 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1414 * @ts: pointer to the timespec64 to be set
1416 * Returns the raw monotonic time (completely un-modified by ntp)
1418 void ktime_get_raw_ts64(struct timespec64 *ts)
1420 struct timekeeper *tk = &tk_core.timekeeper;
1421 unsigned int seq;
1422 u64 nsecs;
1424 do {
1425 seq = read_seqcount_begin(&tk_core.seq);
1426 ts->tv_sec = tk->raw_sec;
1427 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1429 } while (read_seqcount_retry(&tk_core.seq, seq));
1431 ts->tv_nsec = 0;
1432 timespec64_add_ns(ts, nsecs);
1434 EXPORT_SYMBOL(ktime_get_raw_ts64);
1438 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1440 int timekeeping_valid_for_hres(void)
1442 struct timekeeper *tk = &tk_core.timekeeper;
1443 unsigned int seq;
1444 int ret;
1446 do {
1447 seq = read_seqcount_begin(&tk_core.seq);
1449 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1451 } while (read_seqcount_retry(&tk_core.seq, seq));
1453 return ret;
1457 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1459 u64 timekeeping_max_deferment(void)
1461 struct timekeeper *tk = &tk_core.timekeeper;
1462 unsigned int seq;
1463 u64 ret;
1465 do {
1466 seq = read_seqcount_begin(&tk_core.seq);
1468 ret = tk->tkr_mono.clock->max_idle_ns;
1470 } while (read_seqcount_retry(&tk_core.seq, seq));
1472 return ret;
1476 * read_persistent_clock64 - Return time from the persistent clock.
1478 * Weak dummy function for arches that do not yet support it.
1479 * Reads the time from the battery backed persistent clock.
1480 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1482 * XXX - Do be sure to remove it once all arches implement it.
1484 void __weak read_persistent_clock64(struct timespec64 *ts)
1486 ts->tv_sec = 0;
1487 ts->tv_nsec = 0;
1491 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1492 * from the boot.
1494 * Weak dummy function for arches that do not yet support it.
1495 * wall_time - current time as returned by persistent clock
1496 * boot_offset - offset that is defined as wall_time - boot_time
1497 * The default function calculates offset based on the current value of
1498 * local_clock(). This way architectures that support sched_clock() but don't
1499 * support dedicated boot time clock will provide the best estimate of the
1500 * boot time.
1502 void __weak __init
1503 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1504 struct timespec64 *boot_offset)
1506 read_persistent_clock64(wall_time);
1507 *boot_offset = ns_to_timespec64(local_clock());
1511 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1513 * The flag starts of false and is only set when a suspend reaches
1514 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1515 * timekeeper clocksource is not stopping across suspend and has been
1516 * used to update sleep time. If the timekeeper clocksource has stopped
1517 * then the flag stays true and is used by the RTC resume code to decide
1518 * whether sleeptime must be injected and if so the flag gets false then.
1520 * If a suspend fails before reaching timekeeping_resume() then the flag
1521 * stays false and prevents erroneous sleeptime injection.
1523 static bool suspend_timing_needed;
1525 /* Flag for if there is a persistent clock on this platform */
1526 static bool persistent_clock_exists;
1529 * timekeeping_init - Initializes the clocksource and common timekeeping values
1531 void __init timekeeping_init(void)
1533 struct timespec64 wall_time, boot_offset, wall_to_mono;
1534 struct timekeeper *tk = &tk_core.timekeeper;
1535 struct clocksource *clock;
1536 unsigned long flags;
1538 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1539 if (timespec64_valid_settod(&wall_time) &&
1540 timespec64_to_ns(&wall_time) > 0) {
1541 persistent_clock_exists = true;
1542 } else if (timespec64_to_ns(&wall_time) != 0) {
1543 pr_warn("Persistent clock returned invalid value");
1544 wall_time = (struct timespec64){0};
1547 if (timespec64_compare(&wall_time, &boot_offset) < 0)
1548 boot_offset = (struct timespec64){0};
1551 * We want set wall_to_mono, so the following is true:
1552 * wall time + wall_to_mono = boot time
1554 wall_to_mono = timespec64_sub(boot_offset, wall_time);
1556 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1557 write_seqcount_begin(&tk_core.seq);
1558 ntp_init();
1560 clock = clocksource_default_clock();
1561 if (clock->enable)
1562 clock->enable(clock);
1563 tk_setup_internals(tk, clock);
1565 tk_set_xtime(tk, &wall_time);
1566 tk->raw_sec = 0;
1568 tk_set_wall_to_mono(tk, wall_to_mono);
1570 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1572 write_seqcount_end(&tk_core.seq);
1573 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1576 /* time in seconds when suspend began for persistent clock */
1577 static struct timespec64 timekeeping_suspend_time;
1580 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1581 * @delta: pointer to a timespec delta value
1583 * Takes a timespec offset measuring a suspend interval and properly
1584 * adds the sleep offset to the timekeeping variables.
