2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
80 DEFINE_MUTEX(cgroup_mutex
);
81 DEFINE_SPINLOCK(css_set_lock
);
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex
);
85 EXPORT_SYMBOL_GPL(css_set_lock
);
88 DEFINE_SPINLOCK(trace_cgroup_path_lock
);
89 char trace_cgroup_path
[TRACE_CGROUP_PATH_LEN
];
90 bool cgroup_debug __read_mostly
;
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
96 static DEFINE_SPINLOCK(cgroup_idr_lock
);
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct
*cgroup_destroy_wq
;
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys
*cgroup_subsys
[] = {
122 #include <linux/cgroup_subsys.h>
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name
[] = {
129 #include <linux/cgroup_subsys.h>
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
144 #include <linux/cgroup_subsys.h>
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
150 #include <linux/cgroup_subsys.h>
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu
, cgrp_dfl_root_rstat_cpu
);
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
161 struct cgroup_root cgrp_dfl_root
= { .cgrp
.rstat_cpu
= &cgrp_dfl_root_rstat_cpu
};
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
168 static bool cgrp_dfl_visible
;
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask
;
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask
;
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask
;
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots
);
181 static int cgroup_root_count
;
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr
);
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
193 static u64 css_serial_nr_next
= 1;
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
199 static u16 have_fork_callback __read_mostly
;
200 static u16 have_exit_callback __read_mostly
;
201 static u16 have_release_callback __read_mostly
;
202 static u16 have_canfork_callback __read_mostly
;
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns
= {
206 .count
= REFCOUNT_INIT(2),
207 .user_ns
= &init_user_ns
,
208 .ns
.ops
= &cgroupns_operations
,
209 .ns
.inum
= PROC_CGROUP_INIT_INO
,
210 .root_cset
= &init_css_set
,
213 static struct file_system_type cgroup2_fs_type
;
214 static struct cftype cgroup_base_files
[];
216 static int cgroup_apply_control(struct cgroup
*cgrp
);
217 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
218 static void css_task_iter_advance(struct css_task_iter
*it
);
219 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
220 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
221 struct cgroup_subsys
*ss
);
222 static void css_release(struct percpu_ref
*ref
);
223 static void kill_css(struct cgroup_subsys_state
*css
);
224 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
225 struct cgroup
*cgrp
, struct cftype cfts
[],
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
236 bool cgroup_ssid_enabled(int ssid
)
238 if (CGROUP_SUBSYS_COUNT
== 0)
241 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246 * @cgrp: the cgroup of interest
248 * The default hierarchy is the v2 interface of cgroup and this function
249 * can be used to test whether a cgroup is on the default hierarchy for
250 * cases where a subsystem should behave differnetly depending on the
253 * The set of behaviors which change on the default hierarchy are still
254 * being determined and the mount option is prefixed with __DEVEL__.
256 * List of changed behaviors:
258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259 * and "name" are disallowed.
261 * - When mounting an existing superblock, mount options should match.
263 * - Remount is disallowed.
265 * - rename(2) is disallowed.
267 * - "tasks" is removed. Everything should be at process granularity. Use
268 * "cgroup.procs" instead.
270 * - "cgroup.procs" is not sorted. pids will be unique unless they got
271 * recycled inbetween reads.
273 * - "release_agent" and "notify_on_release" are removed. Replacement
274 * notification mechanism will be implemented.
276 * - "cgroup.clone_children" is removed.
278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
279 * and its descendants contain no task; otherwise, 1. The file also
280 * generates kernfs notification which can be monitored through poll and
281 * [di]notify when the value of the file changes.
283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284 * take masks of ancestors with non-empty cpus/mems, instead of being
285 * moved to an ancestor.
287 * - cpuset: a task can be moved into an empty cpuset, and again it takes
288 * masks of ancestors.
290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
293 * - blkcg: blk-throttle becomes properly hierarchical.
295 * - debug: disallowed on the default hierarchy.
297 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
299 return cgrp
->root
== &cgrp_dfl_root
;
302 /* IDR wrappers which synchronize using cgroup_idr_lock */
303 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
308 idr_preload(gfp_mask
);
309 spin_lock_bh(&cgroup_idr_lock
);
310 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
311 spin_unlock_bh(&cgroup_idr_lock
);
316 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
320 spin_lock_bh(&cgroup_idr_lock
);
321 ret
= idr_replace(idr
, ptr
, id
);
322 spin_unlock_bh(&cgroup_idr_lock
);
326 static void cgroup_idr_remove(struct idr
*idr
, int id
)
328 spin_lock_bh(&cgroup_idr_lock
);
330 spin_unlock_bh(&cgroup_idr_lock
);
333 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
335 return cgrp
->nr_populated_csets
;
338 bool cgroup_is_threaded(struct cgroup
*cgrp
)
340 return cgrp
->dom_cgrp
!= cgrp
;
343 /* can @cgrp host both domain and threaded children? */
344 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
347 * Root isn't under domain level resource control exempting it from
348 * the no-internal-process constraint, so it can serve as a thread
349 * root and a parent of resource domains at the same time.
351 return !cgroup_parent(cgrp
);
354 /* can @cgrp become a thread root? should always be true for a thread root */
355 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
357 /* mixables don't care */
358 if (cgroup_is_mixable(cgrp
))
361 /* domain roots can't be nested under threaded */
362 if (cgroup_is_threaded(cgrp
))
365 /* can only have either domain or threaded children */
366 if (cgrp
->nr_populated_domain_children
)
369 /* and no domain controllers can be enabled */
370 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
376 /* is @cgrp root of a threaded subtree? */
377 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
379 /* thread root should be a domain */
380 if (cgroup_is_threaded(cgrp
))
383 /* a domain w/ threaded children is a thread root */
384 if (cgrp
->nr_threaded_children
)
388 * A domain which has tasks and explicit threaded controllers
389 * enabled is a thread root.
391 if (cgroup_has_tasks(cgrp
) &&
392 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
398 /* a domain which isn't connected to the root w/o brekage can't be used */
399 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
401 /* the cgroup itself can be a thread root */
402 if (cgroup_is_threaded(cgrp
))
405 /* but the ancestors can't be unless mixable */
406 while ((cgrp
= cgroup_parent(cgrp
))) {
407 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
409 if (cgroup_is_threaded(cgrp
))
416 /* subsystems visibly enabled on a cgroup */
417 static u16
cgroup_control(struct cgroup
*cgrp
)
419 struct cgroup
*parent
= cgroup_parent(cgrp
);
420 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
423 u16 ss_mask
= parent
->subtree_control
;
425 /* threaded cgroups can only have threaded controllers */
426 if (cgroup_is_threaded(cgrp
))
427 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
431 if (cgroup_on_dfl(cgrp
))
432 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
433 cgrp_dfl_implicit_ss_mask
);
437 /* subsystems enabled on a cgroup */
438 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
440 struct cgroup
*parent
= cgroup_parent(cgrp
);
443 u16 ss_mask
= parent
->subtree_ss_mask
;
445 /* threaded cgroups can only have threaded controllers */
446 if (cgroup_is_threaded(cgrp
))
447 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
451 return cgrp
->root
->subsys_mask
;
455 * cgroup_css - obtain a cgroup's css for the specified subsystem
456 * @cgrp: the cgroup of interest
457 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
460 * function must be called either under cgroup_mutex or rcu_read_lock() and
461 * the caller is responsible for pinning the returned css if it wants to
462 * keep accessing it outside the said locks. This function may return
463 * %NULL if @cgrp doesn't have @subsys_id enabled.
465 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
466 struct cgroup_subsys
*ss
)
469 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
470 lockdep_is_held(&cgroup_mutex
));
476 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
477 * @cgrp: the cgroup of interest
478 * @ss: the subsystem of interest
480 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
481 * or is offline, %NULL is returned.
483 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
484 struct cgroup_subsys
*ss
)
486 struct cgroup_subsys_state
*css
;
489 css
= cgroup_css(cgrp
, ss
);
490 if (!css
|| !css_tryget_online(css
))
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
507 static struct cgroup_subsys_state
*cgroup_e_css_by_mask(struct cgroup
*cgrp
,
508 struct cgroup_subsys
*ss
)
510 lockdep_assert_held(&cgroup_mutex
);
516 * This function is used while updating css associations and thus
517 * can't test the csses directly. Test ss_mask.
519 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
520 cgrp
= cgroup_parent(cgrp
);
525 return cgroup_css(cgrp
, ss
);
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsiblity to tryget a reference for it.
541 struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
542 struct cgroup_subsys
*ss
)
544 struct cgroup_subsys_state
*css
;
547 css
= cgroup_css(cgrp
, ss
);
551 cgrp
= cgroup_parent(cgrp
);
554 return init_css_set
.subsys
[ss
->id
];
558 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
559 * @cgrp: the cgroup of interest
560 * @ss: the subsystem of interest
562 * Find and get the effective css of @cgrp for @ss. The effective css is
563 * defined as the matching css of the nearest ancestor including self which
564 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
565 * the root css is returned, so this function always returns a valid css.
566 * The returned css must be put using css_put().
568 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
569 struct cgroup_subsys
*ss
)
571 struct cgroup_subsys_state
*css
;
576 css
= cgroup_css(cgrp
, ss
);
578 if (css
&& css_tryget_online(css
))
580 cgrp
= cgroup_parent(cgrp
);
583 css
= init_css_set
.subsys
[ss
->id
];
590 static void cgroup_get_live(struct cgroup
*cgrp
)
592 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
593 css_get(&cgrp
->self
);
597 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
598 * is responsible for taking the css_set_lock.
599 * @cgrp: the cgroup in question
601 int __cgroup_task_count(const struct cgroup
*cgrp
)
604 struct cgrp_cset_link
*link
;
606 lockdep_assert_held(&css_set_lock
);
608 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
609 count
+= link
->cset
->nr_tasks
;
615 * cgroup_task_count - count the number of tasks in a cgroup.
616 * @cgrp: the cgroup in question
618 int cgroup_task_count(const struct cgroup
*cgrp
)
622 spin_lock_irq(&css_set_lock
);
623 count
= __cgroup_task_count(cgrp
);
624 spin_unlock_irq(&css_set_lock
);
629 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
631 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
632 struct cftype
*cft
= of_cft(of
);
635 * This is open and unprotected implementation of cgroup_css().
636 * seq_css() is only called from a kernfs file operation which has
637 * an active reference on the file. Because all the subsystem
638 * files are drained before a css is disassociated with a cgroup,
639 * the matching css from the cgroup's subsys table is guaranteed to
640 * be and stay valid until the enclosing operation is complete.
643 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
647 EXPORT_SYMBOL_GPL(of_css
);
650 * for_each_css - iterate all css's of a cgroup
651 * @css: the iteration cursor
652 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
653 * @cgrp: the target cgroup to iterate css's of
655 * Should be called under cgroup_[tree_]mutex.
657 #define for_each_css(css, ssid, cgrp) \
658 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
659 if (!((css) = rcu_dereference_check( \
660 (cgrp)->subsys[(ssid)], \
661 lockdep_is_held(&cgroup_mutex)))) { } \
665 * for_each_e_css - iterate all effective css's of a cgroup
666 * @css: the iteration cursor
667 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
668 * @cgrp: the target cgroup to iterate css's of
670 * Should be called under cgroup_[tree_]mutex.
672 #define for_each_e_css(css, ssid, cgrp) \
673 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
674 if (!((css) = cgroup_e_css_by_mask(cgrp, \
675 cgroup_subsys[(ssid)]))) \
680 * do_each_subsys_mask - filter for_each_subsys with a bitmask
681 * @ss: the iteration cursor
682 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
683 * @ss_mask: the bitmask
685 * The block will only run for cases where the ssid-th bit (1 << ssid) of
688 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
689 unsigned long __ss_mask = (ss_mask); \
690 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
694 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
695 (ss) = cgroup_subsys[ssid]; \
698 #define while_each_subsys_mask() \
703 /* iterate over child cgrps, lock should be held throughout iteration */
704 #define cgroup_for_each_live_child(child, cgrp) \
705 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
706 if (({ lockdep_assert_held(&cgroup_mutex); \
707 cgroup_is_dead(child); })) \
711 /* walk live descendants in preorder */
712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
713 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
714 if (({ lockdep_assert_held(&cgroup_mutex); \
715 (dsct) = (d_css)->cgroup; \
716 cgroup_is_dead(dsct); })) \
720 /* walk live descendants in postorder */
721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
722 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
723 if (({ lockdep_assert_held(&cgroup_mutex); \
724 (dsct) = (d_css)->cgroup; \
725 cgroup_is_dead(dsct); })) \
730 * The default css_set - used by init and its children prior to any
731 * hierarchies being mounted. It contains a pointer to the root state
732 * for each subsystem. Also used to anchor the list of css_sets. Not
733 * reference-counted, to improve performance when child cgroups
734 * haven't been created.
736 struct css_set init_css_set
= {
737 .refcount
= REFCOUNT_INIT(1),
738 .dom_cset
= &init_css_set
,
739 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
740 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
741 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
742 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
743 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
744 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
745 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
748 * The following field is re-initialized when this cset gets linked
749 * in cgroup_init(). However, let's initialize the field
750 * statically too so that the default cgroup can be accessed safely
753 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
756 static int css_set_count
= 1; /* 1 for init_css_set */
758 static bool css_set_threaded(struct css_set
*cset
)
760 return cset
->dom_cset
!= cset
;
764 * css_set_populated - does a css_set contain any tasks?
765 * @cset: target css_set
767 * css_set_populated() should be the same as !!cset->nr_tasks at steady
768 * state. However, css_set_populated() can be called while a task is being
769 * added to or removed from the linked list before the nr_tasks is
770 * properly updated. Hence, we can't just look at ->nr_tasks here.
772 static bool css_set_populated(struct css_set
*cset
)
774 lockdep_assert_held(&css_set_lock
);
776 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
780 * cgroup_update_populated - update the populated count of a cgroup
781 * @cgrp: the target cgroup
782 * @populated: inc or dec populated count
784 * One of the css_sets associated with @cgrp is either getting its first
785 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
786 * count is propagated towards root so that a given cgroup's
787 * nr_populated_children is zero iff none of its descendants contain any
790 * @cgrp's interface file "cgroup.populated" is zero if both
791 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
792 * 1 otherwise. When the sum changes from or to zero, userland is notified
793 * that the content of the interface file has changed. This can be used to
794 * detect when @cgrp and its descendants become populated or empty.
796 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
798 struct cgroup
*child
= NULL
;
799 int adj
= populated
? 1 : -1;
801 lockdep_assert_held(&css_set_lock
);
804 bool was_populated
= cgroup_is_populated(cgrp
);
807 cgrp
->nr_populated_csets
+= adj
;
809 if (cgroup_is_threaded(child
))
810 cgrp
->nr_populated_threaded_children
+= adj
;
812 cgrp
->nr_populated_domain_children
+= adj
;
815 if (was_populated
== cgroup_is_populated(cgrp
))
818 cgroup1_check_for_release(cgrp
);
819 TRACE_CGROUP_PATH(notify_populated
, cgrp
,
820 cgroup_is_populated(cgrp
));
821 cgroup_file_notify(&cgrp
->events_file
);
824 cgrp
= cgroup_parent(cgrp
);
829 * css_set_update_populated - update populated state of a css_set
830 * @cset: target css_set
831 * @populated: whether @cset is populated or depopulated
833 * @cset is either getting the first task or losing the last. Update the
834 * populated counters of all associated cgroups accordingly.
836 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
838 struct cgrp_cset_link
*link
;
840 lockdep_assert_held(&css_set_lock
);
842 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
843 cgroup_update_populated(link
->cgrp
, populated
);
847 * css_set_move_task - move a task from one css_set to another
848 * @task: task being moved
849 * @from_cset: css_set @task currently belongs to (may be NULL)
850 * @to_cset: new css_set @task is being moved to (may be NULL)
851 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
853 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
854 * css_set, @from_cset can be NULL. If @task is being disassociated
855 * instead of moved, @to_cset can be NULL.
857 * This function automatically handles populated counter updates and
858 * css_task_iter adjustments but the caller is responsible for managing
859 * @from_cset and @to_cset's reference counts.
861 static void css_set_move_task(struct task_struct
*task
,
862 struct css_set
*from_cset
, struct css_set
*to_cset
,
865 lockdep_assert_held(&css_set_lock
);
867 if (to_cset
&& !css_set_populated(to_cset
))
868 css_set_update_populated(to_cset
, true);
871 struct css_task_iter
*it
, *pos
;
873 WARN_ON_ONCE(list_empty(&task
->cg_list
));
876 * @task is leaving, advance task iterators which are
877 * pointing to it so that they can resume at the next
878 * position. Advancing an iterator might remove it from
879 * the list, use safe walk. See css_task_iter_advance*()
882 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
884 if (it
->task_pos
== &task
->cg_list
)
885 css_task_iter_advance(it
);
887 list_del_init(&task
->cg_list
);
888 if (!css_set_populated(from_cset
))
889 css_set_update_populated(from_cset
, false);
891 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
896 * We are synchronized through cgroup_threadgroup_rwsem
897 * against PF_EXITING setting such that we can't race
898 * against cgroup_exit() changing the css_set to
899 * init_css_set and dropping the old one.
901 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
903 cgroup_move_task(task
, to_cset
);
904 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
910 * hash table for cgroup groups. This improves the performance to find
911 * an existing css_set. This hash doesn't (currently) take into
912 * account cgroups in empty hierarchies.
914 #define CSS_SET_HASH_BITS 7
915 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
917 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
919 unsigned long key
= 0UL;
920 struct cgroup_subsys
*ss
;
923 for_each_subsys(ss
, i
)
924 key
+= (unsigned long)css
[i
];
925 key
= (key
>> 16) ^ key
;
930 void put_css_set_locked(struct css_set
*cset
)
932 struct cgrp_cset_link
*link
, *tmp_link
;
933 struct cgroup_subsys
*ss
;
936 lockdep_assert_held(&css_set_lock
);
938 if (!refcount_dec_and_test(&cset
->refcount
))
941 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
943 /* This css_set is dead. unlink it and release cgroup and css refs */
944 for_each_subsys(ss
, ssid
) {
945 list_del(&cset
->e_cset_node
[ssid
]);
946 css_put(cset
->subsys
[ssid
]);
948 hash_del(&cset
->hlist
);
951 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
952 list_del(&link
->cset_link
);
953 list_del(&link
->cgrp_link
);
954 if (cgroup_parent(link
->cgrp
))
955 cgroup_put(link
->cgrp
);
959 if (css_set_threaded(cset
)) {
960 list_del(&cset
->threaded_csets_node
);
961 put_css_set_locked(cset
->dom_cset
);
964 kfree_rcu(cset
, rcu_head
);
968 * compare_css_sets - helper function for find_existing_css_set().
