4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
71 static void __unhash_process(struct task_struct
*p
, bool group_dead
)
74 detach_pid(p
, PIDTYPE_PID
);
76 detach_pid(p
, PIDTYPE_TGID
);
77 detach_pid(p
, PIDTYPE_PGID
);
78 detach_pid(p
, PIDTYPE_SID
);
80 list_del_rcu(&p
->tasks
);
81 list_del_init(&p
->sibling
);
82 __this_cpu_dec(process_counts
);
84 list_del_rcu(&p
->thread_group
);
85 list_del_rcu(&p
->thread_node
);
89 * This function expects the tasklist_lock write-locked.
91 static void __exit_signal(struct task_struct
*tsk
)
93 struct signal_struct
*sig
= tsk
->signal
;
94 bool group_dead
= thread_group_leader(tsk
);
95 struct sighand_struct
*sighand
;
96 struct tty_struct
*uninitialized_var(tty
);
99 sighand
= rcu_dereference_check(tsk
->sighand
,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand
->siglock
);
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk
);
106 posix_cpu_timers_exit_group(tsk
);
109 * This can only happen if the caller is de_thread().
110 * FIXME: this is the temporary hack, we should teach
111 * posix-cpu-timers to handle this case correctly.
113 if (unlikely(has_group_leader_pid(tsk
)))
114 posix_cpu_timers_exit_group(tsk
);
123 * If there is any task waiting for the group exit
126 if (sig
->notify_count
> 0 && !--sig
->notify_count
)
127 wake_up_process(sig
->group_exit_task
);
129 if (tsk
== sig
->curr_target
)
130 sig
->curr_target
= next_thread(tsk
);
133 add_device_randomness((const void*) &tsk
->se
.sum_exec_runtime
,
134 sizeof(unsigned long long));
137 * Accumulate here the counters for all threads as they die. We could
138 * skip the group leader because it is the last user of signal_struct,
139 * but we want to avoid the race with thread_group_cputime() which can
140 * see the empty ->thread_head list.
142 task_cputime(tsk
, &utime
, &stime
);
143 write_seqlock(&sig
->stats_lock
);
146 sig
->gtime
+= task_gtime(tsk
);
147 sig
->min_flt
+= tsk
->min_flt
;
148 sig
->maj_flt
+= tsk
->maj_flt
;
149 sig
->nvcsw
+= tsk
->nvcsw
;
150 sig
->nivcsw
+= tsk
->nivcsw
;
151 sig
->inblock
+= task_io_get_inblock(tsk
);
152 sig
->oublock
+= task_io_get_oublock(tsk
);
153 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
154 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
156 __unhash_process(tsk
, group_dead
);
157 write_sequnlock(&sig
->stats_lock
);
160 * Do this under ->siglock, we can race with another thread
161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 flush_sigqueue(&tsk
->pending
);
165 spin_unlock(&sighand
->siglock
);
167 __cleanup_sighand(sighand
);
168 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
170 flush_sigqueue(&sig
->shared_pending
);
175 static void delayed_put_task_struct(struct rcu_head
*rhp
)
177 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
179 perf_event_delayed_put(tsk
);
180 trace_sched_process_free(tsk
);
181 put_task_struct(tsk
);
185 void release_task(struct task_struct
*p
)
187 struct task_struct
*leader
;
190 /* don't need to get the RCU readlock here - the process is dead and
191 * can't be modifying its own credentials. But shut RCU-lockdep up */
193 atomic_dec(&__task_cred(p
)->user
->processes
);
198 write_lock_irq(&tasklist_lock
);
199 ptrace_release_task(p
);
203 * If we are the last non-leader member of the thread
204 * group, and the leader is zombie, then notify the
205 * group leader's parent process. (if it wants notification.)
208 leader
= p
->group_leader
;
209 if (leader
!= p
&& thread_group_empty(leader
)
210 && leader
->exit_state
== EXIT_ZOMBIE
) {
212 * If we were the last child thread and the leader has
213 * exited already, and the leader's parent ignores SIGCHLD,
214 * then we are the one who should release the leader.
216 zap_leader
= do_notify_parent(leader
, leader
->exit_signal
);
218 leader
->exit_state
= EXIT_DEAD
;
221 write_unlock_irq(&tasklist_lock
);
224 call_rcu(&p
->rcu
, delayed_put_task_struct
);
227 if (unlikely(zap_leader
))
232 * Note that if this function returns a valid task_struct pointer (!NULL)
233 * task->usage must remain >0 for the duration of the RCU critical section.
235 struct task_struct
*task_rcu_dereference(struct task_struct
**ptask
)
237 struct sighand_struct
*sighand
;
238 struct task_struct
*task
;
241 * We need to verify that release_task() was not called and thus
242 * delayed_put_task_struct() can't run and drop the last reference
243 * before rcu_read_unlock(). We check task->sighand != NULL,
244 * but we can read the already freed and reused memory.
247 task
= rcu_dereference(*ptask
);
251 probe_kernel_address(&task
->sighand
, sighand
);
254 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
255 * was already freed we can not miss the preceding update of this
259 if (unlikely(task
!= READ_ONCE(*ptask
)))
263 * We've re-checked that "task == *ptask", now we have two different
266 * 1. This is actually the same task/task_struct. In this case
267 * sighand != NULL tells us it is still alive.
