clk: samsung: Add bus clock for GPU/G3D on Exynos4412
[linux/fpc-iii.git] / kernel / cgroup / cgroup.c
blob217cec4e22c68c6053b0e8406b670affd64963dc
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/fs_parser.h>
58 #include <linux/sched/cputime.h>
59 #include <linux/psi.h>
60 #include <net/sock.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/cgroup.h>
65 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
66 MAX_CFTYPE_NAME + 2)
67 /* let's not notify more than 100 times per second */
68 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
74 * css_set_lock protects task->cgroups pointer, the list of css_set
75 * objects, and the chain of tasks off each css_set.
77 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
78 * cgroup.h can use them for lockdep annotations.
80 DEFINE_MUTEX(cgroup_mutex);
81 DEFINE_SPINLOCK(css_set_lock);
83 #ifdef CONFIG_PROVE_RCU
84 EXPORT_SYMBOL_GPL(cgroup_mutex);
85 EXPORT_SYMBOL_GPL(css_set_lock);
86 #endif
88 DEFINE_SPINLOCK(trace_cgroup_path_lock);
89 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 bool cgroup_debug __read_mostly;
93 * Protects cgroup_idr and css_idr so that IDs can be released without
94 * grabbing cgroup_mutex.
96 static DEFINE_SPINLOCK(cgroup_idr_lock);
99 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
100 * against file removal/re-creation across css hiding.
102 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
104 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
106 #define cgroup_assert_mutex_or_rcu_locked() \
107 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
108 !lockdep_is_held(&cgroup_mutex), \
109 "cgroup_mutex or RCU read lock required");
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
117 static struct workqueue_struct *cgroup_destroy_wq;
119 /* generate an array of cgroup subsystem pointers */
120 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
121 struct cgroup_subsys *cgroup_subsys[] = {
122 #include <linux/cgroup_subsys.h>
124 #undef SUBSYS
126 /* array of cgroup subsystem names */
127 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
128 static const char *cgroup_subsys_name[] = {
129 #include <linux/cgroup_subsys.h>
131 #undef SUBSYS
133 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
134 #define SUBSYS(_x) \
135 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
136 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
137 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
138 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
139 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
143 static struct static_key_true *cgroup_subsys_enabled_key[] = {
144 #include <linux/cgroup_subsys.h>
146 #undef SUBSYS
148 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
149 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
150 #include <linux/cgroup_subsys.h>
152 #undef SUBSYS
154 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
157 * The default hierarchy, reserved for the subsystems that are otherwise
158 * unattached - it never has more than a single cgroup, and all tasks are
159 * part of that cgroup.
161 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
162 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
165 * The default hierarchy always exists but is hidden until mounted for the
166 * first time. This is for backward compatibility.
168 static bool cgrp_dfl_visible;
170 /* some controllers are not supported in the default hierarchy */
171 static u16 cgrp_dfl_inhibit_ss_mask;
173 /* some controllers are implicitly enabled on the default hierarchy */
174 static u16 cgrp_dfl_implicit_ss_mask;
176 /* some controllers can be threaded on the default hierarchy */
177 static u16 cgrp_dfl_threaded_ss_mask;
179 /* The list of hierarchy roots */
180 LIST_HEAD(cgroup_roots);
181 static int cgroup_root_count;
183 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
184 static DEFINE_IDR(cgroup_hierarchy_idr);
187 * Assign a monotonically increasing serial number to csses. It guarantees
188 * cgroups with bigger numbers are newer than those with smaller numbers.
189 * Also, as csses are always appended to the parent's ->children list, it
190 * guarantees that sibling csses are always sorted in the ascending serial
191 * number order on the list. Protected by cgroup_mutex.
193 static u64 css_serial_nr_next = 1;
196 * These bitmasks identify subsystems with specific features to avoid
197 * having to do iterative checks repeatedly.
199 static u16 have_fork_callback __read_mostly;
200 static u16 have_exit_callback __read_mostly;
201 static u16 have_release_callback __read_mostly;
202 static u16 have_canfork_callback __read_mostly;
204 /* cgroup namespace for init task */
205 struct cgroup_namespace init_cgroup_ns = {
206 .count = REFCOUNT_INIT(2),
207 .user_ns = &init_user_ns,
208 .ns.ops = &cgroupns_operations,
209 .ns.inum = PROC_CGROUP_INIT_INO,
210 .root_cset = &init_css_set,
213 static struct file_system_type cgroup2_fs_type;
214 static struct cftype cgroup_base_files[];
216 static int cgroup_apply_control(struct cgroup *cgrp);
217 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
218 static void css_task_iter_advance(struct css_task_iter *it);
219 static int cgroup_destroy_locked(struct cgroup *cgrp);
220 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
221 struct cgroup_subsys *ss);
222 static void css_release(struct percpu_ref *ref);
223 static void kill_css(struct cgroup_subsys_state *css);
224 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
226 bool is_add);
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
236 bool cgroup_ssid_enabled(int ssid)
238 if (CGROUP_SUBSYS_COUNT == 0)
239 return false;
241 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
245 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
246 * @cgrp: the cgroup of interest
248 * The default hierarchy is the v2 interface of cgroup and this function
249 * can be used to test whether a cgroup is on the default hierarchy for
250 * cases where a subsystem should behave differnetly depending on the
251 * interface version.
253 * The set of behaviors which change on the default hierarchy are still
254 * being determined and the mount option is prefixed with __DEVEL__.
256 * List of changed behaviors:
258 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
259 * and "name" are disallowed.
261 * - When mounting an existing superblock, mount options should match.
263 * - Remount is disallowed.
265 * - rename(2) is disallowed.
267 * - "tasks" is removed. Everything should be at process granularity. Use
268 * "cgroup.procs" instead.
270 * - "cgroup.procs" is not sorted. pids will be unique unless they got
271 * recycled inbetween reads.
273 * - "release_agent" and "notify_on_release" are removed. Replacement
274 * notification mechanism will be implemented.
276 * - "cgroup.clone_children" is removed.
278 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
279 * and its descendants contain no task; otherwise, 1. The file also
280 * generates kernfs notification which can be monitored through poll and
281 * [di]notify when the value of the file changes.
283 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
284 * take masks of ancestors with non-empty cpus/mems, instead of being
285 * moved to an ancestor.
287 * - cpuset: a task can be moved into an empty cpuset, and again it takes
288 * masks of ancestors.
290 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
291 * is not created.
293 * - blkcg: blk-throttle becomes properly hierarchical.
295 * - debug: disallowed on the default hierarchy.
297 bool cgroup_on_dfl(const struct cgroup *cgrp)
299 return cgrp->root == &cgrp_dfl_root;
302 /* IDR wrappers which synchronize using cgroup_idr_lock */
303 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
304 gfp_t gfp_mask)
306 int ret;
308 idr_preload(gfp_mask);
309 spin_lock_bh(&cgroup_idr_lock);
310 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
311 spin_unlock_bh(&cgroup_idr_lock);
312 idr_preload_end();
313 return ret;
316 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
318 void *ret;
320 spin_lock_bh(&cgroup_idr_lock);
321 ret = idr_replace(idr, ptr, id);
322 spin_unlock_bh(&cgroup_idr_lock);
323 return ret;
326 static void cgroup_idr_remove(struct idr *idr, int id)
328 spin_lock_bh(&cgroup_idr_lock);
329 idr_remove(idr, id);
330 spin_unlock_bh(&cgroup_idr_lock);
333 static bool cgroup_has_tasks(struct cgroup *cgrp)
335 return cgrp->nr_populated_csets;
338 bool cgroup_is_threaded(struct cgroup *cgrp)
340 return cgrp->dom_cgrp != cgrp;
343 /* can @cgrp host both domain and threaded children? */
344 static bool cgroup_is_mixable(struct cgroup *cgrp)
347 * Root isn't under domain level resource control exempting it from
348 * the no-internal-process constraint, so it can serve as a thread
349 * root and a parent of resource domains at the same time.
351 return !cgroup_parent(cgrp);
354 /* can @cgrp become a thread root? should always be true for a thread root */
355 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
357 /* mixables don't care */
358 if (cgroup_is_mixable(cgrp))
359 return true;
361 /* domain roots can't be nested under threaded */
362 if (cgroup_is_threaded(cgrp))
363 return false;
365 /* can only have either domain or threaded children */
366 if (cgrp->nr_populated_domain_children)
367 return false;
369 /* and no domain controllers can be enabled */
370 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
371 return false;
373 return true;
376 /* is @cgrp root of a threaded subtree? */
377 bool cgroup_is_thread_root(struct cgroup *cgrp)
379 /* thread root should be a domain */
380 if (cgroup_is_threaded(cgrp))
381 return false;
383 /* a domain w/ threaded children is a thread root */
384 if (cgrp->nr_threaded_children)
385 return true;
388 * A domain which has tasks and explicit threaded controllers
389 * enabled is a thread root.
391 if (cgroup_has_tasks(cgrp) &&
392 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
393 return true;
395 return false;
398 /* a domain which isn't connected to the root w/o brekage can't be used */
399 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
401 /* the cgroup itself can be a thread root */
402 if (cgroup_is_threaded(cgrp))
403 return false;
405 /* but the ancestors can't be unless mixable */
406 while ((cgrp = cgroup_parent(cgrp))) {
407 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
408 return false;
409 if (cgroup_is_threaded(cgrp))
410 return false;
413 return true;
416 /* subsystems visibly enabled on a cgroup */
417 static u16 cgroup_control(struct cgroup *cgrp)
419 struct cgroup *parent = cgroup_parent(cgrp);
420 u16 root_ss_mask = cgrp->root->subsys_mask;
422 if (parent) {
423 u16 ss_mask = parent->subtree_control;
425 /* threaded cgroups can only have threaded controllers */
426 if (cgroup_is_threaded(cgrp))
427 ss_mask &= cgrp_dfl_threaded_ss_mask;
428 return ss_mask;
431 if (cgroup_on_dfl(cgrp))
432 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
433 cgrp_dfl_implicit_ss_mask);
434 return root_ss_mask;
437 /* subsystems enabled on a cgroup */
438 static u16 cgroup_ss_mask(struct cgroup *cgrp)
440 struct cgroup *parent = cgroup_parent(cgrp);
442 if (parent) {
443 u16 ss_mask = parent->subtree_ss_mask;
445 /* threaded cgroups can only have threaded controllers */
446 if (cgroup_is_threaded(cgrp))
447 ss_mask &= cgrp_dfl_threaded_ss_mask;
448 return ss_mask;
451 return cgrp->root->subsys_mask;
455 * cgroup_css - obtain a cgroup's css for the specified subsystem
456 * @cgrp: the cgroup of interest
457 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
459 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
460 * function must be called either under cgroup_mutex or rcu_read_lock() and
461 * the caller is responsible for pinning the returned css if it wants to
462 * keep accessing it outside the said locks. This function may return
463 * %NULL if @cgrp doesn't have @subsys_id enabled.
465 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
466 struct cgroup_subsys *ss)
468 if (ss)
469 return rcu_dereference_check(cgrp->subsys[ss->id],
470 lockdep_is_held(&cgroup_mutex));
471 else
472 return &cgrp->self;
476 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
477 * @cgrp: the cgroup of interest
478 * @ss: the subsystem of interest
480 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
481 * or is offline, %NULL is returned.
483 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
484 struct cgroup_subsys *ss)
486 struct cgroup_subsys_state *css;
488 rcu_read_lock();
489 css = cgroup_css(cgrp, ss);
490 if (!css || !css_tryget_online(css))
491 css = NULL;
492 rcu_read_unlock();
494 return css;
498 * cgroup_e_css_by_mask - obtain a cgroup's effective css for the specified ss
499 * @cgrp: the cgroup of interest
500 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
502 * Similar to cgroup_css() but returns the effective css, which is defined
503 * as the matching css of the nearest ancestor including self which has @ss
504 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
505 * function is guaranteed to return non-NULL css.
507 static struct cgroup_subsys_state *cgroup_e_css_by_mask(struct cgroup *cgrp,
508 struct cgroup_subsys *ss)
510 lockdep_assert_held(&cgroup_mutex);
512 if (!ss)
513 return &cgrp->self;
516 * This function is used while updating css associations and thus
517 * can't test the csses directly. Test ss_mask.
519 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
520 cgrp = cgroup_parent(cgrp);
521 if (!cgrp)
522 return NULL;
525 return cgroup_css(cgrp, ss);
529 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
530 * @cgrp: the cgroup of interest
531 * @ss: the subsystem of interest
533 * Find and get the effective css of @cgrp for @ss. The effective css is
534 * defined as the matching css of the nearest ancestor including self which
535 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
536 * the root css is returned, so this function always returns a valid css.
538 * The returned css is not guaranteed to be online, and therefore it is the
539 * callers responsiblity to tryget a reference for it.
541 struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
542 struct cgroup_subsys *ss)
544 struct cgroup_subsys_state *css;
546 do {
547 css = cgroup_css(cgrp, ss);
549 if (css)
550 return css;
551 cgrp = cgroup_parent(cgrp);
552 } while (cgrp);
554 return init_css_set.subsys[ss->id];
558 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
559 * @cgrp: the cgroup of interest
560 * @ss: the subsystem of interest
562 * Find and get the effective css of @cgrp for @ss. The effective css is
563 * defined as the matching css of the nearest ancestor including self which
564 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
565 * the root css is returned, so this function always returns a valid css.
566 * The returned css must be put using css_put().
568 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
569 struct cgroup_subsys *ss)
571 struct cgroup_subsys_state *css;
573 rcu_read_lock();
575 do {
576 css = cgroup_css(cgrp, ss);
578 if (css && css_tryget_online(css))
579 goto out_unlock;
580 cgrp = cgroup_parent(cgrp);
581 } while (cgrp);
583 css = init_css_set.subsys[ss->id];
584 css_get(css);
585 out_unlock:
586 rcu_read_unlock();
587 return css;
590 static void cgroup_get_live(struct cgroup *cgrp)
592 WARN_ON_ONCE(cgroup_is_dead(cgrp));
593 css_get(&cgrp->self);
597 * __cgroup_task_count - count the number of tasks in a cgroup. The caller
598 * is responsible for taking the css_set_lock.
599 * @cgrp: the cgroup in question
601 int __cgroup_task_count(const struct cgroup *cgrp)
603 int count = 0;
604 struct cgrp_cset_link *link;
606 lockdep_assert_held(&css_set_lock);
608 list_for_each_entry(link, &cgrp->cset_links, cset_link)
609 count += link->cset->nr_tasks;
611 return count;
615 * cgroup_task_count - count the number of tasks in a cgroup.
616 * @cgrp: the cgroup in question
618 int cgroup_task_count(const struct cgroup *cgrp)
620 int count;
622 spin_lock_irq(&css_set_lock);
623 count = __cgroup_task_count(cgrp);
624 spin_unlock_irq(&css_set_lock);
626 return count;
629 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
631 struct cgroup *cgrp = of->kn->parent->priv;
632 struct cftype *cft = of_cft(of);
635 * This is open and unprotected implementation of cgroup_css().
636 * seq_css() is only called from a kernfs file operation which has
637 * an active reference on the file. Because all the subsystem
638 * files are drained before a css is disassociated with a cgroup,
639 * the matching css from the cgroup's subsys table is guaranteed to
640 * be and stay valid until the enclosing operation is complete.
642 if (cft->ss)
643 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
644 else
645 return &cgrp->self;
647 EXPORT_SYMBOL_GPL(of_css);
650 * for_each_css - iterate all css's of a cgroup
651 * @css: the iteration cursor
652 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
653 * @cgrp: the target cgroup to iterate css's of
655 * Should be called under cgroup_[tree_]mutex.
657 #define for_each_css(css, ssid, cgrp) \
658 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
659 if (!((css) = rcu_dereference_check( \
660 (cgrp)->subsys[(ssid)], \
661 lockdep_is_held(&cgroup_mutex)))) { } \
662 else
665 * for_each_e_css - iterate all effective css's of a cgroup
666 * @css: the iteration cursor
667 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
668 * @cgrp: the target cgroup to iterate css's of
670 * Should be called under cgroup_[tree_]mutex.
672 #define for_each_e_css(css, ssid, cgrp) \
673 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
674 if (!((css) = cgroup_e_css_by_mask(cgrp, \
675 cgroup_subsys[(ssid)]))) \
677 else
680 * do_each_subsys_mask - filter for_each_subsys with a bitmask
681 * @ss: the iteration cursor
682 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
683 * @ss_mask: the bitmask
685 * The block will only run for cases where the ssid-th bit (1 << ssid) of
686 * @ss_mask is set.
688 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
689 unsigned long __ss_mask = (ss_mask); \
690 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
691 (ssid) = 0; \
692 break; \
694 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
695 (ss) = cgroup_subsys[ssid]; \
698 #define while_each_subsys_mask() \
701 } while (false)
703 /* iterate over child cgrps, lock should be held throughout iteration */
704 #define cgroup_for_each_live_child(child, cgrp) \
705 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
706 if (({ lockdep_assert_held(&cgroup_mutex); \
707 cgroup_is_dead(child); })) \
709 else
711 /* walk live descendants in preorder */
712 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
713 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
714 if (({ lockdep_assert_held(&cgroup_mutex); \
715 (dsct) = (d_css)->cgroup; \
716 cgroup_is_dead(dsct); })) \
718 else
720 /* walk live descendants in postorder */
721 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
722 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
723 if (({ lockdep_assert_held(&cgroup_mutex); \
724 (dsct) = (d_css)->cgroup; \
725 cgroup_is_dead(dsct); })) \
727 else
730 * The default css_set - used by init and its children prior to any
731 * hierarchies being mounted. It contains a pointer to the root state
732 * for each subsystem. Also used to anchor the list of css_sets. Not
733 * reference-counted, to improve performance when child cgroups
734 * haven't been created.
736 struct css_set init_css_set = {
737 .refcount = REFCOUNT_INIT(1),
738 .dom_cset = &init_css_set,
739 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
740 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
741 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
742 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
743 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
744 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
745 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
748 * The following field is re-initialized when this cset gets linked
749 * in cgroup_init(). However, let's initialize the field
750 * statically too so that the default cgroup can be accessed safely
751 * early during boot.
753 .dfl_cgrp = &cgrp_dfl_root.cgrp,
756 static int css_set_count = 1; /* 1 for init_css_set */
758 static bool css_set_threaded(struct css_set *cset)
760 return cset->dom_cset != cset;
764 * css_set_populated - does a css_set contain any tasks?
765 * @cset: target css_set
767 * css_set_populated() should be the same as !!cset->nr_tasks at steady
768 * state. However, css_set_populated() can be called while a task is being
769 * added to or removed from the linked list before the nr_tasks is
770 * properly updated. Hence, we can't just look at ->nr_tasks here.
772 static bool css_set_populated(struct css_set *cset)
774 lockdep_assert_held(&css_set_lock);
776 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
780 * cgroup_update_populated - update the populated count of a cgroup
781 * @cgrp: the target cgroup
782 * @populated: inc or dec populated count
784 * One of the css_sets associated with @cgrp is either getting its first
785 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
786 * count is propagated towards root so that a given cgroup's
787 * nr_populated_children is zero iff none of its descendants contain any
788 * tasks.
790 * @cgrp's interface file "cgroup.populated" is zero if both
791 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
792 * 1 otherwise. When the sum changes from or to zero, userland is notified
793 * that the content of the interface file has changed. This can be used to
794 * detect when @cgrp and its descendants become populated or empty.
796 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
798 struct cgroup *child = NULL;
799 int adj = populated ? 1 : -1;
801 lockdep_assert_held(&css_set_lock);
803 do {
804 bool was_populated = cgroup_is_populated(cgrp);
806 if (!child) {
807 cgrp->nr_populated_csets += adj;
808 } else {
809 if (cgroup_is_threaded(child))
810 cgrp->nr_populated_threaded_children += adj;
811 else
812 cgrp->nr_populated_domain_children += adj;
815 if (was_populated == cgroup_is_populated(cgrp))
816 break;
818 cgroup1_check_for_release(cgrp);
819 TRACE_CGROUP_PATH(notify_populated, cgrp,
820 cgroup_is_populated(cgrp));
821 cgroup_file_notify(&cgrp->events_file);
823 child = cgrp;
824 cgrp = cgroup_parent(cgrp);
825 } while (cgrp);
829 * css_set_update_populated - update populated state of a css_set
830 * @cset: target css_set
831 * @populated: whether @cset is populated or depopulated
833 * @cset is either getting the first task or losing the last. Update the
834 * populated counters of all associated cgroups accordingly.
836 static void css_set_update_populated(struct css_set *cset, bool populated)
838 struct cgrp_cset_link *link;
840 lockdep_assert_held(&css_set_lock);
842 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
843 cgroup_update_populated(link->cgrp, populated);
847 * css_set_move_task - move a task from one css_set to another
848 * @task: task being moved
849 * @from_cset: css_set @task currently belongs to (may be NULL)
850 * @to_cset: new css_set @task is being moved to (may be NULL)
851 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
853 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
854 * css_set, @from_cset can be NULL. If @task is being disassociated
855 * instead of moved, @to_cset can be NULL.
857 * This function automatically handles populated counter updates and
858 * css_task_iter adjustments but the caller is responsible for managing
859 * @from_cset and @to_cset's reference counts.
861 static void css_set_move_task(struct task_struct *task,
862 struct css_set *from_cset, struct css_set *to_cset,
863 bool use_mg_tasks)
865 lockdep_assert_held(&css_set_lock);
867 if (to_cset && !css_set_populated(to_cset))
868 css_set_update_populated(to_cset, true);
870 if (from_cset) {
871 struct css_task_iter *it, *pos;
873 WARN_ON_ONCE(list_empty(&task->cg_list));
876 * @task is leaving, advance task iterators which are
877 * pointing to it so that they can resume at the next
878 * position. Advancing an iterator might remove it from
879 * the list, use safe walk. See css_task_iter_advance*()
880 * for details.