969 * @cset: candidate css_set being tested
970 * @old_cset: existing css_set for a task
971 * @new_cgrp: cgroup that's being entered by the task
972 * @template: desired set of css pointers in css_set (pre-calculated)
974 * Returns true if "cset" matches "old_cset" except for the hierarchy
975 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
977 static bool compare_css_sets(struct css_set
*cset
,
978 struct css_set
*old_cset
,
979 struct cgroup
*new_cgrp
,
980 struct cgroup_subsys_state
*template[])
982 struct cgroup
*new_dfl_cgrp
;
983 struct list_head
*l1
, *l2
;
986 * On the default hierarchy, there can be csets which are
987 * associated with the same set of cgroups but different csses.
988 * Let's first ensure that csses match.
990 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
994 /* @cset's domain should match the default cgroup's */
995 if (cgroup_on_dfl(new_cgrp
))
996 new_dfl_cgrp
= new_cgrp
;
998 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
1000 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
1004 * Compare cgroup pointers in order to distinguish between
1005 * different cgroups in hierarchies. As different cgroups may
1006 * share the same effective css, this comparison is always
1009 l1
= &cset
->cgrp_links
;
1010 l2
= &old_cset
->cgrp_links
;
1012 struct cgrp_cset_link
*link1
, *link2
;
1013 struct cgroup
*cgrp1
, *cgrp2
;
1017 /* See if we reached the end - both lists are equal length. */
1018 if (l1
== &cset
->cgrp_links
) {
1019 BUG_ON(l2
!= &old_cset
->cgrp_links
);
1022 BUG_ON(l2
== &old_cset
->cgrp_links
);
1024 /* Locate the cgroups associated with these links. */
1025 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
1026 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
1027 cgrp1
= link1
->cgrp
;
1028 cgrp2
= link2
->cgrp
;
1029 /* Hierarchies should be linked in the same order. */
1030 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
1033 * If this hierarchy is the hierarchy of the cgroup
1034 * that's changing, then we need to check that this
1035 * css_set points to the new cgroup; if it's any other
1036 * hierarchy, then this css_set should point to the
1037 * same cgroup as the old css_set.
1039 if (cgrp1
->root
== new_cgrp
->root
) {
1040 if (cgrp1
!= new_cgrp
)
1051 * find_existing_css_set - init css array and find the matching css_set
1052 * @old_cset: the css_set that we're using before the cgroup transition
1053 * @cgrp: the cgroup that we're moving into
1054 * @template: out param for the new set of csses, should be clear on entry
1056 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
1057 struct cgroup
*cgrp
,
1058 struct cgroup_subsys_state
*template[])
1060 struct cgroup_root
*root
= cgrp
->root
;
1061 struct cgroup_subsys
*ss
;
1062 struct css_set
*cset
;
1067 * Build the set of subsystem state objects that we want to see in the
1068 * new css_set. while subsystems can change globally, the entries here
1069 * won't change, so no need for locking.
1071 for_each_subsys(ss
, i
) {
1072 if (root
->subsys_mask
& (1UL << i
)) {
1074 * @ss is in this hierarchy, so we want the
1075 * effective css from @cgrp.
1077 template[i
] = cgroup_e_css_by_mask(cgrp
, ss
);
1080 * @ss is not in this hierarchy, so we don't want
1081 * to change the css.
1083 template[i
] = old_cset
->subsys
[i
];
1087 key
= css_set_hash(template);
1088 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1089 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1092 /* This css_set matches what we need */
1096 /* No existing cgroup group matched */
1100 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1102 struct cgrp_cset_link
*link
, *tmp_link
;
1104 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1105 list_del(&link
->cset_link
);
1111 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1112 * @count: the number of links to allocate
1113 * @tmp_links: list_head the allocated links are put on
1115 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1116 * through ->cset_link. Returns 0 on success or -errno.
1118 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1120 struct cgrp_cset_link
*link
;
1123 INIT_LIST_HEAD(tmp_links
);
1125 for (i
= 0; i
< count
; i
++) {
1126 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1128 free_cgrp_cset_links(tmp_links
);
1131 list_add(&link
->cset_link
, tmp_links
);
1137 * link_css_set - a helper function to link a css_set to a cgroup
1138 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1139 * @cset: the css_set to be linked
1140 * @cgrp: the destination cgroup
1142 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1143 struct cgroup
*cgrp
)
1145 struct cgrp_cset_link
*link
;
1147 BUG_ON(list_empty(tmp_links
));
1149 if (cgroup_on_dfl(cgrp
))
1150 cset
->dfl_cgrp
= cgrp
;
1152 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1157 * Always add links to the tail of the lists so that the lists are
1158 * in choronological order.
1160 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1161 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1163 if (cgroup_parent(cgrp
))
1164 cgroup_get_live(cgrp
);
1168 * find_css_set - return a new css_set with one cgroup updated
1169 * @old_cset: the baseline css_set
1170 * @cgrp: the cgroup to be updated
1172 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1173 * substituted into the appropriate hierarchy.
1175 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1176 struct cgroup
*cgrp
)
1178 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1179 struct css_set
*cset
;
1180 struct list_head tmp_links
;
1181 struct cgrp_cset_link
*link
;
1182 struct cgroup_subsys
*ss
;
1186 lockdep_assert_held(&cgroup_mutex
);
1188 /* First see if we already have a cgroup group that matches
1189 * the desired set */
1190 spin_lock_irq(&css_set_lock
);
1191 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1194 spin_unlock_irq(&css_set_lock
);
1199 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1203 /* Allocate all the cgrp_cset_link objects that we'll need */
1204 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1209 refcount_set(&cset
->refcount
, 1);
1210 cset
->dom_cset
= cset
;
1211 INIT_LIST_HEAD(&cset
->tasks
);
1212 INIT_LIST_HEAD(&cset
->mg_tasks
);
1213 INIT_LIST_HEAD(&cset
->task_iters
);
1214 INIT_LIST_HEAD(&cset
->threaded_csets
);
1215 INIT_HLIST_NODE(&cset
->hlist
);
1216 INIT_LIST_HEAD(&cset
->cgrp_links
);
1217 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1218 INIT_LIST_HEAD(&cset
->mg_node
);
1220 /* Copy the set of subsystem state objects generated in
1221 * find_existing_css_set() */
1222 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1224 spin_lock_irq(&css_set_lock
);
1225 /* Add reference counts and links from the new css_set. */
1226 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1227 struct cgroup
*c
= link
->cgrp
;
1229 if (c
->root
== cgrp
->root
)
1231 link_css_set(&tmp_links
, cset
, c
);
1234 BUG_ON(!list_empty(&tmp_links
));
1238 /* Add @cset to the hash table */
1239 key
= css_set_hash(cset
->subsys
);
1240 hash_add(css_set_table
, &cset
->hlist
, key
);
1242 for_each_subsys(ss
, ssid
) {
1243 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1245 list_add_tail(&cset
->e_cset_node
[ssid
],
1246 &css
->cgroup
->e_csets
[ssid
]);
1250 spin_unlock_irq(&css_set_lock
);
1253 * If @cset should be threaded, look up the matching dom_cset and
1254 * link them up. We first fully initialize @cset then look for the
1255 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1256 * to stay empty until we return.
1258 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1259 struct css_set
*dcset
;
1261 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1267 spin_lock_irq(&css_set_lock
);
1268 cset
->dom_cset
= dcset
;
1269 list_add_tail(&cset
->threaded_csets_node
,
1270 &dcset
->threaded_csets
);
1271 spin_unlock_irq(&css_set_lock
);
1277 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1279 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1281 return root_cgrp
->root
;
1284 static int cgroup_init_root_id(struct cgroup_root
*root
)
1288 lockdep_assert_held(&cgroup_mutex
);
1290 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1294 root
->hierarchy_id
= id
;
1298 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1300 lockdep_assert_held(&cgroup_mutex
);
1302 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1305 void cgroup_free_root(struct cgroup_root
*root
)
1308 idr_destroy(&root
->cgroup_idr
);
1313 static void cgroup_destroy_root(struct cgroup_root
*root
)
1315 struct cgroup
*cgrp
= &root
->cgrp
;
1316 struct cgrp_cset_link
*link
, *tmp_link
;
1318 trace_cgroup_destroy_root(root
);
1320 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1322 BUG_ON(atomic_read(&root
->nr_cgrps
));
1323 BUG_ON(!list_empty(&cgrp
->self
.children
));
1325 /* Rebind all subsystems back to the default hierarchy */
1326 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1329 * Release all the links from cset_links to this hierarchy's
1332 spin_lock_irq(&css_set_lock
);
1334 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1335 list_del(&link
->cset_link
);
1336 list_del(&link
->cgrp_link
);
1340 spin_unlock_irq(&css_set_lock
);
1342 if (!list_empty(&root
->root_list
)) {
1343 list_del(&root
->root_list
);
1344 cgroup_root_count
--;
1347 cgroup_exit_root_id(root
);
1349 mutex_unlock(&cgroup_mutex
);
1351 kernfs_destroy_root(root
->kf_root
);
1352 cgroup_free_root(root
);
1356 * look up cgroup associated with current task's cgroup namespace on the
1357 * specified hierarchy
1359 static struct cgroup
*
1360 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1362 struct cgroup
*res
= NULL
;
1363 struct css_set
*cset
;
1365 lockdep_assert_held(&css_set_lock
);
1369 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1370 if (cset
== &init_css_set
) {
1373 struct cgrp_cset_link
*link
;
1375 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1376 struct cgroup
*c
= link
->cgrp
;
1378 if (c
->root
== root
) {
1390 /* look up cgroup associated with given css_set on the specified hierarchy */
1391 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1392 struct cgroup_root
*root
)
1394 struct cgroup
*res
= NULL
;
1396 lockdep_assert_held(&cgroup_mutex
);
1397 lockdep_assert_held(&css_set_lock
);
1399 if (cset
== &init_css_set
) {
1401 } else if (root
== &cgrp_dfl_root
) {
1402 res
= cset
->dfl_cgrp
;
1404 struct cgrp_cset_link
*link
;
1406 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1407 struct cgroup
*c
= link
->cgrp
;
1409 if (c
->root
== root
) {
1421 * Return the cgroup for "task" from the given hierarchy. Must be
1422 * called with cgroup_mutex and css_set_lock held.
1424 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1425 struct cgroup_root
*root
)
1428 * No need to lock the task - since we hold cgroup_mutex the
1429 * task can't change groups, so the only thing that can happen
1430 * is that it exits and its css is set back to init_css_set.
1432 return cset_cgroup_from_root(task_css_set(task
), root
);
1436 * A task must hold cgroup_mutex to modify cgroups.
1438 * Any task can increment and decrement the count field without lock.
1439 * So in general, code holding cgroup_mutex can't rely on the count
1440 * field not changing. However, if the count goes to zero, then only
1441 * cgroup_attach_task() can increment it again. Because a count of zero
1442 * means that no tasks are currently attached, therefore there is no
1443 * way a task attached to that cgroup can fork (the other way to
1444 * increment the count). So code holding cgroup_mutex can safely
1445 * assume that if the count is zero, it will stay zero. Similarly, if
1446 * a task holds cgroup_mutex on a cgroup with zero count, it
1447 * knows that the cgroup won't be removed, as cgroup_rmdir()
1450 * A cgroup can only be deleted if both its 'count' of using tasks
1451 * is zero, and its list of 'children' cgroups is empty. Since all
1452 * tasks in the system use _some_ cgroup, and since there is always at
1453 * least one task in the system (init, pid == 1), therefore, root cgroup
1454 * always has either children cgroups and/or using tasks. So we don't
1455 * need a special hack to ensure that root cgroup cannot be deleted.
1457 * P.S. One more locking exception. RCU is used to guard the
1458 * update of a tasks cgroup pointer by cgroup_attach_task()
1461 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1463 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1466 struct cgroup_subsys
*ss
= cft
->ss
;
1468 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1469 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
)) {
1470 const char *dbg
= (cft
->flags
& CFTYPE_DEBUG
) ? ".__DEBUG__." : "";
1472 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s%s.%s",
1473 dbg
, cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1476 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1482 * cgroup_file_mode - deduce file mode of a control file
1483 * @cft: the control file in question
1485 * S_IRUGO for read, S_IWUSR for write.
1487 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1491 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1494 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1495 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1505 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1506 * @subtree_control: the new subtree_control mask to consider
1507 * @this_ss_mask: available subsystems
1509 * On the default hierarchy, a subsystem may request other subsystems to be
1510 * enabled together through its ->depends_on mask. In such cases, more
1511 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1513 * This function calculates which subsystems need to be enabled if
1514 * @subtree_control is to be applied while restricted to @this_ss_mask.
1516 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1518 u16 cur_ss_mask
= subtree_control
;
1519 struct cgroup_subsys
*ss
;
1522 lockdep_assert_held(&cgroup_mutex
);
1524 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1527 u16 new_ss_mask
= cur_ss_mask
;
1529 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1530 new_ss_mask
|= ss
->depends_on
;
1531 } while_each_subsys_mask();
1534 * Mask out subsystems which aren't available. This can
1535 * happen only if some depended-upon subsystems were bound
1536 * to non-default hierarchies.
1538 new_ss_mask
&= this_ss_mask
;
1540 if (new_ss_mask
== cur_ss_mask
)
1542 cur_ss_mask
= new_ss_mask
;
1549 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1550 * @kn: the kernfs_node being serviced
1552 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1553 * the method finishes if locking succeeded. Note that once this function
1554 * returns the cgroup returned by cgroup_kn_lock_live() may become
1555 * inaccessible any time. If the caller intends to continue to access the
1556 * cgroup, it should pin it before invoking this function.
1558 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1560 struct cgroup
*cgrp
;
1562 if (kernfs_type(kn
) == KERNFS_DIR
)
1565 cgrp
= kn
->parent
->priv
;
1567 mutex_unlock(&cgroup_mutex
);
1569 kernfs_unbreak_active_protection(kn
);
1574 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1575 * @kn: the kernfs_node being serviced
1576 * @drain_offline: perform offline draining on the cgroup
1578 * This helper is to be used by a cgroup kernfs method currently servicing
1579 * @kn. It breaks the active protection, performs cgroup locking and
1580 * verifies that the associated cgroup is alive. Returns the cgroup if
1581 * alive; otherwise, %NULL. A successful return should be undone by a
1582 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1583 * cgroup is drained of offlining csses before return.
1585 * Any cgroup kernfs method implementation which requires locking the
1586 * associated cgroup should use this helper. It avoids nesting cgroup
1587 * locking under kernfs active protection and allows all kernfs operations
1588 * including self-removal.
1590 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1592 struct cgroup
*cgrp
;
1594 if (kernfs_type(kn
) == KERNFS_DIR
)
1597 cgrp
= kn
->parent
->priv
;
1600 * We're gonna grab cgroup_mutex which nests outside kernfs
1601 * active_ref. cgroup liveliness check alone provides enough
1602 * protection against removal. Ensure @cgrp stays accessible and
1603 * break the active_ref protection.
1605 if (!cgroup_tryget(cgrp
))
1607 kernfs_break_active_protection(kn
);
1610 cgroup_lock_and_drain_offline(cgrp
);
1612 mutex_lock(&cgroup_mutex
);
1614 if (!cgroup_is_dead(cgrp
))
1617 cgroup_kn_unlock(kn
);
1621 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1623 char name
[CGROUP_FILE_NAME_MAX
];
1625 lockdep_assert_held(&cgroup_mutex
);
1627 if (cft
->file_offset
) {
1628 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1629 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1631 spin_lock_irq(&cgroup_file_kn_lock
);
1633 spin_unlock_irq(&cgroup_file_kn_lock
);
1635 del_timer_sync(&cfile
->notify_timer
);
1638 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1642 * css_clear_dir - remove subsys files in a cgroup directory
1645 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1647 struct cgroup
*cgrp
= css
->cgroup
;
1648 struct cftype
*cfts
;
1650 if (!(css
->flags
& CSS_VISIBLE
))
1653 css
->flags
&= ~CSS_VISIBLE
;
1656 if (cgroup_on_dfl(cgrp
))
1657 cfts
= cgroup_base_files
;
1659 cfts
= cgroup1_base_files
;
1661 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1663 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1664 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1669 * css_populate_dir - create subsys files in a cgroup directory
1672 * On failure, no file is added.
1674 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1676 struct cgroup
*cgrp
= css
->cgroup
;
1677 struct cftype
*cfts
, *failed_cfts
;
1680 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1684 if (cgroup_on_dfl(cgrp
))
1685 cfts
= cgroup_base_files
;
1687 cfts
= cgroup1_base_files
;
1689 ret
= cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1693 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1694 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1702 css
->flags
|= CSS_VISIBLE
;
1706 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1707 if (cfts
== failed_cfts
)
1709 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1714 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1716 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1717 struct cgroup_subsys
*ss
;
1720 lockdep_assert_held(&cgroup_mutex
);
1722 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1724 * If @ss has non-root csses attached to it, can't move.
1725 * If @ss is an implicit controller, it is exempt from this
1726 * rule and can be stolen.