269 * 2. This is another task which got the same memory for task_struct.
270 * We can't know this of course, and we can not trust
273 * In this case we actually return a random value, but this is
276 * If we return NULL - we can pretend that we actually noticed that
277 * *ptask was updated when the previous task has exited. Or pretend
278 * that probe_slab_address(&sighand) reads NULL.
280 * If we return the new task (because sighand is not NULL for any
281 * reason) - this is fine too. This (new) task can't go away before
284 * And note: We could even eliminate the false positive if re-read
285 * task->sighand once again to avoid the falsely NULL. But this case
286 * is very unlikely so we don't care.
294 void rcuwait_wake_up(struct rcuwait
*w
)
296 struct task_struct
*task
;
301 * Order condition vs @task, such that everything prior to the load
302 * of @task is visible. This is the condition as to why the user called
303 * rcuwait_trywake() in the first place. Pairs with set_current_state()
304 * barrier (A) in rcuwait_wait_event().
307 * [S] tsk = current [S] cond = true
314 * Avoid using task_rcu_dereference() magic as long as we are careful,
315 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 task
= rcu_dereference(w
->task
);
319 wake_up_process(task
);
324 * Determine if a process group is "orphaned", according to the POSIX
325 * definition in 2.2.2.52. Orphaned process groups are not to be affected
326 * by terminal-generated stop signals. Newly orphaned process groups are
327 * to receive a SIGHUP and a SIGCONT.
329 * "I ask you, have you ever known what it is to be an orphan?"
331 static int will_become_orphaned_pgrp(struct pid
*pgrp
,
332 struct task_struct
*ignored_task
)
334 struct task_struct
*p
;
336 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
337 if ((p
== ignored_task
) ||
338 (p
->exit_state
&& thread_group_empty(p
)) ||
339 is_global_init(p
->real_parent
))
342 if (task_pgrp(p
->real_parent
) != pgrp
&&
343 task_session(p
->real_parent
) == task_session(p
))
345 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
350 int is_current_pgrp_orphaned(void)
354 read_lock(&tasklist_lock
);
355 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
356 read_unlock(&tasklist_lock
);
361 static bool has_stopped_jobs(struct pid
*pgrp
)
363 struct task_struct
*p
;
365 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
366 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
368 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
374 * Check to see if any process groups have become orphaned as
375 * a result of our exiting, and if they have any stopped jobs,
376 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
379 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
381 struct pid
*pgrp
= task_pgrp(tsk
);
382 struct task_struct
*ignored_task
= tsk
;
385 /* exit: our father is in a different pgrp than
386 * we are and we were the only connection outside.
388 parent
= tsk
->real_parent
;
390 /* reparent: our child is in a different pgrp than
391 * we are, and it was the only connection outside.
395 if (task_pgrp(parent
) != pgrp
&&
396 task_session(parent
) == task_session(tsk
) &&
397 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
398 has_stopped_jobs(pgrp
)) {
399 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
400 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
406 * A task is exiting. If it owned this mm, find a new owner for the mm.
408 void mm_update_next_owner(struct mm_struct
*mm
)
410 struct task_struct
*c
, *g
, *p
= current
;
414 * If the exiting or execing task is not the owner, it's
415 * someone else's problem.
420 * The current owner is exiting/execing and there are no other
421 * candidates. Do not leave the mm pointing to a possibly
422 * freed task structure.
424 if (atomic_read(&mm
->mm_users
) <= 1) {
425 WRITE_ONCE(mm
->owner
, NULL
);
429 read_lock(&tasklist_lock
);
431 * Search in the children
433 list_for_each_entry(c
, &p
->children
, sibling
) {
435 goto assign_new_owner
;
439 * Search in the siblings
441 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
443 goto assign_new_owner
;
447 * Search through everything else, we should not get here often.
449 for_each_process(g
) {
450 if (g
->flags
& PF_KTHREAD
)
452 for_each_thread(g
, c
) {
454 goto assign_new_owner
;
459 read_unlock(&tasklist_lock
);
461 * We found no owner yet mm_users > 1: this implies that we are
462 * most likely racing with swapoff (try_to_unuse()) or /proc or
463 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
465 WRITE_ONCE(mm
->owner
, NULL
);
472 * The task_lock protects c->mm from changing.
473 * We always want mm->owner->mm == mm
477 * Delay read_unlock() till we have the task_lock()
478 * to ensure that c does not slip away underneath us
480 read_unlock(&tasklist_lock
);
486 WRITE_ONCE(mm
->owner
, c
);
490 #endif /* CONFIG_MEMCG */
493 * Turn us into a lazy TLB process if we
496 static void exit_mm(void)
498 struct mm_struct
*mm
= current
->mm
;
499 struct core_state
*core_state
;
501 mm_release(current
, mm
);
506 * Serialize with any possible pending coredump.
507 * We must hold mmap_sem around checking core_state
508 * and clearing tsk->mm. The core-inducing thread
509 * will increment ->nr_threads for each thread in the
510 * group with ->mm != NULL.