1586 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1587 const struct timespec64 *delta)
1589 if (!timespec64_valid_strict(delta)) {
1590 printk_deferred(KERN_WARNING
1591 "__timekeeping_inject_sleeptime: Invalid "
1592 "sleep delta value!\n");
1593 return;
1595 tk_xtime_add(tk, delta);
1596 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1597 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1598 tk_debug_account_sleep_time(delta);
1601 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1603 * We have three kinds of time sources to use for sleep time
1604 * injection, the preference order is:
1605 * 1) non-stop clocksource
1606 * 2) persistent clock (ie: RTC accessible when irqs are off)
1607 * 3) RTC
1609 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1610 * If system has neither 1) nor 2), 3) will be used finally.
1613 * If timekeeping has injected sleeptime via either 1) or 2),
1614 * 3) becomes needless, so in this case we don't need to call
1615 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1616 * means.
1618 bool timekeeping_rtc_skipresume(void)
1620 return !suspend_timing_needed;
1624 * 1) can be determined whether to use or not only when doing
1625 * timekeeping_resume() which is invoked after rtc_suspend(),
1626 * so we can't skip rtc_suspend() surely if system has 1).
1628 * But if system has 2), 2) will definitely be used, so in this
1629 * case we don't need to call rtc_suspend(), and this is what
1630 * timekeeping_rtc_skipsuspend() means.
1632 bool timekeeping_rtc_skipsuspend(void)
1634 return persistent_clock_exists;
1638 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1639 * @delta: pointer to a timespec64 delta value
1641 * This hook is for architectures that cannot support read_persistent_clock64
1642 * because their RTC/persistent clock is only accessible when irqs are enabled.
1643 * and also don't have an effective nonstop clocksource.
1645 * This function should only be called by rtc_resume(), and allows
1646 * a suspend offset to be injected into the timekeeping values.
1648 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1650 struct timekeeper *tk = &tk_core.timekeeper;
1651 unsigned long flags;
1653 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1654 write_seqcount_begin(&tk_core.seq);
1656 suspend_timing_needed = false;
1658 timekeeping_forward_now(tk);
1660 __timekeeping_inject_sleeptime(tk, delta);
1662 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1664 write_seqcount_end(&tk_core.seq);
1665 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1667 /* signal hrtimers about time change */
1668 clock_was_set();
1670 #endif
1673 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1675 void timekeeping_resume(void)
1677 struct timekeeper *tk = &tk_core.timekeeper;
1678 struct clocksource *clock = tk->tkr_mono.clock;
1679 unsigned long flags;
1680 struct timespec64 ts_new, ts_delta;
1681 u64 cycle_now, nsec;
1682 bool inject_sleeptime = false;
1684 read_persistent_clock64(&ts_new);
1686 clockevents_resume();
1687 clocksource_resume();
1689 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1690 write_seqcount_begin(&tk_core.seq);
1693 * After system resumes, we need to calculate the suspended time and
1694 * compensate it for the OS time. There are 3 sources that could be
1695 * used: Nonstop clocksource during suspend, persistent clock and rtc
1696 * device.
1698 * One specific platform may have 1 or 2 or all of them, and the
1699 * preference will be:
1700 * suspend-nonstop clocksource -> persistent clock -> rtc
1701 * The less preferred source will only be tried if there is no better
1702 * usable source. The rtc part is handled separately in rtc core code.