1728 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1729 !ss
->implicit_on_dfl
)
1732 /* can't move between two non-dummy roots either */
1733 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1735 } while_each_subsys_mask();
1737 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1738 struct cgroup_root
*src_root
= ss
->root
;
1739 struct cgroup
*scgrp
= &src_root
->cgrp
;
1740 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1741 struct css_set
*cset
;
1743 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1745 /* disable from the source */
1746 src_root
->subsys_mask
&= ~(1 << ssid
);
1747 WARN_ON(cgroup_apply_control(scgrp
));
1748 cgroup_finalize_control(scgrp
, 0);
1751 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1752 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1753 ss
->root
= dst_root
;
1754 css
->cgroup
= dcgrp
;
1756 spin_lock_irq(&css_set_lock
);
1757 hash_for_each(css_set_table
, i
, cset
, hlist
)
1758 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1759 &dcgrp
->e_csets
[ss
->id
]);
1760 spin_unlock_irq(&css_set_lock
);
1762 /* default hierarchy doesn't enable controllers by default */
1763 dst_root
->subsys_mask
|= 1 << ssid
;
1764 if (dst_root
== &cgrp_dfl_root
) {
1765 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1767 dcgrp
->subtree_control
|= 1 << ssid
;
1768 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1771 ret
= cgroup_apply_control(dcgrp
);
1773 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1778 } while_each_subsys_mask();
1780 kernfs_activate(dcgrp
->kn
);
1784 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1785 struct kernfs_root
*kf_root
)
1789 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1790 struct cgroup
*ns_cgroup
;
1792 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1796 spin_lock_irq(&css_set_lock
);
1797 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1798 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1799 spin_unlock_irq(&css_set_lock
);
1801 if (len
>= PATH_MAX
)
1804 seq_escape(sf
, buf
, " \t\n\\");
1811 enum cgroup2_param
{
1816 static const struct fs_parameter_spec cgroup2_param_specs
[] = {
1817 fsparam_flag ("nsdelegate", Opt_nsdelegate
),
1821 static const struct fs_parameter_description cgroup2_fs_parameters
= {
1823 .specs
= cgroup2_param_specs
,
1826 static int cgroup2_parse_param(struct fs_context
*fc
, struct fs_parameter
*param
)
1828 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1829 struct fs_parse_result result
;
1832 opt
= fs_parse(fc
, &cgroup2_fs_parameters
, param
, &result
);
1837 case Opt_nsdelegate
:
1838 ctx
->flags
|= CGRP_ROOT_NS_DELEGATE
;
1844 static void apply_cgroup_root_flags(unsigned int root_flags
)
1846 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1847 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1848 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1850 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1854 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1856 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1857 seq_puts(seq
, ",nsdelegate");
1861 static int cgroup_reconfigure(struct fs_context
*fc
)
1863 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
1865 apply_cgroup_root_flags(ctx
->flags
);
1870 * To reduce the fork() overhead for systems that are not actually using
1871 * their cgroups capability, we don't maintain the lists running through
1872 * each css_set to its tasks until we see the list actually used - in other
1873 * words after the first mount.
1875 static bool use_task_css_set_links __read_mostly
;
1877 static void cgroup_enable_task_cg_lists(void)
1879 struct task_struct
*p
, *g
;
1882 * We need tasklist_lock because RCU is not safe against
1883 * while_each_thread(). Besides, a forking task that has passed
1884 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1885 * is not guaranteed to have its child immediately visible in the
1886 * tasklist if we walk through it with RCU.
1888 read_lock(&tasklist_lock
);
1889 spin_lock_irq(&css_set_lock
);
1891 if (use_task_css_set_links
)
1894 use_task_css_set_links
= true;
1896 do_each_thread(g
, p
) {
1897 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1898 task_css_set(p
) != &init_css_set
);
1901 * We should check if the process is exiting, otherwise
1902 * it will race with cgroup_exit() in that the list
1903 * entry won't be deleted though the process has exited.
1904 * Do it while holding siglock so that we don't end up
1905 * racing against cgroup_exit().
1907 * Interrupts were already disabled while acquiring
1908 * the css_set_lock, so we do not need to disable it
1909 * again when acquiring the sighand->siglock here.
1911 spin_lock(&p
->sighand
->siglock
);
1912 if (!(p
->flags
& PF_EXITING
)) {
1913 struct css_set
*cset
= task_css_set(p
);
1915 if (!css_set_populated(cset
))
1916 css_set_update_populated(cset
, true);
1917 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1921 spin_unlock(&p
->sighand
->siglock
);
1922 } while_each_thread(g
, p
);
1924 spin_unlock_irq(&css_set_lock
);
1925 read_unlock(&tasklist_lock
);
1928 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1930 struct cgroup_subsys
*ss
;
1933 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1934 INIT_LIST_HEAD(&cgrp
->self
.children
);
1935 INIT_LIST_HEAD(&cgrp
->cset_links
);
1936 INIT_LIST_HEAD(&cgrp
->pidlists
);
1937 mutex_init(&cgrp
->pidlist_mutex
);
1938 cgrp
->self
.cgroup
= cgrp
;
1939 cgrp
->self
.flags
|= CSS_ONLINE
;
1940 cgrp
->dom_cgrp
= cgrp
;
1941 cgrp
->max_descendants
= INT_MAX
;
1942 cgrp
->max_depth
= INT_MAX
;
1943 INIT_LIST_HEAD(&cgrp
->rstat_css_list
);
1944 prev_cputime_init(&cgrp
->prev_cputime
);
1946 for_each_subsys(ss
, ssid
)
1947 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1949 init_waitqueue_head(&cgrp
->offline_waitq
);
1950 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1953 void init_cgroup_root(struct cgroup_fs_context
*ctx
)
1955 struct cgroup_root
*root
= ctx
->root
;
1956 struct cgroup
*cgrp
= &root
->cgrp
;
1958 INIT_LIST_HEAD(&root
->root_list
);
1959 atomic_set(&root
->nr_cgrps
, 1);
1961 init_cgroup_housekeeping(cgrp
);
1962 idr_init(&root
->cgroup_idr
);
1964 root
->flags
= ctx
->flags
;
1965 if (ctx
->release_agent
)
1966 strscpy(root
->release_agent_path
, ctx
->release_agent
, PATH_MAX
);
1968 strscpy(root
->name
, ctx
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1969 if (ctx
->cpuset_clone_children
)
1970 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1973 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
)
1975 LIST_HEAD(tmp_links
);
1976 struct cgroup
*root_cgrp
= &root
->cgrp
;
1977 struct kernfs_syscall_ops
*kf_sops
;
1978 struct css_set
*cset
;
1981 lockdep_assert_held(&cgroup_mutex
);
1983 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1986 root_cgrp
->id
= ret
;
1987 root_cgrp
->ancestor_ids
[0] = ret
;
1989 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1995 * We're accessing css_set_count without locking css_set_lock here,
1996 * but that's OK - it can only be increased by someone holding
1997 * cgroup_lock, and that's us. Later rebinding may disable
1998 * controllers on the default hierarchy and thus create new csets,
1999 * which can't be more than the existing ones. Allocate 2x.
2001 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
2005 ret
= cgroup_init_root_id(root
);
2009 kf_sops
= root
== &cgrp_dfl_root
?
2010 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
2012 root
->kf_root
= kernfs_create_root(kf_sops
,
2013 KERNFS_ROOT_CREATE_DEACTIVATED
|
2014 KERNFS_ROOT_SUPPORT_EXPORTOP
,
2016 if (IS_ERR(root
->kf_root
)) {
2017 ret
= PTR_ERR(root
->kf_root
);
2020 root_cgrp
->kn
= root
->kf_root
->kn
;
2022 ret
= css_populate_dir(&root_cgrp
->self
);
2026 ret
= rebind_subsystems(root
, ss_mask
);
2030 ret
= cgroup_bpf_inherit(root_cgrp
);
2033 trace_cgroup_setup_root(root
);
2036 * There must be no failure case after here, since rebinding takes
2037 * care of subsystems' refcounts, which are explicitly dropped in
2038 * the failure exit path.
2040 list_add(&root
->root_list
, &cgroup_roots
);
2041 cgroup_root_count
++;
2044 * Link the root cgroup in this hierarchy into all the css_set
2047 spin_lock_irq(&css_set_lock
);
2048 hash_for_each(css_set_table
, i
, cset
, hlist
) {
2049 link_css_set(&tmp_links
, cset
, root_cgrp
);
2050 if (css_set_populated(cset
))
2051 cgroup_update_populated(root_cgrp
, true);
2053 spin_unlock_irq(&css_set_lock
);
2055 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
2056 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
2058 kernfs_activate(root_cgrp
->kn
);
2063 kernfs_destroy_root(root
->kf_root
);
2064 root
->kf_root
= NULL
;
2066 cgroup_exit_root_id(root
);
2068 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2070 free_cgrp_cset_links(&tmp_links
);
2074 int cgroup_do_get_tree(struct fs_context
*fc
)
2076 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2079 ctx
->kfc
.root
= ctx
->root
->kf_root
;
2080 if (fc
->fs_type
== &cgroup2_fs_type
)
2081 ctx
->kfc
.magic
= CGROUP2_SUPER_MAGIC
;
2083 ctx
->kfc
.magic
= CGROUP_SUPER_MAGIC
;
2084 ret
= kernfs_get_tree(fc
);
2087 * In non-init cgroup namespace, instead of root cgroup's dentry,
2088 * we return the dentry corresponding to the cgroupns->root_cgrp.
2090 if (!ret
&& ctx
->ns
!= &init_cgroup_ns
) {
2091 struct dentry
*nsdentry
;
2092 struct super_block
*sb
= fc
->root
->d_sb
;
2093 struct cgroup
*cgrp
;
2095 mutex_lock(&cgroup_mutex
);
2096 spin_lock_irq(&css_set_lock
);
2098 cgrp
= cset_cgroup_from_root(ctx
->ns
->root_cset
, ctx
->root
);
2100 spin_unlock_irq(&css_set_lock
);
2101 mutex_unlock(&cgroup_mutex
);
2103 nsdentry
= kernfs_node_dentry(cgrp
->kn
, sb
);
2105 fc
->root
= nsdentry
;
2106 if (IS_ERR(nsdentry
)) {
2107 ret
= PTR_ERR(nsdentry
);
2108 deactivate_locked_super(sb
);
2112 if (!ctx
->kfc
.new_sb_created
)
2113 cgroup_put(&ctx
->root
->cgrp
);
2119 * Destroy a cgroup filesystem context.
2121 static void cgroup_fs_context_free(struct fs_context
*fc
)
2123 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2126 kfree(ctx
->release_agent
);
2127 put_cgroup_ns(ctx
->ns
);
2128 kernfs_free_fs_context(fc
);
2132 static int cgroup_get_tree(struct fs_context
*fc
)
2134 struct cgroup_fs_context
*ctx
= cgroup_fc2context(fc
);
2137 cgrp_dfl_visible
= true;
2138 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2139 ctx
->root
= &cgrp_dfl_root
;
2141 ret
= cgroup_do_get_tree(fc
);
2143 apply_cgroup_root_flags(ctx
->flags
);
2147 static const struct fs_context_operations cgroup_fs_context_ops
= {
2148 .free
= cgroup_fs_context_free
,
2149 .parse_param
= cgroup2_parse_param
,
2150 .get_tree
= cgroup_get_tree
,
2151 .reconfigure
= cgroup_reconfigure
,
2154 static const struct fs_context_operations cgroup1_fs_context_ops
= {
2155 .free
= cgroup_fs_context_free
,
2156 .parse_param
= cgroup1_parse_param
,
2157 .get_tree
= cgroup1_get_tree
,
2158 .reconfigure
= cgroup1_reconfigure
,
2162 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2163 * we select the namespace we're going to use.
2165 static int cgroup_init_fs_context(struct fs_context
*fc
)
2167 struct cgroup_fs_context
*ctx
;
2169 ctx
= kzalloc(sizeof(struct cgroup_fs_context
), GFP_KERNEL
);
2174 * The first time anyone tries to mount a cgroup, enable the list
2175 * linking each css_set to its tasks and fix up all existing tasks.
2177 if (!use_task_css_set_links
)
2178 cgroup_enable_task_cg_lists();
2180 ctx
->ns
= current
->nsproxy
->cgroup_ns
;
2181 get_cgroup_ns(ctx
->ns
);
2182 fc
->fs_private
= &ctx
->kfc
;
2183 if (fc
->fs_type
== &cgroup2_fs_type
)
2184 fc
->ops
= &cgroup_fs_context_ops
;
2186 fc
->ops
= &cgroup1_fs_context_ops
;
2188 put_user_ns(fc
->user_ns
);
2189 fc
->user_ns
= get_user_ns(ctx
->ns
->user_ns
);
2194 static void cgroup_kill_sb(struct super_block
*sb
)
2196 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2197 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2200 * If @root doesn't have any children, start killing it.
2201 * This prevents new mounts by disabling percpu_ref_tryget_live().
2202 * cgroup_mount() may wait for @root's release.
2204 * And don't kill the default root.
2206 if (list_empty(&root
->cgrp
.self
.children
) && root
!= &cgrp_dfl_root
&&
2207 !percpu_ref_is_dying(&root
->cgrp
.self
.refcnt
))
2208 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2209 cgroup_put(&root
->cgrp
);
2213 struct file_system_type cgroup_fs_type
= {
2215 .init_fs_context
= cgroup_init_fs_context
,
2216 .parameters
= &cgroup1_fs_parameters
,
2217 .kill_sb
= cgroup_kill_sb
,
2218 .fs_flags
= FS_USERNS_MOUNT
,
2221 static struct file_system_type cgroup2_fs_type
= {
2223 .init_fs_context
= cgroup_init_fs_context
,
2224 .parameters
= &cgroup2_fs_parameters
,
2225 .kill_sb
= cgroup_kill_sb
,
2226 .fs_flags
= FS_USERNS_MOUNT
,
2229 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2230 struct cgroup_namespace
*ns
)
2232 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2234 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2237 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2238 struct cgroup_namespace
*ns
)
2242 mutex_lock(&cgroup_mutex
);
2243 spin_lock_irq(&css_set_lock
);
2245 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2247 spin_unlock_irq(&css_set_lock
);
2248 mutex_unlock(&cgroup_mutex
);
2252 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2255 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2256 * @task: target task
2257 * @buf: the buffer to write the path into
2258 * @buflen: the length of the buffer
2260 * Determine @task's cgroup on the first (the one with the lowest non-zero
2261 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2262 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2263 * cgroup controller callbacks.
2265 * Return value is the same as kernfs_path().
2267 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2269 struct cgroup_root
*root
;
2270 struct cgroup
*cgrp
;
2271 int hierarchy_id
= 1;
2274 mutex_lock(&cgroup_mutex
);
2275 spin_lock_irq(&css_set_lock
);
2277 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2280 cgrp
= task_cgroup_from_root(task
, root
);
2281 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2283 /* if no hierarchy exists, everyone is in "/" */
2284 ret
= strlcpy(buf
, "/", buflen
);
2287 spin_unlock_irq(&css_set_lock
);
2288 mutex_unlock(&cgroup_mutex
);
2291 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2294 * cgroup_migrate_add_task - add a migration target task to a migration context
2295 * @task: target task
2296 * @mgctx: target migration context
2298 * Add @task, which is a migration target, to @mgctx->tset. This function
2299 * becomes noop if @task doesn't need to be migrated. @task's css_set
2300 * should have been added as a migration source and @task->cg_list will be
2301 * moved from the css_set's tasks list to mg_tasks one.
2303 static void cgroup_migrate_add_task(struct task_struct
*task
,
2304 struct cgroup_mgctx
*mgctx
)
2306 struct css_set
*cset
;
2308 lockdep_assert_held(&css_set_lock
);
2310 /* @task either already exited or can't exit until the end */
2311 if (task
->flags
& PF_EXITING
)
2314 /* leave @task alone if post_fork() hasn't linked it yet */
2315 if (list_empty(&task
->cg_list
))
2318 cset
= task_css_set(task
);
2319 if (!cset
->mg_src_cgrp
)
2322 mgctx
->tset
.nr_tasks
++;
2324 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2325 if (list_empty(&cset
->mg_node
))
2326 list_add_tail(&cset
->mg_node
,
2327 &mgctx
->tset
.src_csets
);
2328 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2329 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2330 &mgctx
->tset
.dst_csets
);
2334 * cgroup_taskset_first - reset taskset and return the first task
2335 * @tset: taskset of interest
2336 * @dst_cssp: output variable for the destination css
2338 * @tset iteration is initialized and the first task is returned.
2340 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2341 struct cgroup_subsys_state
**dst_cssp
)
2343 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2344 tset
->cur_task
= NULL
;
2346 return cgroup_taskset_next(tset
, dst_cssp
);
2350 * cgroup_taskset_next - iterate to the next task in taskset
2351 * @tset: taskset of interest
2352 * @dst_cssp: output variable for the destination css
2354 * Return the next task in @tset. Iteration must have been initialized
2355 * with cgroup_taskset_first().
2357 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2358 struct cgroup_subsys_state
**dst_cssp
)
2360 struct css_set
*cset
= tset
->cur_cset
;
2361 struct task_struct
*task
= tset
->cur_task
;
2363 while (&cset
->mg_node
!= tset
->csets
) {
2365 task
= list_first_entry(&cset
->mg_tasks
,
2366 struct task_struct
, cg_list
);
2368 task
= list_next_entry(task
, cg_list
);
2370 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2371 tset
->cur_cset
= cset
;
2372 tset
->cur_task
= task
;
2375 * This function may be called both before and
2376 * after cgroup_taskset_migrate(). The two cases
2377 * can be distinguished by looking at whether @cset
2378 * has its ->mg_dst_cset set.
2380 if (cset
->mg_dst_cset
)
2381 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2383 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2388 cset
= list_next_entry(cset
, mg_node
);
2396 * cgroup_taskset_migrate - migrate a taskset
2397 * @mgctx: migration context
2399 * Migrate tasks in @mgctx as setup by migration preparation functions.
2400 * This function fails iff one of the ->can_attach callbacks fails and
2401 * guarantees that either all or none of the tasks in @mgctx are migrated.
2402 * @mgctx is consumed regardless of success.
2404 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2406 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2407 struct cgroup_subsys
*ss
;
2408 struct task_struct
*task
, *tmp_task
;
2409 struct css_set
*cset
, *tmp_cset
;
2410 int ssid
, failed_ssid
, ret
;
2412 /* check that we can legitimately attach to the cgroup */
2413 if (tset
->nr_tasks
) {
2414 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2415 if (ss
->can_attach
) {
2417 ret
= ss
->can_attach(tset
);
2420 goto out_cancel_attach
;
2423 } while_each_subsys_mask();
2427 * Now that we're guaranteed success, proceed to move all tasks to
2428 * the new cgroup. There are no failure cases after here, so this
2429 * is the commit point.