882 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
883 iters_node)
884 if (it->task_pos == &task->cg_list)
885 css_task_iter_advance(it);
887 list_del_init(&task->cg_list);
888 if (!css_set_populated(from_cset))
889 css_set_update_populated(from_cset, false);
890 } else {
891 WARN_ON_ONCE(!list_empty(&task->cg_list));
894 if (to_cset) {
896 * We are synchronized through cgroup_threadgroup_rwsem
897 * against PF_EXITING setting such that we can't race
898 * against cgroup_exit() changing the css_set to
899 * init_css_set and dropping the old one.
901 WARN_ON_ONCE(task->flags & PF_EXITING);
903 cgroup_move_task(task, to_cset);
904 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
905 &to_cset->tasks);
910 * hash table for cgroup groups. This improves the performance to find
911 * an existing css_set. This hash doesn't (currently) take into
912 * account cgroups in empty hierarchies.
914 #define CSS_SET_HASH_BITS 7
915 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
917 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
919 unsigned long key = 0UL;
920 struct cgroup_subsys *ss;
921 int i;
923 for_each_subsys(ss, i)
924 key += (unsigned long)css[i];
925 key = (key >> 16) ^ key;
927 return key;
930 void put_css_set_locked(struct css_set *cset)
932 struct cgrp_cset_link *link, *tmp_link;
933 struct cgroup_subsys *ss;
934 int ssid;
936 lockdep_assert_held(&css_set_lock);
938 if (!refcount_dec_and_test(&cset->refcount))
939 return;
941 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
943 /* This css_set is dead. unlink it and release cgroup and css refs */
944 for_each_subsys(ss, ssid) {
945 list_del(&cset->e_cset_node[ssid]);
946 css_put(cset->subsys[ssid]);
948 hash_del(&cset->hlist);
949 css_set_count--;
951 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
952 list_del(&link->cset_link);
953 list_del(&link->cgrp_link);
954 if (cgroup_parent(link->cgrp))
955 cgroup_put(link->cgrp);
956 kfree(link);
959 if (css_set_threaded(cset)) {
960 list_del(&cset->threaded_csets_node);
961 put_css_set_locked(cset->dom_cset);
964 kfree_rcu(cset, rcu_head);
968 * compare_css_sets - helper function for find_existing_css_set().
969 * @cset: candidate css_set being tested
970 * @old_cset: existing css_set for a task
971 * @new_cgrp: cgroup that's being entered by the task
972 * @template: desired set of css pointers in css_set (pre-calculated)
974 * Returns true if "cset" matches "old_cset" except for the hierarchy
975 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
977 static bool compare_css_sets(struct css_set *cset,
978 struct css_set *old_cset,
979 struct cgroup *new_cgrp,
980 struct cgroup_subsys_state *template[])
982 struct cgroup *new_dfl_cgrp;
983 struct list_head *l1, *l2;
986 * On the default hierarchy, there can be csets which are
987 * associated with the same set of cgroups but different csses.
988 * Let's first ensure that csses match.
990 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
991 return false;
994 /* @cset's domain should match the default cgroup's */
995 if (cgroup_on_dfl(new_cgrp))
996 new_dfl_cgrp = new_cgrp;
997 else
998 new_dfl_cgrp = old_cset->dfl_cgrp;
1000 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
1001 return false;
1004 * Compare cgroup pointers in order to distinguish between
1005 * different cgroups in hierarchies. As different cgroups may
1006 * share the same effective css, this comparison is always
1007 * necessary.
1009 l1 = &cset->cgrp_links;
1010 l2 = &old_cset->cgrp_links;
1011 while (1) {
1012 struct cgrp_cset_link *link1, *link2;
1013 struct cgroup *cgrp1, *cgrp2;
1015 l1 = l1->next;
1016 l2 = l2->next;
1017 /* See if we reached the end - both lists are equal length. */
1018 if (l1 == &cset->cgrp_links) {
1019 BUG_ON(l2 != &old_cset->cgrp_links);
1020 break;
1021 } else {
1022 BUG_ON(l2 == &old_cset->cgrp_links);
1024 /* Locate the cgroups associated with these links. */
1025 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
1026 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
1027 cgrp1 = link1->cgrp;
1028 cgrp2 = link2->cgrp;
1029 /* Hierarchies should be linked in the same order. */
1030 BUG_ON(cgrp1->root != cgrp2->root);
1033 * If this hierarchy is the hierarchy of the cgroup
1034 * that's changing, then we need to check that this
1035 * css_set points to the new cgroup; if it's any other
1036 * hierarchy, then this css_set should point to the
1037 * same cgroup as the old css_set.
1039 if (cgrp1->root == new_cgrp->root) {
1040 if (cgrp1 != new_cgrp)
1041 return false;
1042 } else {
1043 if (cgrp1 != cgrp2)
1044 return false;
1047 return true;
1051 * find_existing_css_set - init css array and find the matching css_set
1052 * @old_cset: the css_set that we're using before the cgroup transition
1053 * @cgrp: the cgroup that we're moving into
1054 * @template: out param for the new set of csses, should be clear on entry
1056 static struct css_set *find_existing_css_set(struct css_set *old_cset,
1057 struct cgroup *cgrp,
1058 struct cgroup_subsys_state *template[])
1060 struct cgroup_root *root = cgrp->root;
1061 struct cgroup_subsys *ss;
1062 struct css_set *cset;
1063 unsigned long key;
1064 int i;
1067 * Build the set of subsystem state objects that we want to see in the
1068 * new css_set. while subsystems can change globally, the entries here
1069 * won't change, so no need for locking.
1071 for_each_subsys(ss, i) {
1072 if (root->subsys_mask & (1UL << i)) {
1074 * @ss is in this hierarchy, so we want the
1075 * effective css from @cgrp.
1077 template[i] = cgroup_e_css_by_mask(cgrp, ss);
1078 } else {
1080 * @ss is not in this hierarchy, so we don't want
1081 * to change the css.
1083 template[i] = old_cset->subsys[i];
1087 key = css_set_hash(template);
1088 hash_for_each_possible(css_set_table, cset, hlist, key) {
1089 if (!compare_css_sets(cset, old_cset, cgrp, template))
1090 continue;
1092 /* This css_set matches what we need */
1093 return cset;
1096 /* No existing cgroup group matched */
1097 return NULL;
1100 static void free_cgrp_cset_links(struct list_head *links_to_free)
1102 struct cgrp_cset_link *link, *tmp_link;
1104 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1105 list_del(&link->cset_link);
1106 kfree(link);
1111 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1112 * @count: the number of links to allocate
1113 * @tmp_links: list_head the allocated links are put on
1115 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1116 * through ->cset_link. Returns 0 on success or -errno.
1118 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1120 struct cgrp_cset_link *link;
1121 int i;
1123 INIT_LIST_HEAD(tmp_links);
1125 for (i = 0; i < count; i++) {
1126 link = kzalloc(sizeof(*link), GFP_KERNEL);
1127 if (!link) {
1128 free_cgrp_cset_links(tmp_links);
1129 return -ENOMEM;
1131 list_add(&link->cset_link, tmp_links);
1133 return 0;
1137 * link_css_set - a helper function to link a css_set to a cgroup
1138 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1139 * @cset: the css_set to be linked
1140 * @cgrp: the destination cgroup
1142 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1143 struct cgroup *cgrp)
1145 struct cgrp_cset_link *link;
1147 BUG_ON(list_empty(tmp_links));
1149 if (cgroup_on_dfl(cgrp))
1150 cset->dfl_cgrp = cgrp;
1152 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1153 link->cset = cset;
1154 link->cgrp = cgrp;
1157 * Always add links to the tail of the lists so that the lists are
1158 * in choronological order.
1160 list_move_tail(&link->cset_link, &cgrp->cset_links);
1161 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1163 if (cgroup_parent(cgrp))
1164 cgroup_get_live(cgrp);
1168 * find_css_set - return a new css_set with one cgroup updated
1169 * @old_cset: the baseline css_set
1170 * @cgrp: the cgroup to be updated
1172 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1173 * substituted into the appropriate hierarchy.
1175 static struct css_set *find_css_set(struct css_set *old_cset,
1176 struct cgroup *cgrp)
1178 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1179 struct css_set *cset;
1180 struct list_head tmp_links;
1181 struct cgrp_cset_link *link;
1182 struct cgroup_subsys *ss;
1183 unsigned long key;
1184 int ssid;
1186 lockdep_assert_held(&cgroup_mutex);
1188 /* First see if we already have a cgroup group that matches
1189 * the desired set */
1190 spin_lock_irq(&css_set_lock);
1191 cset = find_existing_css_set(old_cset, cgrp, template);
1192 if (cset)
1193 get_css_set(cset);
1194 spin_unlock_irq(&css_set_lock);
1196 if (cset)
1197 return cset;
1199 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1200 if (!cset)
1201 return NULL;
1203 /* Allocate all the cgrp_cset_link objects that we'll need */
1204 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1205 kfree(cset);
1206 return NULL;
1209 refcount_set(&cset->refcount, 1);
1210 cset->dom_cset = cset;
1211 INIT_LIST_HEAD(&cset->tasks);
1212 INIT_LIST_HEAD(&cset->mg_tasks);
1213 INIT_LIST_HEAD(&cset->task_iters);
1214 INIT_LIST_HEAD(&cset->threaded_csets);
1215 INIT_HLIST_NODE(&cset->hlist);
1216 INIT_LIST_HEAD(&cset->cgrp_links);
1217 INIT_LIST_HEAD(&cset->mg_preload_node);
1218 INIT_LIST_HEAD(&cset->mg_node);
1220 /* Copy the set of subsystem state objects generated in
1221 * find_existing_css_set() */
1222 memcpy(cset->subsys, template, sizeof(cset->subsys));
1224 spin_lock_irq(&css_set_lock);
1225 /* Add reference counts and links from the new css_set. */
1226 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1227 struct cgroup *c = link->cgrp;
1229 if (c->root == cgrp->root)
1230 c = cgrp;
1231 link_css_set(&tmp_links, cset, c);
1234 BUG_ON(!list_empty(&tmp_links));
1236 css_set_count++;
1238 /* Add @cset to the hash table */
1239 key = css_set_hash(cset->subsys);
1240 hash_add(css_set_table, &cset->hlist, key);
1242 for_each_subsys(ss, ssid) {
1243 struct cgroup_subsys_state *css = cset->subsys[ssid];
1245 list_add_tail(&cset->e_cset_node[ssid],
1246 &css->cgroup->e_csets[ssid]);
1247 css_get(css);
1250 spin_unlock_irq(&css_set_lock);
1253 * If @cset should be threaded, look up the matching dom_cset and
1254 * link them up. We first fully initialize @cset then look for the
1255 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1256 * to stay empty until we return.
1258 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1259 struct css_set *dcset;
1261 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1262 if (!dcset) {
1263 put_css_set(cset);
1264 return NULL;
1267 spin_lock_irq(&css_set_lock);
1268 cset->dom_cset = dcset;
1269 list_add_tail(&cset->threaded_csets_node,
1270 &dcset->threaded_csets);
1271 spin_unlock_irq(&css_set_lock);
1274 return cset;
1277 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1279 struct cgroup *root_cgrp = kf_root->kn->priv;
1281 return root_cgrp->root;
1284 static int cgroup_init_root_id(struct cgroup_root *root)
1286 int id;
1288 lockdep_assert_held(&cgroup_mutex);
1290 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1291 if (id < 0)
1292 return id;
1294 root->hierarchy_id = id;
1295 return 0;
1298 static void cgroup_exit_root_id(struct cgroup_root *root)
1300 lockdep_assert_held(&cgroup_mutex);
1302 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1305 void cgroup_free_root(struct cgroup_root *root)
1307 if (root) {
1308 idr_destroy(&root->cgroup_idr);
1309 kfree(root);
1313 static void cgroup_destroy_root(struct cgroup_root *root)
1315 struct cgroup *cgrp = &root->cgrp;
1316 struct cgrp_cset_link *link, *tmp_link;
1318 trace_cgroup_destroy_root(root);
1320 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1322 BUG_ON(atomic_read(&root->nr_cgrps));
1323 BUG_ON(!list_empty(&cgrp->self.children));
1325 /* Rebind all subsystems back to the default hierarchy */
1326 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1329 * Release all the links from cset_links to this hierarchy's
1330 * root cgroup
1332 spin_lock_irq(&css_set_lock);
1334 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1335 list_del(&link->cset_link);
1336 list_del(&link->cgrp_link);
1337 kfree(link);
1340 spin_unlock_irq(&css_set_lock);
1342 if (!list_empty(&root->root_list)) {
1343 list_del(&root->root_list);
1344 cgroup_root_count--;
1347 cgroup_exit_root_id(root);
1349 mutex_unlock(&cgroup_mutex);
1351 kernfs_destroy_root(root->kf_root);
1352 cgroup_free_root(root);
1356 * look up cgroup associated with current task's cgroup namespace on the
1357 * specified hierarchy
1359 static struct cgroup *
1360 current_cgns_cgroup_from_root(struct cgroup_root *root)
1362 struct cgroup *res = NULL;
1363 struct css_set *cset;
1365 lockdep_assert_held(&css_set_lock);
1367 rcu_read_lock();
1369 cset = current->nsproxy->cgroup_ns->root_cset;
1370 if (cset == &init_css_set) {
1371 res = &root->cgrp;
1372 } else {
1373 struct cgrp_cset_link *link;
1375 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1376 struct cgroup *c = link->cgrp;
1378 if (c->root == root) {
1379 res = c;
1380 break;
1384 rcu_read_unlock();
1386 BUG_ON(!res);
1387 return res;
1390 /* look up cgroup associated with given css_set on the specified hierarchy */
1391 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1392 struct cgroup_root *root)
1394 struct cgroup *res = NULL;
1396 lockdep_assert_held(&cgroup_mutex);
1397 lockdep_assert_held(&css_set_lock);
1399 if (cset == &init_css_set) {
1400 res = &root->cgrp;
1401 } else if (root == &cgrp_dfl_root) {
1402 res = cset->dfl_cgrp;
1403 } else {
1404 struct cgrp_cset_link *link;
1406 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1407 struct cgroup *c = link->cgrp;
1409 if (c->root == root) {
1410 res = c;
1411 break;
1416 BUG_ON(!res);
1417 return res;
1421 * Return the cgroup for "task" from the given hierarchy. Must be
1422 * called with cgroup_mutex and css_set_lock held.
1424 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1425 struct cgroup_root *root)
1428 * No need to lock the task - since we hold cgroup_mutex the
1429 * task can't change groups, so the only thing that can happen
1430 * is that it exits and its css is set back to init_css_set.
1432 return cset_cgroup_from_root(task_css_set(task), root);
1436 * A task must hold cgroup_mutex to modify cgroups.
1438 * Any task can increment and decrement the count field without lock.
1439 * So in general, code holding cgroup_mutex can't rely on the count
1440 * field not changing. However, if the count goes to zero, then only
1441 * cgroup_attach_task() can increment it again. Because a count of zero
1442 * means that no tasks are currently attached, therefore there is no
1443 * way a task attached to that cgroup can fork (the other way to
1444 * increment the count). So code holding cgroup_mutex can safely
1445 * assume that if the count is zero, it will stay zero. Similarly, if
1446 * a task holds cgroup_mutex on a cgroup with zero count, it
1447 * knows that the cgroup won't be removed, as cgroup_rmdir()
1448 * needs that mutex.
1450 * A cgroup can only be deleted if both its 'count' of using tasks
1451 * is zero, and its list of 'children' cgroups is empty. Since all
1452 * tasks in the system use _some_ cgroup, and since there is always at
1453 * least one task in the system (init, pid == 1), therefore, root cgroup
1454 * always has either children cgroups and/or using tasks. So we don't
1455 * need a special hack to ensure that root cgroup cannot be deleted.
1457 * P.S. One more locking exception. RCU is used to guard the
1458 * update of a tasks cgroup pointer by cgroup_attach_task()
1461 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1463 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1464 char *buf)
1466 struct cgroup_subsys *ss = cft->ss;
1468 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1469 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
1470 const char *dbg = (cft->flags & CFTYPE_DEBUG) ? ".__DEBUG__." : "";
1472 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s%s.%s",
1473 dbg, cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1474 cft->name);
1475 } else {
1476 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1478 return buf;
1482 * cgroup_file_mode - deduce file mode of a control file
1483 * @cft: the control file in question
1485 * S_IRUGO for read, S_IWUSR for write.
1487 static umode_t cgroup_file_mode(const struct cftype *cft)
1489 umode_t mode = 0;
1491 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1492 mode |= S_IRUGO;
1494 if (cft->write_u64 || cft->write_s64 || cft->write) {
1495 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1496 mode |= S_IWUGO;
1497 else
1498 mode |= S_IWUSR;
1501 return mode;
1505 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1506 * @subtree_control: the new subtree_control mask to consider
1507 * @this_ss_mask: available subsystems
1509 * On the default hierarchy, a subsystem may request other subsystems to be
1510 * enabled together through its ->depends_on mask. In such cases, more
1511 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1513 * This function calculates which subsystems need to be enabled if
1514 * @subtree_control is to be applied while restricted to @this_ss_mask.
1516 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1518 u16 cur_ss_mask = subtree_control;
1519 struct cgroup_subsys *ss;
1520 int ssid;
1522 lockdep_assert_held(&cgroup_mutex);
1524 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1526 while (true) {
1527 u16 new_ss_mask = cur_ss_mask;
1529 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1530 new_ss_mask |= ss->depends_on;
1531 } while_each_subsys_mask();
1534 * Mask out subsystems which aren't available. This can
1535 * happen only if some depended-upon subsystems were bound
1536 * to non-default hierarchies.
1538 new_ss_mask &= this_ss_mask;
1540 if (new_ss_mask == cur_ss_mask)
1541 break;
1542 cur_ss_mask = new_ss_mask;
1545 return cur_ss_mask;
1549 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1550 * @kn: the kernfs_node being serviced
1552 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1553 * the method finishes if locking succeeded. Note that once this function
1554 * returns the cgroup returned by cgroup_kn_lock_live() may become
1555 * inaccessible any time. If the caller intends to continue to access the
1556 * cgroup, it should pin it before invoking this function.
1558 void cgroup_kn_unlock(struct kernfs_node *kn)
1560 struct cgroup *cgrp;
1562 if (kernfs_type(kn) == KERNFS_DIR)
1563 cgrp = kn->priv;
1564 else
1565 cgrp = kn->parent->priv;
1567 mutex_unlock(&cgroup_mutex);
1569 kernfs_unbreak_active_protection(kn);
1570 cgroup_put(cgrp);
1574 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1575 * @kn: the kernfs_node being serviced
1576 * @drain_offline: perform offline draining on the cgroup
1578 * This helper is to be used by a cgroup kernfs method currently servicing
1579 * @kn. It breaks the active protection, performs cgroup locking and
1580 * verifies that the associated cgroup is alive. Returns the cgroup if
1581 * alive; otherwise, %NULL. A successful return should be undone by a
1582 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1583 * cgroup is drained of offlining csses before return.
1585 * Any cgroup kernfs method implementation which requires locking the
1586 * associated cgroup should use this helper. It avoids nesting cgroup
1587 * locking under kernfs active protection and allows all kernfs operations
1588 * including self-removal.
1590 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1592 struct cgroup *cgrp;
1594 if (kernfs_type(kn) == KERNFS_DIR)
1595 cgrp = kn->priv;
1596 else
1597 cgrp = kn->parent->priv;
1600 * We're gonna grab cgroup_mutex which nests outside kernfs
1601 * active_ref. cgroup liveliness check alone provides enough
1602 * protection against removal. Ensure @cgrp stays accessible and
1603 * break the active_ref protection.
1605 if (!cgroup_tryget(cgrp))
1606 return NULL;
1607 kernfs_break_active_protection(kn);
1609 if (drain_offline)
1610 cgroup_lock_and_drain_offline(cgrp);
1611 else
1612 mutex_lock(&cgroup_mutex);
1614 if (!cgroup_is_dead(cgrp))
1615 return cgrp;
1617 cgroup_kn_unlock(kn);
1618 return NULL;
1621 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1623 char name[CGROUP_FILE_NAME_MAX];
1625 lockdep_assert_held(&cgroup_mutex);
1627 if (cft->file_offset) {
1628 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1629 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1631 spin_lock_irq(&cgroup_file_kn_lock);
1632 cfile->kn = NULL;
1633 spin_unlock_irq(&cgroup_file_kn_lock);
1635 del_timer_sync(&cfile->notify_timer);
1638 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1642 * css_clear_dir - remove subsys files in a cgroup directory
1643 * @css: taget css
1645 static void css_clear_dir(struct cgroup_subsys_state *css)
1647 struct cgroup *cgrp = css->cgroup;
1648 struct cftype *cfts;
1650 if (!(css->flags & CSS_VISIBLE))
1651 return;
1653 css->flags &= ~CSS_VISIBLE;
1655 if (!css->ss) {
1656 if (cgroup_on_dfl(cgrp))
1657 cfts = cgroup_base_files;
1658 else
1659 cfts = cgroup1_base_files;
1661 cgroup_addrm_files(css, cgrp, cfts, false);
1662 } else {
1663 list_for_each_entry(cfts, &css->ss->cfts, node)
1664 cgroup_addrm_files(css, cgrp, cfts, false);
1669 * css_populate_dir - create subsys files in a cgroup directory
1670 * @css: target css
1672 * On failure, no file is added.