512 down_read(&mm
->mmap_sem
);
513 core_state
= mm
->core_state
;
515 struct core_thread self
;
517 up_read(&mm
->mmap_sem
);
520 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
522 * Implies mb(), the result of xchg() must be visible
523 * to core_state->dumper.
525 if (atomic_dec_and_test(&core_state
->nr_threads
))
526 complete(&core_state
->startup
);
529 set_current_state(TASK_UNINTERRUPTIBLE
);
530 if (!self
.task
) /* see coredump_finish() */
532 freezable_schedule();
534 __set_current_state(TASK_RUNNING
);
535 down_read(&mm
->mmap_sem
);
538 BUG_ON(mm
!= current
->active_mm
);
539 /* more a memory barrier than a real lock */
542 up_read(&mm
->mmap_sem
);
543 enter_lazy_tlb(mm
, current
);
544 task_unlock(current
);
545 mm_update_next_owner(mm
);
547 if (test_thread_flag(TIF_MEMDIE
))
551 static struct task_struct
*find_alive_thread(struct task_struct
*p
)
553 struct task_struct
*t
;
555 for_each_thread(p
, t
) {
556 if (!(t
->flags
& PF_EXITING
))
562 static struct task_struct
*find_child_reaper(struct task_struct
*father
,
563 struct list_head
*dead
)
564 __releases(&tasklist_lock
)
565 __acquires(&tasklist_lock
)
567 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
568 struct task_struct
*reaper
= pid_ns
->child_reaper
;
569 struct task_struct
*p
, *n
;
571 if (likely(reaper
!= father
))
574 reaper
= find_alive_thread(father
);
576 pid_ns
->child_reaper
= reaper
;
580 write_unlock_irq(&tasklist_lock
);
581 if (unlikely(pid_ns
== &init_pid_ns
)) {
582 panic("Attempted to kill init! exitcode=0x%08x\n",
583 father
->signal
->group_exit_code
?: father
->exit_code
);
586 list_for_each_entry_safe(p
, n
, dead
, ptrace_entry
) {
587 list_del_init(&p
->ptrace_entry
);
591 zap_pid_ns_processes(pid_ns
);
592 write_lock_irq(&tasklist_lock
);
598 * When we die, we re-parent all our children, and try to:
599 * 1. give them to another thread in our thread group, if such a member exists
600 * 2. give it to the first ancestor process which prctl'd itself as a
601 * child_subreaper for its children (like a service manager)
602 * 3. give it to the init process (PID 1) in our pid namespace
604 static struct task_struct
*find_new_reaper(struct task_struct
*father
,
605 struct task_struct
*child_reaper
)
607 struct task_struct
*thread
, *reaper
;
609 thread
= find_alive_thread(father
);
613 if (father
->signal
->has_child_subreaper
) {
614 unsigned int ns_level
= task_pid(father
)->level
;
616 * Find the first ->is_child_subreaper ancestor in our pid_ns.
617 * We can't check reaper != child_reaper to ensure we do not
618 * cross the namespaces, the exiting parent could be injected
619 * by setns() + fork().
620 * We check pid->level, this is slightly more efficient than
621 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
623 for (reaper
= father
->real_parent
;
624 task_pid(reaper
)->level
== ns_level
;
625 reaper
= reaper
->real_parent
) {
626 if (reaper
== &init_task
)
628 if (!reaper
->signal
->is_child_subreaper
)
630 thread
= find_alive_thread(reaper
);
640 * Any that need to be release_task'd are put on the @dead list.
642 static void reparent_leader(struct task_struct
*father
, struct task_struct
*p
,
643 struct list_head
*dead
)
645 if (unlikely(p
->exit_state
== EXIT_DEAD
))
648 /* We don't want people slaying init. */
649 p
->exit_signal
= SIGCHLD
;
651 /* If it has exited notify the new parent about this child's death. */
653 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
654 if (do_notify_parent(p
, p
->exit_signal
)) {
655 p
->exit_state
= EXIT_DEAD
;
656 list_add(&p
->ptrace_entry
, dead
);
660 kill_orphaned_pgrp(p
, father
);
664 * This does two things:
666 * A. Make init inherit all the child processes
667 * B. Check to see if any process groups have become orphaned
668 * as a result of our exiting, and if they have any stopped
669 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
671 static void forget_original_parent(struct task_struct
*father
,
672 struct list_head
*dead
)
674 struct task_struct
*p
, *t
, *reaper
;
676 if (unlikely(!list_empty(&father
->ptraced
)))
677 exit_ptrace(father
, dead
);
679 /* Can drop and reacquire tasklist_lock */
680 reaper
= find_child_reaper(father
, dead
);
681 if (list_empty(&father
->children
))
684 reaper
= find_new_reaper(father
, reaper
);
685 list_for_each_entry(p
, &father
->children
, sibling
) {
686 for_each_thread(p
, t
) {
687 t
->real_parent
= reaper
;
688 BUG_ON((!t
->ptrace
) != (t
->parent
== father
));
689 if (likely(!t
->ptrace
))
690 t
->parent
= t
->real_parent
;
691 if (t
->pdeath_signal
)
692 group_send_sig_info(t
->pdeath_signal
,
697 * If this is a threaded reparent there is no need to
698 * notify anyone anything has happened.