1704 cycle_now = tk_clock_read(&tk->tkr_mono);
1705 nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1706 if (nsec > 0) {
1707 ts_delta = ns_to_timespec64(nsec);
1708 inject_sleeptime = true;
1709 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1710 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1711 inject_sleeptime = true;
1714 if (inject_sleeptime) {
1715 suspend_timing_needed = false;
1716 __timekeeping_inject_sleeptime(tk, &ts_delta);
1719 /* Re-base the last cycle value */
1720 tk->tkr_mono.cycle_last = cycle_now;
1721 tk->tkr_raw.cycle_last = cycle_now;
1723 tk->ntp_error = 0;
1724 timekeeping_suspended = 0;
1725 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1726 write_seqcount_end(&tk_core.seq);
1727 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1729 touch_softlockup_watchdog();
1731 tick_resume();
1732 hrtimers_resume();
1735 int timekeeping_suspend(void)
1737 struct timekeeper *tk = &tk_core.timekeeper;
1738 unsigned long flags;
1739 struct timespec64 delta, delta_delta;
1740 static struct timespec64 old_delta;
1741 struct clocksource *curr_clock;
1742 u64 cycle_now;
1744 read_persistent_clock64(&timekeeping_suspend_time);
1747 * On some systems the persistent_clock can not be detected at
1748 * timekeeping_init by its return value, so if we see a valid
1749 * value returned, update the persistent_clock_exists flag.
1751 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1752 persistent_clock_exists = true;
1754 suspend_timing_needed = true;
1756 raw_spin_lock_irqsave(&timekeeper_lock, flags);
1757 write_seqcount_begin(&tk_core.seq);
1758 timekeeping_forward_now(tk);
1759 timekeeping_suspended = 1;
1762 * Since we've called forward_now, cycle_last stores the value
1763 * just read from the current clocksource. Save this to potentially
1764 * use in suspend timing.
1766 curr_clock = tk->tkr_mono.clock;
1767 cycle_now = tk->tkr_mono.cycle_last;
1768 clocksource_start_suspend_timing(curr_clock, cycle_now);
1770 if (persistent_clock_exists) {
1772 * To avoid drift caused by repeated suspend/resumes,
1773 * which each can add ~1 second drift error,
1774 * try to compensate so the difference in system time
1775 * and persistent_clock time stays close to constant.
1777 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1778 delta_delta = timespec64_sub(delta, old_delta);
1779 if (abs(delta_delta.tv_sec) >= 2) {
1781 * if delta_delta is too large, assume time correction
1782 * has occurred and set old_delta to the current delta.
1784 old_delta = delta;
1785 } else {
1786 /* Otherwise try to adjust old_system to compensate */
1787 timekeeping_suspend_time =
1788 timespec64_add(timekeeping_suspend_time, delta_delta);
1792 timekeeping_update(tk, TK_MIRROR);
1793 halt_fast_timekeeper(tk);
1794 write_seqcount_end(&tk_core.seq);
1795 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1797 tick_suspend();
1798 clocksource_suspend();
1799 clockevents_suspend();
1801 return 0;
1804 /* sysfs resume/suspend bits for timekeeping */
1805 static struct syscore_ops timekeeping_syscore_ops = {
1806 .resume = timekeeping_resume,
1807 .suspend = timekeeping_suspend,
1810 static int __init timekeeping_init_ops(void)
1812 register_syscore_ops(&timekeeping_syscore_ops);
1813 return 0;
1815 device_initcall(timekeeping_init_ops);
1818 * Apply a multiplier adjustment to the timekeeper
1820 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1821 s64 offset,
1822 s32 mult_adj)
1824 s64 interval = tk->cycle_interval;
1826 if (mult_adj == 0) {
1827 return;
1828 } else if (mult_adj == -1) {
1829 interval = -interval;
1830 offset = -offset;
1831 } else if (mult_adj != 1) {
1832 interval *= mult_adj;
1833 offset *= mult_adj;
1837 * So the following can be confusing.
1839 * To keep things simple, lets assume mult_adj == 1 for now.
1841 * When mult_adj != 1, remember that the interval and offset values
1842 * have been appropriately scaled so the math is the same.