1674 static int css_populate_dir(struct cgroup_subsys_state *css)
1676 struct cgroup *cgrp = css->cgroup;
1677 struct cftype *cfts, *failed_cfts;
1678 int ret;
1680 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1681 return 0;
1683 if (!css->ss) {
1684 if (cgroup_on_dfl(cgrp))
1685 cfts = cgroup_base_files;
1686 else
1687 cfts = cgroup1_base_files;
1689 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1690 if (ret < 0)
1691 return ret;
1692 } else {
1693 list_for_each_entry(cfts, &css->ss->cfts, node) {
1694 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1695 if (ret < 0) {
1696 failed_cfts = cfts;
1697 goto err;
1702 css->flags |= CSS_VISIBLE;
1704 return 0;
1705 err:
1706 list_for_each_entry(cfts, &css->ss->cfts, node) {
1707 if (cfts == failed_cfts)
1708 break;
1709 cgroup_addrm_files(css, cgrp, cfts, false);
1711 return ret;
1714 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1716 struct cgroup *dcgrp = &dst_root->cgrp;
1717 struct cgroup_subsys *ss;
1718 int ssid, i, ret;
1720 lockdep_assert_held(&cgroup_mutex);
1722 do_each_subsys_mask(ss, ssid, ss_mask) {
1724 * If @ss has non-root csses attached to it, can't move.
1725 * If @ss is an implicit controller, it is exempt from this
1726 * rule and can be stolen.
1728 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1729 !ss->implicit_on_dfl)
1730 return -EBUSY;
1732 /* can't move between two non-dummy roots either */
1733 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1734 return -EBUSY;
1735 } while_each_subsys_mask();
1737 do_each_subsys_mask(ss, ssid, ss_mask) {
1738 struct cgroup_root *src_root = ss->root;
1739 struct cgroup *scgrp = &src_root->cgrp;
1740 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1741 struct css_set *cset;
1743 WARN_ON(!css || cgroup_css(dcgrp, ss));
1745 /* disable from the source */
1746 src_root->subsys_mask &= ~(1 << ssid);
1747 WARN_ON(cgroup_apply_control(scgrp));
1748 cgroup_finalize_control(scgrp, 0);
1750 /* rebind */
1751 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1752 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1753 ss->root = dst_root;
1754 css->cgroup = dcgrp;
1756 spin_lock_irq(&css_set_lock);
1757 hash_for_each(css_set_table, i, cset, hlist)
1758 list_move_tail(&cset->e_cset_node[ss->id],
1759 &dcgrp->e_csets[ss->id]);
1760 spin_unlock_irq(&css_set_lock);
1762 /* default hierarchy doesn't enable controllers by default */
1763 dst_root->subsys_mask |= 1 << ssid;
1764 if (dst_root == &cgrp_dfl_root) {
1765 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1766 } else {
1767 dcgrp->subtree_control |= 1 << ssid;
1768 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1771 ret = cgroup_apply_control(dcgrp);
1772 if (ret)
1773 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1774 ss->name, ret);
1776 if (ss->bind)
1777 ss->bind(css);
1778 } while_each_subsys_mask();
1780 kernfs_activate(dcgrp->kn);
1781 return 0;
1784 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1785 struct kernfs_root *kf_root)
1787 int len = 0;
1788 char *buf = NULL;
1789 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1790 struct cgroup *ns_cgroup;
1792 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1793 if (!buf)
1794 return -ENOMEM;
1796 spin_lock_irq(&css_set_lock);
1797 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1798 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1799 spin_unlock_irq(&css_set_lock);
1801 if (len >= PATH_MAX)
1802 len = -ERANGE;
1803 else if (len > 0) {
1804 seq_escape(sf, buf, " \t\n\\");
1805 len = 0;
1807 kfree(buf);
1808 return len;
1811 enum cgroup2_param {
1812 Opt_nsdelegate,
1813 nr__cgroup2_params
1816 static const struct fs_parameter_spec cgroup2_param_specs[] = {
1817 fsparam_flag ("nsdelegate", Opt_nsdelegate),
1821 static const struct fs_parameter_description cgroup2_fs_parameters = {
1822 .name = "cgroup2",
1823 .specs = cgroup2_param_specs,
1826 static int cgroup2_parse_param(struct fs_context *fc, struct fs_parameter *param)
1828 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1829 struct fs_parse_result result;
1830 int opt;
1832 opt = fs_parse(fc, &cgroup2_fs_parameters, param, &result);
1833 if (opt < 0)
1834 return opt;
1836 switch (opt) {
1837 case Opt_nsdelegate:
1838 ctx->flags |= CGRP_ROOT_NS_DELEGATE;
1839 return 0;
1841 return -EINVAL;
1844 static void apply_cgroup_root_flags(unsigned int root_flags)
1846 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1847 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1848 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1849 else
1850 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1854 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1856 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1857 seq_puts(seq, ",nsdelegate");
1858 return 0;
1861 static int cgroup_reconfigure(struct fs_context *fc)
1863 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
1865 apply_cgroup_root_flags(ctx->flags);
1866 return 0;
1870 * To reduce the fork() overhead for systems that are not actually using
1871 * their cgroups capability, we don't maintain the lists running through
1872 * each css_set to its tasks until we see the list actually used - in other
1873 * words after the first mount.
1875 static bool use_task_css_set_links __read_mostly;
1877 static void cgroup_enable_task_cg_lists(void)
1879 struct task_struct *p, *g;
1882 * We need tasklist_lock because RCU is not safe against
1883 * while_each_thread(). Besides, a forking task that has passed
1884 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1885 * is not guaranteed to have its child immediately visible in the
1886 * tasklist if we walk through it with RCU.
1888 read_lock(&tasklist_lock);
1889 spin_lock_irq(&css_set_lock);
1891 if (use_task_css_set_links)
1892 goto out_unlock;
1894 use_task_css_set_links = true;
1896 do_each_thread(g, p) {
1897 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1898 task_css_set(p) != &init_css_set);
1901 * We should check if the process is exiting, otherwise
1902 * it will race with cgroup_exit() in that the list
1903 * entry won't be deleted though the process has exited.
1904 * Do it while holding siglock so that we don't end up
1905 * racing against cgroup_exit().
1907 * Interrupts were already disabled while acquiring
1908 * the css_set_lock, so we do not need to disable it
1909 * again when acquiring the sighand->siglock here.
1911 spin_lock(&p->sighand->siglock);
1912 if (!(p->flags & PF_EXITING)) {
1913 struct css_set *cset = task_css_set(p);
1915 if (!css_set_populated(cset))
1916 css_set_update_populated(cset, true);
1917 list_add_tail(&p->cg_list, &cset->tasks);
1918 get_css_set(cset);
1919 cset->nr_tasks++;
1921 spin_unlock(&p->sighand->siglock);
1922 } while_each_thread(g, p);
1923 out_unlock:
1924 spin_unlock_irq(&css_set_lock);
1925 read_unlock(&tasklist_lock);
1928 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1930 struct cgroup_subsys *ss;
1931 int ssid;
1933 INIT_LIST_HEAD(&cgrp->self.sibling);
1934 INIT_LIST_HEAD(&cgrp->self.children);
1935 INIT_LIST_HEAD(&cgrp->cset_links);
1936 INIT_LIST_HEAD(&cgrp->pidlists);
1937 mutex_init(&cgrp->pidlist_mutex);
1938 cgrp->self.cgroup = cgrp;
1939 cgrp->self.flags |= CSS_ONLINE;
1940 cgrp->dom_cgrp = cgrp;
1941 cgrp->max_descendants = INT_MAX;
1942 cgrp->max_depth = INT_MAX;
1943 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1944 prev_cputime_init(&cgrp->prev_cputime);
1946 for_each_subsys(ss, ssid)
1947 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1949 init_waitqueue_head(&cgrp->offline_waitq);
1950 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1953 void init_cgroup_root(struct cgroup_fs_context *ctx)
1955 struct cgroup_root *root = ctx->root;
1956 struct cgroup *cgrp = &root->cgrp;
1958 INIT_LIST_HEAD(&root->root_list);
1959 atomic_set(&root->nr_cgrps, 1);
1960 cgrp->root = root;
1961 init_cgroup_housekeeping(cgrp);
1962 idr_init(&root->cgroup_idr);
1964 root->flags = ctx->flags;
1965 if (ctx->release_agent)
1966 strscpy(root->release_agent_path, ctx->release_agent, PATH_MAX);
1967 if (ctx->name)
1968 strscpy(root->name, ctx->name, MAX_CGROUP_ROOT_NAMELEN);
1969 if (ctx->cpuset_clone_children)
1970 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1973 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
1975 LIST_HEAD(tmp_links);
1976 struct cgroup *root_cgrp = &root->cgrp;
1977 struct kernfs_syscall_ops *kf_sops;
1978 struct css_set *cset;
1979 int i, ret;
1981 lockdep_assert_held(&cgroup_mutex);
1983 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1984 if (ret < 0)
1985 goto out;
1986 root_cgrp->id = ret;
1987 root_cgrp->ancestor_ids[0] = ret;
1989 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1990 0, GFP_KERNEL);
1991 if (ret)
1992 goto out;
1995 * We're accessing css_set_count without locking css_set_lock here,
1996 * but that's OK - it can only be increased by someone holding
1997 * cgroup_lock, and that's us. Later rebinding may disable
1998 * controllers on the default hierarchy and thus create new csets,
1999 * which can't be more than the existing ones. Allocate 2x.
2001 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
2002 if (ret)
2003 goto cancel_ref;
2005 ret = cgroup_init_root_id(root);
2006 if (ret)
2007 goto cancel_ref;
2009 kf_sops = root == &cgrp_dfl_root ?
2010 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
2012 root->kf_root = kernfs_create_root(kf_sops,
2013 KERNFS_ROOT_CREATE_DEACTIVATED |
2014 KERNFS_ROOT_SUPPORT_EXPORTOP,
2015 root_cgrp);
2016 if (IS_ERR(root->kf_root)) {
2017 ret = PTR_ERR(root->kf_root);
2018 goto exit_root_id;
2020 root_cgrp->kn = root->kf_root->kn;
2022 ret = css_populate_dir(&root_cgrp->self);
2023 if (ret)
2024 goto destroy_root;
2026 ret = rebind_subsystems(root, ss_mask);
2027 if (ret)
2028 goto destroy_root;
2030 ret = cgroup_bpf_inherit(root_cgrp);
2031 WARN_ON_ONCE(ret);
2033 trace_cgroup_setup_root(root);
2036 * There must be no failure case after here, since rebinding takes
2037 * care of subsystems' refcounts, which are explicitly dropped in
2038 * the failure exit path.
2040 list_add(&root->root_list, &cgroup_roots);
2041 cgroup_root_count++;
2044 * Link the root cgroup in this hierarchy into all the css_set
2045 * objects.
2047 spin_lock_irq(&css_set_lock);
2048 hash_for_each(css_set_table, i, cset, hlist) {
2049 link_css_set(&tmp_links, cset, root_cgrp);
2050 if (css_set_populated(cset))
2051 cgroup_update_populated(root_cgrp, true);
2053 spin_unlock_irq(&css_set_lock);
2055 BUG_ON(!list_empty(&root_cgrp->self.children));
2056 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
2058 kernfs_activate(root_cgrp->kn);
2059 ret = 0;
2060 goto out;
2062 destroy_root:
2063 kernfs_destroy_root(root->kf_root);
2064 root->kf_root = NULL;
2065 exit_root_id:
2066 cgroup_exit_root_id(root);
2067 cancel_ref:
2068 percpu_ref_exit(&root_cgrp->self.refcnt);
2069 out:
2070 free_cgrp_cset_links(&tmp_links);
2071 return ret;
2074 int cgroup_do_get_tree(struct fs_context *fc)
2076 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2077 int ret;
2079 ctx->kfc.root = ctx->root->kf_root;
2080 if (fc->fs_type == &cgroup2_fs_type)
2081 ctx->kfc.magic = CGROUP2_SUPER_MAGIC;
2082 else
2083 ctx->kfc.magic = CGROUP_SUPER_MAGIC;
2084 ret = kernfs_get_tree(fc);
2087 * In non-init cgroup namespace, instead of root cgroup's dentry,
2088 * we return the dentry corresponding to the cgroupns->root_cgrp.
2090 if (!ret && ctx->ns != &init_cgroup_ns) {
2091 struct dentry *nsdentry;
2092 struct super_block *sb = fc->root->d_sb;
2093 struct cgroup *cgrp;
2095 mutex_lock(&cgroup_mutex);
2096 spin_lock_irq(&css_set_lock);
2098 cgrp = cset_cgroup_from_root(ctx->ns->root_cset, ctx->root);
2100 spin_unlock_irq(&css_set_lock);
2101 mutex_unlock(&cgroup_mutex);
2103 nsdentry = kernfs_node_dentry(cgrp->kn, sb);
2104 dput(fc->root);
2105 fc->root = nsdentry;
2106 if (IS_ERR(nsdentry)) {
2107 ret = PTR_ERR(nsdentry);
2108 deactivate_locked_super(sb);
2112 if (!ctx->kfc.new_sb_created)
2113 cgroup_put(&ctx->root->cgrp);
2115 return ret;
2119 * Destroy a cgroup filesystem context.
2121 static void cgroup_fs_context_free(struct fs_context *fc)
2123 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2125 kfree(ctx->name);
2126 kfree(ctx->release_agent);
2127 put_cgroup_ns(ctx->ns);
2128 kernfs_free_fs_context(fc);
2129 kfree(ctx);
2132 static int cgroup_get_tree(struct fs_context *fc)
2134 struct cgroup_fs_context *ctx = cgroup_fc2context(fc);
2135 int ret;
2137 cgrp_dfl_visible = true;
2138 cgroup_get_live(&cgrp_dfl_root.cgrp);
2139 ctx->root = &cgrp_dfl_root;
2141 ret = cgroup_do_get_tree(fc);
2142 if (!ret)
2143 apply_cgroup_root_flags(ctx->flags);
2144 return ret;
2147 static const struct fs_context_operations cgroup_fs_context_ops = {
2148 .free = cgroup_fs_context_free,
2149 .parse_param = cgroup2_parse_param,
2150 .get_tree = cgroup_get_tree,
2151 .reconfigure = cgroup_reconfigure,
2154 static const struct fs_context_operations cgroup1_fs_context_ops = {
2155 .free = cgroup_fs_context_free,
2156 .parse_param = cgroup1_parse_param,
2157 .get_tree = cgroup1_get_tree,
2158 .reconfigure = cgroup1_reconfigure,
2162 * Initialise the cgroup filesystem creation/reconfiguration context. Notably,
2163 * we select the namespace we're going to use.
2165 static int cgroup_init_fs_context(struct fs_context *fc)
2167 struct cgroup_fs_context *ctx;
2169 ctx = kzalloc(sizeof(struct cgroup_fs_context), GFP_KERNEL);
2170 if (!ctx)
2171 return -ENOMEM;
2174 * The first time anyone tries to mount a cgroup, enable the list
2175 * linking each css_set to its tasks and fix up all existing tasks.
2177 if (!use_task_css_set_links)
2178 cgroup_enable_task_cg_lists();
2180 ctx->ns = current->nsproxy->cgroup_ns;
2181 get_cgroup_ns(ctx->ns);
2182 fc->fs_private = &ctx->kfc;
2183 if (fc->fs_type == &cgroup2_fs_type)
2184 fc->ops = &cgroup_fs_context_ops;
2185 else
2186 fc->ops = &cgroup1_fs_context_ops;
2187 if (fc->user_ns)
2188 put_user_ns(fc->user_ns);
2189 fc->user_ns = get_user_ns(ctx->ns->user_ns);
2190 fc->global = true;
2191 return 0;
2194 static void cgroup_kill_sb(struct super_block *sb)
2196 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2197 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2200 * If @root doesn't have any children, start killing it.
2201 * This prevents new mounts by disabling percpu_ref_tryget_live().
2202 * cgroup_mount() may wait for @root's release.
2204 * And don't kill the default root.
2206 if (list_empty(&root->cgrp.self.children) && root != &cgrp_dfl_root &&
2207 !percpu_ref_is_dying(&root->cgrp.self.refcnt))
2208 percpu_ref_kill(&root->cgrp.self.refcnt);
2209 cgroup_put(&root->cgrp);
2210 kernfs_kill_sb(sb);
2213 struct file_system_type cgroup_fs_type = {
2214 .name = "cgroup",
2215 .init_fs_context = cgroup_init_fs_context,
2216 .parameters = &cgroup1_fs_parameters,
2217 .kill_sb = cgroup_kill_sb,
2218 .fs_flags = FS_USERNS_MOUNT,
2221 static struct file_system_type cgroup2_fs_type = {
2222 .name = "cgroup2",
2223 .init_fs_context = cgroup_init_fs_context,
2224 .parameters = &cgroup2_fs_parameters,
2225 .kill_sb = cgroup_kill_sb,
2226 .fs_flags = FS_USERNS_MOUNT,
2229 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2230 struct cgroup_namespace *ns)
2232 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2234 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2237 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2238 struct cgroup_namespace *ns)
2240 int ret;
2242 mutex_lock(&cgroup_mutex);
2243 spin_lock_irq(&css_set_lock);
2245 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2247 spin_unlock_irq(&css_set_lock);
2248 mutex_unlock(&cgroup_mutex);
2250 return ret;
2252 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2255 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2256 * @task: target task
2257 * @buf: the buffer to write the path into
2258 * @buflen: the length of the buffer
2260 * Determine @task's cgroup on the first (the one with the lowest non-zero
2261 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2262 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2263 * cgroup controller callbacks.
2265 * Return value is the same as kernfs_path().
2267 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2269 struct cgroup_root *root;
2270 struct cgroup *cgrp;
2271 int hierarchy_id = 1;
2272 int ret;
2274 mutex_lock(&cgroup_mutex);
2275 spin_lock_irq(&css_set_lock);
2277 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2279 if (root) {
2280 cgrp = task_cgroup_from_root(task, root);
2281 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2282 } else {
2283 /* if no hierarchy exists, everyone is in "/" */
2284 ret = strlcpy(buf, "/", buflen);
2287 spin_unlock_irq(&css_set_lock);
2288 mutex_unlock(&cgroup_mutex);
2289 return ret;
2291 EXPORT_SYMBOL_GPL(task_cgroup_path);
2294 * cgroup_migrate_add_task - add a migration target task to a migration context
2295 * @task: target task
2296 * @mgctx: target migration context
2298 * Add @task, which is a migration target, to @mgctx->tset. This function
2299 * becomes noop if @task doesn't need to be migrated. @task's css_set
2300 * should have been added as a migration source and @task->cg_list will be
2301 * moved from the css_set's tasks list to mg_tasks one.
2303 static void cgroup_migrate_add_task(struct task_struct *task,
2304 struct cgroup_mgctx *mgctx)
2306 struct css_set *cset;
2308 lockdep_assert_held(&css_set_lock);
2310 /* @task either already exited or can't exit until the end */
2311 if (task->flags & PF_EXITING)
2312 return;
2314 /* leave @task alone if post_fork() hasn't linked it yet */
2315 if (list_empty(&task->cg_list))
2316 return;
2318 cset = task_css_set(task);
2319 if (!cset->mg_src_cgrp)
2320 return;
2322 mgctx->tset.nr_tasks++;
2324 list_move_tail(&task->cg_list, &cset->mg_tasks);
2325 if (list_empty(&cset->mg_node))
2326 list_add_tail(&cset->mg_node,
2327 &mgctx->tset.src_csets);
2328 if (list_empty(&cset->mg_dst_cset->mg_node))
2329 list_add_tail(&cset->mg_dst_cset->mg_node,
2330 &mgctx->tset.dst_csets);
2334 * cgroup_taskset_first - reset taskset and return the first task
2335 * @tset: taskset of interest
2336 * @dst_cssp: output variable for the destination css
2338 * @tset iteration is initialized and the first task is returned.
2340 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2341 struct cgroup_subsys_state **dst_cssp)
2343 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2344 tset->cur_task = NULL;
2346 return cgroup_taskset_next(tset, dst_cssp);
2350 * cgroup_taskset_next - iterate to the next task in taskset
2351 * @tset: taskset of interest
2352 * @dst_cssp: output variable for the destination css
2354 * Return the next task in @tset. Iteration must have been initialized
2355 * with cgroup_taskset_first().
2357 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2358 struct cgroup_subsys_state **dst_cssp)
2360 struct css_set *cset = tset->cur_cset;
2361 struct task_struct *task = tset->cur_task;
2363 while (&cset->mg_node != tset->csets) {
2364 if (!task)
2365 task = list_first_entry(&cset->mg_tasks,
2366 struct task_struct, cg_list);
2367 else
2368 task = list_next_entry(task, cg_list);
2370 if (&task->cg_list != &cset->mg_tasks) {
2371 tset->cur_cset = cset;
2372 tset->cur_task = task;
2375 * This function may be called both before and
2376 * after cgroup_taskset_migrate(). The two cases
2377 * can be distinguished by looking at whether @cset
2378 * has its ->mg_dst_cset set.
2380 if (cset->mg_dst_cset)
2381 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2382 else
2383 *dst_cssp = cset->subsys[tset->ssid];
2385 return task;
2388 cset = list_next_entry(cset, mg_node);
2389 task = NULL;
2392 return NULL;
2396 * cgroup_taskset_migrate - migrate a taskset
2397 * @mgctx: migration context
2399 * Migrate tasks in @mgctx as setup by migration preparation functions.
2400 * This function fails iff one of the ->can_attach callbacks fails and
2401 * guarantees that either all or none of the tasks in @mgctx are migrated.
2402 * @mgctx is consumed regardless of success.