700 if (!same_thread_group(reaper
, father
))
701 reparent_leader(father
, p
, dead
);
703 list_splice_tail_init(&father
->children
, &reaper
->children
);
707 * Send signals to all our closest relatives so that they know
708 * to properly mourn us..
710 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
713 struct task_struct
*p
, *n
;
716 write_lock_irq(&tasklist_lock
);
717 forget_original_parent(tsk
, &dead
);
720 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
722 if (unlikely(tsk
->ptrace
)) {
723 int sig
= thread_group_leader(tsk
) &&
724 thread_group_empty(tsk
) &&
725 !ptrace_reparented(tsk
) ?
726 tsk
->exit_signal
: SIGCHLD
;
727 autoreap
= do_notify_parent(tsk
, sig
);
728 } else if (thread_group_leader(tsk
)) {
729 autoreap
= thread_group_empty(tsk
) &&
730 do_notify_parent(tsk
, tsk
->exit_signal
);
735 tsk
->exit_state
= autoreap
? EXIT_DEAD
: EXIT_ZOMBIE
;
736 if (tsk
->exit_state
== EXIT_DEAD
)
737 list_add(&tsk
->ptrace_entry
, &dead
);
739 /* mt-exec, de_thread() is waiting for group leader */
740 if (unlikely(tsk
->signal
->notify_count
< 0))
741 wake_up_process(tsk
->signal
->group_exit_task
);
742 write_unlock_irq(&tasklist_lock
);
744 list_for_each_entry_safe(p
, n
, &dead
, ptrace_entry
) {
745 list_del_init(&p
->ptrace_entry
);
750 #ifdef CONFIG_DEBUG_STACK_USAGE
751 static void check_stack_usage(void)
753 static DEFINE_SPINLOCK(low_water_lock
);
754 static int lowest_to_date
= THREAD_SIZE
;
757 free
= stack_not_used(current
);
759 if (free
>= lowest_to_date
)
762 spin_lock(&low_water_lock
);
763 if (free
< lowest_to_date
) {
764 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
765 current
->comm
, task_pid_nr(current
), free
);
766 lowest_to_date
= free
;
768 spin_unlock(&low_water_lock
);
771 static inline void check_stack_usage(void) {}
774 void __noreturn
do_exit(long code
)
776 struct task_struct
*tsk
= current
;
779 profile_task_exit(tsk
);
782 WARN_ON(blk_needs_flush_plug(tsk
));
784 if (unlikely(in_interrupt()))
785 panic("Aiee, killing interrupt handler!");
786 if (unlikely(!tsk
->pid
))
787 panic("Attempted to kill the idle task!");
790 * If do_exit is called because this processes oopsed, it's possible
791 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
792 * continuing. Amongst other possible reasons, this is to prevent
793 * mm_release()->clear_child_tid() from writing to a user-controlled
798 ptrace_event(PTRACE_EVENT_EXIT
, code
);
800 validate_creds_for_do_exit(tsk
);
803 * We're taking recursive faults here in do_exit. Safest is to just
804 * leave this task alone and wait for reboot.
806 if (unlikely(tsk
->flags
& PF_EXITING
)) {
807 pr_alert("Fixing recursive fault but reboot is needed!\n");
809 * We can do this unlocked here. The futex code uses
810 * this flag just to verify whether the pi state
811 * cleanup has been done or not. In the worst case it
812 * loops once more. We pretend that the cleanup was
813 * done as there is no way to return. Either the
814 * OWNER_DIED bit is set by now or we push the blocked
815 * task into the wait for ever nirwana as well.
817 tsk
->flags
|= PF_EXITPIDONE
;
818 set_current_state(TASK_UNINTERRUPTIBLE
);
822 exit_signals(tsk
); /* sets PF_EXITING */
824 * Ensure that all new tsk->pi_lock acquisitions must observe
825 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
829 * Ensure that we must observe the pi_state in exit_mm() ->
830 * mm_release() -> exit_pi_state_list().
832 raw_spin_lock_irq(&tsk
->pi_lock
);
833 raw_spin_unlock_irq(&tsk
->pi_lock
);
835 if (unlikely(in_atomic())) {
836 pr_info("note: %s[%d] exited with preempt_count %d\n",
837 current
->comm
, task_pid_nr(current
),
839 preempt_count_set(PREEMPT_ENABLED
);
842 /* sync mm's RSS info before statistics gathering */
844 sync_mm_rss(tsk
->mm
);
845 acct_update_integrals(tsk
);
846 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
848 #ifdef CONFIG_POSIX_TIMERS
849 hrtimer_cancel(&tsk
->signal
->real_timer
);
850 exit_itimers(tsk
->signal
);
853 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, tsk
->mm
);
855 acct_collect(code
, group_dead
);
860 tsk
->exit_code
= code
;
861 taskstats_exit(tsk
, group_dead
);
867 trace_sched_process_exit(tsk
);
874 disassociate_ctty(1);
875 exit_task_namespaces(tsk
);
881 * Flush inherited counters to the parent - before the parent
882 * gets woken up by child-exit notifications.