1844 * The basic idea here is that we're increasing the multiplier
1845 * by one, this causes the xtime_interval to be incremented by
1846 * one cycle_interval. This is because:
1847 * xtime_interval = cycle_interval * mult
1848 * So if mult is being incremented by one:
1849 * xtime_interval = cycle_interval * (mult + 1)
1850 * Its the same as:
1851 * xtime_interval = (cycle_interval * mult) + cycle_interval
1852 * Which can be shortened to:
1853 * xtime_interval += cycle_interval
1855 * So offset stores the non-accumulated cycles. Thus the current
1856 * time (in shifted nanoseconds) is:
1857 * now = (offset * adj) + xtime_nsec
1858 * Now, even though we're adjusting the clock frequency, we have
1859 * to keep time consistent. In other words, we can't jump back
1860 * in time, and we also want to avoid jumping forward in time.
1862 * So given the same offset value, we need the time to be the same
1863 * both before and after the freq adjustment.
1864 * now = (offset * adj_1) + xtime_nsec_1
1865 * now = (offset * adj_2) + xtime_nsec_2
1866 * So:
1867 * (offset * adj_1) + xtime_nsec_1 =
1868 * (offset * adj_2) + xtime_nsec_2
1869 * And we know:
1870 * adj_2 = adj_1 + 1
1871 * So:
1872 * (offset * adj_1) + xtime_nsec_1 =
1873 * (offset * (adj_1+1)) + xtime_nsec_2
1874 * (offset * adj_1) + xtime_nsec_1 =
1875 * (offset * adj_1) + offset + xtime_nsec_2
1876 * Canceling the sides:
1877 * xtime_nsec_1 = offset + xtime_nsec_2
1878 * Which gives us:
1879 * xtime_nsec_2 = xtime_nsec_1 - offset
1880 * Which simplfies to:
1881 * xtime_nsec -= offset
1883 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1884 /* NTP adjustment caused clocksource mult overflow */
1885 WARN_ON_ONCE(1);
1886 return;
1889 tk->tkr_mono.mult += mult_adj;
1890 tk->xtime_interval += interval;
1891 tk->tkr_mono.xtime_nsec -= offset;
1895 * Adjust the timekeeper's multiplier to the correct frequency
1896 * and also to reduce the accumulated error value.
1898 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1900 u32 mult;
1903 * Determine the multiplier from the current NTP tick length.
1904 * Avoid expensive division when the tick length doesn't change.
1906 if (likely(tk->ntp_tick == ntp_tick_length())) {
1907 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1908 } else {
1909 tk->ntp_tick = ntp_tick_length();
1910 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1911 tk->xtime_remainder, tk->cycle_interval);
1915 * If the clock is behind the NTP time, increase the multiplier by 1
1916 * to catch up with it. If it's ahead and there was a remainder in the
1917 * tick division, the clock will slow down. Otherwise it will stay
1918 * ahead until the tick length changes to a non-divisible value.
1920 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1921 mult += tk->ntp_err_mult;
1923 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1925 if (unlikely(tk->tkr_mono.clock->maxadj &&
1926 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1927 > tk->tkr_mono.clock->maxadj))) {
1928 printk_once(KERN_WARNING
1929 "Adjusting %s more than 11%% (%ld vs %ld)\n",
1930 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1931 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1935 * It may be possible that when we entered this function, xtime_nsec
1936 * was very small. Further, if we're slightly speeding the clocksource
1937 * in the code above, its possible the required corrective factor to
1938 * xtime_nsec could cause it to underflow.
1940 * Now, since we have already accumulated the second and the NTP
1941 * subsystem has been notified via second_overflow(), we need to skip
1942 * the next update.
1944 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1945 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1946 tk->tkr_mono.shift;
1947 tk->xtime_sec--;
1948 tk->skip_second_overflow = 1;
1953 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955 * Helper function that accumulates the nsecs greater than a second
1956 * from the xtime_nsec field to the xtime_secs field.
1957 * It also calls into the NTP code to handle leapsecond processing.