2404 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2406 struct cgroup_taskset *tset = &mgctx->tset;
2407 struct cgroup_subsys *ss;
2408 struct task_struct *task, *tmp_task;
2409 struct css_set *cset, *tmp_cset;
2410 int ssid, failed_ssid, ret;
2412 /* check that we can legitimately attach to the cgroup */
2413 if (tset->nr_tasks) {
2414 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2415 if (ss->can_attach) {
2416 tset->ssid = ssid;
2417 ret = ss->can_attach(tset);
2418 if (ret) {
2419 failed_ssid = ssid;
2420 goto out_cancel_attach;
2423 } while_each_subsys_mask();
2427 * Now that we're guaranteed success, proceed to move all tasks to
2428 * the new cgroup. There are no failure cases after here, so this
2429 * is the commit point.
2431 spin_lock_irq(&css_set_lock);
2432 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2433 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2434 struct css_set *from_cset = task_css_set(task);
2435 struct css_set *to_cset = cset->mg_dst_cset;
2437 get_css_set(to_cset);
2438 to_cset->nr_tasks++;
2439 css_set_move_task(task, from_cset, to_cset, true);
2440 from_cset->nr_tasks--;
2442 * If the source or destination cgroup is frozen,
2443 * the task might require to change its state.
2445 cgroup_freezer_migrate_task(task, from_cset->dfl_cgrp,
2446 to_cset->dfl_cgrp);
2447 put_css_set_locked(from_cset);
2451 spin_unlock_irq(&css_set_lock);
2454 * Migration is committed, all target tasks are now on dst_csets.
2455 * Nothing is sensitive to fork() after this point. Notify
2456 * controllers that migration is complete.
2458 tset->csets = &tset->dst_csets;
2460 if (tset->nr_tasks) {
2461 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2462 if (ss->attach) {
2463 tset->ssid = ssid;
2464 ss->attach(tset);
2466 } while_each_subsys_mask();
2469 ret = 0;
2470 goto out_release_tset;
2472 out_cancel_attach:
2473 if (tset->nr_tasks) {
2474 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2475 if (ssid == failed_ssid)
2476 break;
2477 if (ss->cancel_attach) {
2478 tset->ssid = ssid;
2479 ss->cancel_attach(tset);
2481 } while_each_subsys_mask();
2483 out_release_tset:
2484 spin_lock_irq(&css_set_lock);
2485 list_splice_init(&tset->dst_csets, &tset->src_csets);
2486 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2487 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2488 list_del_init(&cset->mg_node);
2490 spin_unlock_irq(&css_set_lock);
2493 * Re-initialize the cgroup_taskset structure in case it is reused
2494 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2495 * iteration.
2497 tset->nr_tasks = 0;
2498 tset->csets = &tset->src_csets;
2499 return ret;
2503 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2504 * @dst_cgrp: destination cgroup to test
2506 * On the default hierarchy, except for the mixable, (possible) thread root
2507 * and threaded cgroups, subtree_control must be zero for migration
2508 * destination cgroups with tasks so that child cgroups don't compete
2509 * against tasks.
2511 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2513 /* v1 doesn't have any restriction */
2514 if (!cgroup_on_dfl(dst_cgrp))
2515 return 0;
2517 /* verify @dst_cgrp can host resources */
2518 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2519 return -EOPNOTSUPP;
2521 /* mixables don't care */
2522 if (cgroup_is_mixable(dst_cgrp))
2523 return 0;
2526 * If @dst_cgrp is already or can become a thread root or is
2527 * threaded, it doesn't matter.
2529 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2530 return 0;
2532 /* apply no-internal-process constraint */
2533 if (dst_cgrp->subtree_control)
2534 return -EBUSY;
2536 return 0;
2540 * cgroup_migrate_finish - cleanup after attach
2541 * @mgctx: migration context
2543 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2544 * those functions for details.
2546 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2548 LIST_HEAD(preloaded);
2549 struct css_set *cset, *tmp_cset;
2551 lockdep_assert_held(&cgroup_mutex);
2553 spin_lock_irq(&css_set_lock);
2555 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2556 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2558 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2559 cset->mg_src_cgrp = NULL;
2560 cset->mg_dst_cgrp = NULL;
2561 cset->mg_dst_cset = NULL;
2562 list_del_init(&cset->mg_preload_node);
2563 put_css_set_locked(cset);
2566 spin_unlock_irq(&css_set_lock);
2570 * cgroup_migrate_add_src - add a migration source css_set
2571 * @src_cset: the source css_set to add
2572 * @dst_cgrp: the destination cgroup
2573 * @mgctx: migration context
2575 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2576 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2577 * up by cgroup_migrate_finish().
2579 * This function may be called without holding cgroup_threadgroup_rwsem
2580 * even if the target is a process. Threads may be created and destroyed
2581 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2582 * into play and the preloaded css_sets are guaranteed to cover all
2583 * migrations.
2585 void cgroup_migrate_add_src(struct css_set *src_cset,
2586 struct cgroup *dst_cgrp,
2587 struct cgroup_mgctx *mgctx)
2589 struct cgroup *src_cgrp;
2591 lockdep_assert_held(&cgroup_mutex);
2592 lockdep_assert_held(&css_set_lock);
2595 * If ->dead, @src_set is associated with one or more dead cgroups
2596 * and doesn't contain any migratable tasks. Ignore it early so
2597 * that the rest of migration path doesn't get confused by it.
2599 if (src_cset->dead)
2600 return;
2602 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2604 if (!list_empty(&src_cset->mg_preload_node))
2605 return;
2607 WARN_ON(src_cset->mg_src_cgrp);
2608 WARN_ON(src_cset->mg_dst_cgrp);
2609 WARN_ON(!list_empty(&src_cset->mg_tasks));
2610 WARN_ON(!list_empty(&src_cset->mg_node));
2612 src_cset->mg_src_cgrp = src_cgrp;
2613 src_cset->mg_dst_cgrp = dst_cgrp;
2614 get_css_set(src_cset);
2615 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2619 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2620 * @mgctx: migration context
2622 * Tasks are about to be moved and all the source css_sets have been
2623 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2624 * pins all destination css_sets, links each to its source, and append them
2625 * to @mgctx->preloaded_dst_csets.
2627 * This function must be called after cgroup_migrate_add_src() has been
2628 * called on each migration source css_set. After migration is performed
2629 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2630 * @mgctx.
2632 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2634 struct css_set *src_cset, *tmp_cset;
2636 lockdep_assert_held(&cgroup_mutex);
2638 /* look up the dst cset for each src cset and link it to src */
2639 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2640 mg_preload_node) {
2641 struct css_set *dst_cset;
2642 struct cgroup_subsys *ss;
2643 int ssid;
2645 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2646 if (!dst_cset)
2647 return -ENOMEM;
2649 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2652 * If src cset equals dst, it's noop. Drop the src.
2653 * cgroup_migrate() will skip the cset too. Note that we
2654 * can't handle src == dst as some nodes are used by both.
2656 if (src_cset == dst_cset) {
2657 src_cset->mg_src_cgrp = NULL;
2658 src_cset->mg_dst_cgrp = NULL;
2659 list_del_init(&src_cset->mg_preload_node);
2660 put_css_set(src_cset);
2661 put_css_set(dst_cset);
2662 continue;
2665 src_cset->mg_dst_cset = dst_cset;
2667 if (list_empty(&dst_cset->mg_preload_node))
2668 list_add_tail(&dst_cset->mg_preload_node,
2669 &mgctx->preloaded_dst_csets);
2670 else
2671 put_css_set(dst_cset);
2673 for_each_subsys(ss, ssid)
2674 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2675 mgctx->ss_mask |= 1 << ssid;
2678 return 0;
2682 * cgroup_migrate - migrate a process or task to a cgroup
2683 * @leader: the leader of the process or the task to migrate
2684 * @threadgroup: whether @leader points to the whole process or a single task
2685 * @mgctx: migration context
2687 * Migrate a process or task denoted by @leader. If migrating a process,
2688 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2689 * responsible for invoking cgroup_migrate_add_src() and
2690 * cgroup_migrate_prepare_dst() on the targets before invoking this
2691 * function and following up with cgroup_migrate_finish().
2693 * As long as a controller's ->can_attach() doesn't fail, this function is
2694 * guaranteed to succeed. This means that, excluding ->can_attach()
2695 * failure, when migrating multiple targets, the success or failure can be
2696 * decided for all targets by invoking group_migrate_prepare_dst() before
2697 * actually starting migrating.
2699 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2700 struct cgroup_mgctx *mgctx)
2702 struct task_struct *task;
2705 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2706 * already PF_EXITING could be freed from underneath us unless we
2707 * take an rcu_read_lock.
2709 spin_lock_irq(&css_set_lock);
2710 rcu_read_lock();
2711 task = leader;
2712 do {
2713 cgroup_migrate_add_task(task, mgctx);
2714 if (!threadgroup)
2715 break;
2716 } while_each_thread(leader, task);
2717 rcu_read_unlock();
2718 spin_unlock_irq(&css_set_lock);
2720 return cgroup_migrate_execute(mgctx);
2724 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2725 * @dst_cgrp: the cgroup to attach to
2726 * @leader: the task or the leader of the threadgroup to be attached
2727 * @threadgroup: attach the whole threadgroup?
2729 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2731 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2732 bool threadgroup)
2734 DEFINE_CGROUP_MGCTX(mgctx);
2735 struct task_struct *task;
2736 int ret;
2738 ret = cgroup_migrate_vet_dst(dst_cgrp);
2739 if (ret)
2740 return ret;
2742 /* look up all src csets */
2743 spin_lock_irq(&css_set_lock);
2744 rcu_read_lock();
2745 task = leader;
2746 do {
2747 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2748 if (!threadgroup)
2749 break;
2750 } while_each_thread(leader, task);
2751 rcu_read_unlock();
2752 spin_unlock_irq(&css_set_lock);
2754 /* prepare dst csets and commit */
2755 ret = cgroup_migrate_prepare_dst(&mgctx);
2756 if (!ret)
2757 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2759 cgroup_migrate_finish(&mgctx);
2761 if (!ret)
2762 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2764 return ret;
2767 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2768 __acquires(&cgroup_threadgroup_rwsem)
2770 struct task_struct *tsk;
2771 pid_t pid;
2773 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2774 return ERR_PTR(-EINVAL);
2776 percpu_down_write(&cgroup_threadgroup_rwsem);
2778 rcu_read_lock();
2779 if (pid) {
2780 tsk = find_task_by_vpid(pid);
2781 if (!tsk) {
2782 tsk = ERR_PTR(-ESRCH);
2783 goto out_unlock_threadgroup;
2785 } else {
2786 tsk = current;
2789 if (threadgroup)
2790 tsk = tsk->group_leader;
2793 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2794 * If userland migrates such a kthread to a non-root cgroup, it can
2795 * become trapped in a cpuset, or RT kthread may be born in a
2796 * cgroup with no rt_runtime allocated. Just say no.
2798 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2799 tsk = ERR_PTR(-EINVAL);
2800 goto out_unlock_threadgroup;
2803 get_task_struct(tsk);
2804 goto out_unlock_rcu;
2806 out_unlock_threadgroup:
2807 percpu_up_write(&cgroup_threadgroup_rwsem);
2808 out_unlock_rcu:
2809 rcu_read_unlock();
2810 return tsk;
2813 void cgroup_procs_write_finish(struct task_struct *task)
2814 __releases(&cgroup_threadgroup_rwsem)
2816 struct cgroup_subsys *ss;
2817 int ssid;
2819 /* release reference from cgroup_procs_write_start() */
2820 put_task_struct(task);
2822 percpu_up_write(&cgroup_threadgroup_rwsem);
2823 for_each_subsys(ss, ssid)
2824 if (ss->post_attach)
2825 ss->post_attach();
2828 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2830 struct cgroup_subsys *ss;
2831 bool printed = false;
2832 int ssid;
2834 do_each_subsys_mask(ss, ssid, ss_mask) {
2835 if (printed)
2836 seq_putc(seq, ' ');
2837 seq_printf(seq, "%s", ss->name);
2838 printed = true;
2839 } while_each_subsys_mask();
2840 if (printed)
2841 seq_putc(seq, '\n');
2844 /* show controllers which are enabled from the parent */
2845 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2847 struct cgroup *cgrp = seq_css(seq)->cgroup;
2849 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2850 return 0;
2853 /* show controllers which are enabled for a given cgroup's children */
2854 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2856 struct cgroup *cgrp = seq_css(seq)->cgroup;
2858 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2859 return 0;
2863 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2864 * @cgrp: root of the subtree to update csses for
2866 * @cgrp's control masks have changed and its subtree's css associations
2867 * need to be updated accordingly. This function looks up all css_sets
2868 * which are attached to the subtree, creates the matching updated css_sets
2869 * and migrates the tasks to the new ones.
2871 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2873 DEFINE_CGROUP_MGCTX(mgctx);
2874 struct cgroup_subsys_state *d_css;
2875 struct cgroup *dsct;
2876 struct css_set *src_cset;
2877 int ret;
2879 lockdep_assert_held(&cgroup_mutex);
2881 percpu_down_write(&cgroup_threadgroup_rwsem);
2883 /* look up all csses currently attached to @cgrp's subtree */
2884 spin_lock_irq(&css_set_lock);
2885 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2886 struct cgrp_cset_link *link;
2888 list_for_each_entry(link, &dsct->cset_links, cset_link)
2889 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2891 spin_unlock_irq(&css_set_lock);
2893 /* NULL dst indicates self on default hierarchy */
2894 ret = cgroup_migrate_prepare_dst(&mgctx);
2895 if (ret)
2896 goto out_finish;
2898 spin_lock_irq(&css_set_lock);
2899 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2900 struct task_struct *task, *ntask;
2902 /* all tasks in src_csets need to be migrated */
2903 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2904 cgroup_migrate_add_task(task, &mgctx);
2906 spin_unlock_irq(&css_set_lock);
2908 ret = cgroup_migrate_execute(&mgctx);
2909 out_finish:
2910 cgroup_migrate_finish(&mgctx);
2911 percpu_up_write(&cgroup_threadgroup_rwsem);
2912 return ret;
2916 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2917 * @cgrp: root of the target subtree
2919 * Because css offlining is asynchronous, userland may try to re-enable a
2920 * controller while the previous css is still around. This function grabs
2921 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2923 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2924 __acquires(&cgroup_mutex)
2926 struct cgroup *dsct;
2927 struct cgroup_subsys_state *d_css;
2928 struct cgroup_subsys *ss;
2929 int ssid;
2931 restart:
2932 mutex_lock(&cgroup_mutex);
2934 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2935 for_each_subsys(ss, ssid) {
2936 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2937 DEFINE_WAIT(wait);
2939 if (!css || !percpu_ref_is_dying(&css->refcnt))
2940 continue;
2942 cgroup_get_live(dsct);
2943 prepare_to_wait(&dsct->offline_waitq, &wait,
2944 TASK_UNINTERRUPTIBLE);
2946 mutex_unlock(&cgroup_mutex);
2947 schedule();
2948 finish_wait(&dsct->offline_waitq, &wait);
2950 cgroup_put(dsct);
2951 goto restart;
2957 * cgroup_save_control - save control masks and dom_cgrp of a subtree
2958 * @cgrp: root of the target subtree
2960 * Save ->subtree_control, ->subtree_ss_mask and ->dom_cgrp to the
2961 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
2962 * itself.
2964 static void cgroup_save_control(struct cgroup *cgrp)
2966 struct cgroup *dsct;
2967 struct cgroup_subsys_state *d_css;
2969 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2970 dsct->old_subtree_control = dsct->subtree_control;
2971 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2972 dsct->old_dom_cgrp = dsct->dom_cgrp;
2977 * cgroup_propagate_control - refresh control masks of a subtree
2978 * @cgrp: root of the target subtree
2980 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2981 * ->subtree_control and propagate controller availability through the
2982 * subtree so that descendants don't have unavailable controllers enabled.
2984 static void cgroup_propagate_control(struct cgroup *cgrp)
2986 struct cgroup *dsct;
2987 struct cgroup_subsys_state *d_css;
2989 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2990 dsct->subtree_control &= cgroup_control(dsct);
2991 dsct->subtree_ss_mask =
2992 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2993 cgroup_ss_mask(dsct));
2998 * cgroup_restore_control - restore control masks and dom_cgrp of a subtree
2999 * @cgrp: root of the target subtree
3001 * Restore ->subtree_control, ->subtree_ss_mask and ->dom_cgrp from the
3002 * respective old_ prefixed fields for @cgrp's subtree including @cgrp
3003 * itself.
3005 static void cgroup_restore_control(struct cgroup *cgrp)
3007 struct cgroup *dsct;
3008 struct cgroup_subsys_state *d_css;
3010 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3011 dsct->subtree_control = dsct->old_subtree_control;
3012 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3013 dsct->dom_cgrp = dsct->old_dom_cgrp;
3017 static bool css_visible(struct cgroup_subsys_state *css)
3019 struct cgroup_subsys *ss = css->ss;
3020 struct cgroup *cgrp = css->cgroup;
3022 if (cgroup_control(cgrp) & (1 << ss->id))
3023 return true;
3024 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3025 return false;
3026 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3030 * cgroup_apply_control_enable - enable or show csses according to control
3031 * @cgrp: root of the target subtree
3033 * Walk @cgrp's subtree and create new csses or make the existing ones
3034 * visible. A css is created invisible if it's being implicitly enabled
3035 * through dependency. An invisible css is made visible when the userland
3036 * explicitly enables it.
3038 * Returns 0 on success, -errno on failure. On failure, csses which have
3039 * been processed already aren't cleaned up. The caller is responsible for
3040 * cleaning up with cgroup_apply_control_disable().
3042 static int cgroup_apply_control_enable(struct cgroup *cgrp)
3044 struct cgroup *dsct;
3045 struct cgroup_subsys_state *d_css;
3046 struct cgroup_subsys *ss;
3047 int ssid, ret;
3049 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3050 for_each_subsys(ss, ssid) {
3051 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3053 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3055 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3056 continue;
3058 if (!css) {
3059 css = css_create(dsct, ss);
3060 if (IS_ERR(css))
3061 return PTR_ERR(css);
3064 if (css_visible(css)) {
3065 ret = css_populate_dir(css);
3066 if (ret)
3067 return ret;
3072 return 0;
3076 * cgroup_apply_control_disable - kill or hide csses according to control
3077 * @cgrp: root of the target subtree
3079 * Walk @cgrp's subtree and kill and hide csses so that they match
3080 * cgroup_ss_mask() and cgroup_visible_mask().
3082 * A css is hidden when the userland requests it to be disabled while other
3083 * subsystems are still depending on it. The css must not actively control
3084 * resources and be in the vanilla state if it's made visible again later.
3085 * Controllers which may be depended upon should provide ->css_reset() for
3086 * this purpose.
3088 static void cgroup_apply_control_disable(struct cgroup *cgrp)
3090 struct cgroup *dsct;
3091 struct cgroup_subsys_state *d_css;
3092 struct cgroup_subsys *ss;
3093 int ssid;
3095 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3096 for_each_subsys(ss, ssid) {
3097 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3099 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3101 if (!css)
3102 continue;
3104 if (css->parent &&
3105 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
3106 kill_css(css);
3107 } else if (!css_visible(css)) {
3108 css_clear_dir(css);
3109 if (ss->css_reset)
3110 ss->css_reset(css);
3117 * cgroup_apply_control - apply control mask updates to the subtree
3118 * @cgrp: root of the target subtree
3120 * subsystems can be enabled and disabled in a subtree using the following
3121 * steps.
3123 * 1. Call cgroup_save_control() to stash the current state.
3124 * 2. Update ->subtree_control masks in the subtree as desired.
3125 * 3. Call cgroup_apply_control() to apply the changes.
3126 * 4. Optionally perform other related operations.
3127 * 5. Call cgroup_finalize_control() to finish up.
3129 * This function implements step 3 and propagates the mask changes
3130 * throughout @cgrp's subtree, updates csses accordingly and perform
3131 * process migrations.
3133 static int cgroup_apply_control(struct cgroup *cgrp)
3135 int ret;
3137 cgroup_propagate_control(cgrp);
3139 ret = cgroup_apply_control_enable(cgrp);
3140 if (ret)
3141 return ret;
3144 * At this point, cgroup_e_css_by_mask() results reflect the new csses
3145 * making the following cgroup_update_dfl_csses() properly update
3146 * css associations of all tasks in the subtree.
3148 ret = cgroup_update_dfl_csses(cgrp);
3149 if (ret)
3150 return ret;
3152 return 0;
3156 * cgroup_finalize_control - finalize control mask update
3157 * @cgrp: root of the target subtree
3158 * @ret: the result of the update
3160 * Finalize control mask update. See cgroup_apply_control() for more info.
3162 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3164 if (ret) {
3165 cgroup_restore_control(cgrp);
3166 cgroup_propagate_control(cgrp);
3169 cgroup_apply_control_disable(cgrp);
3172 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3174 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3176 /* if nothing is getting enabled, nothing to worry about */
3177 if (!enable)
3178 return 0;
3180 /* can @cgrp host any resources? */
3181 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3182 return -EOPNOTSUPP;
3184 /* mixables don't care */
3185 if (cgroup_is_mixable(cgrp))
3186 return 0;
3188 if (domain_enable) {
3189 /* can't enable domain controllers inside a thread subtree */
3190 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3191 return -EOPNOTSUPP;
3192 } else {
3194 * Threaded controllers can handle internal competitions
3195 * and are always allowed inside a (prospective) thread
3196 * subtree.
3198 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3199 return 0;
3203 * Controllers can't be enabled for a cgroup with tasks to avoid
3204 * child cgroups competing against tasks.