884 * because of cgroup mode, must be called before cgroup_exit()
886 perf_event_exit_task(tsk
);
888 sched_autogroup_exit_task(tsk
);
892 * FIXME: do that only when needed, using sched_exit tracepoint
894 flush_ptrace_hw_breakpoint(tsk
);
896 exit_tasks_rcu_start();
897 exit_notify(tsk
, group_dead
);
898 proc_exit_connector(tsk
);
899 mpol_put_task_policy(tsk
);
901 if (unlikely(current
->pi_state_cache
))
902 kfree(current
->pi_state_cache
);
905 * Make sure we are holding no locks:
907 debug_check_no_locks_held();
909 * We can do this unlocked here. The futex code uses this flag
910 * just to verify whether the pi state cleanup has been done
911 * or not. In the worst case it loops once more.
913 tsk
->flags
|= PF_EXITPIDONE
;
916 exit_io_context(tsk
);
918 if (tsk
->splice_pipe
)
919 free_pipe_info(tsk
->splice_pipe
);
921 if (tsk
->task_frag
.page
)
922 put_page(tsk
->task_frag
.page
);
924 validate_creds_for_do_exit(tsk
);
929 __this_cpu_add(dirty_throttle_leaks
, tsk
->nr_dirtied
);
931 exit_tasks_rcu_finish();
933 lockdep_free_task(tsk
);
936 EXPORT_SYMBOL_GPL(do_exit
);
938 void complete_and_exit(struct completion
*comp
, long code
)
945 EXPORT_SYMBOL(complete_and_exit
);
947 SYSCALL_DEFINE1(exit
, int, error_code
)
949 do_exit((error_code
&0xff)<<8);
953 * Take down every thread in the group. This is called by fatal signals
954 * as well as by sys_exit_group (below).
957 do_group_exit(int exit_code
)
959 struct signal_struct
*sig
= current
->signal
;
961 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
963 if (signal_group_exit(sig
))
964 exit_code
= sig
->group_exit_code
;
965 else if (!thread_group_empty(current
)) {
966 struct sighand_struct
*const sighand
= current
->sighand
;
968 spin_lock_irq(&sighand
->siglock
);
969 if (signal_group_exit(sig
))
970 /* Another thread got here before we took the lock. */
971 exit_code
= sig
->group_exit_code
;
973 sig
->group_exit_code
= exit_code
;
974 sig
->flags
= SIGNAL_GROUP_EXIT
;
975 zap_other_threads(current
);
977 spin_unlock_irq(&sighand
->siglock
);
985 * this kills every thread in the thread group. Note that any externally
986 * wait4()-ing process will get the correct exit code - even if this
987 * thread is not the thread group leader.
989 SYSCALL_DEFINE1(exit_group
, int, error_code
)
991 do_group_exit((error_code
& 0xff) << 8);
1004 enum pid_type wo_type
;
1008 struct waitid_info
*wo_info
;
1010 struct rusage
*wo_rusage
;
1012 wait_queue_entry_t child_wait
;
1016 static int eligible_pid(struct wait_opts
*wo
, struct task_struct
*p
)
1018 return wo
->wo_type
== PIDTYPE_MAX
||
1019 task_pid_type(p
, wo
->wo_type
) == wo
->wo_pid
;
1023 eligible_child(struct wait_opts
*wo
, bool ptrace
, struct task_struct
*p
)
1025 if (!eligible_pid(wo
, p
))
1029 * Wait for all children (clone and not) if __WALL is set or
1030 * if it is traced by us.
1032 if (ptrace
|| (wo
->wo_flags
& __WALL
))
1036 * Otherwise, wait for clone children *only* if __WCLONE is set;
1037 * otherwise, wait for non-clone children *only*.
1039 * Note: a "clone" child here is one that reports to its parent
1040 * using a signal other than SIGCHLD, or a non-leader thread which
1041 * we can only see if it is traced by us.
1043 if ((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1050 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1051 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1052 * the lock and this task is uninteresting. If we return nonzero, we have
1053 * released the lock and the system call should return.
1055 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1058 pid_t pid
= task_pid_vnr(p
);
1059 uid_t uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1060 struct waitid_info
*infop
;
1062 if (!likely(wo
->wo_flags
& WEXITED
))
1065 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1066 status
= p
->exit_code
;
1068 read_unlock(&tasklist_lock
);
1069 sched_annotate_sleep();
1071 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1076 * Move the task's state to DEAD/TRACE, only one thread can do this.
1078 state
= (ptrace_reparented(p
) && thread_group_leader(p
)) ?
1079 EXIT_TRACE
: EXIT_DEAD
;
1080 if (cmpxchg(&p
->exit_state
, EXIT_ZOMBIE
, state
) != EXIT_ZOMBIE
)
1083 * We own this thread, nobody else can reap it.
1085 read_unlock(&tasklist_lock
);
1086 sched_annotate_sleep();
1089 * Check thread_group_leader() to exclude the traced sub-threads.
1091 if (state
== EXIT_DEAD
&& thread_group_leader(p
)) {
1092 struct signal_struct
*sig
= p
->signal
;
1093 struct signal_struct
*psig
= current
->signal
;
1094 unsigned long maxrss
;
1095 u64 tgutime
, tgstime
;
1098 * The resource counters for the group leader are in its
1099 * own task_struct. Those for dead threads in the group
1100 * are in its signal_struct, as are those for the child
1101 * processes it has previously reaped. All these
1102 * accumulate in the parent's signal_struct c* fields.