1960 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1962 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1963 unsigned int clock_set = 0;
1965 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1966 int leap;
1968 tk->tkr_mono.xtime_nsec -= nsecps;
1969 tk->xtime_sec++;
1972 * Skip NTP update if this second was accumulated before,
1973 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1975 if (unlikely(tk->skip_second_overflow)) {
1976 tk->skip_second_overflow = 0;
1977 continue;
1980 /* Figure out if its a leap sec and apply if needed */
1981 leap = second_overflow(tk->xtime_sec);
1982 if (unlikely(leap)) {
1983 struct timespec64 ts;
1985 tk->xtime_sec += leap;
1987 ts.tv_sec = leap;
1988 ts.tv_nsec = 0;
1989 tk_set_wall_to_mono(tk,
1990 timespec64_sub(tk->wall_to_monotonic, ts));
1992 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1994 clock_set = TK_CLOCK_WAS_SET;
1997 return clock_set;
2001 * logarithmic_accumulation - shifted accumulation of cycles
2003 * This functions accumulates a shifted interval of cycles into
2004 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2005 * loop.
2007 * Returns the unconsumed cycles.
2009 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2010 u32 shift, unsigned int *clock_set)
2012 u64 interval = tk->cycle_interval << shift;
2013 u64 snsec_per_sec;
2015 /* If the offset is smaller than a shifted interval, do nothing */
2016 if (offset < interval)
2017 return offset;
2019 /* Accumulate one shifted interval */
2020 offset -= interval;
2021 tk->tkr_mono.cycle_last += interval;
2022 tk->tkr_raw.cycle_last += interval;
2024 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2025 *clock_set |= accumulate_nsecs_to_secs(tk);
2027 /* Accumulate raw time */
2028 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2029 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2030 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2031 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2032 tk->raw_sec++;
2035 /* Accumulate error between NTP and clock interval */
2036 tk->ntp_error += tk->ntp_tick << shift;
2037 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2038 (tk->ntp_error_shift + shift);
2040 return offset;
2044 * timekeeping_advance - Updates the timekeeper to the current time and
2045 * current NTP tick length
2047 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2049 struct timekeeper *real_tk = &tk_core.timekeeper;
2050 struct timekeeper *tk = &shadow_timekeeper;
2051 u64 offset;
2052 int shift = 0, maxshift;
2053 unsigned int clock_set = 0;
2054 unsigned long flags;
2056 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2058 /* Make sure we're fully resumed: */
2059 if (unlikely(timekeeping_suspended))
2060 goto out;
2062 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2063 offset = real_tk->cycle_interval;
2065 if (mode != TK_ADV_TICK)
2066 goto out;
2067 #else
2068 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2069 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2071 /* Check if there's really nothing to do */
2072 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2073 goto out;
2074 #endif
2076 /* Do some additional sanity checking */
2077 timekeeping_check_update(tk, offset);
2080 * With NO_HZ we may have to accumulate many cycle_intervals
2081 * (think "ticks") worth of time at once. To do this efficiently,
2082 * we calculate the largest doubling multiple of cycle_intervals
2083 * that is smaller than the offset. We then accumulate that
2084 * chunk in one go, and then try to consume the next smaller
2085 * doubled multiple.
2087 shift = ilog2(offset) - ilog2(tk->cycle_interval);
2088 shift = max(0, shift);
2089 /* Bound shift to one less than what overflows tick_length */
2090 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2091 shift = min(shift, maxshift);
2092 while (offset >= tk->cycle_interval) {
2093 offset = logarithmic_accumulation(tk, offset, shift,
2094 &clock_set);
2095 if (offset < tk->cycle_interval<<shift)
2096 shift--;
2099 /* Adjust the multiplier to correct NTP error */
2100 timekeeping_adjust(tk, offset);
2103 * Finally, make sure that after the rounding
2104 * xtime_nsec isn't larger than NSEC_PER_SEC
2106 clock_set |= accumulate_nsecs_to_secs(tk);
2108 write_seqcount_begin(&tk_core.seq);
2110 * Update the real timekeeper.
2112 * We could avoid this memcpy by switching pointers, but that
2113 * requires changes to all other timekeeper usage sites as
2114 * well, i.e. move the timekeeper pointer getter into the
2115 * spinlocked/seqcount protected sections. And we trade this
2116 * memcpy under the tk_core.seq against one before we start
2117 * updating.