3206 if (cgroup_has_tasks(cgrp))
3207 return -EBUSY;
3209 return 0;
3212 /* change the enabled child controllers for a cgroup in the default hierarchy */
3213 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3214 char *buf, size_t nbytes,
3215 loff_t off)
3217 u16 enable = 0, disable = 0;
3218 struct cgroup *cgrp, *child;
3219 struct cgroup_subsys *ss;
3220 char *tok;
3221 int ssid, ret;
3224 * Parse input - space separated list of subsystem names prefixed
3225 * with either + or -.
3227 buf = strstrip(buf);
3228 while ((tok = strsep(&buf, " "))) {
3229 if (tok[0] == '\0')
3230 continue;
3231 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3232 if (!cgroup_ssid_enabled(ssid) ||
3233 strcmp(tok + 1, ss->name))
3234 continue;
3236 if (*tok == '+') {
3237 enable |= 1 << ssid;
3238 disable &= ~(1 << ssid);
3239 } else if (*tok == '-') {
3240 disable |= 1 << ssid;
3241 enable &= ~(1 << ssid);
3242 } else {
3243 return -EINVAL;
3245 break;
3246 } while_each_subsys_mask();
3247 if (ssid == CGROUP_SUBSYS_COUNT)
3248 return -EINVAL;
3251 cgrp = cgroup_kn_lock_live(of->kn, true);
3252 if (!cgrp)
3253 return -ENODEV;
3255 for_each_subsys(ss, ssid) {
3256 if (enable & (1 << ssid)) {
3257 if (cgrp->subtree_control & (1 << ssid)) {
3258 enable &= ~(1 << ssid);
3259 continue;
3262 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3263 ret = -ENOENT;
3264 goto out_unlock;
3266 } else if (disable & (1 << ssid)) {
3267 if (!(cgrp->subtree_control & (1 << ssid))) {
3268 disable &= ~(1 << ssid);
3269 continue;
3272 /* a child has it enabled? */
3273 cgroup_for_each_live_child(child, cgrp) {
3274 if (child->subtree_control & (1 << ssid)) {
3275 ret = -EBUSY;
3276 goto out_unlock;
3282 if (!enable && !disable) {
3283 ret = 0;
3284 goto out_unlock;
3287 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3288 if (ret)
3289 goto out_unlock;
3291 /* save and update control masks and prepare csses */
3292 cgroup_save_control(cgrp);
3294 cgrp->subtree_control |= enable;
3295 cgrp->subtree_control &= ~disable;
3297 ret = cgroup_apply_control(cgrp);
3298 cgroup_finalize_control(cgrp, ret);
3299 if (ret)
3300 goto out_unlock;
3302 kernfs_activate(cgrp->kn);
3303 out_unlock:
3304 cgroup_kn_unlock(of->kn);
3305 return ret ?: nbytes;
3309 * cgroup_enable_threaded - make @cgrp threaded
3310 * @cgrp: the target cgroup
3312 * Called when "threaded" is written to the cgroup.type interface file and
3313 * tries to make @cgrp threaded and join the parent's resource domain.
3314 * This function is never called on the root cgroup as cgroup.type doesn't
3315 * exist on it.
3317 static int cgroup_enable_threaded(struct cgroup *cgrp)
3319 struct cgroup *parent = cgroup_parent(cgrp);
3320 struct cgroup *dom_cgrp = parent->dom_cgrp;
3321 struct cgroup *dsct;
3322 struct cgroup_subsys_state *d_css;
3323 int ret;
3325 lockdep_assert_held(&cgroup_mutex);
3327 /* noop if already threaded */
3328 if (cgroup_is_threaded(cgrp))
3329 return 0;
3332 * If @cgroup is populated or has domain controllers enabled, it
3333 * can't be switched. While the below cgroup_can_be_thread_root()
3334 * test can catch the same conditions, that's only when @parent is
3335 * not mixable, so let's check it explicitly.
3337 if (cgroup_is_populated(cgrp) ||
3338 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3339 return -EOPNOTSUPP;
3341 /* we're joining the parent's domain, ensure its validity */
3342 if (!cgroup_is_valid_domain(dom_cgrp) ||
3343 !cgroup_can_be_thread_root(dom_cgrp))
3344 return -EOPNOTSUPP;
3347 * The following shouldn't cause actual migrations and should
3348 * always succeed.
3350 cgroup_save_control(cgrp);
3352 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp)
3353 if (dsct == cgrp || cgroup_is_threaded(dsct))
3354 dsct->dom_cgrp = dom_cgrp;
3356 ret = cgroup_apply_control(cgrp);
3357 if (!ret)
3358 parent->nr_threaded_children++;
3360 cgroup_finalize_control(cgrp, ret);
3361 return ret;
3364 static int cgroup_type_show(struct seq_file *seq, void *v)
3366 struct cgroup *cgrp = seq_css(seq)->cgroup;
3368 if (cgroup_is_threaded(cgrp))
3369 seq_puts(seq, "threaded\n");
3370 else if (!cgroup_is_valid_domain(cgrp))
3371 seq_puts(seq, "domain invalid\n");
3372 else if (cgroup_is_thread_root(cgrp))
3373 seq_puts(seq, "domain threaded\n");
3374 else
3375 seq_puts(seq, "domain\n");
3377 return 0;
3380 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3381 size_t nbytes, loff_t off)
3383 struct cgroup *cgrp;
3384 int ret;
3386 /* only switching to threaded mode is supported */
3387 if (strcmp(strstrip(buf), "threaded"))
3388 return -EINVAL;
3390 cgrp = cgroup_kn_lock_live(of->kn, false);
3391 if (!cgrp)
3392 return -ENOENT;
3394 /* threaded can only be enabled */
3395 ret = cgroup_enable_threaded(cgrp);
3397 cgroup_kn_unlock(of->kn);
3398 return ret ?: nbytes;
3401 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3403 struct cgroup *cgrp = seq_css(seq)->cgroup;
3404 int descendants = READ_ONCE(cgrp->max_descendants);
3406 if (descendants == INT_MAX)
3407 seq_puts(seq, "max\n");
3408 else
3409 seq_printf(seq, "%d\n", descendants);
3411 return 0;
3414 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3415 char *buf, size_t nbytes, loff_t off)
3417 struct cgroup *cgrp;
3418 int descendants;
3419 ssize_t ret;
3421 buf = strstrip(buf);
3422 if (!strcmp(buf, "max")) {
3423 descendants = INT_MAX;
3424 } else {
3425 ret = kstrtoint(buf, 0, &descendants);
3426 if (ret)
3427 return ret;
3430 if (descendants < 0)
3431 return -ERANGE;
3433 cgrp = cgroup_kn_lock_live(of->kn, false);
3434 if (!cgrp)
3435 return -ENOENT;
3437 cgrp->max_descendants = descendants;
3439 cgroup_kn_unlock(of->kn);
3441 return nbytes;
3444 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3446 struct cgroup *cgrp = seq_css(seq)->cgroup;
3447 int depth = READ_ONCE(cgrp->max_depth);
3449 if (depth == INT_MAX)
3450 seq_puts(seq, "max\n");
3451 else
3452 seq_printf(seq, "%d\n", depth);
3454 return 0;
3457 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3458 char *buf, size_t nbytes, loff_t off)
3460 struct cgroup *cgrp;
3461 ssize_t ret;
3462 int depth;
3464 buf = strstrip(buf);
3465 if (!strcmp(buf, "max")) {
3466 depth = INT_MAX;
3467 } else {
3468 ret = kstrtoint(buf, 0, &depth);
3469 if (ret)
3470 return ret;
3473 if (depth < 0)
3474 return -ERANGE;
3476 cgrp = cgroup_kn_lock_live(of->kn, false);
3477 if (!cgrp)
3478 return -ENOENT;
3480 cgrp->max_depth = depth;
3482 cgroup_kn_unlock(of->kn);
3484 return nbytes;
3487 static int cgroup_events_show(struct seq_file *seq, void *v)
3489 struct cgroup *cgrp = seq_css(seq)->cgroup;
3491 seq_printf(seq, "populated %d\n", cgroup_is_populated(cgrp));
3492 seq_printf(seq, "frozen %d\n", test_bit(CGRP_FROZEN, &cgrp->flags));
3494 return 0;
3497 static int cgroup_stat_show(struct seq_file *seq, void *v)
3499 struct cgroup *cgroup = seq_css(seq)->cgroup;
3501 seq_printf(seq, "nr_descendants %d\n",
3502 cgroup->nr_descendants);
3503 seq_printf(seq, "nr_dying_descendants %d\n",
3504 cgroup->nr_dying_descendants);
3506 return 0;
3509 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3510 struct cgroup *cgrp, int ssid)
3512 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3513 struct cgroup_subsys_state *css;
3514 int ret;
3516 if (!ss->css_extra_stat_show)
3517 return 0;
3519 css = cgroup_tryget_css(cgrp, ss);
3520 if (!css)
3521 return 0;
3523 ret = ss->css_extra_stat_show(seq, css);
3524 css_put(css);
3525 return ret;
3528 static int cpu_stat_show(struct seq_file *seq, void *v)
3530 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3531 int ret = 0;
3533 cgroup_base_stat_cputime_show(seq);
3534 #ifdef CONFIG_CGROUP_SCHED
3535 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3536 #endif
3537 return ret;
3540 #ifdef CONFIG_PSI
3541 static int cgroup_io_pressure_show(struct seq_file *seq, void *v)
3543 struct cgroup *cgroup = seq_css(seq)->cgroup;
3544 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3546 return psi_show(seq, psi, PSI_IO);
3548 static int cgroup_memory_pressure_show(struct seq_file *seq, void *v)
3550 struct cgroup *cgroup = seq_css(seq)->cgroup;
3551 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3553 return psi_show(seq, psi, PSI_MEM);
3555 static int cgroup_cpu_pressure_show(struct seq_file *seq, void *v)
3557 struct cgroup *cgroup = seq_css(seq)->cgroup;
3558 struct psi_group *psi = cgroup->id == 1 ? &psi_system : &cgroup->psi;
3560 return psi_show(seq, psi, PSI_CPU);
3563 static ssize_t cgroup_pressure_write(struct kernfs_open_file *of, char *buf,
3564 size_t nbytes, enum psi_res res)
3566 struct psi_trigger *new;
3567 struct cgroup *cgrp;
3569 cgrp = cgroup_kn_lock_live(of->kn, false);
3570 if (!cgrp)
3571 return -ENODEV;
3573 cgroup_get(cgrp);
3574 cgroup_kn_unlock(of->kn);
3576 new = psi_trigger_create(&cgrp->psi, buf, nbytes, res);
3577 if (IS_ERR(new)) {
3578 cgroup_put(cgrp);
3579 return PTR_ERR(new);
3582 psi_trigger_replace(&of->priv, new);
3584 cgroup_put(cgrp);
3586 return nbytes;
3589 static ssize_t cgroup_io_pressure_write(struct kernfs_open_file *of,
3590 char *buf, size_t nbytes,
3591 loff_t off)
3593 return cgroup_pressure_write(of, buf, nbytes, PSI_IO);
3596 static ssize_t cgroup_memory_pressure_write(struct kernfs_open_file *of,
3597 char *buf, size_t nbytes,
3598 loff_t off)
3600 return cgroup_pressure_write(of, buf, nbytes, PSI_MEM);
3603 static ssize_t cgroup_cpu_pressure_write(struct kernfs_open_file *of,
3604 char *buf, size_t nbytes,
3605 loff_t off)
3607 return cgroup_pressure_write(of, buf, nbytes, PSI_CPU);
3610 static __poll_t cgroup_pressure_poll(struct kernfs_open_file *of,
3611 poll_table *pt)
3613 return psi_trigger_poll(&of->priv, of->file, pt);
3616 static void cgroup_pressure_release(struct kernfs_open_file *of)
3618 psi_trigger_replace(&of->priv, NULL);
3620 #endif /* CONFIG_PSI */
3622 static int cgroup_freeze_show(struct seq_file *seq, void *v)
3624 struct cgroup *cgrp = seq_css(seq)->cgroup;
3626 seq_printf(seq, "%d\n", cgrp->freezer.freeze);
3628 return 0;
3631 static ssize_t cgroup_freeze_write(struct kernfs_open_file *of,
3632 char *buf, size_t nbytes, loff_t off)
3634 struct cgroup *cgrp;
3635 ssize_t ret;
3636 int freeze;
3638 ret = kstrtoint(strstrip(buf), 0, &freeze);
3639 if (ret)
3640 return ret;
3642 if (freeze < 0 || freeze > 1)
3643 return -ERANGE;
3645 cgrp = cgroup_kn_lock_live(of->kn, false);
3646 if (!cgrp)
3647 return -ENOENT;
3649 cgroup_freeze(cgrp, freeze);
3651 cgroup_kn_unlock(of->kn);
3653 return nbytes;
3656 static int cgroup_file_open(struct kernfs_open_file *of)
3658 struct cftype *cft = of->kn->priv;
3660 if (cft->open)
3661 return cft->open(of);
3662 return 0;
3665 static void cgroup_file_release(struct kernfs_open_file *of)
3667 struct cftype *cft = of->kn->priv;
3669 if (cft->release)
3670 cft->release(of);
3673 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3674 size_t nbytes, loff_t off)
3676 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3677 struct cgroup *cgrp = of->kn->parent->priv;
3678 struct cftype *cft = of->kn->priv;
3679 struct cgroup_subsys_state *css;
3680 int ret;
3683 * If namespaces are delegation boundaries, disallow writes to
3684 * files in an non-init namespace root from inside the namespace
3685 * except for the files explicitly marked delegatable -
3686 * cgroup.procs and cgroup.subtree_control.
3688 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3689 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3690 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3691 return -EPERM;
3693 if (cft->write)
3694 return cft->write(of, buf, nbytes, off);
3697 * kernfs guarantees that a file isn't deleted with operations in
3698 * flight, which means that the matching css is and stays alive and
3699 * doesn't need to be pinned. The RCU locking is not necessary
3700 * either. It's just for the convenience of using cgroup_css().
3702 rcu_read_lock();
3703 css = cgroup_css(cgrp, cft->ss);
3704 rcu_read_unlock();
3706 if (cft->write_u64) {
3707 unsigned long long v;
3708 ret = kstrtoull(buf, 0, &v);
3709 if (!ret)
3710 ret = cft->write_u64(css, cft, v);
3711 } else if (cft->write_s64) {
3712 long long v;
3713 ret = kstrtoll(buf, 0, &v);
3714 if (!ret)
3715 ret = cft->write_s64(css, cft, v);
3716 } else {
3717 ret = -EINVAL;
3720 return ret ?: nbytes;
3723 static __poll_t cgroup_file_poll(struct kernfs_open_file *of, poll_table *pt)
3725 struct cftype *cft = of->kn->priv;
3727 if (cft->poll)
3728 return cft->poll(of, pt);
3730 return kernfs_generic_poll(of, pt);
3733 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3735 return seq_cft(seq)->seq_start(seq, ppos);
3738 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3740 return seq_cft(seq)->seq_next(seq, v, ppos);
3743 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3745 if (seq_cft(seq)->seq_stop)
3746 seq_cft(seq)->seq_stop(seq, v);
3749 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3751 struct cftype *cft = seq_cft(m);
3752 struct cgroup_subsys_state *css = seq_css(m);
3754 if (cft->seq_show)
3755 return cft->seq_show(m, arg);
3757 if (cft->read_u64)
3758 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3759 else if (cft->read_s64)
3760 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3761 else
3762 return -EINVAL;
3763 return 0;
3766 static struct kernfs_ops cgroup_kf_single_ops = {
3767 .atomic_write_len = PAGE_SIZE,
3768 .open = cgroup_file_open,
3769 .release = cgroup_file_release,
3770 .write = cgroup_file_write,
3771 .poll = cgroup_file_poll,
3772 .seq_show = cgroup_seqfile_show,
3775 static struct kernfs_ops cgroup_kf_ops = {
3776 .atomic_write_len = PAGE_SIZE,
3777 .open = cgroup_file_open,
3778 .release = cgroup_file_release,
3779 .write = cgroup_file_write,
3780 .poll = cgroup_file_poll,
3781 .seq_start = cgroup_seqfile_start,
3782 .seq_next = cgroup_seqfile_next,
3783 .seq_stop = cgroup_seqfile_stop,
3784 .seq_show = cgroup_seqfile_show,
3787 /* set uid and gid of cgroup dirs and files to that of the creator */
3788 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3790 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3791 .ia_uid = current_fsuid(),
3792 .ia_gid = current_fsgid(), };
3794 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3795 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3796 return 0;
3798 return kernfs_setattr(kn, &iattr);
3801 static void cgroup_file_notify_timer(struct timer_list *timer)
3803 cgroup_file_notify(container_of(timer, struct cgroup_file,
3804 notify_timer));
3807 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3808 struct cftype *cft)
3810 char name[CGROUP_FILE_NAME_MAX];
3811 struct kernfs_node *kn;
3812 struct lock_class_key *key = NULL;
3813 int ret;
3815 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3816 key = &cft->lockdep_key;
3817 #endif
3818 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3819 cgroup_file_mode(cft),
3820 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3821 0, cft->kf_ops, cft,
3822 NULL, key);
3823 if (IS_ERR(kn))
3824 return PTR_ERR(kn);
3826 ret = cgroup_kn_set_ugid(kn);
3827 if (ret) {
3828 kernfs_remove(kn);
3829 return ret;
3832 if (cft->file_offset) {
3833 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3835 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3837 spin_lock_irq(&cgroup_file_kn_lock);
3838 cfile->kn = kn;
3839 spin_unlock_irq(&cgroup_file_kn_lock);
3842 return 0;
3846 * cgroup_addrm_files - add or remove files to a cgroup directory
3847 * @css: the target css
3848 * @cgrp: the target cgroup (usually css->cgroup)
3849 * @cfts: array of cftypes to be added
3850 * @is_add: whether to add or remove
3852 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3853 * For removals, this function never fails.
3855 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3856 struct cgroup *cgrp, struct cftype cfts[],
3857 bool is_add)
3859 struct cftype *cft, *cft_end = NULL;
3860 int ret = 0;
3862 lockdep_assert_held(&cgroup_mutex);
3864 restart:
3865 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3866 /* does cft->flags tell us to skip this file on @cgrp? */
3867 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3868 continue;
3869 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3870 continue;
3871 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3872 continue;
3873 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3874 continue;
3875 if ((cft->flags & CFTYPE_DEBUG) && !cgroup_debug)
3876 continue;
3877 if (is_add) {
3878 ret = cgroup_add_file(css, cgrp, cft);
3879 if (ret) {
3880 pr_warn("%s: failed to add %s, err=%d\n",
3881 __func__, cft->name, ret);
3882 cft_end = cft;
3883 is_add = false;
3884 goto restart;
3886 } else {
3887 cgroup_rm_file(cgrp, cft);
3890 return ret;
3893 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3895 struct cgroup_subsys *ss = cfts[0].ss;
3896 struct cgroup *root = &ss->root->cgrp;
3897 struct cgroup_subsys_state *css;
3898 int ret = 0;
3900 lockdep_assert_held(&cgroup_mutex);
3902 /* add/rm files for all cgroups created before */
3903 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3904 struct cgroup *cgrp = css->cgroup;
3906 if (!(css->flags & CSS_VISIBLE))
3907 continue;
3909 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3910 if (ret)
3911 break;
3914 if (is_add && !ret)
3915 kernfs_activate(root->kn);
3916 return ret;
3919 static void cgroup_exit_cftypes(struct cftype *cfts)
3921 struct cftype *cft;
3923 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3924 /* free copy for custom atomic_write_len, see init_cftypes() */
3925 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3926 kfree(cft->kf_ops);
3927 cft->kf_ops = NULL;
3928 cft->ss = NULL;
3930 /* revert flags set by cgroup core while adding @cfts */
3931 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3935 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3937 struct cftype *cft;
3939 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3940 struct kernfs_ops *kf_ops;
3942 WARN_ON(cft->ss || cft->kf_ops);
3944 if (cft->seq_start)
3945 kf_ops = &cgroup_kf_ops;
3946 else
3947 kf_ops = &cgroup_kf_single_ops;
3950 * Ugh... if @cft wants a custom max_write_len, we need to
3951 * make a copy of kf_ops to set its atomic_write_len.
3953 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3954 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3955 if (!kf_ops) {
3956 cgroup_exit_cftypes(cfts);
3957 return -ENOMEM;
3959 kf_ops->atomic_write_len = cft->max_write_len;
3962 cft->kf_ops = kf_ops;
3963 cft->ss = ss;
3966 return 0;
3969 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3971 lockdep_assert_held(&cgroup_mutex);
3973 if (!cfts || !cfts[0].ss)
3974 return -ENOENT;
3976 list_del(&cfts->node);
3977 cgroup_apply_cftypes(cfts, false);
3978 cgroup_exit_cftypes(cfts);
3979 return 0;
3983 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3984 * @cfts: zero-length name terminated array of cftypes
3986 * Unregister @cfts. Files described by @cfts are removed from all
3987 * existing cgroups and all future cgroups won't have them either. This
3988 * function can be called anytime whether @cfts' subsys is attached or not.
3990 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3991 * registered.
3993 int cgroup_rm_cftypes(struct cftype *cfts)
3995 int ret;
3997 mutex_lock(&cgroup_mutex);
3998 ret = cgroup_rm_cftypes_locked(cfts);
3999 mutex_unlock(&cgroup_mutex);
4000 return ret;
4004 * cgroup_add_cftypes - add an array of cftypes to a subsystem
4005 * @ss: target cgroup subsystem
4006 * @cfts: zero-length name terminated array of cftypes
4008 * Register @cfts to @ss. Files described by @cfts are created for all
4009 * existing cgroups to which @ss is attached and all future cgroups will
4010 * have them too. This function can be called anytime whether @ss is
4011 * attached or not.