1104 * We don't bother to take a lock here to protect these
1105 * p->signal fields because the whole thread group is dead
1106 * and nobody can change them.
1108 * psig->stats_lock also protects us from our sub-theads
1109 * which can reap other children at the same time. Until
1110 * we change k_getrusage()-like users to rely on this lock
1111 * we have to take ->siglock as well.
1113 * We use thread_group_cputime_adjusted() to get times for
1114 * the thread group, which consolidates times for all threads
1115 * in the group including the group leader.
1117 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1118 spin_lock_irq(¤t
->sighand
->siglock
);
1119 write_seqlock(&psig
->stats_lock
);
1120 psig
->cutime
+= tgutime
+ sig
->cutime
;
1121 psig
->cstime
+= tgstime
+ sig
->cstime
;
1122 psig
->cgtime
+= task_gtime(p
) + sig
->gtime
+ sig
->cgtime
;
1124 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1126 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1128 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1130 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1132 task_io_get_inblock(p
) +
1133 sig
->inblock
+ sig
->cinblock
;
1135 task_io_get_oublock(p
) +
1136 sig
->oublock
+ sig
->coublock
;
1137 maxrss
= max(sig
->maxrss
, sig
->cmaxrss
);
1138 if (psig
->cmaxrss
< maxrss
)
1139 psig
->cmaxrss
= maxrss
;
1140 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1141 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1142 write_sequnlock(&psig
->stats_lock
);
1143 spin_unlock_irq(¤t
->sighand
->siglock
);
1147 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1148 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1149 ? p
->signal
->group_exit_code
: p
->exit_code
;
1150 wo
->wo_stat
= status
;
1152 if (state
== EXIT_TRACE
) {
1153 write_lock_irq(&tasklist_lock
);
1154 /* We dropped tasklist, ptracer could die and untrace */
1157 /* If parent wants a zombie, don't release it now */
1158 state
= EXIT_ZOMBIE
;
1159 if (do_notify_parent(p
, p
->exit_signal
))
1161 p
->exit_state
= state
;
1162 write_unlock_irq(&tasklist_lock
);
1164 if (state
== EXIT_DEAD
)
1168 infop
= wo
->wo_info
;
1170 if ((status
& 0x7f) == 0) {
1171 infop
->cause
= CLD_EXITED
;
1172 infop
->status
= status
>> 8;
1174 infop
->cause
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1175 infop
->status
= status
& 0x7f;
1184 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1187 if (task_is_traced(p
) && !(p
->jobctl
& JOBCTL_LISTENING
))
1188 return &p
->exit_code
;
1190 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1191 return &p
->signal
->group_exit_code
;
1197 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1199 * @ptrace: is the wait for ptrace
1200 * @p: task to wait for
1202 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1205 * read_lock(&tasklist_lock), which is released if return value is
1206 * non-zero. Also, grabs and releases @p->sighand->siglock.
1209 * 0 if wait condition didn't exist and search for other wait conditions
1210 * should continue. Non-zero return, -errno on failure and @p's pid on
1211 * success, implies that tasklist_lock is released and wait condition
1212 * search should terminate.
1214 static int wait_task_stopped(struct wait_opts
*wo
,
1215 int ptrace
, struct task_struct
*p
)
1217 struct waitid_info
*infop
;
1218 int exit_code
, *p_code
, why
;
1219 uid_t uid
= 0; /* unneeded, required by compiler */
1223 * Traditionally we see ptrace'd stopped tasks regardless of options.
1225 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1228 if (!task_stopped_code(p
, ptrace
))
1232 spin_lock_irq(&p
->sighand
->siglock
);
1234 p_code
= task_stopped_code(p
, ptrace
);
1235 if (unlikely(!p_code
))
1238 exit_code
= *p_code
;
1242 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1245 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1247 spin_unlock_irq(&p
->sighand
->siglock
);
1252 * Now we are pretty sure this task is interesting.
1253 * Make sure it doesn't get reaped out from under us while we
1254 * give up the lock and then examine it below. We don't want to
1255 * keep holding onto the tasklist_lock while we call getrusage and
1256 * possibly take page faults for user memory.
1259 pid
= task_pid_vnr(p
);
1260 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1261 read_unlock(&tasklist_lock
);
1262 sched_annotate_sleep();
1264 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1267 if (likely(!(wo
->wo_flags
& WNOWAIT
)))
1268 wo
->wo_stat
= (exit_code
<< 8) | 0x7f;
1270 infop
= wo
->wo_info
;
1273 infop
->status
= exit_code
;
1281 * Handle do_wait work for one task in a live, non-stopped state.
1282 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1283 * the lock and this task is uninteresting. If we return nonzero, we have
1284 * released the lock and the system call should return.
