1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/uaccess.h>
15 #include <linux/hardirq.h>
16 #include <linux/kthread.h> /* for self test */
17 #include <linux/module.h>
18 #include <linux/percpu.h>
19 #include <linux/mutex.h>
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/hash.h>
24 #include <linux/list.h>
25 #include <linux/cpu.h>
26 #include <linux/oom.h>
28 #include <asm/local.h>
30 static void update_pages_handler(struct work_struct
*work
);
33 * The ring buffer header is special. We must manually up keep it.
35 int ring_buffer_print_entry_header(struct trace_seq
*s
)
37 trace_seq_puts(s
, "# compressed entry header\n");
38 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
39 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
40 trace_seq_puts(s
, "\tarray : 32 bits\n");
41 trace_seq_putc(s
, '\n');
42 trace_seq_printf(s
, "\tpadding : type == %d\n",
43 RINGBUF_TYPE_PADDING
);
44 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
45 RINGBUF_TYPE_TIME_EXTEND
);
46 trace_seq_printf(s
, "\ttime_stamp : type == %d\n",
47 RINGBUF_TYPE_TIME_STAMP
);
48 trace_seq_printf(s
, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
51 return !trace_seq_has_overflowed(s
);
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
68 * Here's some silly ASCII art.
71 * |reader| RING BUFFER
73 * +------+ +---+ +---+ +---+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
100 * +------------------------------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
108 * | New +---+ +---+ +---+
111 * +------------------------------+
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
118 * We will be using cmpxchg soon to make all this lockless.
122 /* Used for individual buffers (after the counter) */
123 #define RB_BUFFER_OFF (1 << 20)
125 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
127 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
128 #define RB_ALIGNMENT 4U
129 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
130 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
133 # define RB_FORCE_8BYTE_ALIGNMENT 0
134 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
136 # define RB_FORCE_8BYTE_ALIGNMENT 1
137 # define RB_ARCH_ALIGNMENT 8U
140 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
142 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
143 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146 RB_LEN_TIME_EXTEND
= 8,
147 RB_LEN_TIME_STAMP
= 8,
150 #define skip_time_extend(event) \
151 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
153 #define extended_time(event) \
154 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
156 static inline int rb_null_event(struct ring_buffer_event
*event
)
158 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
161 static void rb_event_set_padding(struct ring_buffer_event
*event
)
163 /* padding has a NULL time_delta */
164 event
->type_len
= RINGBUF_TYPE_PADDING
;
165 event
->time_delta
= 0;
169 rb_event_data_length(struct ring_buffer_event
*event
)
174 length
= event
->type_len
* RB_ALIGNMENT
;
176 length
= event
->array
[0];
177 return length
+ RB_EVNT_HDR_SIZE
;
181 * Return the length of the given event. Will return
182 * the length of the time extend if the event is a
185 static inline unsigned
186 rb_event_length(struct ring_buffer_event
*event
)
188 switch (event
->type_len
) {
189 case RINGBUF_TYPE_PADDING
:
190 if (rb_null_event(event
))
193 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
195 case RINGBUF_TYPE_TIME_EXTEND
:
196 return RB_LEN_TIME_EXTEND
;
198 case RINGBUF_TYPE_TIME_STAMP
:
199 return RB_LEN_TIME_STAMP
;
201 case RINGBUF_TYPE_DATA
:
202 return rb_event_data_length(event
);
211 * Return total length of time extend and data,
212 * or just the event length for all other events.
214 static inline unsigned
215 rb_event_ts_length(struct ring_buffer_event
*event
)
219 if (extended_time(event
)) {
220 /* time extends include the data event after it */
221 len
= RB_LEN_TIME_EXTEND
;
222 event
= skip_time_extend(event
);
224 return len
+ rb_event_length(event
);
228 * ring_buffer_event_length - return the length of the event
229 * @event: the event to get the length of
231 * Returns the size of the data load of a data event.
232 * If the event is something other than a data event, it
233 * returns the size of the event itself. With the exception
234 * of a TIME EXTEND, where it still returns the size of the
235 * data load of the data event after it.