4013 * Returns 0 on successful registration, -errno on failure. Note that this
4014 * function currently returns 0 as long as @cfts registration is successful
4015 * even if some file creation attempts on existing cgroups fail.
4017 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4019 int ret;
4021 if (!cgroup_ssid_enabled(ss->id))
4022 return 0;
4024 if (!cfts || cfts[0].name[0] == '\0')
4025 return 0;
4027 ret = cgroup_init_cftypes(ss, cfts);
4028 if (ret)
4029 return ret;
4031 mutex_lock(&cgroup_mutex);
4033 list_add_tail(&cfts->node, &ss->cfts);
4034 ret = cgroup_apply_cftypes(cfts, true);
4035 if (ret)
4036 cgroup_rm_cftypes_locked(cfts);
4038 mutex_unlock(&cgroup_mutex);
4039 return ret;
4043 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
4044 * @ss: target cgroup subsystem
4045 * @cfts: zero-length name terminated array of cftypes
4047 * Similar to cgroup_add_cftypes() but the added files are only used for
4048 * the default hierarchy.
4050 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4052 struct cftype *cft;
4054 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4055 cft->flags |= __CFTYPE_ONLY_ON_DFL;
4056 return cgroup_add_cftypes(ss, cfts);
4060 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
4061 * @ss: target cgroup subsystem
4062 * @cfts: zero-length name terminated array of cftypes
4064 * Similar to cgroup_add_cftypes() but the added files are only used for
4065 * the legacy hierarchies.
4067 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
4069 struct cftype *cft;
4071 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
4072 cft->flags |= __CFTYPE_NOT_ON_DFL;
4073 return cgroup_add_cftypes(ss, cfts);
4077 * cgroup_file_notify - generate a file modified event for a cgroup_file
4078 * @cfile: target cgroup_file
4080 * @cfile must have been obtained by setting cftype->file_offset.
4082 void cgroup_file_notify(struct cgroup_file *cfile)
4084 unsigned long flags;
4086 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
4087 if (cfile->kn) {
4088 unsigned long last = cfile->notified_at;
4089 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
4091 if (time_in_range(jiffies, last, next)) {
4092 timer_reduce(&cfile->notify_timer, next);
4093 } else {
4094 kernfs_notify(cfile->kn);
4095 cfile->notified_at = jiffies;
4098 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
4102 * css_next_child - find the next child of a given css
4103 * @pos: the current position (%NULL to initiate traversal)
4104 * @parent: css whose children to walk
4106 * This function returns the next child of @parent and should be called
4107 * under either cgroup_mutex or RCU read lock. The only requirement is
4108 * that @parent and @pos are accessible. The next sibling is guaranteed to
4109 * be returned regardless of their states.
4111 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4112 * css which finished ->css_online() is guaranteed to be visible in the
4113 * future iterations and will stay visible until the last reference is put.
4114 * A css which hasn't finished ->css_online() or already finished
4115 * ->css_offline() may show up during traversal. It's each subsystem's
4116 * responsibility to synchronize against on/offlining.
4118 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
4119 struct cgroup_subsys_state *parent)
4121 struct cgroup_subsys_state *next;
4123 cgroup_assert_mutex_or_rcu_locked();
4126 * @pos could already have been unlinked from the sibling list.
4127 * Once a cgroup is removed, its ->sibling.next is no longer
4128 * updated when its next sibling changes. CSS_RELEASED is set when
4129 * @pos is taken off list, at which time its next pointer is valid,
4130 * and, as releases are serialized, the one pointed to by the next
4131 * pointer is guaranteed to not have started release yet. This
4132 * implies that if we observe !CSS_RELEASED on @pos in this RCU
4133 * critical section, the one pointed to by its next pointer is
4134 * guaranteed to not have finished its RCU grace period even if we
4135 * have dropped rcu_read_lock() inbetween iterations.
4137 * If @pos has CSS_RELEASED set, its next pointer can't be
4138 * dereferenced; however, as each css is given a monotonically
4139 * increasing unique serial number and always appended to the
4140 * sibling list, the next one can be found by walking the parent's
4141 * children until the first css with higher serial number than
4142 * @pos's. While this path can be slower, it happens iff iteration
4143 * races against release and the race window is very small.
4145 if (!pos) {
4146 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
4147 } else if (likely(!(pos->flags & CSS_RELEASED))) {
4148 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
4149 } else {
4150 list_for_each_entry_rcu(next, &parent->children, sibling)
4151 if (next->serial_nr > pos->serial_nr)
4152 break;
4156 * @next, if not pointing to the head, can be dereferenced and is
4157 * the next sibling.
4159 if (&next->sibling != &parent->children)
4160 return next;
4161 return NULL;
4165 * css_next_descendant_pre - find the next descendant for pre-order walk
4166 * @pos: the current position (%NULL to initiate traversal)
4167 * @root: css whose descendants to walk
4169 * To be used by css_for_each_descendant_pre(). Find the next descendant
4170 * to visit for pre-order traversal of @root's descendants. @root is
4171 * included in the iteration and the first node to be visited.
4173 * While this function requires cgroup_mutex or RCU read locking, it
4174 * doesn't require the whole traversal to be contained in a single critical
4175 * section. This function will return the correct next descendant as long
4176 * as both @pos and @root are accessible and @pos is a descendant of @root.
4178 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4179 * css which finished ->css_online() is guaranteed to be visible in the
4180 * future iterations and will stay visible until the last reference is put.
4181 * A css which hasn't finished ->css_online() or already finished
4182 * ->css_offline() may show up during traversal. It's each subsystem's
4183 * responsibility to synchronize against on/offlining.
4185 struct cgroup_subsys_state *
4186 css_next_descendant_pre(struct cgroup_subsys_state *pos,
4187 struct cgroup_subsys_state *root)
4189 struct cgroup_subsys_state *next;
4191 cgroup_assert_mutex_or_rcu_locked();
4193 /* if first iteration, visit @root */
4194 if (!pos)
4195 return root;
4197 /* visit the first child if exists */
4198 next = css_next_child(NULL, pos);
4199 if (next)
4200 return next;
4202 /* no child, visit my or the closest ancestor's next sibling */
4203 while (pos != root) {
4204 next = css_next_child(pos, pos->parent);
4205 if (next)
4206 return next;
4207 pos = pos->parent;
4210 return NULL;
4214 * css_rightmost_descendant - return the rightmost descendant of a css
4215 * @pos: css of interest
4217 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4218 * is returned. This can be used during pre-order traversal to skip
4219 * subtree of @pos.
4221 * While this function requires cgroup_mutex or RCU read locking, it
4222 * doesn't require the whole traversal to be contained in a single critical
4223 * section. This function will return the correct rightmost descendant as
4224 * long as @pos is accessible.
4226 struct cgroup_subsys_state *
4227 css_rightmost_descendant(struct cgroup_subsys_state *pos)
4229 struct cgroup_subsys_state *last, *tmp;
4231 cgroup_assert_mutex_or_rcu_locked();
4233 do {
4234 last = pos;
4235 /* ->prev isn't RCU safe, walk ->next till the end */
4236 pos = NULL;
4237 css_for_each_child(tmp, last)
4238 pos = tmp;
4239 } while (pos);
4241 return last;
4244 static struct cgroup_subsys_state *
4245 css_leftmost_descendant(struct cgroup_subsys_state *pos)
4247 struct cgroup_subsys_state *last;
4249 do {
4250 last = pos;
4251 pos = css_next_child(NULL, pos);
4252 } while (pos);
4254 return last;
4258 * css_next_descendant_post - find the next descendant for post-order walk
4259 * @pos: the current position (%NULL to initiate traversal)
4260 * @root: css whose descendants to walk
4262 * To be used by css_for_each_descendant_post(). Find the next descendant
4263 * to visit for post-order traversal of @root's descendants. @root is
4264 * included in the iteration and the last node to be visited.
4266 * While this function requires cgroup_mutex or RCU read locking, it
4267 * doesn't require the whole traversal to be contained in a single critical
4268 * section. This function will return the correct next descendant as long
4269 * as both @pos and @cgroup are accessible and @pos is a descendant of
4270 * @cgroup.
4272 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4273 * css which finished ->css_online() is guaranteed to be visible in the
4274 * future iterations and will stay visible until the last reference is put.
4275 * A css which hasn't finished ->css_online() or already finished
4276 * ->css_offline() may show up during traversal. It's each subsystem's
4277 * responsibility to synchronize against on/offlining.
4279 struct cgroup_subsys_state *
4280 css_next_descendant_post(struct cgroup_subsys_state *pos,
4281 struct cgroup_subsys_state *root)
4283 struct cgroup_subsys_state *next;
4285 cgroup_assert_mutex_or_rcu_locked();
4287 /* if first iteration, visit leftmost descendant which may be @root */
4288 if (!pos)
4289 return css_leftmost_descendant(root);
4291 /* if we visited @root, we're done */
4292 if (pos == root)
4293 return NULL;
4295 /* if there's an unvisited sibling, visit its leftmost descendant */
4296 next = css_next_child(pos, pos->parent);
4297 if (next)
4298 return css_leftmost_descendant(next);
4300 /* no sibling left, visit parent */
4301 return pos->parent;
4305 * css_has_online_children - does a css have online children
4306 * @css: the target css
4308 * Returns %true if @css has any online children; otherwise, %false. This
4309 * function can be called from any context but the caller is responsible
4310 * for synchronizing against on/offlining as necessary.
4312 bool css_has_online_children(struct cgroup_subsys_state *css)
4314 struct cgroup_subsys_state *child;
4315 bool ret = false;
4317 rcu_read_lock();
4318 css_for_each_child(child, css) {
4319 if (child->flags & CSS_ONLINE) {
4320 ret = true;
4321 break;
4324 rcu_read_unlock();
4325 return ret;
4328 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4330 struct list_head *l;
4331 struct cgrp_cset_link *link;
4332 struct css_set *cset;
4334 lockdep_assert_held(&css_set_lock);
4336 /* find the next threaded cset */
4337 if (it->tcset_pos) {
4338 l = it->tcset_pos->next;
4340 if (l != it->tcset_head) {
4341 it->tcset_pos = l;
4342 return container_of(l, struct css_set,
4343 threaded_csets_node);
4346 it->tcset_pos = NULL;
4349 /* find the next cset */
4350 l = it->cset_pos;
4351 l = l->next;
4352 if (l == it->cset_head) {
4353 it->cset_pos = NULL;
4354 return NULL;
4357 if (it->ss) {
4358 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4359 } else {
4360 link = list_entry(l, struct cgrp_cset_link, cset_link);
4361 cset = link->cset;
4364 it->cset_pos = l;
4366 /* initialize threaded css_set walking */
4367 if (it->flags & CSS_TASK_ITER_THREADED) {
4368 if (it->cur_dcset)
4369 put_css_set_locked(it->cur_dcset);
4370 it->cur_dcset = cset;
4371 get_css_set(cset);
4373 it->tcset_head = &cset->threaded_csets;
4374 it->tcset_pos = &cset->threaded_csets;
4377 return cset;
4381 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4382 * @it: the iterator to advance
4384 * Advance @it to the next css_set to walk.
4386 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4388 struct css_set *cset;
4390 lockdep_assert_held(&css_set_lock);
4392 /* Advance to the next non-empty css_set */
4393 do {
4394 cset = css_task_iter_next_css_set(it);
4395 if (!cset) {
4396 it->task_pos = NULL;
4397 return;
4399 } while (!css_set_populated(cset));
4401 if (!list_empty(&cset->tasks))
4402 it->task_pos = cset->tasks.next;
4403 else
4404 it->task_pos = cset->mg_tasks.next;
4406 it->tasks_head = &cset->tasks;
4407 it->mg_tasks_head = &cset->mg_tasks;
4410 * We don't keep css_sets locked across iteration steps and thus
4411 * need to take steps to ensure that iteration can be resumed after
4412 * the lock is re-acquired. Iteration is performed at two levels -
4413 * css_sets and tasks in them.
4415 * Once created, a css_set never leaves its cgroup lists, so a
4416 * pinned css_set is guaranteed to stay put and we can resume
4417 * iteration afterwards.
4419 * Tasks may leave @cset across iteration steps. This is resolved
4420 * by registering each iterator with the css_set currently being
4421 * walked and making css_set_move_task() advance iterators whose
4422 * next task is leaving.
4424 if (it->cur_cset) {
4425 list_del(&it->iters_node);
4426 put_css_set_locked(it->cur_cset);
4428 get_css_set(cset);
4429 it->cur_cset = cset;
4430 list_add(&it->iters_node, &cset->task_iters);
4433 static void css_task_iter_advance(struct css_task_iter *it)
4435 struct list_head *next;
4437 lockdep_assert_held(&css_set_lock);
4438 repeat:
4439 if (it->task_pos) {
4441 * Advance iterator to find next entry. cset->tasks is
4442 * consumed first and then ->mg_tasks. After ->mg_tasks,
4443 * we move onto the next cset.
4445 next = it->task_pos->next;
4447 if (next == it->tasks_head)
4448 next = it->mg_tasks_head->next;
4450 if (next == it->mg_tasks_head)
4451 css_task_iter_advance_css_set(it);
4452 else
4453 it->task_pos = next;
4454 } else {
4455 /* called from start, proceed to the first cset */
4456 css_task_iter_advance_css_set(it);
4459 /* if PROCS, skip over tasks which aren't group leaders */
4460 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4461 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4462 cg_list)))
4463 goto repeat;
4467 * css_task_iter_start - initiate task iteration
4468 * @css: the css to walk tasks of
4469 * @flags: CSS_TASK_ITER_* flags
4470 * @it: the task iterator to use
4472 * Initiate iteration through the tasks of @css. The caller can call
4473 * css_task_iter_next() to walk through the tasks until the function
4474 * returns NULL. On completion of iteration, css_task_iter_end() must be
4475 * called.
4477 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4478 struct css_task_iter *it)
4480 /* no one should try to iterate before mounting cgroups */
4481 WARN_ON_ONCE(!use_task_css_set_links);
4483 memset(it, 0, sizeof(*it));
4485 spin_lock_irq(&css_set_lock);
4487 it->ss = css->ss;
4488 it->flags = flags;
4490 if (it->ss)
4491 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4492 else
4493 it->cset_pos = &css->cgroup->cset_links;
4495 it->cset_head = it->cset_pos;
4497 css_task_iter_advance(it);
4499 spin_unlock_irq(&css_set_lock);
4503 * css_task_iter_next - return the next task for the iterator
4504 * @it: the task iterator being iterated
4506 * The "next" function for task iteration. @it should have been
4507 * initialized via css_task_iter_start(). Returns NULL when the iteration
4508 * reaches the end.
4510 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4512 if (it->cur_task) {
4513 put_task_struct(it->cur_task);
4514 it->cur_task = NULL;
4517 spin_lock_irq(&css_set_lock);
4519 if (it->task_pos) {
4520 it->cur_task = list_entry(it->task_pos, struct task_struct,
4521 cg_list);
4522 get_task_struct(it->cur_task);
4523 css_task_iter_advance(it);
4526 spin_unlock_irq(&css_set_lock);
4528 return it->cur_task;
4532 * css_task_iter_end - finish task iteration
4533 * @it: the task iterator to finish
4535 * Finish task iteration started by css_task_iter_start().
4537 void css_task_iter_end(struct css_task_iter *it)
4539 if (it->cur_cset) {
4540 spin_lock_irq(&css_set_lock);
4541 list_del(&it->iters_node);
4542 put_css_set_locked(it->cur_cset);
4543 spin_unlock_irq(&css_set_lock);
4546 if (it->cur_dcset)
4547 put_css_set(it->cur_dcset);
4549 if (it->cur_task)
4550 put_task_struct(it->cur_task);
4553 static void cgroup_procs_release(struct kernfs_open_file *of)
4555 if (of->priv) {
4556 css_task_iter_end(of->priv);
4557 kfree(of->priv);
4561 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4563 struct kernfs_open_file *of = s->private;
4564 struct css_task_iter *it = of->priv;
4566 return css_task_iter_next(it);
4569 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4570 unsigned int iter_flags)
4572 struct kernfs_open_file *of = s->private;
4573 struct cgroup *cgrp = seq_css(s)->cgroup;
4574 struct css_task_iter *it = of->priv;
4577 * When a seq_file is seeked, it's always traversed sequentially
4578 * from position 0, so we can simply keep iterating on !0 *pos.
4580 if (!it) {
4581 if (WARN_ON_ONCE((*pos)++))
4582 return ERR_PTR(-EINVAL);
4584 it = kzalloc(sizeof(*it), GFP_KERNEL);
4585 if (!it)
4586 return ERR_PTR(-ENOMEM);
4587 of->priv = it;
4588 css_task_iter_start(&cgrp->self, iter_flags, it);
4589 } else if (!(*pos)++) {
4590 css_task_iter_end(it);
4591 css_task_iter_start(&cgrp->self, iter_flags, it);
4594 return cgroup_procs_next(s, NULL, NULL);
4597 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4599 struct cgroup *cgrp = seq_css(s)->cgroup;
4602 * All processes of a threaded subtree belong to the domain cgroup
4603 * of the subtree. Only threads can be distributed across the
4604 * subtree. Reject reads on cgroup.procs in the subtree proper.
4605 * They're always empty anyway.
4607 if (cgroup_is_threaded(cgrp))
4608 return ERR_PTR(-EOPNOTSUPP);
4610 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4611 CSS_TASK_ITER_THREADED);
4614 static int cgroup_procs_show(struct seq_file *s, void *v)
4616 seq_printf(s, "%d\n", task_pid_vnr(v));
4617 return 0;
4620 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4621 struct cgroup *dst_cgrp,
4622 struct super_block *sb)
4624 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4625 struct cgroup *com_cgrp = src_cgrp;
4626 struct inode *inode;
4627 int ret;
4629 lockdep_assert_held(&cgroup_mutex);
4631 /* find the common ancestor */
4632 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4633 com_cgrp = cgroup_parent(com_cgrp);
4635 /* %current should be authorized to migrate to the common ancestor */
4636 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4637 if (!inode)
4638 return -ENOMEM;
4640 ret = inode_permission(inode, MAY_WRITE);
4641 iput(inode);
4642 if (ret)
4643 return ret;
4646 * If namespaces are delegation boundaries, %current must be able
4647 * to see both source and destination cgroups from its namespace.
4649 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4650 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4651 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4652 return -ENOENT;
4654 return 0;
4657 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4658 char *buf, size_t nbytes, loff_t off)
4660 struct cgroup *src_cgrp, *dst_cgrp;
4661 struct task_struct *task;
4662 ssize_t ret;
4664 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4665 if (!dst_cgrp)
4666 return -ENODEV;
4668 task = cgroup_procs_write_start(buf, true);
4669 ret = PTR_ERR_OR_ZERO(task);
4670 if (ret)
4671 goto out_unlock;
4673 /* find the source cgroup */
4674 spin_lock_irq(&css_set_lock);
4675 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4676 spin_unlock_irq(&css_set_lock);
4678 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4679 of->file->f_path.dentry->d_sb);
4680 if (ret)
4681 goto out_finish;
4683 ret = cgroup_attach_task(dst_cgrp, task, true);
4685 out_finish:
4686 cgroup_procs_write_finish(task);
4687 out_unlock:
4688 cgroup_kn_unlock(of->kn);
4690 return ret ?: nbytes;
4693 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4695 return __cgroup_procs_start(s, pos, 0);
4698 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4699 char *buf, size_t nbytes, loff_t off)
4701 struct cgroup *src_cgrp, *dst_cgrp;
4702 struct task_struct *task;
4703 ssize_t ret;
4705 buf = strstrip(buf);
4707 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4708 if (!dst_cgrp)
4709 return -ENODEV;
4711 task = cgroup_procs_write_start(buf, false);
4712 ret = PTR_ERR_OR_ZERO(task);
4713 if (ret)
4714 goto out_unlock;
4716 /* find the source cgroup */
4717 spin_lock_irq(&css_set_lock);
4718 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4719 spin_unlock_irq(&css_set_lock);
4721 /* thread migrations follow the cgroup.procs delegation rule */
4722 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4723 of->file->f_path.dentry->d_sb);
4724 if (ret)
4725 goto out_finish;
4727 /* and must be contained in the same domain */
4728 ret = -EOPNOTSUPP;
4729 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4730 goto out_finish;
4732 ret = cgroup_attach_task(dst_cgrp, task, false);
4734 out_finish:
4735 cgroup_procs_write_finish(task);
4736 out_unlock:
4737 cgroup_kn_unlock(of->kn);
4739 return ret ?: nbytes;
4742 /* cgroup core interface files for the default hierarchy */
4743 static struct cftype cgroup_base_files[] = {
4745 .name = "cgroup.type",
4746 .flags = CFTYPE_NOT_ON_ROOT,
4747 .seq_show = cgroup_type_show,
4748 .write = cgroup_type_write,
4751 .name = "cgroup.procs",
4752 .flags = CFTYPE_NS_DELEGATABLE,
4753 .file_offset = offsetof(struct cgroup, procs_file),
4754 .release = cgroup_procs_release,
4755 .seq_start = cgroup_procs_start,
4756 .seq_next = cgroup_procs_next,
4757 .seq_show = cgroup_procs_show,
4758 .write = cgroup_procs_write,
4761 .name = "cgroup.threads",
4762 .flags = CFTYPE_NS_DELEGATABLE,
4763 .release = cgroup_procs_release,
4764 .seq_start = cgroup_threads_start,
4765 .seq_next = cgroup_procs_next,
4766 .seq_show = cgroup_procs_show,
4767 .write = cgroup_threads_write,
4770 .name = "cgroup.controllers",
4771 .seq_show = cgroup_controllers_show,
4774 .name = "cgroup.subtree_control",
4775 .flags = CFTYPE_NS_DELEGATABLE,
4776 .seq_show = cgroup_subtree_control_show,
4777 .write = cgroup_subtree_control_write,
4780 .name = "cgroup.events",
4781 .flags = CFTYPE_NOT_ON_ROOT,
4782 .file_offset = offsetof(struct cgroup, events_file),
4783 .seq_show = cgroup_events_show,
4786 .name = "cgroup.max.descendants",
4787 .seq_show = cgroup_max_descendants_show,
4788 .write = cgroup_max_descendants_write,
4791 .name = "cgroup.max.depth",
4792 .seq_show = cgroup_max_depth_show,
4793 .write = cgroup_max_depth_write,
4796 .name = "cgroup.stat",
4797 .seq_show = cgroup_stat_show,
4800 .name = "cgroup.freeze",
4801 .flags = CFTYPE_NOT_ON_ROOT,
4802 .seq_show = cgroup_freeze_show,
4803 .write = cgroup_freeze_write,
4806 .name = "cpu.stat",
4807 .flags = CFTYPE_NOT_ON_ROOT,
4808 .seq_show = cpu_stat_show,
4810 #ifdef CONFIG_PSI
4812 .name = "io.pressure",
4813 .seq_show = cgroup_io_pressure_show,
4814 .write = cgroup_io_pressure_write,
4815 .poll = cgroup_pressure_poll,
4816 .release = cgroup_pressure_release,
4819 .name = "memory.pressure",
4820 .seq_show = cgroup_memory_pressure_show,
4821 .write = cgroup_memory_pressure_write,
4822 .poll = cgroup_pressure_poll,
4823 .release = cgroup_pressure_release,
4826 .name = "cpu.pressure",
4827 .seq_show = cgroup_cpu_pressure_show,
4828 .write = cgroup_cpu_pressure_write,
4829 .poll = cgroup_pressure_poll,
4830 .release = cgroup_pressure_release,
4832 #endif /* CONFIG_PSI */
4833 { } /* terminate */
4837 * css destruction is four-stage process.