2431 spin_lock_irq(&css_set_lock
);
2432 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2433 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2434 struct css_set
*from_cset
= task_css_set(task
);
2435 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2437 get_css_set(to_cset
);
2438 to_cset
->nr_tasks
++;
2439 css_set_move_task(task
, from_cset
, to_cset
, true);
2440 from_cset
->nr_tasks
--;
2442 * If the source or destination cgroup is frozen,
2443 * the task might require to change its state.
2445 cgroup_freezer_migrate_task(task
, from_cset
->dfl_cgrp
,
2447 put_css_set_locked(from_cset
);
2451 spin_unlock_irq(&css_set_lock
);
2454 * Migration is committed, all target tasks are now on dst_csets.
2455 * Nothing is sensitive to fork() after this point. Notify
2456 * controllers that migration is complete.
2458 tset
->csets
= &tset
->dst_csets
;
2460 if (tset
->nr_tasks
) {
2461 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2466 } while_each_subsys_mask();
2470 goto out_release_tset
;
2473 if (tset
->nr_tasks
) {
2474 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2475 if (ssid
== failed_ssid
)
2477 if (ss
->cancel_attach
) {
2479 ss
->cancel_attach(tset
);
2481 } while_each_subsys_mask();
2484 spin_lock_irq(&css_set_lock
);
2485 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2486 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2487 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2488 list_del_init(&cset
->mg_node
);
2490 spin_unlock_irq(&css_set_lock
);
2493 * Re-initialize the cgroup_taskset structure in case it is reused
2494 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2498 tset
->csets
= &tset
->src_csets
;
2503 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2504 * @dst_cgrp: destination cgroup to test
2506 * On the default hierarchy, except for the mixable, (possible) thread root
2507 * and threaded cgroups, subtree_control must be zero for migration
2508 * destination cgroups with tasks so that child cgroups don't compete
2511 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2513 /* v1 doesn't have any restriction */
2514 if (!cgroup_on_dfl(dst_cgrp
))
2517 /* verify @dst_cgrp can host resources */
2518 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2521 /* mixables don't care */
2522 if (cgroup_is_mixable(dst_cgrp
))
2526 * If @dst_cgrp is already or can become a thread root or is
2527 * threaded, it doesn't matter.
2529 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2532 /* apply no-internal-process constraint */
2533 if (dst_cgrp
->subtree_control
)
2540 * cgroup_migrate_finish - cleanup after attach
2541 * @mgctx: migration context
2543 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2544 * those functions for details.
2546 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2548 LIST_HEAD(preloaded
);
2549 struct css_set
*cset
, *tmp_cset
;
2551 lockdep_assert_held(&cgroup_mutex
);
2553 spin_lock_irq(&css_set_lock
);
2555 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2556 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2558 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2559 cset
->mg_src_cgrp
= NULL
;
2560 cset
->mg_dst_cgrp
= NULL
;
2561 cset
->mg_dst_cset
= NULL
;
2562 list_del_init(&cset
->mg_preload_node
);
2563 put_css_set_locked(cset
);
2566 spin_unlock_irq(&css_set_lock
);
2570 * cgroup_migrate_add_src - add a migration source css_set
2571 * @src_cset: the source css_set to add
2572 * @dst_cgrp: the destination cgroup
2573 * @mgctx: migration context
2575 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2576 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2577 * up by cgroup_migrate_finish().
2579 * This function may be called without holding cgroup_threadgroup_rwsem
2580 * even if the target is a process. Threads may be created and destroyed
2581 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2582 * into play and the preloaded css_sets are guaranteed to cover all
2585 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2586 struct cgroup
*dst_cgrp
,
2587 struct cgroup_mgctx
*mgctx
)
2589 struct cgroup
*src_cgrp
;
2591 lockdep_assert_held(&cgroup_mutex
);
2592 lockdep_assert_held(&css_set_lock
);
2595 * If ->dead, @src_set is associated with one or more dead cgroups
2596 * and doesn't contain any migratable tasks. Ignore it early so
2597 * that the rest of migration path doesn't get confused by it.
2602 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2604 if (!list_empty(&src_cset
->mg_preload_node
))
2607 WARN_ON(src_cset
->mg_src_cgrp
);
2608 WARN_ON(src_cset
->mg_dst_cgrp
);
2609 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2610 WARN_ON(!list_empty(&src_cset
->mg_node
));
2612 src_cset
->mg_src_cgrp
= src_cgrp
;
2613 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2614 get_css_set(src_cset
);
2615 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2619 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2620 * @mgctx: migration context
2622 * Tasks are about to be moved and all the source css_sets have been
2623 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2624 * pins all destination css_sets, links each to its source, and append them
2625 * to @mgctx->preloaded_dst_csets.
2627 * This function must be called after cgroup_migrate_add_src() has been
2628 * called on each migration source css_set. After migration is performed
2629 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2632 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2634 struct css_set
*src_cset
, *tmp_cset
;
2636 lockdep_assert_held(&cgroup_mutex
);
2638 /* look up the dst cset for each src cset and link it to src */
2639 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2641 struct css_set
*dst_cset
;
2642 struct cgroup_subsys
*ss
;
2645 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2649 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2652 * If src cset equals dst, it's noop. Drop the src.
2653 * cgroup_migrate() will skip the cset too. Note that we
2654 * can't handle src == dst as some nodes are used by both.
2656 if (src_cset
== dst_cset
) {
2657 src_cset
->mg_src_cgrp
= NULL
;
2658 src_cset
->mg_dst_cgrp
= NULL
;
2659 list_del_init(&src_cset
->mg_preload_node
);
2660 put_css_set(src_cset
);
2661 put_css_set(dst_cset
);
2665 src_cset
->mg_dst_cset
= dst_cset
;
2667 if (list_empty(&dst_cset
->mg_preload_node
))
2668 list_add_tail(&dst_cset
->mg_preload_node
,
2669 &mgctx
->preloaded_dst_csets
);
2671 put_css_set(dst_cset
);
2673 for_each_subsys(ss
, ssid
)
2674 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2675 mgctx
->ss_mask
|= 1 << ssid
;
2682 * cgroup_migrate - migrate a process or task to a cgroup
2683 * @leader: the leader of the process or the task to migrate
2684 * @threadgroup: whether @leader points to the whole process or a single task
2685 * @mgctx: migration context
2687 * Migrate a process or task denoted by @leader. If migrating a process,
2688 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2689 * responsible for invoking cgroup_migrate_add_src() and
2690 * cgroup_migrate_prepare_dst() on the targets before invoking this
2691 * function and following up with cgroup_migrate_finish().
2693 * As long as a controller's ->can_attach() doesn't fail, this function is
2694 * guaranteed to succeed. This means that, excluding ->can_attach()
2695 * failure, when migrating multiple targets, the success or failure can be
2696 * decided for all targets by invoking group_migrate_prepare_dst() before
2697 * actually starting migrating.
2699 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2700 struct cgroup_mgctx
*mgctx
)
2702 struct task_struct
*task
;
2705 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2706 * already PF_EXITING could be freed from underneath us unless we
2707 * take an rcu_read_lock.
2709 spin_lock_irq(&css_set_lock
);
2713 cgroup_migrate_add_task(task
, mgctx
);
2716 } while_each_thread(leader
, task
);
2718 spin_unlock_irq(&css_set_lock
);
2720 return cgroup_migrate_execute(mgctx
);
2724 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2725 * @dst_cgrp: the cgroup to attach to
2726 * @leader: the task or the leader of the threadgroup to be attached
2727 * @threadgroup: attach the whole threadgroup?
2729 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2731 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2734 DEFINE_CGROUP_MGCTX(mgctx
);
2735 struct task_struct
*task
;
2738 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
2742 /* look up all src csets */
2743 spin_lock_irq(&css_set_lock
);
2747 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2750 } while_each_thread(leader
, task
);
2752 spin_unlock_irq(&css_set_lock
);
2754 /* prepare dst csets and commit */
2755 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2757 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2759 cgroup_migrate_finish(&mgctx
);
2762 TRACE_CGROUP_PATH(attach_task
, dst_cgrp
, leader
, threadgroup
);
2767 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
)
2768 __acquires(&cgroup_threadgroup_rwsem
)
2770 struct task_struct
*tsk
;
2773 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2774 return ERR_PTR(-EINVAL
);
2776 percpu_down_write(&cgroup_threadgroup_rwsem
);
2780 tsk
= find_task_by_vpid(pid
);
2782 tsk
= ERR_PTR(-ESRCH
);
2783 goto out_unlock_threadgroup
;
2790 tsk
= tsk
->group_leader
;
2793 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2794 * If userland migrates such a kthread to a non-root cgroup, it can
2795 * become trapped in a cpuset, or RT kthread may be born in a
2796 * cgroup with no rt_runtime allocated. Just say no.
2798 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2799 tsk
= ERR_PTR(-EINVAL
);
2800 goto out_unlock_threadgroup
;
2803 get_task_struct(tsk
);
2804 goto out_unlock_rcu
;
2806 out_unlock_threadgroup
:
2807 percpu_up_write(&cgroup_threadgroup_rwsem
);
2813 void cgroup_procs_write_finish(struct task_struct
*task
)
2814 __releases(&cgroup_threadgroup_rwsem
)
2816 struct cgroup_subsys
*ss
;
2819 /* release reference from cgroup_procs_write_start() */
2820 put_task_struct(task
);
2822 percpu_up_write(&cgroup_threadgroup_rwsem
);
2823 for_each_subsys(ss
, ssid
)
2824 if (ss
->post_attach
)
2828 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2830 struct cgroup_subsys
*ss
;
2831 bool printed
= false;
2834 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2837 seq_printf(seq
, "%s", ss
->name
);
2839 } while_each_subsys_mask();
2841 seq_putc(seq
, '\n');
2844 /* show controllers which are enabled from the parent */
2845 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2847 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2849 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2853 /* show controllers which are enabled for a given cgroup's children */
2854 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2856 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2858 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2863 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2864 * @cgrp: root of the subtree to update csses for
2866 * @cgrp's control masks have changed and its subtree's css associations
2867 * need to be updated accordingly. This function looks up all css_sets
2868 * which are attached to the subtree, creates the matching updated css_sets
2869 * and migrates the tasks to the new ones.
2871 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2873 DEFINE_CGROUP_MGCTX(mgctx
);
2874 struct cgroup_subsys_state
*d_css
;
2875 struct cgroup
*dsct
;
2876 struct css_set
*src_cset
;
2879 lockdep_assert_held(&cgroup_mutex
);
2881 percpu_down_write(&cgroup_threadgroup_rwsem
);
2883 /* look up all csses currently attached to @cgrp's subtree */
2884 spin_lock_irq(&css_set_lock
);
2885 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2886 struct cgrp_cset_link
*link
;
2888 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2889 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2891 spin_unlock_irq(&css_set_lock
);
2893 /* NULL dst indicates self on default hierarchy */
2894 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2898 spin_lock_irq(&css_set_lock
);
2899 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2900 struct task_struct
*task
, *ntask
;
2902 /* all tasks in src_csets need to be migrated */
2903 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2904 cgroup_migrate_add_task(task
, &mgctx
);
2906 spin_unlock_irq(&css_set_lock
);
2908 ret
= cgroup_migrate_execute(&mgctx
);
2910 cgroup_migrate_finish(&mgctx
);
2911 percpu_up_write(&cgroup_threadgroup_rwsem
);
2916 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2917 * @cgrp: root of the target subtree
2919 * Because css offlining is asynchronous, userland may try to re-enable a
2920 * controller while the previous css is still around. This function grabs
2921 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2923 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2924 __acquires(&cgroup_mutex
)
2926 struct cgroup
*dsct
;
2927 struct cgroup_subsys_state
*d_css
;
2928 struct cgroup_subsys
*ss
;
2932 mutex_lock(&cgroup_mutex
);
2934 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2935 for_each_subsys(ss
, ssid
) {
2936 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2939 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2942 cgroup_get_live(dsct
);
2943 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2944 TASK_UNINTERRUPTIBLE
);
2946 mutex_unlock(&cgroup_mutex
);
2948 finish_wait(&dsct
->offline_waitq
, &wait
);
2957 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2958 * @cgrp: root of the target subtree
2960 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2961 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2964 static void cgroup_save_control(struct cgroup
*cgrp
)
2966 struct cgroup
*dsct
;
2967 struct cgroup_subsys_state
*d_css
;
2969 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2970 dsct
->old_subtree_control
= dsct
->subtree_control
;
2971 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2972 dsct
->old_dom_cgrp
= dsct
->dom_cgrp
;
2977 * cgroup_propagate_control - refresh control masks of a subtree
2978 * @cgrp: root of the target subtree
2980 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2981 * ->subtree_control and propagate controller availability through the
2982 * subtree so that descendants don't have unavailable controllers enabled.
2984 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2986 struct cgroup
*dsct
;
2987 struct cgroup_subsys_state
*d_css
;
2989 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2990 dsct
->subtree_control
&= cgroup_control(dsct
);
2991 dsct
->subtree_ss_mask
=
2992 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
2993 cgroup_ss_mask(dsct
));
2998 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2999 * @cgrp: root of the target subtree
3001 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3002 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3005 static void cgroup_restore_control(struct cgroup
*cgrp
)
3007 struct cgroup
*dsct
;
3008 struct cgroup_subsys_state
*d_css
;
3010 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3011 dsct
->subtree_control
= dsct
->old_subtree_control
;
3012 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
3013 dsct
->dom_cgrp
= dsct
->old_dom_cgrp
;
3017 static bool css_visible(struct cgroup_subsys_state
*css
)
3019 struct cgroup_subsys
*ss
= css
->ss
;
3020 struct cgroup
*cgrp
= css
->cgroup
;
3022 if (cgroup_control(cgrp
) & (1 << ss
->id
))
3024 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
3026 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
3030 * cgroup_apply_control_enable - enable or show csses according to control
3031 * @cgrp: root of the target subtree
3033 * Walk @cgrp's subtree and create new csses or make the existing ones
3034 * visible. A css is created invisible if it's being implicitly enabled
3035 * through dependency. An invisible css is made visible when the userland
3036 * explicitly enables it.
3038 * Returns 0 on success, -errno on failure. On failure, csses which have
3039 * been processed already aren't cleaned up. The caller is responsible for
3040 * cleaning up with cgroup_apply_control_disable().
3042 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
3044 struct cgroup
*dsct
;
3045 struct cgroup_subsys_state
*d_css
;
3046 struct cgroup_subsys
*ss
;
3049 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
3050 for_each_subsys(ss
, ssid
) {
3051 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3053 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3055 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
3059 css
= css_create(dsct
, ss
);
3061 return PTR_ERR(css
);
3064 if (css_visible(css
)) {
3065 ret
= css_populate_dir(css
);
3076 * cgroup_apply_control_disable - kill or hide csses according to control
3077 * @cgrp: root of the target subtree
3079 * Walk @cgrp's subtree and kill and hide csses so that they match
3080 * cgroup_ss_mask() and cgroup_visible_mask().
3082 * A css is hidden when the userland requests it to be disabled while other
3083 * subsystems are still depending on it. The css must not actively control
3084 * resources and be in the vanilla state if it's made visible again later.
3085 * Controllers which may be depended upon should provide ->css_reset() for
3088 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
3090 struct cgroup
*dsct
;
3091 struct cgroup_subsys_state
*d_css
;
3092 struct cgroup_subsys
*ss
;
3095 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
3096 for_each_subsys(ss
, ssid
) {
3097 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
3099 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
3105 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
3107 } else if (!css_visible(css
)) {
3117 * cgroup_apply_control - apply control mask updates to the subtree
3118 * @cgrp: root of the target subtree
3120 * subsystems can be enabled and disabled in a subtree using the following
3123 * 1. Call cgroup_save_control() to stash the current state.
3124 * 2. Update ->subtree_control masks in the subtree as desired.
3125 * 3. Call cgroup_apply_control() to apply the changes.
3126 * 4. Optionally perform other related operations.
3127 * 5. Call cgroup_finalize_control() to finish up.
3129 * This function implements step 3 and propagates the mask changes
3130 * throughout @cgrp's subtree, updates csses accordingly and perform
3131 * process migrations.
3133 static int cgroup_apply_control(struct cgroup
*cgrp
)
3137 cgroup_propagate_control(cgrp
);
3139 ret
= cgroup_apply_control_enable(cgrp
);
3144 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3145 * making the following cgroup_update_dfl_csses() properly update
3146 * css associations of all tasks in the subtree.
3148 ret
= cgroup_update_dfl_csses(cgrp
);
3156 * cgroup_finalize_control - finalize control mask update
3157 * @cgrp: root of the target subtree
3158 * @ret: the result of the update
3160 * Finalize control mask update. See cgroup_apply_control() for more info.
3162 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3165 cgroup_restore_control(cgrp
);
3166 cgroup_propagate_control(cgrp
);
3169 cgroup_apply_control_disable(cgrp
);
3172 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3174 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3176 /* if nothing is getting enabled, nothing to worry about */
3180 /* can @cgrp host any resources? */
3181 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3184 /* mixables don't care */
3185 if (cgroup_is_mixable(cgrp
))
3188 if (domain_enable
) {
3189 /* can't enable domain controllers inside a thread subtree */
3190 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3194 * Threaded controllers can handle internal competitions
3195 * and are always allowed inside a (prospective) thread
3198 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3203 * Controllers can't be enabled for a cgroup with tasks to avoid
3204 * child cgroups competing against tasks.
3206 if (cgroup_has_tasks(cgrp
))
3212 /* change the enabled child controllers for a cgroup in the default hierarchy */
3213 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3214 char *buf
, size_t nbytes
,
3217 u16 enable
= 0, disable
= 0;
3218 struct cgroup
*cgrp
, *child
;
3219 struct cgroup_subsys
*ss
;
3224 * Parse input - space separated list of subsystem names prefixed
3225 * with either + or -.