1286 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1288 struct waitid_info
*infop
;
1292 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1295 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1298 spin_lock_irq(&p
->sighand
->siglock
);
1299 /* Re-check with the lock held. */
1300 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1301 spin_unlock_irq(&p
->sighand
->siglock
);
1304 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1305 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1306 uid
= from_kuid_munged(current_user_ns(), task_uid(p
));
1307 spin_unlock_irq(&p
->sighand
->siglock
);
1309 pid
= task_pid_vnr(p
);
1311 read_unlock(&tasklist_lock
);
1312 sched_annotate_sleep();
1314 getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
);
1317 infop
= wo
->wo_info
;
1319 wo
->wo_stat
= 0xffff;
1321 infop
->cause
= CLD_CONTINUED
;
1324 infop
->status
= SIGCONT
;
1330 * Consider @p for a wait by @parent.
1332 * -ECHILD should be in ->notask_error before the first call.
1333 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1334 * Returns zero if the search for a child should continue;
1335 * then ->notask_error is 0 if @p is an eligible child,
1338 static int wait_consider_task(struct wait_opts
*wo
, int ptrace
,
1339 struct task_struct
*p
)
1342 * We can race with wait_task_zombie() from another thread.
1343 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1344 * can't confuse the checks below.
1346 int exit_state
= READ_ONCE(p
->exit_state
);
1349 if (unlikely(exit_state
== EXIT_DEAD
))
1352 ret
= eligible_child(wo
, ptrace
, p
);
1356 if (unlikely(exit_state
== EXIT_TRACE
)) {
1358 * ptrace == 0 means we are the natural parent. In this case
1359 * we should clear notask_error, debugger will notify us.
1361 if (likely(!ptrace
))
1362 wo
->notask_error
= 0;
1366 if (likely(!ptrace
) && unlikely(p
->ptrace
)) {
1368 * If it is traced by its real parent's group, just pretend
1369 * the caller is ptrace_do_wait() and reap this child if it
1372 * This also hides group stop state from real parent; otherwise
1373 * a single stop can be reported twice as group and ptrace stop.
1374 * If a ptracer wants to distinguish these two events for its
1375 * own children it should create a separate process which takes
1376 * the role of real parent.
1378 if (!ptrace_reparented(p
))
1383 if (exit_state
== EXIT_ZOMBIE
) {
1384 /* we don't reap group leaders with subthreads */
1385 if (!delay_group_leader(p
)) {
1387 * A zombie ptracee is only visible to its ptracer.
1388 * Notification and reaping will be cascaded to the
1389 * real parent when the ptracer detaches.
1391 if (unlikely(ptrace
) || likely(!p
->ptrace
))
1392 return wait_task_zombie(wo
, p
);
1396 * Allow access to stopped/continued state via zombie by
1397 * falling through. Clearing of notask_error is complex.
1401 * If WEXITED is set, notask_error should naturally be
1402 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1403 * so, if there are live subthreads, there are events to
1404 * wait for. If all subthreads are dead, it's still safe
1405 * to clear - this function will be called again in finite
1406 * amount time once all the subthreads are released and
1407 * will then return without clearing.
1411 * Stopped state is per-task and thus can't change once the
1412 * target task dies. Only continued and exited can happen.
1413 * Clear notask_error if WCONTINUED | WEXITED.
1415 if (likely(!ptrace
) || (wo
->wo_flags
& (WCONTINUED
| WEXITED
)))
1416 wo
->notask_error
= 0;
1419 * @p is alive and it's gonna stop, continue or exit, so
1420 * there always is something to wait for.
1422 wo
->notask_error
= 0;
1426 * Wait for stopped. Depending on @ptrace, different stopped state
1427 * is used and the two don't interact with each other.
1429 ret
= wait_task_stopped(wo
, ptrace
, p
);
1434 * Wait for continued. There's only one continued state and the
1435 * ptracer can consume it which can confuse the real parent. Don't
1436 * use WCONTINUED from ptracer. You don't need or want it.
1438 return wait_task_continued(wo
, p
);
1442 * Do the work of do_wait() for one thread in the group, @tsk.
1444 * -ECHILD should be in ->notask_error before the first call.
1445 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1446 * Returns zero if the search for a child should continue; then
1447 * ->notask_error is 0 if there were any eligible children,
1450 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1452 struct task_struct
*p
;
1454 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1455 int ret
= wait_consider_task(wo
, 0, p
);
1464 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1466 struct task_struct
*p
;
1468 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1469 int ret
= wait_consider_task(wo
, 1, p
);
1478 static int child_wait_callback(wait_queue_entry_t
*wait
, unsigned mode
,
1479 int sync
, void *key
)
1481 struct wait_opts
*wo
= container_of(wait
, struct wait_opts
,
1483 struct task_struct
*p
= key
;
1485 if (!eligible_pid(wo
, p
))
1488 if ((wo
->wo_flags
& __WNOTHREAD
) && wait
->private != p
->parent
)
1491 return default_wake_function(wait
, mode
, sync
, key
);
1494 void __wake_up_parent(struct task_struct
*p
, struct task_struct
*parent
)
1496 __wake_up_sync_key(&parent
->signal
->wait_chldexit
,
1497 TASK_INTERRUPTIBLE
, 1, p
);
1500 static long do_wait(struct wait_opts
*wo
)
1502 struct task_struct
*tsk
;
1505 trace_sched_process_wait(wo
->wo_pid
);
1507 init_waitqueue_func_entry(&wo
->child_wait
, child_wait_callback
);
1508 wo
->child_wait
.private = current
;
1509 add_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1512 * If there is nothing that can match our criteria, just get out.