4839 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4840 * Implemented in kill_css().
4842 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4843 * and thus css_tryget_online() is guaranteed to fail, the css can be
4844 * offlined by invoking offline_css(). After offlining, the base ref is
4845 * put. Implemented in css_killed_work_fn().
4847 * 3. When the percpu_ref reaches zero, the only possible remaining
4848 * accessors are inside RCU read sections. css_release() schedules the
4849 * RCU callback.
4851 * 4. After the grace period, the css can be freed. Implemented in
4852 * css_free_work_fn().
4854 * It is actually hairier because both step 2 and 4 require process context
4855 * and thus involve punting to css->destroy_work adding two additional
4856 * steps to the already complex sequence.
4858 static void css_free_rwork_fn(struct work_struct *work)
4860 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4861 struct cgroup_subsys_state, destroy_rwork);
4862 struct cgroup_subsys *ss = css->ss;
4863 struct cgroup *cgrp = css->cgroup;
4865 percpu_ref_exit(&css->refcnt);
4867 if (ss) {
4868 /* css free path */
4869 struct cgroup_subsys_state *parent = css->parent;
4870 int id = css->id;
4872 ss->css_free(css);
4873 cgroup_idr_remove(&ss->css_idr, id);
4874 cgroup_put(cgrp);
4876 if (parent)
4877 css_put(parent);
4878 } else {
4879 /* cgroup free path */
4880 atomic_dec(&cgrp->root->nr_cgrps);
4881 cgroup1_pidlist_destroy_all(cgrp);
4882 cancel_work_sync(&cgrp->release_agent_work);
4884 if (cgroup_parent(cgrp)) {
4886 * We get a ref to the parent, and put the ref when
4887 * this cgroup is being freed, so it's guaranteed
4888 * that the parent won't be destroyed before its
4889 * children.
4891 cgroup_put(cgroup_parent(cgrp));
4892 kernfs_put(cgrp->kn);
4893 psi_cgroup_free(cgrp);
4894 if (cgroup_on_dfl(cgrp))
4895 cgroup_rstat_exit(cgrp);
4896 kfree(cgrp);
4897 } else {
4899 * This is root cgroup's refcnt reaching zero,
4900 * which indicates that the root should be
4901 * released.
4903 cgroup_destroy_root(cgrp->root);
4908 static void css_release_work_fn(struct work_struct *work)
4910 struct cgroup_subsys_state *css =
4911 container_of(work, struct cgroup_subsys_state, destroy_work);
4912 struct cgroup_subsys *ss = css->ss;
4913 struct cgroup *cgrp = css->cgroup;
4915 mutex_lock(&cgroup_mutex);
4917 css->flags |= CSS_RELEASED;
4918 list_del_rcu(&css->sibling);
4920 if (ss) {
4921 /* css release path */
4922 if (!list_empty(&css->rstat_css_node)) {
4923 cgroup_rstat_flush(cgrp);
4924 list_del_rcu(&css->rstat_css_node);
4927 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4928 if (ss->css_released)
4929 ss->css_released(css);
4930 } else {
4931 struct cgroup *tcgrp;
4933 /* cgroup release path */
4934 TRACE_CGROUP_PATH(release, cgrp);
4936 if (cgroup_on_dfl(cgrp))
4937 cgroup_rstat_flush(cgrp);
4939 spin_lock_irq(&css_set_lock);
4940 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4941 tcgrp = cgroup_parent(tcgrp))
4942 tcgrp->nr_dying_descendants--;
4943 spin_unlock_irq(&css_set_lock);
4945 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4946 cgrp->id = -1;
4949 * There are two control paths which try to determine
4950 * cgroup from dentry without going through kernfs -
4951 * cgroupstats_build() and css_tryget_online_from_dir().
4952 * Those are supported by RCU protecting clearing of
4953 * cgrp->kn->priv backpointer.
4955 if (cgrp->kn)
4956 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4957 NULL);
4959 cgroup_bpf_put(cgrp);
4962 mutex_unlock(&cgroup_mutex);
4964 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4965 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4968 static void css_release(struct percpu_ref *ref)
4970 struct cgroup_subsys_state *css =
4971 container_of(ref, struct cgroup_subsys_state, refcnt);
4973 INIT_WORK(&css->destroy_work, css_release_work_fn);
4974 queue_work(cgroup_destroy_wq, &css->destroy_work);
4977 static void init_and_link_css(struct cgroup_subsys_state *css,
4978 struct cgroup_subsys *ss, struct cgroup *cgrp)
4980 lockdep_assert_held(&cgroup_mutex);
4982 cgroup_get_live(cgrp);
4984 memset(css, 0, sizeof(*css));
4985 css->cgroup = cgrp;
4986 css->ss = ss;
4987 css->id = -1;
4988 INIT_LIST_HEAD(&css->sibling);
4989 INIT_LIST_HEAD(&css->children);
4990 INIT_LIST_HEAD(&css->rstat_css_node);
4991 css->serial_nr = css_serial_nr_next++;
4992 atomic_set(&css->online_cnt, 0);
4994 if (cgroup_parent(cgrp)) {
4995 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4996 css_get(css->parent);
4999 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
5000 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
5002 BUG_ON(cgroup_css(cgrp, ss));
5005 /* invoke ->css_online() on a new CSS and mark it online if successful */
5006 static int online_css(struct cgroup_subsys_state *css)
5008 struct cgroup_subsys *ss = css->ss;
5009 int ret = 0;
5011 lockdep_assert_held(&cgroup_mutex);
5013 if (ss->css_online)
5014 ret = ss->css_online(css);
5015 if (!ret) {
5016 css->flags |= CSS_ONLINE;
5017 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
5019 atomic_inc(&css->online_cnt);
5020 if (css->parent)
5021 atomic_inc(&css->parent->online_cnt);
5023 return ret;
5026 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
5027 static void offline_css(struct cgroup_subsys_state *css)
5029 struct cgroup_subsys *ss = css->ss;
5031 lockdep_assert_held(&cgroup_mutex);
5033 if (!(css->flags & CSS_ONLINE))
5034 return;
5036 if (ss->css_offline)
5037 ss->css_offline(css);
5039 css->flags &= ~CSS_ONLINE;
5040 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
5042 wake_up_all(&css->cgroup->offline_waitq);
5046 * css_create - create a cgroup_subsys_state
5047 * @cgrp: the cgroup new css will be associated with
5048 * @ss: the subsys of new css
5050 * Create a new css associated with @cgrp - @ss pair. On success, the new
5051 * css is online and installed in @cgrp. This function doesn't create the
5052 * interface files. Returns 0 on success, -errno on failure.
5054 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5055 struct cgroup_subsys *ss)
5057 struct cgroup *parent = cgroup_parent(cgrp);
5058 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
5059 struct cgroup_subsys_state *css;
5060 int err;
5062 lockdep_assert_held(&cgroup_mutex);
5064 css = ss->css_alloc(parent_css);
5065 if (!css)
5066 css = ERR_PTR(-ENOMEM);
5067 if (IS_ERR(css))
5068 return css;
5070 init_and_link_css(css, ss, cgrp);
5072 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
5073 if (err)
5074 goto err_free_css;
5076 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
5077 if (err < 0)
5078 goto err_free_css;
5079 css->id = err;
5081 /* @css is ready to be brought online now, make it visible */
5082 list_add_tail_rcu(&css->sibling, &parent_css->children);
5083 cgroup_idr_replace(&ss->css_idr, css, css->id);
5085 err = online_css(css);
5086 if (err)
5087 goto err_list_del;
5089 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
5090 cgroup_parent(parent)) {
5091 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
5092 current->comm, current->pid, ss->name);
5093 if (!strcmp(ss->name, "memory"))
5094 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
5095 ss->warned_broken_hierarchy = true;
5098 return css;
5100 err_list_del:
5101 list_del_rcu(&css->sibling);
5102 err_free_css:
5103 list_del_rcu(&css->rstat_css_node);
5104 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
5105 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
5106 return ERR_PTR(err);
5110 * The returned cgroup is fully initialized including its control mask, but
5111 * it isn't associated with its kernfs_node and doesn't have the control
5112 * mask applied.
5114 static struct cgroup *cgroup_create(struct cgroup *parent)
5116 struct cgroup_root *root = parent->root;
5117 struct cgroup *cgrp, *tcgrp;
5118 int level = parent->level + 1;
5119 int ret;
5121 /* allocate the cgroup and its ID, 0 is reserved for the root */
5122 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
5123 GFP_KERNEL);
5124 if (!cgrp)
5125 return ERR_PTR(-ENOMEM);
5127 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
5128 if (ret)
5129 goto out_free_cgrp;
5131 if (cgroup_on_dfl(parent)) {
5132 ret = cgroup_rstat_init(cgrp);
5133 if (ret)
5134 goto out_cancel_ref;
5138 * Temporarily set the pointer to NULL, so idr_find() won't return
5139 * a half-baked cgroup.
5141 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
5142 if (cgrp->id < 0) {
5143 ret = -ENOMEM;
5144 goto out_stat_exit;
5147 init_cgroup_housekeeping(cgrp);
5149 cgrp->self.parent = &parent->self;
5150 cgrp->root = root;
5151 cgrp->level = level;
5153 ret = psi_cgroup_alloc(cgrp);
5154 if (ret)
5155 goto out_idr_free;
5157 ret = cgroup_bpf_inherit(cgrp);
5158 if (ret)
5159 goto out_psi_free;
5162 * New cgroup inherits effective freeze counter, and
5163 * if the parent has to be frozen, the child has too.
5165 cgrp->freezer.e_freeze = parent->freezer.e_freeze;
5166 if (cgrp->freezer.e_freeze)
5167 set_bit(CGRP_FROZEN, &cgrp->flags);
5169 spin_lock_irq(&css_set_lock);
5170 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5171 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
5173 if (tcgrp != cgrp) {
5174 tcgrp->nr_descendants++;
5177 * If the new cgroup is frozen, all ancestor cgroups
5178 * get a new frozen descendant, but their state can't
5179 * change because of this.
5181 if (cgrp->freezer.e_freeze)
5182 tcgrp->freezer.nr_frozen_descendants++;
5185 spin_unlock_irq(&css_set_lock);
5187 if (notify_on_release(parent))
5188 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5190 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5191 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
5193 cgrp->self.serial_nr = css_serial_nr_next++;
5195 /* allocation complete, commit to creation */
5196 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5197 atomic_inc(&root->nr_cgrps);
5198 cgroup_get_live(parent);
5201 * @cgrp is now fully operational. If something fails after this
5202 * point, it'll be released via the normal destruction path.
5204 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5207 * On the default hierarchy, a child doesn't automatically inherit
5208 * subtree_control from the parent. Each is configured manually.
5210 if (!cgroup_on_dfl(cgrp))
5211 cgrp->subtree_control = cgroup_control(cgrp);
5213 cgroup_propagate_control(cgrp);
5215 return cgrp;
5217 out_psi_free:
5218 psi_cgroup_free(cgrp);
5219 out_idr_free:
5220 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5221 out_stat_exit:
5222 if (cgroup_on_dfl(parent))
5223 cgroup_rstat_exit(cgrp);
5224 out_cancel_ref:
5225 percpu_ref_exit(&cgrp->self.refcnt);
5226 out_free_cgrp:
5227 kfree(cgrp);
5228 return ERR_PTR(ret);
5231 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
5233 struct cgroup *cgroup;
5234 int ret = false;
5235 int level = 1;
5237 lockdep_assert_held(&cgroup_mutex);
5239 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
5240 if (cgroup->nr_descendants >= cgroup->max_descendants)
5241 goto fail;
5243 if (level > cgroup->max_depth)
5244 goto fail;
5246 level++;
5249 ret = true;
5250 fail:
5251 return ret;
5254 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
5256 struct cgroup *parent, *cgrp;
5257 struct kernfs_node *kn;
5258 int ret;
5260 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5261 if (strchr(name, '\n'))
5262 return -EINVAL;
5264 parent = cgroup_kn_lock_live(parent_kn, false);
5265 if (!parent)
5266 return -ENODEV;
5268 if (!cgroup_check_hierarchy_limits(parent)) {
5269 ret = -EAGAIN;
5270 goto out_unlock;
5273 cgrp = cgroup_create(parent);
5274 if (IS_ERR(cgrp)) {
5275 ret = PTR_ERR(cgrp);
5276 goto out_unlock;
5279 /* create the directory */
5280 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5281 if (IS_ERR(kn)) {
5282 ret = PTR_ERR(kn);
5283 goto out_destroy;
5285 cgrp->kn = kn;
5288 * This extra ref will be put in cgroup_free_fn() and guarantees
5289 * that @cgrp->kn is always accessible.
5291 kernfs_get(kn);
5293 ret = cgroup_kn_set_ugid(kn);
5294 if (ret)
5295 goto out_destroy;
5297 ret = css_populate_dir(&cgrp->self);
5298 if (ret)
5299 goto out_destroy;
5301 ret = cgroup_apply_control_enable(cgrp);
5302 if (ret)
5303 goto out_destroy;
5305 TRACE_CGROUP_PATH(mkdir, cgrp);
5307 /* let's create and online css's */
5308 kernfs_activate(kn);
5310 ret = 0;
5311 goto out_unlock;
5313 out_destroy:
5314 cgroup_destroy_locked(cgrp);
5315 out_unlock:
5316 cgroup_kn_unlock(parent_kn);
5317 return ret;
5321 * This is called when the refcnt of a css is confirmed to be killed.
5322 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5323 * initate destruction and put the css ref from kill_css().
5325 static void css_killed_work_fn(struct work_struct *work)
5327 struct cgroup_subsys_state *css =
5328 container_of(work, struct cgroup_subsys_state, destroy_work);
5330 mutex_lock(&cgroup_mutex);
5332 do {
5333 offline_css(css);
5334 css_put(css);
5335 /* @css can't go away while we're holding cgroup_mutex */
5336 css = css->parent;
5337 } while (css && atomic_dec_and_test(&css->online_cnt));
5339 mutex_unlock(&cgroup_mutex);
5342 /* css kill confirmation processing requires process context, bounce */
5343 static void css_killed_ref_fn(struct percpu_ref *ref)
5345 struct cgroup_subsys_state *css =
5346 container_of(ref, struct cgroup_subsys_state, refcnt);
5348 if (atomic_dec_and_test(&css->online_cnt)) {
5349 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5350 queue_work(cgroup_destroy_wq, &css->destroy_work);
5355 * kill_css - destroy a css
5356 * @css: css to destroy
5358 * This function initiates destruction of @css by removing cgroup interface
5359 * files and putting its base reference. ->css_offline() will be invoked
5360 * asynchronously once css_tryget_online() is guaranteed to fail and when
5361 * the reference count reaches zero, @css will be released.
5363 static void kill_css(struct cgroup_subsys_state *css)
5365 lockdep_assert_held(&cgroup_mutex);
5367 if (css->flags & CSS_DYING)
5368 return;
5370 css->flags |= CSS_DYING;
5373 * This must happen before css is disassociated with its cgroup.
5374 * See seq_css() for details.
5376 css_clear_dir(css);
5379 * Killing would put the base ref, but we need to keep it alive
5380 * until after ->css_offline().
5382 css_get(css);
5385 * cgroup core guarantees that, by the time ->css_offline() is
5386 * invoked, no new css reference will be given out via
5387 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5388 * proceed to offlining css's because percpu_ref_kill() doesn't
5389 * guarantee that the ref is seen as killed on all CPUs on return.
5391 * Use percpu_ref_kill_and_confirm() to get notifications as each
5392 * css is confirmed to be seen as killed on all CPUs.
5394 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5398 * cgroup_destroy_locked - the first stage of cgroup destruction
5399 * @cgrp: cgroup to be destroyed
5401 * css's make use of percpu refcnts whose killing latency shouldn't be
5402 * exposed to userland and are RCU protected. Also, cgroup core needs to
5403 * guarantee that css_tryget_online() won't succeed by the time
5404 * ->css_offline() is invoked. To satisfy all the requirements,
5405 * destruction is implemented in the following two steps.
5407 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5408 * userland visible parts and start killing the percpu refcnts of
5409 * css's. Set up so that the next stage will be kicked off once all
5410 * the percpu refcnts are confirmed to be killed.
5412 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5413 * rest of destruction. Once all cgroup references are gone, the
5414 * cgroup is RCU-freed.
5416 * This function implements s1. After this step, @cgrp is gone as far as
5417 * the userland is concerned and a new cgroup with the same name may be
5418 * created. As cgroup doesn't care about the names internally, this
5419 * doesn't cause any problem.
5421 static int cgroup_destroy_locked(struct cgroup *cgrp)
5422 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5424 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5425 struct cgroup_subsys_state *css;
5426 struct cgrp_cset_link *link;
5427 int ssid;
5429 lockdep_assert_held(&cgroup_mutex);
5432 * Only migration can raise populated from zero and we're already
5433 * holding cgroup_mutex.
5435 if (cgroup_is_populated(cgrp))
5436 return -EBUSY;
5439 * Make sure there's no live children. We can't test emptiness of
5440 * ->self.children as dead children linger on it while being
5441 * drained; otherwise, "rmdir parent/child parent" may fail.
5443 if (css_has_online_children(&cgrp->self))
5444 return -EBUSY;
5447 * Mark @cgrp and the associated csets dead. The former prevents
5448 * further task migration and child creation by disabling
5449 * cgroup_lock_live_group(). The latter makes the csets ignored by
5450 * the migration path.
5452 cgrp->self.flags &= ~CSS_ONLINE;
5454 spin_lock_irq(&css_set_lock);
5455 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5456 link->cset->dead = true;
5457 spin_unlock_irq(&css_set_lock);
5459 /* initiate massacre of all css's */
5460 for_each_css(css, ssid, cgrp)
5461 kill_css(css);
5463 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5464 css_clear_dir(&cgrp->self);
5465 kernfs_remove(cgrp->kn);
5467 if (parent && cgroup_is_threaded(cgrp))
5468 parent->nr_threaded_children--;
5470 spin_lock_irq(&css_set_lock);
5471 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5472 tcgrp->nr_descendants--;
5473 tcgrp->nr_dying_descendants++;
5475 * If the dying cgroup is frozen, decrease frozen descendants
5476 * counters of ancestor cgroups.
5478 if (test_bit(CGRP_FROZEN, &cgrp->flags))
5479 tcgrp->freezer.nr_frozen_descendants--;
5481 spin_unlock_irq(&css_set_lock);
5483 cgroup1_check_for_release(parent);
5485 /* put the base reference */
5486 percpu_ref_kill(&cgrp->self.refcnt);
5488 return 0;
5491 int cgroup_rmdir(struct kernfs_node *kn)
5493 struct cgroup *cgrp;
5494 int ret = 0;
5496 cgrp = cgroup_kn_lock_live(kn, false);
5497 if (!cgrp)
5498 return 0;
5500 ret = cgroup_destroy_locked(cgrp);
5501 if (!ret)
5502 TRACE_CGROUP_PATH(rmdir, cgrp);
5504 cgroup_kn_unlock(kn);
5505 return ret;
5508 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5509 .show_options = cgroup_show_options,
5510 .mkdir = cgroup_mkdir,
5511 .rmdir = cgroup_rmdir,
5512 .show_path = cgroup_show_path,
5515 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5517 struct cgroup_subsys_state *css;
5519 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5521 mutex_lock(&cgroup_mutex);
5523 idr_init(&ss->css_idr);
5524 INIT_LIST_HEAD(&ss->cfts);
5526 /* Create the root cgroup state for this subsystem */
5527 ss->root = &cgrp_dfl_root;
5528 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5529 /* We don't handle early failures gracefully */
5530 BUG_ON(IS_ERR(css));
5531 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5534 * Root csses are never destroyed and we can't initialize
5535 * percpu_ref during early init. Disable refcnting.