3227 buf
= strstrip(buf
);
3228 while ((tok
= strsep(&buf
, " "))) {
3231 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3232 if (!cgroup_ssid_enabled(ssid
) ||
3233 strcmp(tok
+ 1, ss
->name
))
3237 enable
|= 1 << ssid
;
3238 disable
&= ~(1 << ssid
);
3239 } else if (*tok
== '-') {
3240 disable
|= 1 << ssid
;
3241 enable
&= ~(1 << ssid
);
3246 } while_each_subsys_mask();
3247 if (ssid
== CGROUP_SUBSYS_COUNT
)
3251 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3255 for_each_subsys(ss
, ssid
) {
3256 if (enable
& (1 << ssid
)) {
3257 if (cgrp
->subtree_control
& (1 << ssid
)) {
3258 enable
&= ~(1 << ssid
);
3262 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3266 } else if (disable
& (1 << ssid
)) {
3267 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3268 disable
&= ~(1 << ssid
);
3272 /* a child has it enabled? */
3273 cgroup_for_each_live_child(child
, cgrp
) {
3274 if (child
->subtree_control
& (1 << ssid
)) {
3282 if (!enable
&& !disable
) {
3287 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3291 /* save and update control masks and prepare csses */
3292 cgroup_save_control(cgrp
);
3294 cgrp
->subtree_control
|= enable
;
3295 cgrp
->subtree_control
&= ~disable
;
3297 ret
= cgroup_apply_control(cgrp
);
3298 cgroup_finalize_control(cgrp
, ret
);
3302 kernfs_activate(cgrp
->kn
);
3304 cgroup_kn_unlock(of
->kn
);
3305 return ret
?: nbytes
;
3309 * cgroup_enable_threaded - make @cgrp threaded
3310 * @cgrp: the target cgroup
3312 * Called when "threaded" is written to the cgroup.type interface file and
3313 * tries to make @cgrp threaded and join the parent's resource domain.
3314 * This function is never called on the root cgroup as cgroup.type doesn't
3317 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3319 struct cgroup
*parent
= cgroup_parent(cgrp
);
3320 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3321 struct cgroup
*dsct
;
3322 struct cgroup_subsys_state
*d_css
;
3325 lockdep_assert_held(&cgroup_mutex
);
3327 /* noop if already threaded */
3328 if (cgroup_is_threaded(cgrp
))
3332 * If @cgroup is populated or has domain controllers enabled, it
3333 * can't be switched. While the below cgroup_can_be_thread_root()
3334 * test can catch the same conditions, that's only when @parent is
3335 * not mixable, so let's check it explicitly.
3337 if (cgroup_is_populated(cgrp
) ||
3338 cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
3341 /* we're joining the parent's domain, ensure its validity */
3342 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3343 !cgroup_can_be_thread_root(dom_cgrp
))
3347 * The following shouldn't cause actual migrations and should
3350 cgroup_save_control(cgrp
);
3352 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
)
3353 if (dsct
== cgrp
|| cgroup_is_threaded(dsct
))
3354 dsct
->dom_cgrp
= dom_cgrp
;
3356 ret
= cgroup_apply_control(cgrp
);
3358 parent
->nr_threaded_children
++;
3360 cgroup_finalize_control(cgrp
, ret
);
3364 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3366 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3368 if (cgroup_is_threaded(cgrp
))
3369 seq_puts(seq
, "threaded\n");
3370 else if (!cgroup_is_valid_domain(cgrp
))
3371 seq_puts(seq
, "domain invalid\n");
3372 else if (cgroup_is_thread_root(cgrp
))
3373 seq_puts(seq
, "domain threaded\n");
3375 seq_puts(seq
, "domain\n");
3380 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3381 size_t nbytes
, loff_t off
)
3383 struct cgroup
*cgrp
;
3386 /* only switching to threaded mode is supported */
3387 if (strcmp(strstrip(buf
), "threaded"))
3390 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3394 /* threaded can only be enabled */
3395 ret
= cgroup_enable_threaded(cgrp
);
3397 cgroup_kn_unlock(of
->kn
);
3398 return ret
?: nbytes
;
3401 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3403 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3404 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3406 if (descendants
== INT_MAX
)
3407 seq_puts(seq
, "max\n");
3409 seq_printf(seq
, "%d\n", descendants
);
3414 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3415 char *buf
, size_t nbytes
, loff_t off
)
3417 struct cgroup
*cgrp
;
3421 buf
= strstrip(buf
);
3422 if (!strcmp(buf
, "max")) {
3423 descendants
= INT_MAX
;
3425 ret
= kstrtoint(buf
, 0, &descendants
);
3430 if (descendants
< 0)
3433 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3437 cgrp
->max_descendants
= descendants
;
3439 cgroup_kn_unlock(of
->kn
);
3444 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3446 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3447 int depth
= READ_ONCE(cgrp
->max_depth
);
3449 if (depth
== INT_MAX
)
3450 seq_puts(seq
, "max\n");
3452 seq_printf(seq
, "%d\n", depth
);
3457 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3458 char *buf
, size_t nbytes
, loff_t off
)
3460 struct cgroup
*cgrp
;
3464 buf
= strstrip(buf
);
3465 if (!strcmp(buf
, "max")) {
3468 ret
= kstrtoint(buf
, 0, &depth
);
3476 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3480 cgrp
->max_depth
= depth
;
3482 cgroup_kn_unlock(of
->kn
);
3487 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3489 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3491 seq_printf(seq
, "populated %d\n", cgroup_is_populated(cgrp
));
3492 seq_printf(seq
, "frozen %d\n", test_bit(CGRP_FROZEN
, &cgrp
->flags
));
3497 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3499 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3501 seq_printf(seq
, "nr_descendants %d\n",
3502 cgroup
->nr_descendants
);
3503 seq_printf(seq
, "nr_dying_descendants %d\n",
3504 cgroup
->nr_dying_descendants
);
3509 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3510 struct cgroup
*cgrp
, int ssid
)
3512 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3513 struct cgroup_subsys_state
*css
;
3516 if (!ss
->css_extra_stat_show
)
3519 css
= cgroup_tryget_css(cgrp
, ss
);
3523 ret
= ss
->css_extra_stat_show(seq
, css
);
3528 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3530 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3533 cgroup_base_stat_cputime_show(seq
);
3534 #ifdef CONFIG_CGROUP_SCHED
3535 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3541 static int cgroup_io_pressure_show(struct seq_file
*seq
, void *v
)
3543 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3544 struct psi_group
*psi
= cgroup
->id
== 1 ? &psi_system
: &cgroup
->psi
;
3546 return psi_show(seq
, psi
, PSI_IO
);
3548 static int cgroup_memory_pressure_show(struct seq_file
*seq
, void *v
)
3550 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3551 struct psi_group
*psi
= cgroup
->id
== 1 ? &psi_system
: &cgroup
->psi
;
3553 return psi_show(seq
, psi
, PSI_MEM
);
3555 static int cgroup_cpu_pressure_show(struct seq_file
*seq
, void *v
)
3557 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3558 struct psi_group
*psi
= cgroup
->id
== 1 ? &psi_system
: &cgroup
->psi
;
3560 return psi_show(seq
, psi
, PSI_CPU
);
3563 static ssize_t
cgroup_pressure_write(struct kernfs_open_file
*of
, char *buf
,
3564 size_t nbytes
, enum psi_res res
)
3566 struct psi_trigger
*new;
3567 struct cgroup
*cgrp
;
3569 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3574 cgroup_kn_unlock(of
->kn
);
3576 new = psi_trigger_create(&cgrp
->psi
, buf
, nbytes
, res
);
3579 return PTR_ERR(new);
3582 psi_trigger_replace(&of
->priv
, new);
3589 static ssize_t
cgroup_io_pressure_write(struct kernfs_open_file
*of
,
3590 char *buf
, size_t nbytes
,
3593 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_IO
);
3596 static ssize_t
cgroup_memory_pressure_write(struct kernfs_open_file
*of
,
3597 char *buf
, size_t nbytes
,
3600 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_MEM
);
3603 static ssize_t
cgroup_cpu_pressure_write(struct kernfs_open_file
*of
,
3604 char *buf
, size_t nbytes
,
3607 return cgroup_pressure_write(of
, buf
, nbytes
, PSI_CPU
);
3610 static __poll_t
cgroup_pressure_poll(struct kernfs_open_file
*of
,
3613 return psi_trigger_poll(&of
->priv
, of
->file
, pt
);
3616 static void cgroup_pressure_release(struct kernfs_open_file
*of
)
3618 psi_trigger_replace(&of
->priv
, NULL
);
3620 #endif /* CONFIG_PSI */
3622 static int cgroup_freeze_show(struct seq_file
*seq
, void *v
)
3624 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3626 seq_printf(seq
, "%d\n", cgrp
->freezer
.freeze
);
3631 static ssize_t
cgroup_freeze_write(struct kernfs_open_file
*of
,
3632 char *buf
, size_t nbytes
, loff_t off
)
3634 struct cgroup
*cgrp
;
3638 ret
= kstrtoint(strstrip(buf
), 0, &freeze
);
3642 if (freeze
< 0 || freeze
> 1)
3645 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3649 cgroup_freeze(cgrp
, freeze
);
3651 cgroup_kn_unlock(of
->kn
);
3656 static int cgroup_file_open(struct kernfs_open_file
*of
)
3658 struct cftype
*cft
= of
->kn
->priv
;
3661 return cft
->open(of
);
3665 static void cgroup_file_release(struct kernfs_open_file
*of
)
3667 struct cftype
*cft
= of
->kn
->priv
;
3673 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3674 size_t nbytes
, loff_t off
)
3676 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3677 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3678 struct cftype
*cft
= of
->kn
->priv
;
3679 struct cgroup_subsys_state
*css
;
3683 * If namespaces are delegation boundaries, disallow writes to
3684 * files in an non-init namespace root from inside the namespace
3685 * except for the files explicitly marked delegatable -
3686 * cgroup.procs and cgroup.subtree_control.
3688 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3689 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3690 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3694 return cft
->write(of
, buf
, nbytes
, off
);
3697 * kernfs guarantees that a file isn't deleted with operations in
3698 * flight, which means that the matching css is and stays alive and
3699 * doesn't need to be pinned. The RCU locking is not necessary
3700 * either. It's just for the convenience of using cgroup_css().
3703 css
= cgroup_css(cgrp
, cft
->ss
);
3706 if (cft
->write_u64
) {
3707 unsigned long long v
;
3708 ret
= kstrtoull(buf
, 0, &v
);
3710 ret
= cft
->write_u64(css
, cft
, v
);
3711 } else if (cft
->write_s64
) {
3713 ret
= kstrtoll(buf
, 0, &v
);
3715 ret
= cft
->write_s64(css
, cft
, v
);
3720 return ret
?: nbytes
;
3723 static __poll_t
cgroup_file_poll(struct kernfs_open_file
*of
, poll_table
*pt
)
3725 struct cftype
*cft
= of
->kn
->priv
;
3728 return cft
->poll(of
, pt
);
3730 return kernfs_generic_poll(of
, pt
);
3733 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3735 return seq_cft(seq
)->seq_start(seq
, ppos
);
3738 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3740 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3743 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3745 if (seq_cft(seq
)->seq_stop
)
3746 seq_cft(seq
)->seq_stop(seq
, v
);
3749 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3751 struct cftype
*cft
= seq_cft(m
);
3752 struct cgroup_subsys_state
*css
= seq_css(m
);
3755 return cft
->seq_show(m
, arg
);
3758 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3759 else if (cft
->read_s64
)
3760 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3766 static struct kernfs_ops cgroup_kf_single_ops
= {
3767 .atomic_write_len
= PAGE_SIZE
,
3768 .open
= cgroup_file_open
,
3769 .release
= cgroup_file_release
,
3770 .write
= cgroup_file_write
,
3771 .poll
= cgroup_file_poll
,
3772 .seq_show
= cgroup_seqfile_show
,
3775 static struct kernfs_ops cgroup_kf_ops
= {
3776 .atomic_write_len
= PAGE_SIZE
,
3777 .open
= cgroup_file_open
,
3778 .release
= cgroup_file_release
,
3779 .write
= cgroup_file_write
,
3780 .poll
= cgroup_file_poll
,
3781 .seq_start
= cgroup_seqfile_start
,
3782 .seq_next
= cgroup_seqfile_next
,
3783 .seq_stop
= cgroup_seqfile_stop
,
3784 .seq_show
= cgroup_seqfile_show
,
3787 /* set uid and gid of cgroup dirs and files to that of the creator */
3788 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3790 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3791 .ia_uid
= current_fsuid(),
3792 .ia_gid
= current_fsgid(), };
3794 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3795 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3798 return kernfs_setattr(kn
, &iattr
);
3801 static void cgroup_file_notify_timer(struct timer_list
*timer
)
3803 cgroup_file_notify(container_of(timer
, struct cgroup_file
,
3807 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3810 char name
[CGROUP_FILE_NAME_MAX
];
3811 struct kernfs_node
*kn
;
3812 struct lock_class_key
*key
= NULL
;
3815 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3816 key
= &cft
->lockdep_key
;
3818 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3819 cgroup_file_mode(cft
),
3820 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
3821 0, cft
->kf_ops
, cft
,
3826 ret
= cgroup_kn_set_ugid(kn
);
3832 if (cft
->file_offset
) {
3833 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3835 timer_setup(&cfile
->notify_timer
, cgroup_file_notify_timer
, 0);
3837 spin_lock_irq(&cgroup_file_kn_lock
);
3839 spin_unlock_irq(&cgroup_file_kn_lock
);
3846 * cgroup_addrm_files - add or remove files to a cgroup directory
3847 * @css: the target css
3848 * @cgrp: the target cgroup (usually css->cgroup)
3849 * @cfts: array of cftypes to be added
3850 * @is_add: whether to add or remove
3852 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3853 * For removals, this function never fails.
3855 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3856 struct cgroup
*cgrp
, struct cftype cfts
[],
3859 struct cftype
*cft
, *cft_end
= NULL
;
3862 lockdep_assert_held(&cgroup_mutex
);
3865 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3866 /* does cft->flags tell us to skip this file on @cgrp? */
3867 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3869 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3871 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3873 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3875 if ((cft
->flags
& CFTYPE_DEBUG
) && !cgroup_debug
)
3878 ret
= cgroup_add_file(css
, cgrp
, cft
);
3880 pr_warn("%s: failed to add %s, err=%d\n",
3881 __func__
, cft
->name
, ret
);
3887 cgroup_rm_file(cgrp
, cft
);
3893 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3895 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3896 struct cgroup
*root
= &ss
->root
->cgrp
;
3897 struct cgroup_subsys_state
*css
;
3900 lockdep_assert_held(&cgroup_mutex
);
3902 /* add/rm files for all cgroups created before */
3903 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3904 struct cgroup
*cgrp
= css
->cgroup
;
3906 if (!(css
->flags
& CSS_VISIBLE
))
3909 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3915 kernfs_activate(root
->kn
);
3919 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3923 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3924 /* free copy for custom atomic_write_len, see init_cftypes() */
3925 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3930 /* revert flags set by cgroup core while adding @cfts */
3931 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3935 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3939 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3940 struct kernfs_ops
*kf_ops
;
3942 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3945 kf_ops
= &cgroup_kf_ops
;
3947 kf_ops
= &cgroup_kf_single_ops
;
3950 * Ugh... if @cft wants a custom max_write_len, we need to
3951 * make a copy of kf_ops to set its atomic_write_len.
3953 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3954 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3956 cgroup_exit_cftypes(cfts
);
3959 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3962 cft
->kf_ops
= kf_ops
;
3969 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3971 lockdep_assert_held(&cgroup_mutex
);
3973 if (!cfts
|| !cfts
[0].ss
)
3976 list_del(&cfts
->node
);
3977 cgroup_apply_cftypes(cfts
, false);
3978 cgroup_exit_cftypes(cfts
);
3983 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3984 * @cfts: zero-length name terminated array of cftypes
3986 * Unregister @cfts. Files described by @cfts are removed from all
3987 * existing cgroups and all future cgroups won't have them either. This
3988 * function can be called anytime whether @cfts' subsys is attached or not.
3990 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3993 int cgroup_rm_cftypes(struct cftype
*cfts
)
3997 mutex_lock(&cgroup_mutex
);
3998 ret
= cgroup_rm_cftypes_locked(cfts
);
3999 mutex_unlock(&cgroup_mutex
);
4004 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4005 * @ss: target cgroup subsystem
4006 * @cfts: zero-length name terminated array of cftypes
4008 * Register @cfts to @ss. Files described by @cfts are created for all
4009 * existing cgroups to which @ss is attached and all future cgroups will
4010 * have them too. This function can be called anytime whether @ss is
4013 * Returns 0 on successful registration, -errno on failure. Note that this
4014 * function currently returns 0 as long as @cfts registration is successful
4015 * even if some file creation attempts on existing cgroups fail.
4017 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4021 if (!cgroup_ssid_enabled(ss
->id
))
4024 if (!cfts
|| cfts
[0].name
[0] == '\0')
4027 ret
= cgroup_init_cftypes(ss
, cfts
);
4031 mutex_lock(&cgroup_mutex
);
4033 list_add_tail(&cfts
->node
, &ss
->cfts
);
4034 ret
= cgroup_apply_cftypes(cfts
, true);
4036 cgroup_rm_cftypes_locked(cfts
);
4038 mutex_unlock(&cgroup_mutex
);
4043 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4044 * @ss: target cgroup subsystem
4045 * @cfts: zero-length name terminated array of cftypes
4047 * Similar to cgroup_add_cftypes() but the added files are only used for
4048 * the default hierarchy.
4050 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4054 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4055 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
4056 return cgroup_add_cftypes(ss
, cfts
);
4060 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4061 * @ss: target cgroup subsystem
4062 * @cfts: zero-length name terminated array of cftypes
4064 * Similar to cgroup_add_cftypes() but the added files are only used for
4065 * the legacy hierarchies.
4067 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
4071 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
4072 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
4073 return cgroup_add_cftypes(ss
, cfts
);
4077 * cgroup_file_notify - generate a file modified event for a cgroup_file
4078 * @cfile: target cgroup_file
4080 * @cfile must have been obtained by setting cftype->file_offset.