2119 timekeeping_update(tk, clock_set);
2120 memcpy(real_tk, tk, sizeof(*tk));
2121 /* The memcpy must come last. Do not put anything here! */
2122 write_seqcount_end(&tk_core.seq);
2123 out:
2124 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2125 if (clock_set)
2126 /* Have to call _delayed version, since in irq context*/
2127 clock_was_set_delayed();
2131 * update_wall_time - Uses the current clocksource to increment the wall time
2134 void update_wall_time(void)
2136 timekeeping_advance(TK_ADV_TICK);
2140 * getboottime64 - Return the real time of system boot.
2141 * @ts: pointer to the timespec64 to be set
2143 * Returns the wall-time of boot in a timespec64.
2145 * This is based on the wall_to_monotonic offset and the total suspend
2146 * time. Calls to settimeofday will affect the value returned (which
2147 * basically means that however wrong your real time clock is at boot time,
2148 * you get the right time here).
2150 void getboottime64(struct timespec64 *ts)
2152 struct timekeeper *tk = &tk_core.timekeeper;
2153 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2155 *ts = ktime_to_timespec64(t);
2157 EXPORT_SYMBOL_GPL(getboottime64);
2159 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2161 struct timekeeper *tk = &tk_core.timekeeper;
2162 unsigned int seq;
2164 do {
2165 seq = read_seqcount_begin(&tk_core.seq);
2167 *ts = tk_xtime(tk);
2168 } while (read_seqcount_retry(&tk_core.seq, seq));
2170 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2172 void ktime_get_coarse_ts64(struct timespec64 *ts)
2174 struct timekeeper *tk = &tk_core.timekeeper;
2175 struct timespec64 now, mono;
2176 unsigned int seq;
2178 do {
2179 seq = read_seqcount_begin(&tk_core.seq);
2181 now = tk_xtime(tk);
2182 mono = tk->wall_to_monotonic;
2183 } while (read_seqcount_retry(&tk_core.seq, seq));
2185 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2186 now.tv_nsec + mono.tv_nsec);
2188 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2191 * Must hold jiffies_lock
2193 void do_timer(unsigned long ticks)
2195 jiffies_64 += ticks;
2196 calc_global_load(ticks);
2200 * ktime_get_update_offsets_now - hrtimer helper
2201 * @cwsseq: pointer to check and store the clock was set sequence number
2202 * @offs_real: pointer to storage for monotonic -> realtime offset
2203 * @offs_boot: pointer to storage for monotonic -> boottime offset
2204 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2206 * Returns current monotonic time and updates the offsets if the
2207 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2208 * different.
2210 * Called from hrtimer_interrupt() or retrigger_next_event()
2212 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2213 ktime_t *offs_boot, ktime_t *offs_tai)
2215 struct timekeeper *tk = &tk_core.timekeeper;
2216 unsigned int seq;
2217 ktime_t base;
2218 u64 nsecs;
2220 do {
2221 seq = read_seqcount_begin(&tk_core.seq);
2223 base = tk->tkr_mono.base;
2224 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2225 base = ktime_add_ns(base, nsecs);
2227 if (*cwsseq != tk->clock_was_set_seq) {
2228 *cwsseq = tk->clock_was_set_seq;
2229 *offs_real = tk->offs_real;
2230 *offs_boot = tk->offs_boot;
2231 *offs_tai = tk->offs_tai;
2234 /* Handle leapsecond insertion adjustments */
2235 if (unlikely(base >= tk->next_leap_ktime))
2236 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2238 } while (read_seqcount_retry(&tk_core.seq, seq));
2240 return base;
2244 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2246 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2248 if (txc->modes & ADJ_ADJTIME) {
2249 /* singleshot must not be used with any other mode bits */
2250 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2251 return -EINVAL;
2252 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2253 !capable(CAP_SYS_TIME))
2254 return -EPERM;
2255 } else {
2256 /* In order to modify anything, you gotta be super-user! */
2257 if (txc->modes && !capable(CAP_SYS_TIME))
2258 return -EPERM;
2260 * if the quartz is off by more than 10% then
2261 * something is VERY wrong!