237 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
241 if (extended_time(event
))
242 event
= skip_time_extend(event
);
244 length
= rb_event_length(event
);
245 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
247 length
-= RB_EVNT_HDR_SIZE
;
248 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
249 length
-= sizeof(event
->array
[0]);
252 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
254 /* inline for ring buffer fast paths */
255 static __always_inline
void *
256 rb_event_data(struct ring_buffer_event
*event
)
258 if (extended_time(event
))
259 event
= skip_time_extend(event
);
260 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
261 /* If length is in len field, then array[0] has the data */
263 return (void *)&event
->array
[0];
264 /* Otherwise length is in array[0] and array[1] has the data */
265 return (void *)&event
->array
[1];
269 * ring_buffer_event_data - return the data of the event
270 * @event: the event to get the data from
272 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
274 return rb_event_data(event
);
276 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
278 #define for_each_buffer_cpu(buffer, cpu) \
279 for_each_cpu(cpu, buffer->cpumask)
282 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
283 #define TS_DELTA_TEST (~TS_MASK)
286 * ring_buffer_event_time_stamp - return the event's extended timestamp
287 * @event: the event to get the timestamp of
289 * Returns the extended timestamp associated with a data event.
290 * An extended time_stamp is a 64-bit timestamp represented
291 * internally in a special way that makes the best use of space
292 * contained within a ring buffer event. This function decodes
293 * it and maps it to a straight u64 value.
295 u64
ring_buffer_event_time_stamp(struct ring_buffer_event
*event
)
299 ts
= event
->array
[0];
301 ts
+= event
->time_delta
;
306 /* Flag when events were overwritten */
307 #define RB_MISSED_EVENTS (1 << 31)
308 /* Missed count stored at end */
309 #define RB_MISSED_STORED (1 << 30)
311 #define RB_MISSED_FLAGS (RB_MISSED_EVENTS|RB_MISSED_STORED)
313 struct buffer_data_page
{
314 u64 time_stamp
; /* page time stamp */
315 local_t commit
; /* write committed index */
316 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
320 * Note, the buffer_page list must be first. The buffer pages
321 * are allocated in cache lines, which means that each buffer
322 * page will be at the beginning of a cache line, and thus
323 * the least significant bits will be zero. We use this to
324 * add flags in the list struct pointers, to make the ring buffer
328 struct list_head list
; /* list of buffer pages */
329 local_t write
; /* index for next write */
330 unsigned read
; /* index for next read */
331 local_t entries
; /* entries on this page */
332 unsigned long real_end
; /* real end of data */
333 struct buffer_data_page
*page
; /* Actual data page */
337 * The buffer page counters, write and entries, must be reset
338 * atomically when crossing page boundaries. To synchronize this
339 * update, two counters are inserted into the number. One is
340 * the actual counter for the write position or count on the page.
342 * The other is a counter of updaters. Before an update happens
343 * the update partition of the counter is incremented. This will
344 * allow the updater to update the counter atomically.
346 * The counter is 20 bits, and the state data is 12.
348 #define RB_WRITE_MASK 0xfffff
349 #define RB_WRITE_INTCNT (1 << 20)
351 static void rb_init_page(struct buffer_data_page
*bpage
)
353 local_set(&bpage
->commit
, 0);
357 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
360 static void free_buffer_page(struct buffer_page
*bpage
)
362 free_page((unsigned long)bpage
->page
);
367 * We need to fit the time_stamp delta into 27 bits.
369 static inline int test_time_stamp(u64 delta
)
371 if (delta
& TS_DELTA_TEST
)
376 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
378 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
379 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
381 int ring_buffer_print_page_header(struct trace_seq
*s
)
383 struct buffer_data_page field
;
385 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
386 "offset:0;\tsize:%u;\tsigned:%u;\n",
387 (unsigned int)sizeof(field
.time_stamp
),
388 (unsigned int)is_signed_type(u64
));
390 trace_seq_printf(s
, "\tfield: local_t commit;\t"
391 "offset:%u;\tsize:%u;\tsigned:%u;\n",
392 (unsigned int)offsetof(typeof(field
), commit
),
393 (unsigned int)sizeof(field
.commit
),
394 (unsigned int)is_signed_type(long));
396 trace_seq_printf(s
, "\tfield: int overwrite;\t"
397 "offset:%u;\tsize:%u;\tsigned:%u;\n",
398 (unsigned int)offsetof(typeof(field
), commit
),
400 (unsigned int)is_signed_type(long));
402 trace_seq_printf(s
, "\tfield: char data;\t"
403 "offset:%u;\tsize:%u;\tsigned:%u;\n",
404 (unsigned int)offsetof(typeof(field
), data
),
405 (unsigned int)BUF_PAGE_SIZE
,
406 (unsigned int)is_signed_type(char));
408 return !trace_seq_has_overflowed(s
);
412 struct irq_work work
;
413 wait_queue_head_t waiters
;
414 wait_queue_head_t full_waiters
;
415 bool waiters_pending
;
416 bool full_waiters_pending
;
421 * Structure to hold event state and handle nested events.