4082 void cgroup_file_notify(struct cgroup_file
*cfile
)
4084 unsigned long flags
;
4086 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
4088 unsigned long last
= cfile
->notified_at
;
4089 unsigned long next
= last
+ CGROUP_FILE_NOTIFY_MIN_INTV
;
4091 if (time_in_range(jiffies
, last
, next
)) {
4092 timer_reduce(&cfile
->notify_timer
, next
);
4094 kernfs_notify(cfile
->kn
);
4095 cfile
->notified_at
= jiffies
;
4098 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
4102 * css_next_child - find the next child of a given css
4103 * @pos: the current position (%NULL to initiate traversal)
4104 * @parent: css whose children to walk
4106 * This function returns the next child of @parent and should be called
4107 * under either cgroup_mutex or RCU read lock. The only requirement is
4108 * that @parent and @pos are accessible. The next sibling is guaranteed to
4109 * be returned regardless of their states.
4111 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4112 * css which finished ->css_online() is guaranteed to be visible in the
4113 * future iterations and will stay visible until the last reference is put.
4114 * A css which hasn't finished ->css_online() or already finished
4115 * ->css_offline() may show up during traversal. It's each subsystem's
4116 * responsibility to synchronize against on/offlining.
4118 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
4119 struct cgroup_subsys_state
*parent
)
4121 struct cgroup_subsys_state
*next
;
4123 cgroup_assert_mutex_or_rcu_locked();
4126 * @pos could already have been unlinked from the sibling list.
4127 * Once a cgroup is removed, its ->sibling.next is no longer
4128 * updated when its next sibling changes. CSS_RELEASED is set when
4129 * @pos is taken off list, at which time its next pointer is valid,
4130 * and, as releases are serialized, the one pointed to by the next
4131 * pointer is guaranteed to not have started release yet. This
4132 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4133 * critical section, the one pointed to by its next pointer is
4134 * guaranteed to not have finished its RCU grace period even if we
4135 * have dropped rcu_read_lock() inbetween iterations.
4137 * If @pos has CSS_RELEASED set, its next pointer can't be
4138 * dereferenced; however, as each css is given a monotonically
4139 * increasing unique serial number and always appended to the
4140 * sibling list, the next one can be found by walking the parent's
4141 * children until the first css with higher serial number than
4142 * @pos's. While this path can be slower, it happens iff iteration
4143 * races against release and the race window is very small.
4146 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
4147 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
4148 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
4150 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
4151 if (next
->serial_nr
> pos
->serial_nr
)
4156 * @next, if not pointing to the head, can be dereferenced and is
4159 if (&next
->sibling
!= &parent
->children
)
4165 * css_next_descendant_pre - find the next descendant for pre-order walk
4166 * @pos: the current position (%NULL to initiate traversal)
4167 * @root: css whose descendants to walk
4169 * To be used by css_for_each_descendant_pre(). Find the next descendant
4170 * to visit for pre-order traversal of @root's descendants. @root is
4171 * included in the iteration and the first node to be visited.
4173 * While this function requires cgroup_mutex or RCU read locking, it
4174 * doesn't require the whole traversal to be contained in a single critical
4175 * section. This function will return the correct next descendant as long
4176 * as both @pos and @root are accessible and @pos is a descendant of @root.
4178 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4179 * css which finished ->css_online() is guaranteed to be visible in the
4180 * future iterations and will stay visible until the last reference is put.
4181 * A css which hasn't finished ->css_online() or already finished
4182 * ->css_offline() may show up during traversal. It's each subsystem's
4183 * responsibility to synchronize against on/offlining.
4185 struct cgroup_subsys_state
*
4186 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
4187 struct cgroup_subsys_state
*root
)
4189 struct cgroup_subsys_state
*next
;
4191 cgroup_assert_mutex_or_rcu_locked();
4193 /* if first iteration, visit @root */
4197 /* visit the first child if exists */
4198 next
= css_next_child(NULL
, pos
);
4202 /* no child, visit my or the closest ancestor's next sibling */
4203 while (pos
!= root
) {
4204 next
= css_next_child(pos
, pos
->parent
);
4214 * css_rightmost_descendant - return the rightmost descendant of a css
4215 * @pos: css of interest
4217 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4218 * is returned. This can be used during pre-order traversal to skip
4221 * While this function requires cgroup_mutex or RCU read locking, it
4222 * doesn't require the whole traversal to be contained in a single critical
4223 * section. This function will return the correct rightmost descendant as
4224 * long as @pos is accessible.
4226 struct cgroup_subsys_state
*
4227 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
4229 struct cgroup_subsys_state
*last
, *tmp
;
4231 cgroup_assert_mutex_or_rcu_locked();
4235 /* ->prev isn't RCU safe, walk ->next till the end */
4237 css_for_each_child(tmp
, last
)
4244 static struct cgroup_subsys_state
*
4245 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
4247 struct cgroup_subsys_state
*last
;
4251 pos
= css_next_child(NULL
, pos
);
4258 * css_next_descendant_post - find the next descendant for post-order walk
4259 * @pos: the current position (%NULL to initiate traversal)
4260 * @root: css whose descendants to walk
4262 * To be used by css_for_each_descendant_post(). Find the next descendant
4263 * to visit for post-order traversal of @root's descendants. @root is
4264 * included in the iteration and the last node to be visited.
4266 * While this function requires cgroup_mutex or RCU read locking, it
4267 * doesn't require the whole traversal to be contained in a single critical
4268 * section. This function will return the correct next descendant as long
4269 * as both @pos and @cgroup are accessible and @pos is a descendant of
4272 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4273 * css which finished ->css_online() is guaranteed to be visible in the
4274 * future iterations and will stay visible until the last reference is put.
4275 * A css which hasn't finished ->css_online() or already finished
4276 * ->css_offline() may show up during traversal. It's each subsystem's
4277 * responsibility to synchronize against on/offlining.
4279 struct cgroup_subsys_state
*
4280 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4281 struct cgroup_subsys_state
*root
)
4283 struct cgroup_subsys_state
*next
;
4285 cgroup_assert_mutex_or_rcu_locked();
4287 /* if first iteration, visit leftmost descendant which may be @root */
4289 return css_leftmost_descendant(root
);
4291 /* if we visited @root, we're done */
4295 /* if there's an unvisited sibling, visit its leftmost descendant */
4296 next
= css_next_child(pos
, pos
->parent
);
4298 return css_leftmost_descendant(next
);
4300 /* no sibling left, visit parent */
4305 * css_has_online_children - does a css have online children
4306 * @css: the target css
4308 * Returns %true if @css has any online children; otherwise, %false. This
4309 * function can be called from any context but the caller is responsible
4310 * for synchronizing against on/offlining as necessary.
4312 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4314 struct cgroup_subsys_state
*child
;
4318 css_for_each_child(child
, css
) {
4319 if (child
->flags
& CSS_ONLINE
) {
4328 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4330 struct list_head
*l
;
4331 struct cgrp_cset_link
*link
;
4332 struct css_set
*cset
;
4334 lockdep_assert_held(&css_set_lock
);
4336 /* find the next threaded cset */
4337 if (it
->tcset_pos
) {
4338 l
= it
->tcset_pos
->next
;
4340 if (l
!= it
->tcset_head
) {
4342 return container_of(l
, struct css_set
,
4343 threaded_csets_node
);
4346 it
->tcset_pos
= NULL
;
4349 /* find the next cset */
4352 if (l
== it
->cset_head
) {
4353 it
->cset_pos
= NULL
;
4358 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4360 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4366 /* initialize threaded css_set walking */
4367 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4369 put_css_set_locked(it
->cur_dcset
);
4370 it
->cur_dcset
= cset
;
4373 it
->tcset_head
= &cset
->threaded_csets
;
4374 it
->tcset_pos
= &cset
->threaded_csets
;
4381 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4382 * @it: the iterator to advance
4384 * Advance @it to the next css_set to walk.
4386 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4388 struct css_set
*cset
;
4390 lockdep_assert_held(&css_set_lock
);
4392 /* Advance to the next non-empty css_set */
4394 cset
= css_task_iter_next_css_set(it
);
4396 it
->task_pos
= NULL
;
4399 } while (!css_set_populated(cset
));
4401 if (!list_empty(&cset
->tasks
))
4402 it
->task_pos
= cset
->tasks
.next
;
4404 it
->task_pos
= cset
->mg_tasks
.next
;
4406 it
->tasks_head
= &cset
->tasks
;
4407 it
->mg_tasks_head
= &cset
->mg_tasks
;
4410 * We don't keep css_sets locked across iteration steps and thus
4411 * need to take steps to ensure that iteration can be resumed after
4412 * the lock is re-acquired. Iteration is performed at two levels -
4413 * css_sets and tasks in them.
4415 * Once created, a css_set never leaves its cgroup lists, so a
4416 * pinned css_set is guaranteed to stay put and we can resume
4417 * iteration afterwards.
4419 * Tasks may leave @cset across iteration steps. This is resolved
4420 * by registering each iterator with the css_set currently being
4421 * walked and making css_set_move_task() advance iterators whose
4422 * next task is leaving.
4425 list_del(&it
->iters_node
);
4426 put_css_set_locked(it
->cur_cset
);
4429 it
->cur_cset
= cset
;
4430 list_add(&it
->iters_node
, &cset
->task_iters
);
4433 static void css_task_iter_advance(struct css_task_iter
*it
)
4435 struct list_head
*next
;
4437 lockdep_assert_held(&css_set_lock
);
4441 * Advance iterator to find next entry. cset->tasks is
4442 * consumed first and then ->mg_tasks. After ->mg_tasks,
4443 * we move onto the next cset.
4445 next
= it
->task_pos
->next
;
4447 if (next
== it
->tasks_head
)
4448 next
= it
->mg_tasks_head
->next
;
4450 if (next
== it
->mg_tasks_head
)
4451 css_task_iter_advance_css_set(it
);
4453 it
->task_pos
= next
;
4455 /* called from start, proceed to the first cset */
4456 css_task_iter_advance_css_set(it
);
4459 /* if PROCS, skip over tasks which aren't group leaders */
4460 if ((it
->flags
& CSS_TASK_ITER_PROCS
) && it
->task_pos
&&
4461 !thread_group_leader(list_entry(it
->task_pos
, struct task_struct
,
4467 * css_task_iter_start - initiate task iteration
4468 * @css: the css to walk tasks of
4469 * @flags: CSS_TASK_ITER_* flags
4470 * @it: the task iterator to use
4472 * Initiate iteration through the tasks of @css. The caller can call
4473 * css_task_iter_next() to walk through the tasks until the function
4474 * returns NULL. On completion of iteration, css_task_iter_end() must be
4477 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4478 struct css_task_iter
*it
)
4480 /* no one should try to iterate before mounting cgroups */
4481 WARN_ON_ONCE(!use_task_css_set_links
);
4483 memset(it
, 0, sizeof(*it
));
4485 spin_lock_irq(&css_set_lock
);
4491 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4493 it
->cset_pos
= &css
->cgroup
->cset_links
;
4495 it
->cset_head
= it
->cset_pos
;
4497 css_task_iter_advance(it
);
4499 spin_unlock_irq(&css_set_lock
);
4503 * css_task_iter_next - return the next task for the iterator
4504 * @it: the task iterator being iterated
4506 * The "next" function for task iteration. @it should have been
4507 * initialized via css_task_iter_start(). Returns NULL when the iteration
4510 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4513 put_task_struct(it
->cur_task
);
4514 it
->cur_task
= NULL
;
4517 spin_lock_irq(&css_set_lock
);
4520 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4522 get_task_struct(it
->cur_task
);
4523 css_task_iter_advance(it
);
4526 spin_unlock_irq(&css_set_lock
);
4528 return it
->cur_task
;
4532 * css_task_iter_end - finish task iteration
4533 * @it: the task iterator to finish
4535 * Finish task iteration started by css_task_iter_start().
4537 void css_task_iter_end(struct css_task_iter
*it
)
4540 spin_lock_irq(&css_set_lock
);
4541 list_del(&it
->iters_node
);
4542 put_css_set_locked(it
->cur_cset
);
4543 spin_unlock_irq(&css_set_lock
);
4547 put_css_set(it
->cur_dcset
);
4550 put_task_struct(it
->cur_task
);
4553 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4556 css_task_iter_end(of
->priv
);
4561 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4563 struct kernfs_open_file
*of
= s
->private;
4564 struct css_task_iter
*it
= of
->priv
;
4566 return css_task_iter_next(it
);
4569 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4570 unsigned int iter_flags
)
4572 struct kernfs_open_file
*of
= s
->private;
4573 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4574 struct css_task_iter
*it
= of
->priv
;
4577 * When a seq_file is seeked, it's always traversed sequentially
4578 * from position 0, so we can simply keep iterating on !0 *pos.
4581 if (WARN_ON_ONCE((*pos
)++))
4582 return ERR_PTR(-EINVAL
);
4584 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4586 return ERR_PTR(-ENOMEM
);
4588 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4589 } else if (!(*pos
)++) {
4590 css_task_iter_end(it
);
4591 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4594 return cgroup_procs_next(s
, NULL
, NULL
);
4597 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4599 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4602 * All processes of a threaded subtree belong to the domain cgroup
4603 * of the subtree. Only threads can be distributed across the
4604 * subtree. Reject reads on cgroup.procs in the subtree proper.
4605 * They're always empty anyway.
4607 if (cgroup_is_threaded(cgrp
))
4608 return ERR_PTR(-EOPNOTSUPP
);
4610 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4611 CSS_TASK_ITER_THREADED
);
4614 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4616 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4620 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4621 struct cgroup
*dst_cgrp
,
4622 struct super_block
*sb
)
4624 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4625 struct cgroup
*com_cgrp
= src_cgrp
;
4626 struct inode
*inode
;
4629 lockdep_assert_held(&cgroup_mutex
);
4631 /* find the common ancestor */
4632 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4633 com_cgrp
= cgroup_parent(com_cgrp
);
4635 /* %current should be authorized to migrate to the common ancestor */
4636 inode
= kernfs_get_inode(sb
, com_cgrp
->procs_file
.kn
);
4640 ret
= inode_permission(inode
, MAY_WRITE
);
4646 * If namespaces are delegation boundaries, %current must be able
4647 * to see both source and destination cgroups from its namespace.
4649 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4650 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4651 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4657 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4658 char *buf
, size_t nbytes
, loff_t off
)
4660 struct cgroup
*src_cgrp
, *dst_cgrp
;
4661 struct task_struct
*task
;
4664 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4668 task
= cgroup_procs_write_start(buf
, true);
4669 ret
= PTR_ERR_OR_ZERO(task
);
4673 /* find the source cgroup */
4674 spin_lock_irq(&css_set_lock
);
4675 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4676 spin_unlock_irq(&css_set_lock
);
4678 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4679 of
->file
->f_path
.dentry
->d_sb
);
4683 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4686 cgroup_procs_write_finish(task
);
4688 cgroup_kn_unlock(of
->kn
);
4690 return ret
?: nbytes
;
4693 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4695 return __cgroup_procs_start(s
, pos
, 0);
4698 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4699 char *buf
, size_t nbytes
, loff_t off
)
4701 struct cgroup
*src_cgrp
, *dst_cgrp
;
4702 struct task_struct
*task
;
4705 buf
= strstrip(buf
);
4707 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4711 task
= cgroup_procs_write_start(buf
, false);
4712 ret
= PTR_ERR_OR_ZERO(task
);
4716 /* find the source cgroup */
4717 spin_lock_irq(&css_set_lock
);
4718 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4719 spin_unlock_irq(&css_set_lock
);
4721 /* thread migrations follow the cgroup.procs delegation rule */
4722 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4723 of
->file
->f_path
.dentry
->d_sb
);
4727 /* and must be contained in the same domain */
4729 if (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
)
4732 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4735 cgroup_procs_write_finish(task
);
4737 cgroup_kn_unlock(of
->kn
);
4739 return ret
?: nbytes
;
4742 /* cgroup core interface files for the default hierarchy */
4743 static struct cftype cgroup_base_files
[] = {
4745 .name
= "cgroup.type",
4746 .flags
= CFTYPE_NOT_ON_ROOT
,
4747 .seq_show
= cgroup_type_show
,
4748 .write
= cgroup_type_write
,
4751 .name
= "cgroup.procs",
4752 .flags
= CFTYPE_NS_DELEGATABLE
,
4753 .file_offset
= offsetof(struct cgroup
, procs_file
),
4754 .release
= cgroup_procs_release
,
4755 .seq_start
= cgroup_procs_start
,
4756 .seq_next
= cgroup_procs_next
,
4757 .seq_show
= cgroup_procs_show
,
4758 .write
= cgroup_procs_write
,
4761 .name
= "cgroup.threads",
4762 .flags
= CFTYPE_NS_DELEGATABLE
,
4763 .release
= cgroup_procs_release
,
4764 .seq_start
= cgroup_threads_start
,
4765 .seq_next
= cgroup_procs_next
,
4766 .seq_show
= cgroup_procs_show
,
4767 .write
= cgroup_threads_write
,
4770 .name
= "cgroup.controllers",
4771 .seq_show
= cgroup_controllers_show
,
4774 .name
= "cgroup.subtree_control",
4775 .flags
= CFTYPE_NS_DELEGATABLE
,
4776 .seq_show
= cgroup_subtree_control_show
,
4777 .write
= cgroup_subtree_control_write
,
4780 .name
= "cgroup.events",
4781 .flags
= CFTYPE_NOT_ON_ROOT
,
4782 .file_offset
= offsetof(struct cgroup
, events_file
),
4783 .seq_show
= cgroup_events_show
,
4786 .name
= "cgroup.max.descendants",
4787 .seq_show
= cgroup_max_descendants_show
,
4788 .write
= cgroup_max_descendants_write
,
4791 .name
= "cgroup.max.depth",
4792 .seq_show
= cgroup_max_depth_show
,
4793 .write
= cgroup_max_depth_write
,
4796 .name
= "cgroup.stat",
4797 .seq_show
= cgroup_stat_show
,
4800 .name
= "cgroup.freeze",
4801 .flags
= CFTYPE_NOT_ON_ROOT
,
4802 .seq_show
= cgroup_freeze_show
,
4803 .write
= cgroup_freeze_write
,
4807 .flags
= CFTYPE_NOT_ON_ROOT
,
4808 .seq_show
= cpu_stat_show
,
4812 .name
= "io.pressure",
4813 .seq_show
= cgroup_io_pressure_show
,
4814 .write
= cgroup_io_pressure_write
,
4815 .poll
= cgroup_pressure_poll
,
4816 .release
= cgroup_pressure_release
,
4819 .name
= "memory.pressure",
4820 .seq_show
= cgroup_memory_pressure_show
,
4821 .write
= cgroup_memory_pressure_write
,
4822 .poll
= cgroup_pressure_poll
,
4823 .release
= cgroup_pressure_release
,
4826 .name
= "cpu.pressure",
4827 .seq_show
= cgroup_cpu_pressure_show
,
4828 .write
= cgroup_cpu_pressure_write
,
4829 .poll
= cgroup_pressure_poll
,
4830 .release
= cgroup_pressure_release
,
4832 #endif /* CONFIG_PSI */
4837 * css destruction is four-stage process.