2263 if (txc->modes & ADJ_TICK &&
2264 (txc->tick < 900000/USER_HZ ||
2265 txc->tick > 1100000/USER_HZ))
2266 return -EINVAL;
2269 if (txc->modes & ADJ_SETOFFSET) {
2270 /* In order to inject time, you gotta be super-user! */
2271 if (!capable(CAP_SYS_TIME))
2272 return -EPERM;
2275 * Validate if a timespec/timeval used to inject a time
2276 * offset is valid. Offsets can be postive or negative, so
2277 * we don't check tv_sec. The value of the timeval/timespec
2278 * is the sum of its fields,but *NOTE*:
2279 * The field tv_usec/tv_nsec must always be non-negative and
2280 * we can't have more nanoseconds/microseconds than a second.
2282 if (txc->time.tv_usec < 0)
2283 return -EINVAL;
2285 if (txc->modes & ADJ_NANO) {
2286 if (txc->time.tv_usec >= NSEC_PER_SEC)
2287 return -EINVAL;
2288 } else {
2289 if (txc->time.tv_usec >= USEC_PER_SEC)
2290 return -EINVAL;
2295 * Check for potential multiplication overflows that can
2296 * only happen on 64-bit systems:
2298 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2299 if (LLONG_MIN / PPM_SCALE > txc->freq)
2300 return -EINVAL;
2301 if (LLONG_MAX / PPM_SCALE < txc->freq)
2302 return -EINVAL;
2305 return 0;
2310 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2312 int do_adjtimex(struct __kernel_timex *txc)
2314 struct timekeeper *tk = &tk_core.timekeeper;
2315 struct audit_ntp_data ad;
2316 unsigned long flags;
2317 struct timespec64 ts;
2318 s32 orig_tai, tai;
2319 int ret;
2321 /* Validate the data before disabling interrupts */
2322 ret = timekeeping_validate_timex(txc);
2323 if (ret)
2324 return ret;
2326 if (txc->modes & ADJ_SETOFFSET) {
2327 struct timespec64 delta;
2328 delta.tv_sec = txc->time.tv_sec;
2329 delta.tv_nsec = txc->time.tv_usec;
2330 if (!(txc->modes & ADJ_NANO))
2331 delta.tv_nsec *= 1000;
2332 ret = timekeeping_inject_offset(&delta);
2333 if (ret)
2334 return ret;
2336 audit_tk_injoffset(delta);
2339 audit_ntp_init(&ad);
2341 ktime_get_real_ts64(&ts);
2343 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2344 write_seqcount_begin(&tk_core.seq);
2346 orig_tai = tai = tk->tai_offset;
2347 ret = __do_adjtimex(txc, &ts, &tai, &ad);
2349 if (tai != orig_tai) {
2350 __timekeeping_set_tai_offset(tk, tai);
2351 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2353 tk_update_leap_state(tk);
2355 write_seqcount_end(&tk_core.seq);
2356 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2358 audit_ntp_log(&ad);
2360 /* Update the multiplier immediately if frequency was set directly */
2361 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2362 timekeeping_advance(TK_ADV_FREQ);
2364 if (tai != orig_tai)
2365 clock_was_set();
2367 ntp_notify_cmos_timer();
2369 return ret;
2372 #ifdef CONFIG_NTP_PPS
2374 * hardpps() - Accessor function to NTP __hardpps function
2376 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2378 unsigned long flags;
2380 raw_spin_lock_irqsave(&timekeeper_lock, flags);
2381 write_seqcount_begin(&tk_core.seq);
2383 __hardpps(phase_ts, raw_ts);
2385 write_seqcount_end(&tk_core.seq);
2386 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2388 EXPORT_SYMBOL(hardpps);
2389 #endif /* CONFIG_NTP_PPS */
2392 * xtime_update() - advances the timekeeping infrastructure
2393 * @ticks: number of ticks, that have elapsed since the last call.
2395 * Must be called with interrupts disabled.
2397 void xtime_update(unsigned long ticks)
2399 raw_spin_lock(&jiffies_lock);
2400 write_seqcount_begin(&jiffies_seq);
2401 do_timer(ticks);
2402 write_seqcount_end(&jiffies_seq);
2403 raw_spin_unlock(&jiffies_lock);
2404 update_wall_time();