5537 css->flags |= CSS_NO_REF;
5539 if (early) {
5540 /* allocation can't be done safely during early init */
5541 css->id = 1;
5542 } else {
5543 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5544 BUG_ON(css->id < 0);
5547 /* Update the init_css_set to contain a subsys
5548 * pointer to this state - since the subsystem is
5549 * newly registered, all tasks and hence the
5550 * init_css_set is in the subsystem's root cgroup. */
5551 init_css_set.subsys[ss->id] = css;
5553 have_fork_callback |= (bool)ss->fork << ss->id;
5554 have_exit_callback |= (bool)ss->exit << ss->id;
5555 have_release_callback |= (bool)ss->release << ss->id;
5556 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5558 /* At system boot, before all subsystems have been
5559 * registered, no tasks have been forked, so we don't
5560 * need to invoke fork callbacks here. */
5561 BUG_ON(!list_empty(&init_task.tasks));
5563 BUG_ON(online_css(css));
5565 mutex_unlock(&cgroup_mutex);
5569 * cgroup_init_early - cgroup initialization at system boot
5571 * Initialize cgroups at system boot, and initialize any
5572 * subsystems that request early init.
5574 int __init cgroup_init_early(void)
5576 static struct cgroup_fs_context __initdata ctx;
5577 struct cgroup_subsys *ss;
5578 int i;
5580 ctx.root = &cgrp_dfl_root;
5581 init_cgroup_root(&ctx);
5582 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5584 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5586 for_each_subsys(ss, i) {
5587 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5588 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5589 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5590 ss->id, ss->name);
5591 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5592 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5594 ss->id = i;
5595 ss->name = cgroup_subsys_name[i];
5596 if (!ss->legacy_name)
5597 ss->legacy_name = cgroup_subsys_name[i];
5599 if (ss->early_init)
5600 cgroup_init_subsys(ss, true);
5602 return 0;
5605 static u16 cgroup_disable_mask __initdata;
5608 * cgroup_init - cgroup initialization
5610 * Register cgroup filesystem and /proc file, and initialize
5611 * any subsystems that didn't request early init.
5613 int __init cgroup_init(void)
5615 struct cgroup_subsys *ss;
5616 int ssid;
5618 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5619 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5620 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5621 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5623 cgroup_rstat_boot();
5626 * The latency of the synchronize_rcu() is too high for cgroups,
5627 * avoid it at the cost of forcing all readers into the slow path.
5629 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5631 get_user_ns(init_cgroup_ns.user_ns);
5633 mutex_lock(&cgroup_mutex);
5636 * Add init_css_set to the hash table so that dfl_root can link to
5637 * it during init.
5639 hash_add(css_set_table, &init_css_set.hlist,
5640 css_set_hash(init_css_set.subsys));
5642 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5644 mutex_unlock(&cgroup_mutex);
5646 for_each_subsys(ss, ssid) {
5647 if (ss->early_init) {
5648 struct cgroup_subsys_state *css =
5649 init_css_set.subsys[ss->id];
5651 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5652 GFP_KERNEL);
5653 BUG_ON(css->id < 0);
5654 } else {
5655 cgroup_init_subsys(ss, false);
5658 list_add_tail(&init_css_set.e_cset_node[ssid],
5659 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5662 * Setting dfl_root subsys_mask needs to consider the
5663 * disabled flag and cftype registration needs kmalloc,
5664 * both of which aren't available during early_init.
5666 if (cgroup_disable_mask & (1 << ssid)) {
5667 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5668 printk(KERN_INFO "Disabling %s control group subsystem\n",
5669 ss->name);
5670 continue;
5673 if (cgroup1_ssid_disabled(ssid))
5674 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5675 ss->name);
5677 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5679 /* implicit controllers must be threaded too */
5680 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5682 if (ss->implicit_on_dfl)
5683 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5684 else if (!ss->dfl_cftypes)
5685 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5687 if (ss->threaded)
5688 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5690 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5691 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5692 } else {
5693 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5694 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5697 if (ss->bind)
5698 ss->bind(init_css_set.subsys[ssid]);
5700 mutex_lock(&cgroup_mutex);
5701 css_populate_dir(init_css_set.subsys[ssid]);
5702 mutex_unlock(&cgroup_mutex);
5705 /* init_css_set.subsys[] has been updated, re-hash */
5706 hash_del(&init_css_set.hlist);
5707 hash_add(css_set_table, &init_css_set.hlist,
5708 css_set_hash(init_css_set.subsys));
5710 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5711 WARN_ON(register_filesystem(&cgroup_fs_type));
5712 WARN_ON(register_filesystem(&cgroup2_fs_type));
5713 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5715 return 0;
5718 static int __init cgroup_wq_init(void)
5721 * There isn't much point in executing destruction path in
5722 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5723 * Use 1 for @max_active.
5725 * We would prefer to do this in cgroup_init() above, but that
5726 * is called before init_workqueues(): so leave this until after.
5728 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5729 BUG_ON(!cgroup_destroy_wq);
5730 return 0;
5732 core_initcall(cgroup_wq_init);
5734 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5735 char *buf, size_t buflen)
5737 struct kernfs_node *kn;
5739 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5740 if (!kn)
5741 return;
5742 kernfs_path(kn, buf, buflen);
5743 kernfs_put(kn);
5747 * proc_cgroup_show()
5748 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5749 * - Used for /proc/<pid>/cgroup.
5751 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5752 struct pid *pid, struct task_struct *tsk)
5754 char *buf;
5755 int retval;
5756 struct cgroup_root *root;
5758 retval = -ENOMEM;
5759 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5760 if (!buf)
5761 goto out;
5763 mutex_lock(&cgroup_mutex);
5764 spin_lock_irq(&css_set_lock);
5766 for_each_root(root) {
5767 struct cgroup_subsys *ss;
5768 struct cgroup *cgrp;
5769 int ssid, count = 0;
5771 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5772 continue;
5774 seq_printf(m, "%d:", root->hierarchy_id);
5775 if (root != &cgrp_dfl_root)
5776 for_each_subsys(ss, ssid)
5777 if (root->subsys_mask & (1 << ssid))
5778 seq_printf(m, "%s%s", count++ ? "," : "",
5779 ss->legacy_name);
5780 if (strlen(root->name))
5781 seq_printf(m, "%sname=%s", count ? "," : "",
5782 root->name);
5783 seq_putc(m, ':');
5785 cgrp = task_cgroup_from_root(tsk, root);
5788 * On traditional hierarchies, all zombie tasks show up as
5789 * belonging to the root cgroup. On the default hierarchy,
5790 * while a zombie doesn't show up in "cgroup.procs" and
5791 * thus can't be migrated, its /proc/PID/cgroup keeps
5792 * reporting the cgroup it belonged to before exiting. If
5793 * the cgroup is removed before the zombie is reaped,
5794 * " (deleted)" is appended to the cgroup path.
5796 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5797 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5798 current->nsproxy->cgroup_ns);
5799 if (retval >= PATH_MAX)
5800 retval = -ENAMETOOLONG;
5801 if (retval < 0)
5802 goto out_unlock;
5804 seq_puts(m, buf);
5805 } else {
5806 seq_puts(m, "/");
5809 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5810 seq_puts(m, " (deleted)\n");
5811 else
5812 seq_putc(m, '\n');
5815 retval = 0;
5816 out_unlock:
5817 spin_unlock_irq(&css_set_lock);
5818 mutex_unlock(&cgroup_mutex);
5819 kfree(buf);
5820 out:
5821 return retval;
5825 * cgroup_fork - initialize cgroup related fields during copy_process()
5826 * @child: pointer to task_struct of forking parent process.
5828 * A task is associated with the init_css_set until cgroup_post_fork()
5829 * attaches it to the parent's css_set. Empty cg_list indicates that
5830 * @child isn't holding reference to its css_set.
5832 void cgroup_fork(struct task_struct *child)
5834 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5835 INIT_LIST_HEAD(&child->cg_list);
5839 * cgroup_can_fork - called on a new task before the process is exposed
5840 * @child: the task in question.
5842 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5843 * returns an error, the fork aborts with that error code. This allows for
5844 * a cgroup subsystem to conditionally allow or deny new forks.
5846 int cgroup_can_fork(struct task_struct *child)
5848 struct cgroup_subsys *ss;
5849 int i, j, ret;
5851 do_each_subsys_mask(ss, i, have_canfork_callback) {
5852 ret = ss->can_fork(child);
5853 if (ret)
5854 goto out_revert;
5855 } while_each_subsys_mask();
5857 return 0;
5859 out_revert:
5860 for_each_subsys(ss, j) {
5861 if (j >= i)
5862 break;
5863 if (ss->cancel_fork)
5864 ss->cancel_fork(child);
5867 return ret;
5871 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5872 * @child: the task in question
5874 * This calls the cancel_fork() callbacks if a fork failed *after*
5875 * cgroup_can_fork() succeded.
5877 void cgroup_cancel_fork(struct task_struct *child)
5879 struct cgroup_subsys *ss;
5880 int i;
5882 for_each_subsys(ss, i)
5883 if (ss->cancel_fork)
5884 ss->cancel_fork(child);
5888 * cgroup_post_fork - called on a new task after adding it to the task list
5889 * @child: the task in question
5891 * Adds the task to the list running through its css_set if necessary and
5892 * call the subsystem fork() callbacks. Has to be after the task is
5893 * visible on the task list in case we race with the first call to
5894 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5895 * list.
5897 void cgroup_post_fork(struct task_struct *child)
5899 struct cgroup_subsys *ss;
5900 int i;
5903 * This may race against cgroup_enable_task_cg_lists(). As that
5904 * function sets use_task_css_set_links before grabbing
5905 * tasklist_lock and we just went through tasklist_lock to add
5906 * @child, it's guaranteed that either we see the set
5907 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5908 * @child during its iteration.
5910 * If we won the race, @child is associated with %current's
5911 * css_set. Grabbing css_set_lock guarantees both that the
5912 * association is stable, and, on completion of the parent's
5913 * migration, @child is visible in the source of migration or
5914 * already in the destination cgroup. This guarantee is necessary
5915 * when implementing operations which need to migrate all tasks of
5916 * a cgroup to another.
5918 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5919 * will remain in init_css_set. This is safe because all tasks are
5920 * in the init_css_set before cg_links is enabled and there's no
5921 * operation which transfers all tasks out of init_css_set.
5923 if (use_task_css_set_links) {
5924 struct css_set *cset;
5926 spin_lock_irq(&css_set_lock);
5927 cset = task_css_set(current);
5928 if (list_empty(&child->cg_list)) {
5929 get_css_set(cset);
5930 cset->nr_tasks++;
5931 css_set_move_task(child, NULL, cset, false);
5935 * If the cgroup has to be frozen, the new task has too.
5936 * Let's set the JOBCTL_TRAP_FREEZE jobctl bit to get
5937 * the task into the frozen state.
5939 if (unlikely(cgroup_task_freeze(child))) {
5940 spin_lock(&child->sighand->siglock);
5941 WARN_ON_ONCE(child->frozen);
5942 child->jobctl |= JOBCTL_TRAP_FREEZE;
5943 spin_unlock(&child->sighand->siglock);
5946 * Calling cgroup_update_frozen() isn't required here,
5947 * because it will be called anyway a bit later
5948 * from do_freezer_trap(). So we avoid cgroup's
5949 * transient switch from the frozen state and back.
5953 spin_unlock_irq(&css_set_lock);
5957 * Call ss->fork(). This must happen after @child is linked on
5958 * css_set; otherwise, @child might change state between ->fork()
5959 * and addition to css_set.
5961 do_each_subsys_mask(ss, i, have_fork_callback) {
5962 ss->fork(child);
5963 } while_each_subsys_mask();
5967 * cgroup_exit - detach cgroup from exiting task
5968 * @tsk: pointer to task_struct of exiting process
5970 * Description: Detach cgroup from @tsk and release it.
5972 * Note that cgroups marked notify_on_release force every task in
5973 * them to take the global cgroup_mutex mutex when exiting.
5974 * This could impact scaling on very large systems. Be reluctant to
5975 * use notify_on_release cgroups where very high task exit scaling
5976 * is required on large systems.
5978 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5979 * call cgroup_exit() while the task is still competent to handle
5980 * notify_on_release(), then leave the task attached to the root cgroup in
5981 * each hierarchy for the remainder of its exit. No need to bother with
5982 * init_css_set refcnting. init_css_set never goes away and we can't race
5983 * with migration path - PF_EXITING is visible to migration path.
5985 void cgroup_exit(struct task_struct *tsk)
5987 struct cgroup_subsys *ss;
5988 struct css_set *cset;
5989 int i;
5992 * Unlink from @tsk from its css_set. As migration path can't race
5993 * with us, we can check css_set and cg_list without synchronization.
5995 cset = task_css_set(tsk);
5997 if (!list_empty(&tsk->cg_list)) {
5998 spin_lock_irq(&css_set_lock);
5999 css_set_move_task(tsk, cset, NULL, false);
6000 cset->nr_tasks--;
6002 WARN_ON_ONCE(cgroup_task_frozen(tsk));
6003 if (unlikely(cgroup_task_freeze(tsk)))
6004 cgroup_update_frozen(task_dfl_cgroup(tsk));
6006 spin_unlock_irq(&css_set_lock);
6007 } else {
6008 get_css_set(cset);
6011 /* see cgroup_post_fork() for details */
6012 do_each_subsys_mask(ss, i, have_exit_callback) {
6013 ss->exit(tsk);
6014 } while_each_subsys_mask();
6017 void cgroup_release(struct task_struct *task)
6019 struct cgroup_subsys *ss;
6020 int ssid;
6022 do_each_subsys_mask(ss, ssid, have_release_callback) {
6023 ss->release(task);
6024 } while_each_subsys_mask();
6027 void cgroup_free(struct task_struct *task)
6029 struct css_set *cset = task_css_set(task);
6030 put_css_set(cset);
6033 static int __init cgroup_disable(char *str)
6035 struct cgroup_subsys *ss;
6036 char *token;
6037 int i;
6039 while ((token = strsep(&str, ",")) != NULL) {
6040 if (!*token)
6041 continue;
6043 for_each_subsys(ss, i) {
6044 if (strcmp(token, ss->name) &&
6045 strcmp(token, ss->legacy_name))
6046 continue;
6047 cgroup_disable_mask |= 1 << i;
6050 return 1;
6052 __setup("cgroup_disable=", cgroup_disable);
6054 void __init __weak enable_debug_cgroup(void) { }
6056 static int __init enable_cgroup_debug(char *str)
6058 cgroup_debug = true;
6059 enable_debug_cgroup();
6060 return 1;
6062 __setup("cgroup_debug", enable_cgroup_debug);
6065 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
6066 * @dentry: directory dentry of interest
6067 * @ss: subsystem of interest
6069 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6070 * to get the corresponding css and return it. If such css doesn't exist
6071 * or can't be pinned, an ERR_PTR value is returned.
6073 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6074 struct cgroup_subsys *ss)
6076 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
6077 struct file_system_type *s_type = dentry->d_sb->s_type;
6078 struct cgroup_subsys_state *css = NULL;
6079 struct cgroup *cgrp;
6081 /* is @dentry a cgroup dir? */
6082 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6083 !kn || kernfs_type(kn) != KERNFS_DIR)
6084 return ERR_PTR(-EBADF);
6086 rcu_read_lock();
6089 * This path doesn't originate from kernfs and @kn could already
6090 * have been or be removed at any point. @kn->priv is RCU
6091 * protected for this access. See css_release_work_fn() for details.
6093 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
6094 if (cgrp)
6095 css = cgroup_css(cgrp, ss);
6097 if (!css || !css_tryget_online(css))
6098 css = ERR_PTR(-ENOENT);
6100 rcu_read_unlock();
6101 return css;
6105 * css_from_id - lookup css by id
6106 * @id: the cgroup id
6107 * @ss: cgroup subsys to be looked into
6109 * Returns the css if there's valid one with @id, otherwise returns NULL.
6110 * Should be called under rcu_read_lock().
6112 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6114 WARN_ON_ONCE(!rcu_read_lock_held());
6115 return idr_find(&ss->css_idr, id);
6119 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6120 * @path: path on the default hierarchy
6122 * Find the cgroup at @path on the default hierarchy, increment its
6123 * reference count and return it. Returns pointer to the found cgroup on
6124 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6125 * if @path points to a non-directory.
6127 struct cgroup *cgroup_get_from_path(const char *path)
6129 struct kernfs_node *kn;
6130 struct cgroup *cgrp;
6132 mutex_lock(&cgroup_mutex);
6134 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6135 if (kn) {
6136 if (kernfs_type(kn) == KERNFS_DIR) {
6137 cgrp = kn->priv;
6138 cgroup_get_live(cgrp);
6139 } else {
6140 cgrp = ERR_PTR(-ENOTDIR);
6142 kernfs_put(kn);
6143 } else {
6144 cgrp = ERR_PTR(-ENOENT);
6147 mutex_unlock(&cgroup_mutex);
6148 return cgrp;
6150 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6153 * cgroup_get_from_fd - get a cgroup pointer from a fd
6154 * @fd: fd obtained by open(cgroup2_dir)
6156 * Find the cgroup from a fd which should be obtained
6157 * by opening a cgroup directory. Returns a pointer to the
6158 * cgroup on success. ERR_PTR is returned if the cgroup
6159 * cannot be found.
6161 struct cgroup *cgroup_get_from_fd(int fd)
6163 struct cgroup_subsys_state *css;
6164 struct cgroup *cgrp;
6165 struct file *f;
6167 f = fget_raw(fd);
6168 if (!f)
6169 return ERR_PTR(-EBADF);
6171 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6172 fput(f);
6173 if (IS_ERR(css))
6174 return ERR_CAST(css);
6176 cgrp = css->cgroup;
6177 if (!cgroup_on_dfl(cgrp)) {
6178 cgroup_put(cgrp);
6179 return ERR_PTR(-EBADF);
6182 return cgrp;
6184 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6187 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6188 * definition in cgroup-defs.h.
6190 #ifdef CONFIG_SOCK_CGROUP_DATA
6192 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6194 DEFINE_SPINLOCK(cgroup_sk_update_lock);
6195 static bool cgroup_sk_alloc_disabled __read_mostly;
6197 void cgroup_sk_alloc_disable(void)
6199 if (cgroup_sk_alloc_disabled)
6200 return;
6201 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6202 cgroup_sk_alloc_disabled = true;
6205 #else
6207 #define cgroup_sk_alloc_disabled false
6209 #endif
6211 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6213 if (cgroup_sk_alloc_disabled)
6214 return;
6216 /* Socket clone path */
6217 if (skcd->val) {
6219 * We might be cloning a socket which is left in an empty
6220 * cgroup and the cgroup might have already been rmdir'd.
6221 * Don't use cgroup_get_live().
6223 cgroup_get(sock_cgroup_ptr(skcd));
6224 return;
6227 rcu_read_lock();
6229 while (true) {
6230 struct css_set *cset;
6232 cset = task_css_set(current);
6233 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6234 skcd->val = (unsigned long)cset->dfl_cgrp;
6235 break;
6237 cpu_relax();
6240 rcu_read_unlock();
6243 void cgroup_sk_free(struct sock_cgroup_data *skcd)
6245 cgroup_put(sock_cgroup_ptr(skcd));
6248 #endif /* CONFIG_SOCK_CGROUP_DATA */
6250 #ifdef CONFIG_CGROUP_BPF
6251 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
6252 enum bpf_attach_type type, u32 flags)
6254 int ret;
6256 mutex_lock(&cgroup_mutex);
6257 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
6258 mutex_unlock(&cgroup_mutex);
6259 return ret;
6261 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
6262 enum bpf_attach_type type, u32 flags)
6264 int ret;
6266 mutex_lock(&cgroup_mutex);
6267 ret = __cgroup_bpf_detach(cgrp, prog, type);
6268 mutex_unlock(&cgroup_mutex);
6269 return ret;
6271 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
6272 union bpf_attr __user *uattr)
6274 int ret;
6276 mutex_lock(&cgroup_mutex);
6277 ret = __cgroup_bpf_query(cgrp, attr, uattr);
6278 mutex_unlock(&cgroup_mutex);
6279 return ret;
6281 #endif /* CONFIG_CGROUP_BPF */
6283 #ifdef CONFIG_SYSFS
6284 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
6285 ssize_t size, const char *prefix)
6287 struct cftype *cft;
6288 ssize_t ret = 0;
6290 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
6291 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
6292 continue;
6294 if (prefix)
6295 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
6297 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
6299 if (WARN_ON(ret >= size))
6300 break;
6303 return ret;
6306 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
6307 char *buf)
6309 struct cgroup_subsys *ss;
6310 int ssid;
6311 ssize_t ret = 0;
6313 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
6314 NULL);
6316 for_each_subsys(ss, ssid)
6317 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
6318 PAGE_SIZE - ret,
6319 cgroup_subsys_name[ssid]);
6321 return ret;
6323 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
6325 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
6326 char *buf)
6328 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
6330 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
6332 static struct attribute *cgroup_sysfs_attrs[] = {
6333 &cgroup_delegate_attr.attr,
6334 &cgroup_features_attr.attr,
6335 NULL,
6338 static const struct attribute_group cgroup_sysfs_attr_group = {
6339 .attrs = cgroup_sysfs_attrs,
6340 .name = "cgroup",
6343 static int __init cgroup_sysfs_init(void)
6345 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
6347 subsys_initcall(cgroup_sysfs_init);
6348 #endif /* CONFIG_SYSFS */