4839 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4840 * Implemented in kill_css().
4842 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4843 * and thus css_tryget_online() is guaranteed to fail, the css can be
4844 * offlined by invoking offline_css(). After offlining, the base ref is
4845 * put. Implemented in css_killed_work_fn().
4847 * 3. When the percpu_ref reaches zero, the only possible remaining
4848 * accessors are inside RCU read sections. css_release() schedules the
4851 * 4. After the grace period, the css can be freed. Implemented in
4852 * css_free_work_fn().
4854 * It is actually hairier because both step 2 and 4 require process context
4855 * and thus involve punting to css->destroy_work adding two additional
4856 * steps to the already complex sequence.
4858 static void css_free_rwork_fn(struct work_struct
*work
)
4860 struct cgroup_subsys_state
*css
= container_of(to_rcu_work(work
),
4861 struct cgroup_subsys_state
, destroy_rwork
);
4862 struct cgroup_subsys
*ss
= css
->ss
;
4863 struct cgroup
*cgrp
= css
->cgroup
;
4865 percpu_ref_exit(&css
->refcnt
);
4869 struct cgroup_subsys_state
*parent
= css
->parent
;
4873 cgroup_idr_remove(&ss
->css_idr
, id
);
4879 /* cgroup free path */
4880 atomic_dec(&cgrp
->root
->nr_cgrps
);
4881 cgroup1_pidlist_destroy_all(cgrp
);
4882 cancel_work_sync(&cgrp
->release_agent_work
);
4884 if (cgroup_parent(cgrp
)) {
4886 * We get a ref to the parent, and put the ref when
4887 * this cgroup is being freed, so it's guaranteed
4888 * that the parent won't be destroyed before its
4891 cgroup_put(cgroup_parent(cgrp
));
4892 kernfs_put(cgrp
->kn
);
4893 psi_cgroup_free(cgrp
);
4894 if (cgroup_on_dfl(cgrp
))
4895 cgroup_rstat_exit(cgrp
);
4899 * This is root cgroup's refcnt reaching zero,
4900 * which indicates that the root should be
4903 cgroup_destroy_root(cgrp
->root
);
4908 static void css_release_work_fn(struct work_struct
*work
)
4910 struct cgroup_subsys_state
*css
=
4911 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4912 struct cgroup_subsys
*ss
= css
->ss
;
4913 struct cgroup
*cgrp
= css
->cgroup
;
4915 mutex_lock(&cgroup_mutex
);
4917 css
->flags
|= CSS_RELEASED
;
4918 list_del_rcu(&css
->sibling
);
4921 /* css release path */
4922 if (!list_empty(&css
->rstat_css_node
)) {
4923 cgroup_rstat_flush(cgrp
);
4924 list_del_rcu(&css
->rstat_css_node
);
4927 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4928 if (ss
->css_released
)
4929 ss
->css_released(css
);
4931 struct cgroup
*tcgrp
;
4933 /* cgroup release path */
4934 TRACE_CGROUP_PATH(release
, cgrp
);
4936 if (cgroup_on_dfl(cgrp
))
4937 cgroup_rstat_flush(cgrp
);
4939 spin_lock_irq(&css_set_lock
);
4940 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
4941 tcgrp
= cgroup_parent(tcgrp
))
4942 tcgrp
->nr_dying_descendants
--;
4943 spin_unlock_irq(&css_set_lock
);
4945 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4949 * There are two control paths which try to determine
4950 * cgroup from dentry without going through kernfs -
4951 * cgroupstats_build() and css_tryget_online_from_dir().
4952 * Those are supported by RCU protecting clearing of
4953 * cgrp->kn->priv backpointer.
4956 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
4959 cgroup_bpf_put(cgrp
);
4962 mutex_unlock(&cgroup_mutex
);
4964 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
4965 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
4968 static void css_release(struct percpu_ref
*ref
)
4970 struct cgroup_subsys_state
*css
=
4971 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4973 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4974 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4977 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4978 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4980 lockdep_assert_held(&cgroup_mutex
);
4982 cgroup_get_live(cgrp
);
4984 memset(css
, 0, sizeof(*css
));
4988 INIT_LIST_HEAD(&css
->sibling
);
4989 INIT_LIST_HEAD(&css
->children
);
4990 INIT_LIST_HEAD(&css
->rstat_css_node
);
4991 css
->serial_nr
= css_serial_nr_next
++;
4992 atomic_set(&css
->online_cnt
, 0);
4994 if (cgroup_parent(cgrp
)) {
4995 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4996 css_get(css
->parent
);
4999 if (cgroup_on_dfl(cgrp
) && ss
->css_rstat_flush
)
5000 list_add_rcu(&css
->rstat_css_node
, &cgrp
->rstat_css_list
);
5002 BUG_ON(cgroup_css(cgrp
, ss
));
5005 /* invoke ->css_online() on a new CSS and mark it online if successful */
5006 static int online_css(struct cgroup_subsys_state
*css
)
5008 struct cgroup_subsys
*ss
= css
->ss
;
5011 lockdep_assert_held(&cgroup_mutex
);
5014 ret
= ss
->css_online(css
);
5016 css
->flags
|= CSS_ONLINE
;
5017 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
5019 atomic_inc(&css
->online_cnt
);
5021 atomic_inc(&css
->parent
->online_cnt
);
5026 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5027 static void offline_css(struct cgroup_subsys_state
*css
)
5029 struct cgroup_subsys
*ss
= css
->ss
;
5031 lockdep_assert_held(&cgroup_mutex
);
5033 if (!(css
->flags
& CSS_ONLINE
))
5036 if (ss
->css_offline
)
5037 ss
->css_offline(css
);
5039 css
->flags
&= ~CSS_ONLINE
;
5040 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
5042 wake_up_all(&css
->cgroup
->offline_waitq
);
5046 * css_create - create a cgroup_subsys_state
5047 * @cgrp: the cgroup new css will be associated with
5048 * @ss: the subsys of new css
5050 * Create a new css associated with @cgrp - @ss pair. On success, the new
5051 * css is online and installed in @cgrp. This function doesn't create the
5052 * interface files. Returns 0 on success, -errno on failure.
5054 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
5055 struct cgroup_subsys
*ss
)
5057 struct cgroup
*parent
= cgroup_parent(cgrp
);
5058 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
5059 struct cgroup_subsys_state
*css
;
5062 lockdep_assert_held(&cgroup_mutex
);
5064 css
= ss
->css_alloc(parent_css
);
5066 css
= ERR_PTR(-ENOMEM
);
5070 init_and_link_css(css
, ss
, cgrp
);
5072 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
5076 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
5081 /* @css is ready to be brought online now, make it visible */
5082 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
5083 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
5085 err
= online_css(css
);
5089 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
5090 cgroup_parent(parent
)) {
5091 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5092 current
->comm
, current
->pid
, ss
->name
);
5093 if (!strcmp(ss
->name
, "memory"))
5094 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5095 ss
->warned_broken_hierarchy
= true;
5101 list_del_rcu(&css
->sibling
);
5103 list_del_rcu(&css
->rstat_css_node
);
5104 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
5105 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
5106 return ERR_PTR(err
);
5110 * The returned cgroup is fully initialized including its control mask, but
5111 * it isn't associated with its kernfs_node and doesn't have the control
5114 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
5116 struct cgroup_root
*root
= parent
->root
;
5117 struct cgroup
*cgrp
, *tcgrp
;
5118 int level
= parent
->level
+ 1;
5121 /* allocate the cgroup and its ID, 0 is reserved for the root */
5122 cgrp
= kzalloc(struct_size(cgrp
, ancestor_ids
, (level
+ 1)),
5125 return ERR_PTR(-ENOMEM
);
5127 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
5131 if (cgroup_on_dfl(parent
)) {
5132 ret
= cgroup_rstat_init(cgrp
);
5134 goto out_cancel_ref
;
5138 * Temporarily set the pointer to NULL, so idr_find() won't return
5139 * a half-baked cgroup.
5141 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
5147 init_cgroup_housekeeping(cgrp
);
5149 cgrp
->self
.parent
= &parent
->self
;
5151 cgrp
->level
= level
;
5153 ret
= psi_cgroup_alloc(cgrp
);
5157 ret
= cgroup_bpf_inherit(cgrp
);
5162 * New cgroup inherits effective freeze counter, and
5163 * if the parent has to be frozen, the child has too.
5165 cgrp
->freezer
.e_freeze
= parent
->freezer
.e_freeze
;
5166 if (cgrp
->freezer
.e_freeze
)
5167 set_bit(CGRP_FROZEN
, &cgrp
->flags
);
5169 spin_lock_irq(&css_set_lock
);
5170 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5171 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
5173 if (tcgrp
!= cgrp
) {
5174 tcgrp
->nr_descendants
++;
5177 * If the new cgroup is frozen, all ancestor cgroups
5178 * get a new frozen descendant, but their state can't
5179 * change because of this.
5181 if (cgrp
->freezer
.e_freeze
)
5182 tcgrp
->freezer
.nr_frozen_descendants
++;
5185 spin_unlock_irq(&css_set_lock
);
5187 if (notify_on_release(parent
))
5188 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
5190 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
5191 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
5193 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5195 /* allocation complete, commit to creation */
5196 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5197 atomic_inc(&root
->nr_cgrps
);
5198 cgroup_get_live(parent
);
5201 * @cgrp is now fully operational. If something fails after this
5202 * point, it'll be released via the normal destruction path.
5204 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
5207 * On the default hierarchy, a child doesn't automatically inherit
5208 * subtree_control from the parent. Each is configured manually.
5210 if (!cgroup_on_dfl(cgrp
))
5211 cgrp
->subtree_control
= cgroup_control(cgrp
);
5213 cgroup_propagate_control(cgrp
);
5218 psi_cgroup_free(cgrp
);
5220 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
5222 if (cgroup_on_dfl(parent
))
5223 cgroup_rstat_exit(cgrp
);
5225 percpu_ref_exit(&cgrp
->self
.refcnt
);
5228 return ERR_PTR(ret
);
5231 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
5233 struct cgroup
*cgroup
;
5237 lockdep_assert_held(&cgroup_mutex
);
5239 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
5240 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
5243 if (level
> cgroup
->max_depth
)
5254 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
5256 struct cgroup
*parent
, *cgrp
;
5257 struct kernfs_node
*kn
;
5260 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5261 if (strchr(name
, '\n'))
5264 parent
= cgroup_kn_lock_live(parent_kn
, false);
5268 if (!cgroup_check_hierarchy_limits(parent
)) {
5273 cgrp
= cgroup_create(parent
);
5275 ret
= PTR_ERR(cgrp
);
5279 /* create the directory */
5280 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
5288 * This extra ref will be put in cgroup_free_fn() and guarantees
5289 * that @cgrp->kn is always accessible.
5293 ret
= cgroup_kn_set_ugid(kn
);
5297 ret
= css_populate_dir(&cgrp
->self
);
5301 ret
= cgroup_apply_control_enable(cgrp
);
5305 TRACE_CGROUP_PATH(mkdir
, cgrp
);
5307 /* let's create and online css's */
5308 kernfs_activate(kn
);
5314 cgroup_destroy_locked(cgrp
);
5316 cgroup_kn_unlock(parent_kn
);
5321 * This is called when the refcnt of a css is confirmed to be killed.
5322 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5323 * initate destruction and put the css ref from kill_css().
5325 static void css_killed_work_fn(struct work_struct
*work
)
5327 struct cgroup_subsys_state
*css
=
5328 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5330 mutex_lock(&cgroup_mutex
);
5335 /* @css can't go away while we're holding cgroup_mutex */
5337 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5339 mutex_unlock(&cgroup_mutex
);
5342 /* css kill confirmation processing requires process context, bounce */
5343 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5345 struct cgroup_subsys_state
*css
=
5346 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5348 if (atomic_dec_and_test(&css
->online_cnt
)) {
5349 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5350 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5355 * kill_css - destroy a css
5356 * @css: css to destroy
5358 * This function initiates destruction of @css by removing cgroup interface
5359 * files and putting its base reference. ->css_offline() will be invoked
5360 * asynchronously once css_tryget_online() is guaranteed to fail and when
5361 * the reference count reaches zero, @css will be released.
5363 static void kill_css(struct cgroup_subsys_state
*css
)
5365 lockdep_assert_held(&cgroup_mutex
);
5367 if (css
->flags
& CSS_DYING
)
5370 css
->flags
|= CSS_DYING
;
5373 * This must happen before css is disassociated with its cgroup.
5374 * See seq_css() for details.
5379 * Killing would put the base ref, but we need to keep it alive
5380 * until after ->css_offline().
5385 * cgroup core guarantees that, by the time ->css_offline() is
5386 * invoked, no new css reference will be given out via
5387 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5388 * proceed to offlining css's because percpu_ref_kill() doesn't
5389 * guarantee that the ref is seen as killed on all CPUs on return.
5391 * Use percpu_ref_kill_and_confirm() to get notifications as each
5392 * css is confirmed to be seen as killed on all CPUs.
5394 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5398 * cgroup_destroy_locked - the first stage of cgroup destruction
5399 * @cgrp: cgroup to be destroyed
5401 * css's make use of percpu refcnts whose killing latency shouldn't be
5402 * exposed to userland and are RCU protected. Also, cgroup core needs to
5403 * guarantee that css_tryget_online() won't succeed by the time
5404 * ->css_offline() is invoked. To satisfy all the requirements,
5405 * destruction is implemented in the following two steps.
5407 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5408 * userland visible parts and start killing the percpu refcnts of
5409 * css's. Set up so that the next stage will be kicked off once all
5410 * the percpu refcnts are confirmed to be killed.
5412 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5413 * rest of destruction. Once all cgroup references are gone, the
5414 * cgroup is RCU-freed.
5416 * This function implements s1. After this step, @cgrp is gone as far as
5417 * the userland is concerned and a new cgroup with the same name may be
5418 * created. As cgroup doesn't care about the names internally, this
5419 * doesn't cause any problem.
5421 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5422 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5424 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5425 struct cgroup_subsys_state
*css
;
5426 struct cgrp_cset_link
*link
;
5429 lockdep_assert_held(&cgroup_mutex
);
5432 * Only migration can raise populated from zero and we're already
5433 * holding cgroup_mutex.
5435 if (cgroup_is_populated(cgrp
))
5439 * Make sure there's no live children. We can't test emptiness of
5440 * ->self.children as dead children linger on it while being
5441 * drained; otherwise, "rmdir parent/child parent" may fail.
5443 if (css_has_online_children(&cgrp
->self
))
5447 * Mark @cgrp and the associated csets dead. The former prevents
5448 * further task migration and child creation by disabling
5449 * cgroup_lock_live_group(). The latter makes the csets ignored by
5450 * the migration path.
5452 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5454 spin_lock_irq(&css_set_lock
);
5455 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5456 link
->cset
->dead
= true;
5457 spin_unlock_irq(&css_set_lock
);
5459 /* initiate massacre of all css's */
5460 for_each_css(css
, ssid
, cgrp
)
5463 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5464 css_clear_dir(&cgrp
->self
);
5465 kernfs_remove(cgrp
->kn
);
5467 if (parent
&& cgroup_is_threaded(cgrp
))
5468 parent
->nr_threaded_children
--;
5470 spin_lock_irq(&css_set_lock
);
5471 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5472 tcgrp
->nr_descendants
--;
5473 tcgrp
->nr_dying_descendants
++;
5475 * If the dying cgroup is frozen, decrease frozen descendants
5476 * counters of ancestor cgroups.
5478 if (test_bit(CGRP_FROZEN
, &cgrp
->flags
))
5479 tcgrp
->freezer
.nr_frozen_descendants
--;
5481 spin_unlock_irq(&css_set_lock
);
5483 cgroup1_check_for_release(parent
);
5485 /* put the base reference */
5486 percpu_ref_kill(&cgrp
->self
.refcnt
);
5491 int cgroup_rmdir(struct kernfs_node
*kn
)
5493 struct cgroup
*cgrp
;
5496 cgrp
= cgroup_kn_lock_live(kn
, false);
5500 ret
= cgroup_destroy_locked(cgrp
);
5502 TRACE_CGROUP_PATH(rmdir
, cgrp
);
5504 cgroup_kn_unlock(kn
);
5508 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5509 .show_options
= cgroup_show_options
,
5510 .mkdir
= cgroup_mkdir
,
5511 .rmdir
= cgroup_rmdir
,
5512 .show_path
= cgroup_show_path
,
5515 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5517 struct cgroup_subsys_state
*css
;
5519 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5521 mutex_lock(&cgroup_mutex
);
5523 idr_init(&ss
->css_idr
);
5524 INIT_LIST_HEAD(&ss
->cfts
);
5526 /* Create the root cgroup state for this subsystem */
5527 ss
->root
= &cgrp_dfl_root
;
5528 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5529 /* We don't handle early failures gracefully */
5530 BUG_ON(IS_ERR(css
));
5531 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5534 * Root csses are never destroyed and we can't initialize
5535 * percpu_ref during early init. Disable refcnting.
5537 css
->flags
|= CSS_NO_REF
;
5540 /* allocation can't be done safely during early init */
5543 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5544 BUG_ON(css
->id
< 0);
5547 /* Update the init_css_set to contain a subsys
5548 * pointer to this state - since the subsystem is
5549 * newly registered, all tasks and hence the
5550 * init_css_set is in the subsystem's root cgroup. */
5551 init_css_set
.subsys
[ss
->id
] = css
;
5553 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5554 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5555 have_release_callback
|= (bool)ss
->release
<< ss
->id
;
5556 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5558 /* At system boot, before all subsystems have been
5559 * registered, no tasks have been forked, so we don't
5560 * need to invoke fork callbacks here. */
5561 BUG_ON(!list_empty(&init_task
.tasks
));
5563 BUG_ON(online_css(css
));
5565 mutex_unlock(&cgroup_mutex
);
5569 * cgroup_init_early - cgroup initialization at system boot
5571 * Initialize cgroups at system boot, and initialize any
5572 * subsystems that request early init.