423 struct rb_event_info
{
426 unsigned long length
;
427 struct buffer_page
*tail_page
;
432 * Used for which event context the event is in.
438 * See trace_recursive_lock() comment below for more details.
449 * head_page == tail_page && head == tail then buffer is empty.
451 struct ring_buffer_per_cpu
{
453 atomic_t record_disabled
;
454 struct ring_buffer
*buffer
;
455 raw_spinlock_t reader_lock
; /* serialize readers */
456 arch_spinlock_t lock
;
457 struct lock_class_key lock_key
;
458 struct buffer_data_page
*free_page
;
459 unsigned long nr_pages
;
460 unsigned int current_context
;
461 struct list_head
*pages
;
462 struct buffer_page
*head_page
; /* read from head */
463 struct buffer_page
*tail_page
; /* write to tail */
464 struct buffer_page
*commit_page
; /* committed pages */
465 struct buffer_page
*reader_page
;
466 unsigned long lost_events
;
467 unsigned long last_overrun
;
469 local_t entries_bytes
;
472 local_t commit_overrun
;
473 local_t dropped_events
;
476 local_t pages_touched
;
478 long last_pages_touch
;
479 size_t shortest_full
;
481 unsigned long read_bytes
;
484 /* ring buffer pages to update, > 0 to add, < 0 to remove */
485 long nr_pages_to_update
;
486 struct list_head new_pages
; /* new pages to add */
487 struct work_struct update_pages_work
;
488 struct completion update_done
;
490 struct rb_irq_work irq_work
;
496 atomic_t record_disabled
;
497 atomic_t resize_disabled
;
498 cpumask_var_t cpumask
;
500 struct lock_class_key
*reader_lock_key
;
504 struct ring_buffer_per_cpu
**buffers
;
506 struct hlist_node node
;
509 struct rb_irq_work irq_work
;
513 struct ring_buffer_iter
{
514 struct ring_buffer_per_cpu
*cpu_buffer
;
516 struct buffer_page
*head_page
;
517 struct buffer_page
*cache_reader_page
;
518 unsigned long cache_read
;
523 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
524 * @buffer: The ring_buffer to get the number of pages from
525 * @cpu: The cpu of the ring_buffer to get the number of pages from
527 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
529 size_t ring_buffer_nr_pages(struct ring_buffer
*buffer
, int cpu
)
531 return buffer
->buffers
[cpu
]->nr_pages
;
535 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
536 * @buffer: The ring_buffer to get the number of pages from
537 * @cpu: The cpu of the ring_buffer to get the number of pages from
539 * Returns the number of pages that have content in the ring buffer.
541 size_t ring_buffer_nr_dirty_pages(struct ring_buffer
*buffer
, int cpu
)
546 read
= local_read(&buffer
->buffers
[cpu
]->pages_read
);
547 cnt
= local_read(&buffer
->buffers
[cpu
]->pages_touched
);
548 /* The reader can read an empty page, but not more than that */
550 WARN_ON_ONCE(read
> cnt
+ 1);
558 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
560 * Schedules a delayed work to wake up any task that is blocked on the
561 * ring buffer waiters queue.
563 static void rb_wake_up_waiters(struct irq_work
*work
)
565 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
567 wake_up_all(&rbwork
->waiters
);
568 if (rbwork
->wakeup_full
) {
569 rbwork
->wakeup_full
= false;
570 wake_up_all(&rbwork
->full_waiters
);
575 * ring_buffer_wait - wait for input to the ring buffer
576 * @buffer: buffer to wait on
577 * @cpu: the cpu buffer to wait on
578 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
580 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
581 * as data is added to any of the @buffer's cpu buffers. Otherwise
582 * it will wait for data to be added to a specific cpu buffer.
584 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, int full
)
586 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
588 struct rb_irq_work
*work
;
592 * Depending on what the caller is waiting for, either any
593 * data in any cpu buffer, or a specific buffer, put the
594 * caller on the appropriate wait queue.
596 if (cpu
== RING_BUFFER_ALL_CPUS
) {
597 work
= &buffer
->irq_work
;
598 /* Full only makes sense on per cpu reads */
601 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
603 cpu_buffer
= buffer
->buffers
[cpu
];
604 work
= &cpu_buffer
->irq_work
;
610 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
612 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
615 * The events can happen in critical sections where
616 * checking a work queue can cause deadlocks.