1513 * We will clear ->notask_error to zero if we see any child that
1514 * might later match our criteria, even if we are not able to reap
1517 wo
->notask_error
= -ECHILD
;
1518 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1519 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1522 set_current_state(TASK_INTERRUPTIBLE
);
1523 read_lock(&tasklist_lock
);
1526 retval
= do_wait_thread(wo
, tsk
);
1530 retval
= ptrace_do_wait(wo
, tsk
);
1534 if (wo
->wo_flags
& __WNOTHREAD
)
1536 } while_each_thread(current
, tsk
);
1537 read_unlock(&tasklist_lock
);
1540 retval
= wo
->notask_error
;
1541 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1542 retval
= -ERESTARTSYS
;
1543 if (!signal_pending(current
)) {
1549 __set_current_state(TASK_RUNNING
);
1550 remove_wait_queue(¤t
->signal
->wait_chldexit
, &wo
->child_wait
);
1554 static long kernel_waitid(int which
, pid_t upid
, struct waitid_info
*infop
,
1555 int options
, struct rusage
*ru
)
1557 struct wait_opts wo
;
1558 struct pid
*pid
= NULL
;
1562 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
|
1563 __WNOTHREAD
|__WCLONE
|__WALL
))
1565 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1578 type
= PIDTYPE_PGID
;
1586 if (type
< PIDTYPE_MAX
)
1587 pid
= find_get_pid(upid
);
1591 wo
.wo_flags
= options
;
1600 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1601 infop
, int, options
, struct rusage __user
*, ru
)
1604 struct waitid_info info
= {.status
= 0};
1605 long err
= kernel_waitid(which
, upid
, &info
, options
, ru
? &r
: NULL
);
1611 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1617 if (!user_access_begin(infop
, sizeof(*infop
)))
1620 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1621 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1622 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1623 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1624 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1625 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1633 long kernel_wait4(pid_t upid
, int __user
*stat_addr
, int options
,
1636 struct wait_opts wo
;
1637 struct pid
*pid
= NULL
;
1641 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1642 __WNOTHREAD
|__WCLONE
|__WALL
))
1645 /* -INT_MIN is not defined */
1646 if (upid
== INT_MIN
)
1651 else if (upid
< 0) {
1652 type
= PIDTYPE_PGID
;
1653 pid
= find_get_pid(-upid
);
1654 } else if (upid
== 0) {
1655 type
= PIDTYPE_PGID
;
1656 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1657 } else /* upid > 0 */ {
1659 pid
= find_get_pid(upid
);
1664 wo
.wo_flags
= options
| WEXITED
;
1670 if (ret
> 0 && stat_addr
&& put_user(wo
.wo_stat
, stat_addr
))
1676 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1677 int, options
, struct rusage __user
*, ru
)
1680 long err
= kernel_wait4(upid
, stat_addr
, options
, ru
? &r
: NULL
);
1683 if (ru
&& copy_to_user(ru
, &r
, sizeof(struct rusage
)))
1689 #ifdef __ARCH_WANT_SYS_WAITPID
1692 * sys_waitpid() remains for compatibility. waitpid() should be
1693 * implemented by calling sys_wait4() from libc.a.
1695 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1697 return kernel_wait4(pid
, stat_addr
, options
, NULL
);
1702 #ifdef CONFIG_COMPAT
1703 COMPAT_SYSCALL_DEFINE4(wait4
,
1705 compat_uint_t __user
*, stat_addr
,
1707 struct compat_rusage __user
*, ru
)
1710 long err
= kernel_wait4(pid
, stat_addr
, options
, ru
? &r
: NULL
);
1712 if (ru
&& put_compat_rusage(&r
, ru
))
1718 COMPAT_SYSCALL_DEFINE5(waitid
,
1719 int, which
, compat_pid_t
, pid
,
1720 struct compat_siginfo __user
*, infop
, int, options
,
1721 struct compat_rusage __user
*, uru
)
1724 struct waitid_info info
= {.status
= 0};
1725 long err
= kernel_waitid(which
, pid
, &info
, options
, uru
? &ru
: NULL
);
1731 /* kernel_waitid() overwrites everything in ru */
1732 if (COMPAT_USE_64BIT_TIME
)
1733 err
= copy_to_user(uru
, &ru
, sizeof(ru
));
1735 err
= put_compat_rusage(&ru
, uru
);
1744 if (!user_access_begin(infop
, sizeof(*infop
)))
1747 unsafe_put_user(signo
, &infop
->si_signo
, Efault
);
1748 unsafe_put_user(0, &infop
->si_errno
, Efault
);
1749 unsafe_put_user(info
.cause
, &infop
->si_code
, Efault
);
1750 unsafe_put_user(info
.pid
, &infop
->si_pid
, Efault
);
1751 unsafe_put_user(info
.uid
, &infop
->si_uid
, Efault
);
1752 unsafe_put_user(info
.status
, &infop
->si_status
, Efault
);
1761 __weak
void abort(void)
1765 /* if that doesn't kill us, halt */
1766 panic("Oops failed to kill thread");
1768 EXPORT_SYMBOL(abort
);