5574 int __init
cgroup_init_early(void)
5576 static struct cgroup_fs_context __initdata ctx
;
5577 struct cgroup_subsys
*ss
;
5580 ctx
.root
= &cgrp_dfl_root
;
5581 init_cgroup_root(&ctx
);
5582 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5584 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5586 for_each_subsys(ss
, i
) {
5587 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5588 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5589 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5591 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5592 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5595 ss
->name
= cgroup_subsys_name
[i
];
5596 if (!ss
->legacy_name
)
5597 ss
->legacy_name
= cgroup_subsys_name
[i
];
5600 cgroup_init_subsys(ss
, true);
5605 static u16 cgroup_disable_mask __initdata
;
5608 * cgroup_init - cgroup initialization
5610 * Register cgroup filesystem and /proc file, and initialize
5611 * any subsystems that didn't request early init.
5613 int __init
cgroup_init(void)
5615 struct cgroup_subsys
*ss
;
5618 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5619 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5620 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5621 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5623 cgroup_rstat_boot();
5626 * The latency of the synchronize_rcu() is too high for cgroups,
5627 * avoid it at the cost of forcing all readers into the slow path.
5629 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5631 get_user_ns(init_cgroup_ns
.user_ns
);
5633 mutex_lock(&cgroup_mutex
);
5636 * Add init_css_set to the hash table so that dfl_root can link to
5639 hash_add(css_set_table
, &init_css_set
.hlist
,
5640 css_set_hash(init_css_set
.subsys
));
5642 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5644 mutex_unlock(&cgroup_mutex
);
5646 for_each_subsys(ss
, ssid
) {
5647 if (ss
->early_init
) {
5648 struct cgroup_subsys_state
*css
=
5649 init_css_set
.subsys
[ss
->id
];
5651 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5653 BUG_ON(css
->id
< 0);
5655 cgroup_init_subsys(ss
, false);
5658 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5659 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5662 * Setting dfl_root subsys_mask needs to consider the
5663 * disabled flag and cftype registration needs kmalloc,
5664 * both of which aren't available during early_init.
5666 if (cgroup_disable_mask
& (1 << ssid
)) {
5667 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5668 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5673 if (cgroup1_ssid_disabled(ssid
))
5674 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5677 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5679 /* implicit controllers must be threaded too */
5680 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5682 if (ss
->implicit_on_dfl
)
5683 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5684 else if (!ss
->dfl_cftypes
)
5685 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5688 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5690 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5691 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5693 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5694 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5698 ss
->bind(init_css_set
.subsys
[ssid
]);
5700 mutex_lock(&cgroup_mutex
);
5701 css_populate_dir(init_css_set
.subsys
[ssid
]);
5702 mutex_unlock(&cgroup_mutex
);
5705 /* init_css_set.subsys[] has been updated, re-hash */
5706 hash_del(&init_css_set
.hlist
);
5707 hash_add(css_set_table
, &init_css_set
.hlist
,
5708 css_set_hash(init_css_set
.subsys
));
5710 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5711 WARN_ON(register_filesystem(&cgroup_fs_type
));
5712 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5713 WARN_ON(!proc_create_single("cgroups", 0, NULL
, proc_cgroupstats_show
));
5718 static int __init
cgroup_wq_init(void)
5721 * There isn't much point in executing destruction path in
5722 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5723 * Use 1 for @max_active.
5725 * We would prefer to do this in cgroup_init() above, but that
5726 * is called before init_workqueues(): so leave this until after.
5728 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5729 BUG_ON(!cgroup_destroy_wq
);
5732 core_initcall(cgroup_wq_init
);
5734 void cgroup_path_from_kernfs_id(const union kernfs_node_id
*id
,
5735 char *buf
, size_t buflen
)
5737 struct kernfs_node
*kn
;
5739 kn
= kernfs_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5742 kernfs_path(kn
, buf
, buflen
);
5747 * proc_cgroup_show()
5748 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5749 * - Used for /proc/<pid>/cgroup.
5751 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5752 struct pid
*pid
, struct task_struct
*tsk
)
5756 struct cgroup_root
*root
;
5759 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5763 mutex_lock(&cgroup_mutex
);
5764 spin_lock_irq(&css_set_lock
);
5766 for_each_root(root
) {
5767 struct cgroup_subsys
*ss
;
5768 struct cgroup
*cgrp
;
5769 int ssid
, count
= 0;
5771 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5774 seq_printf(m
, "%d:", root
->hierarchy_id
);
5775 if (root
!= &cgrp_dfl_root
)
5776 for_each_subsys(ss
, ssid
)
5777 if (root
->subsys_mask
& (1 << ssid
))
5778 seq_printf(m
, "%s%s", count
++ ? "," : "",
5780 if (strlen(root
->name
))
5781 seq_printf(m
, "%sname=%s", count
? "," : "",
5785 cgrp
= task_cgroup_from_root(tsk
, root
);
5788 * On traditional hierarchies, all zombie tasks show up as
5789 * belonging to the root cgroup. On the default hierarchy,
5790 * while a zombie doesn't show up in "cgroup.procs" and
5791 * thus can't be migrated, its /proc/PID/cgroup keeps
5792 * reporting the cgroup it belonged to before exiting. If
5793 * the cgroup is removed before the zombie is reaped,
5794 * " (deleted)" is appended to the cgroup path.
5796 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5797 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5798 current
->nsproxy
->cgroup_ns
);
5799 if (retval
>= PATH_MAX
)
5800 retval
= -ENAMETOOLONG
;
5809 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5810 seq_puts(m
, " (deleted)\n");
5817 spin_unlock_irq(&css_set_lock
);
5818 mutex_unlock(&cgroup_mutex
);
5825 * cgroup_fork - initialize cgroup related fields during copy_process()
5826 * @child: pointer to task_struct of forking parent process.
5828 * A task is associated with the init_css_set until cgroup_post_fork()
5829 * attaches it to the parent's css_set. Empty cg_list indicates that
5830 * @child isn't holding reference to its css_set.
5832 void cgroup_fork(struct task_struct
*child
)
5834 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5835 INIT_LIST_HEAD(&child
->cg_list
);
5839 * cgroup_can_fork - called on a new task before the process is exposed
5840 * @child: the task in question.
5842 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5843 * returns an error, the fork aborts with that error code. This allows for
5844 * a cgroup subsystem to conditionally allow or deny new forks.
5846 int cgroup_can_fork(struct task_struct
*child
)
5848 struct cgroup_subsys
*ss
;
5851 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5852 ret
= ss
->can_fork(child
);
5855 } while_each_subsys_mask();
5860 for_each_subsys(ss
, j
) {
5863 if (ss
->cancel_fork
)
5864 ss
->cancel_fork(child
);
5871 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5872 * @child: the task in question
5874 * This calls the cancel_fork() callbacks if a fork failed *after*
5875 * cgroup_can_fork() succeded.
5877 void cgroup_cancel_fork(struct task_struct
*child
)
5879 struct cgroup_subsys
*ss
;
5882 for_each_subsys(ss
, i
)
5883 if (ss
->cancel_fork
)
5884 ss
->cancel_fork(child
);
5888 * cgroup_post_fork - called on a new task after adding it to the task list
5889 * @child: the task in question
5891 * Adds the task to the list running through its css_set if necessary and
5892 * call the subsystem fork() callbacks. Has to be after the task is
5893 * visible on the task list in case we race with the first call to
5894 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5897 void cgroup_post_fork(struct task_struct
*child
)
5899 struct cgroup_subsys
*ss
;
5903 * This may race against cgroup_enable_task_cg_lists(). As that
5904 * function sets use_task_css_set_links before grabbing
5905 * tasklist_lock and we just went through tasklist_lock to add
5906 * @child, it's guaranteed that either we see the set
5907 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5908 * @child during its iteration.
5910 * If we won the race, @child is associated with %current's
5911 * css_set. Grabbing css_set_lock guarantees both that the
5912 * association is stable, and, on completion of the parent's
5913 * migration, @child is visible in the source of migration or
5914 * already in the destination cgroup. This guarantee is necessary
5915 * when implementing operations which need to migrate all tasks of
5916 * a cgroup to another.
5918 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5919 * will remain in init_css_set. This is safe because all tasks are
5920 * in the init_css_set before cg_links is enabled and there's no
5921 * operation which transfers all tasks out of init_css_set.
5923 if (use_task_css_set_links
) {
5924 struct css_set
*cset
;
5926 spin_lock_irq(&css_set_lock
);
5927 cset
= task_css_set(current
);
5928 if (list_empty(&child
->cg_list
)) {
5931 css_set_move_task(child
, NULL
, cset
, false);
5935 * If the cgroup has to be frozen, the new task has too.
5936 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5937 * the task into the frozen state.
5939 if (unlikely(cgroup_task_freeze(child
))) {
5940 spin_lock(&child
->sighand
->siglock
);
5941 WARN_ON_ONCE(child
->frozen
);
5942 child
->jobctl
|= JOBCTL_TRAP_FREEZE
;
5943 spin_unlock(&child
->sighand
->siglock
);
5946 * Calling cgroup_update_frozen() isn't required here,
5947 * because it will be called anyway a bit later
5948 * from do_freezer_trap(). So we avoid cgroup's
5949 * transient switch from the frozen state and back.
5953 spin_unlock_irq(&css_set_lock
);
5957 * Call ss->fork(). This must happen after @child is linked on
5958 * css_set; otherwise, @child might change state between ->fork()
5959 * and addition to css_set.
5961 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5963 } while_each_subsys_mask();
5967 * cgroup_exit - detach cgroup from exiting task
5968 * @tsk: pointer to task_struct of exiting process
5970 * Description: Detach cgroup from @tsk and release it.
5972 * Note that cgroups marked notify_on_release force every task in
5973 * them to take the global cgroup_mutex mutex when exiting.
5974 * This could impact scaling on very large systems. Be reluctant to
5975 * use notify_on_release cgroups where very high task exit scaling
5976 * is required on large systems.
5978 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5979 * call cgroup_exit() while the task is still competent to handle
5980 * notify_on_release(), then leave the task attached to the root cgroup in
5981 * each hierarchy for the remainder of its exit. No need to bother with
5982 * init_css_set refcnting. init_css_set never goes away and we can't race
5983 * with migration path - PF_EXITING is visible to migration path.
5985 void cgroup_exit(struct task_struct
*tsk
)
5987 struct cgroup_subsys
*ss
;
5988 struct css_set
*cset
;
5992 * Unlink from @tsk from its css_set. As migration path can't race
5993 * with us, we can check css_set and cg_list without synchronization.
5995 cset
= task_css_set(tsk
);
5997 if (!list_empty(&tsk
->cg_list
)) {
5998 spin_lock_irq(&css_set_lock
);
5999 css_set_move_task(tsk
, cset
, NULL
, false);
6002 WARN_ON_ONCE(cgroup_task_frozen(tsk
));
6003 if (unlikely(cgroup_task_freeze(tsk
)))
6004 cgroup_update_frozen(task_dfl_cgroup(tsk
));
6006 spin_unlock_irq(&css_set_lock
);
6011 /* see cgroup_post_fork() for details */
6012 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
6014 } while_each_subsys_mask();
6017 void cgroup_release(struct task_struct
*task
)
6019 struct cgroup_subsys
*ss
;
6022 do_each_subsys_mask(ss
, ssid
, have_release_callback
) {
6024 } while_each_subsys_mask();
6027 void cgroup_free(struct task_struct
*task
)
6029 struct css_set
*cset
= task_css_set(task
);
6033 static int __init
cgroup_disable(char *str
)
6035 struct cgroup_subsys
*ss
;
6039 while ((token
= strsep(&str
, ",")) != NULL
) {
6043 for_each_subsys(ss
, i
) {
6044 if (strcmp(token
, ss
->name
) &&
6045 strcmp(token
, ss
->legacy_name
))
6047 cgroup_disable_mask
|= 1 << i
;
6052 __setup("cgroup_disable=", cgroup_disable
);
6054 void __init __weak
enable_debug_cgroup(void) { }
6056 static int __init
enable_cgroup_debug(char *str
)
6058 cgroup_debug
= true;
6059 enable_debug_cgroup();
6062 __setup("cgroup_debug", enable_cgroup_debug
);
6065 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6066 * @dentry: directory dentry of interest
6067 * @ss: subsystem of interest
6069 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6070 * to get the corresponding css and return it. If such css doesn't exist
6071 * or can't be pinned, an ERR_PTR value is returned.
6073 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
6074 struct cgroup_subsys
*ss
)
6076 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
6077 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
6078 struct cgroup_subsys_state
*css
= NULL
;
6079 struct cgroup
*cgrp
;
6081 /* is @dentry a cgroup dir? */
6082 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
6083 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
6084 return ERR_PTR(-EBADF
);
6089 * This path doesn't originate from kernfs and @kn could already
6090 * have been or be removed at any point. @kn->priv is RCU
6091 * protected for this access. See css_release_work_fn() for details.
6093 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
6095 css
= cgroup_css(cgrp
, ss
);
6097 if (!css
|| !css_tryget_online(css
))
6098 css
= ERR_PTR(-ENOENT
);
6105 * css_from_id - lookup css by id
6106 * @id: the cgroup id
6107 * @ss: cgroup subsys to be looked into
6109 * Returns the css if there's valid one with @id, otherwise returns NULL.
6110 * Should be called under rcu_read_lock().
6112 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
6114 WARN_ON_ONCE(!rcu_read_lock_held());
6115 return idr_find(&ss
->css_idr
, id
);
6119 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6120 * @path: path on the default hierarchy
6122 * Find the cgroup at @path on the default hierarchy, increment its
6123 * reference count and return it. Returns pointer to the found cgroup on
6124 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6125 * if @path points to a non-directory.
6127 struct cgroup
*cgroup_get_from_path(const char *path
)
6129 struct kernfs_node
*kn
;
6130 struct cgroup
*cgrp
;
6132 mutex_lock(&cgroup_mutex
);
6134 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
6136 if (kernfs_type(kn
) == KERNFS_DIR
) {
6138 cgroup_get_live(cgrp
);
6140 cgrp
= ERR_PTR(-ENOTDIR
);
6144 cgrp
= ERR_PTR(-ENOENT
);
6147 mutex_unlock(&cgroup_mutex
);
6150 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
6153 * cgroup_get_from_fd - get a cgroup pointer from a fd
6154 * @fd: fd obtained by open(cgroup2_dir)
6156 * Find the cgroup from a fd which should be obtained
6157 * by opening a cgroup directory. Returns a pointer to the
6158 * cgroup on success. ERR_PTR is returned if the cgroup
6161 struct cgroup
*cgroup_get_from_fd(int fd
)
6163 struct cgroup_subsys_state
*css
;
6164 struct cgroup
*cgrp
;
6169 return ERR_PTR(-EBADF
);
6171 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
6174 return ERR_CAST(css
);
6177 if (!cgroup_on_dfl(cgrp
)) {
6179 return ERR_PTR(-EBADF
);
6184 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
6187 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6188 * definition in cgroup-defs.h.
6190 #ifdef CONFIG_SOCK_CGROUP_DATA
6192 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6194 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
6195 static bool cgroup_sk_alloc_disabled __read_mostly
;
6197 void cgroup_sk_alloc_disable(void)
6199 if (cgroup_sk_alloc_disabled
)
6201 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6202 cgroup_sk_alloc_disabled
= true;
6207 #define cgroup_sk_alloc_disabled false
6211 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
6213 if (cgroup_sk_alloc_disabled
)
6216 /* Socket clone path */
6219 * We might be cloning a socket which is left in an empty
6220 * cgroup and the cgroup might have already been rmdir'd.
6221 * Don't use cgroup_get_live().
6223 cgroup_get(sock_cgroup_ptr(skcd
));
6230 struct css_set
*cset
;
6232 cset
= task_css_set(current
);
6233 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
6234 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
6243 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
6245 cgroup_put(sock_cgroup_ptr(skcd
));
6248 #endif /* CONFIG_SOCK_CGROUP_DATA */
6250 #ifdef CONFIG_CGROUP_BPF
6251 int cgroup_bpf_attach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
6252 enum bpf_attach_type type
, u32 flags
)
6256 mutex_lock(&cgroup_mutex
);
6257 ret
= __cgroup_bpf_attach(cgrp
, prog
, type
, flags
);
6258 mutex_unlock(&cgroup_mutex
);
6261 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
6262 enum bpf_attach_type type
, u32 flags
)
6266 mutex_lock(&cgroup_mutex
);
6267 ret
= __cgroup_bpf_detach(cgrp
, prog
, type
);
6268 mutex_unlock(&cgroup_mutex
);
6271 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
6272 union bpf_attr __user
*uattr
)
6276 mutex_lock(&cgroup_mutex
);
6277 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
6278 mutex_unlock(&cgroup_mutex
);
6281 #endif /* CONFIG_CGROUP_BPF */
6284 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
6285 ssize_t size
, const char *prefix
)
6290 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
6291 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
6295 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
6297 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
6299 if (WARN_ON(ret
>= size
))
6306 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6309 struct cgroup_subsys
*ss
;
6313 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
6316 for_each_subsys(ss
, ssid
)
6317 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
6319 cgroup_subsys_name
[ssid
]);
6323 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
6325 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
6328 return snprintf(buf
, PAGE_SIZE
, "nsdelegate\n");
6330 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
6332 static struct attribute
*cgroup_sysfs_attrs
[] = {
6333 &cgroup_delegate_attr
.attr
,
6334 &cgroup_features_attr
.attr
,
6338 static const struct attribute_group cgroup_sysfs_attr_group
= {
6339 .attrs
= cgroup_sysfs_attrs
,
6343 static int __init
cgroup_sysfs_init(void)
6345 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
6347 subsys_initcall(cgroup_sysfs_init
);
6348 #endif /* CONFIG_SYSFS */