617 * After adding a task to the queue, this flag is set
618 * only to notify events to try to wake up the queue
621 * We don't clear it even if the buffer is no longer
622 * empty. The flag only causes the next event to run
623 * irq_work to do the work queue wake up. The worse
624 * that can happen if we race with !trace_empty() is that
625 * an event will cause an irq_work to try to wake up
628 * There's no reason to protect this flag either, as
629 * the work queue and irq_work logic will do the necessary
630 * synchronization for the wake ups. The only thing
631 * that is necessary is that the wake up happens after
632 * a task has been queued. It's OK for spurious wake ups.
635 work
->full_waiters_pending
= true;
637 work
->waiters_pending
= true;
639 if (signal_pending(current
)) {
644 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
647 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
648 !ring_buffer_empty_cpu(buffer
, cpu
)) {
657 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
658 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
659 nr_pages
= cpu_buffer
->nr_pages
;
660 dirty
= ring_buffer_nr_dirty_pages(buffer
, cpu
);
661 if (!cpu_buffer
->shortest_full
||
662 cpu_buffer
->shortest_full
< full
)
663 cpu_buffer
->shortest_full
= full
;
664 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
666 (!nr_pages
|| (dirty
* 100) > full
* nr_pages
))
674 finish_wait(&work
->full_waiters
, &wait
);
676 finish_wait(&work
->waiters
, &wait
);
682 * ring_buffer_poll_wait - poll on buffer input
683 * @buffer: buffer to wait on
684 * @cpu: the cpu buffer to wait on
685 * @filp: the file descriptor
686 * @poll_table: The poll descriptor
688 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
689 * as data is added to any of the @buffer's cpu buffers. Otherwise
690 * it will wait for data to be added to a specific cpu buffer.
692 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
695 __poll_t
ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
696 struct file
*filp
, poll_table
*poll_table
)
698 struct ring_buffer_per_cpu
*cpu_buffer
;
699 struct rb_irq_work
*work
;
701 if (cpu
== RING_BUFFER_ALL_CPUS
)
702 work
= &buffer
->irq_work
;
704 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
707 cpu_buffer
= buffer
->buffers
[cpu
];
708 work
= &cpu_buffer
->irq_work
;
711 poll_wait(filp
, &work
->waiters
, poll_table
);
712 work
->waiters_pending
= true;
714 * There's a tight race between setting the waiters_pending and
715 * checking if the ring buffer is empty. Once the waiters_pending bit
716 * is set, the next event will wake the task up, but we can get stuck
717 * if there's only a single event in.
719 * FIXME: Ideally, we need a memory barrier on the writer side as well,
720 * but adding a memory barrier to all events will cause too much of a
721 * performance hit in the fast path. We only need a memory barrier when
722 * the buffer goes from empty to having content. But as this race is
723 * extremely small, and it's not a problem if another event comes in, we
728 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
729 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
730 return EPOLLIN
| EPOLLRDNORM
;
734 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
735 #define RB_WARN_ON(b, cond) \
737 int _____ret = unlikely(cond); \
739 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
740 struct ring_buffer_per_cpu *__b = \
742 atomic_inc(&__b->buffer->record_disabled); \
744 atomic_inc(&b->record_disabled); \
750 /* Up this if you want to test the TIME_EXTENTS and normalization */
751 #define DEBUG_SHIFT 0
753 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
755 /* shift to debug/test normalization and TIME_EXTENTS */
756 return buffer
->clock() << DEBUG_SHIFT
;
759 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
763 preempt_disable_notrace();
764 time
= rb_time_stamp(buffer
);
765 preempt_enable_notrace();
769 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
771 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
774 /* Just stupid testing the normalize function and deltas */
777 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
780 * Making the ring buffer lockless makes things tricky.
781 * Although writes only happen on the CPU that they are on,
782 * and they only need to worry about interrupts. Reads can
785 * The reader page is always off the ring buffer, but when the
786 * reader finishes with a page, it needs to swap its page with
787 * a new one from the buffer. The reader needs to take from
788 * the head (writes go to the tail). But if a writer is in overwrite
789 * mode and wraps, it must push the head page forward.
791 * Here lies the problem.
793 * The reader must be careful to replace only the head page, and
794 * not another one. As described at the top of the file in the
795 * ASCII art, the reader sets its old page to point to the next
796 * page after head. It then sets the page after head to point to
797 * the old reader page. But if the writer moves the head page
798 * during this operation, the reader could end up with the tail.
800 * We use cmpxchg to help prevent this race. We also do something
801 * special with the page before head. We set the LSB to 1.
803 * When the writer must push the page forward, it will clear the
804 * bit that points to the head page, move the head, and then set
805 * the bit that points to the new head page.
807 * We also don't want an interrupt coming in and moving the head
808 * page on another writer. Thus we use the second LSB to catch
811 * head->list->prev->next bit 1 bit 0
814 * Points to head page 0 1
817 * Note we can not trust the prev pointer of the head page, because:
819 * +----+ +-----+ +-----+
820 * | |------>| T |---X--->| N |
822 * +----+ +-----+ +-----+
825 * +----------| R |----------+ |
829 * Key: ---X--> HEAD flag set in pointer
834 * (see __rb_reserve_next() to see where this happens)
836 * What the above shows is that the reader just swapped out
837 * the reader page with a page in the buffer, but before it
838 * could make the new header point back to the new page added
839 * it was preempted by a writer. The writer moved forward onto
840 * the new page added by the reader and is about to move forward
843 * You can see, it is legitimate for the previous pointer of
844 * the head (or any page) not to point back to itself. But only
848 #define RB_PAGE_NORMAL 0UL
849 #define RB_PAGE_HEAD 1UL
850 #define RB_PAGE_UPDATE 2UL
853 #define RB_FLAG_MASK 3UL
855 /* PAGE_MOVED is not part of the mask */
856 #define RB_PAGE_MOVED 4UL
859 * rb_list_head - remove any bit
861 static struct list_head
*rb_list_head(struct list_head
*list
)
863 unsigned long val
= (unsigned long)list
;
865 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
869 * rb_is_head_page - test if the given page is the head page
871 * Because the reader may move the head_page pointer, we can
872 * not trust what the head page is (it may be pointing to
873 * the reader page). But if the next page is a header page,
874 * its flags will be non zero.
877 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
878 struct buffer_page
*page
, struct list_head
*list
)
882 val
= (unsigned long)list
->next
;
884 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
885 return RB_PAGE_MOVED
;
887 return val
& RB_FLAG_MASK
;
893 * The unique thing about the reader page, is that, if the
894 * writer is ever on it, the previous pointer never points
895 * back to the reader page.
897 static bool rb_is_reader_page(struct buffer_page
*page
)
899 struct list_head
*list
= page
->list
.prev
;
901 return rb_list_head(list
->next
) != &page
->list
;
905 * rb_set_list_to_head - set a list_head to be pointing to head.
907 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
908 struct list_head
*list
)
912 ptr
= (unsigned long *)&list
->next
;
913 *ptr
|= RB_PAGE_HEAD
;
914 *ptr
&= ~RB_PAGE_UPDATE
;
918 * rb_head_page_activate - sets up head page
920 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
922 struct buffer_page
*head
;
924 head
= cpu_buffer
->head_page
;
929 * Set the previous list pointer to have the HEAD flag.
931 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
934 static void rb_list_head_clear(struct list_head
*list
)
936 unsigned long *ptr
= (unsigned long *)&list
->next
;
938 *ptr
&= ~RB_FLAG_MASK
;
942 * rb_head_page_deactivate - clears head page ptr (for free list)
945 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
947 struct list_head
*hd
;
949 /* Go through the whole list and clear any pointers found. */
950 rb_list_head_clear(cpu_buffer
->pages
);
952 list_for_each(hd
, cpu_buffer
->pages
)
953 rb_list_head_clear(hd
);
956 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
957 struct buffer_page
*head
,
958 struct buffer_page
*prev
,
959 int old_flag
, int new_flag
)
961 struct list_head
*list
;
962 unsigned long val
= (unsigned long)&head
->list
;
967 val
&= ~RB_FLAG_MASK
;
969 ret
= cmpxchg((unsigned long *)&list
->next
,
970 val
| old_flag
, val
| new_flag
);
972 /* check if the reader took the page */
973 if ((ret
& ~RB_FLAG_MASK
) != val
)
974 return RB_PAGE_MOVED
;
976 return ret
& RB_FLAG_MASK
;
979 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
980 struct buffer_page
*head
,
981 struct buffer_page
*prev
,
984 return rb_head_page_set(cpu_buffer
, head
, prev
,
985 old_flag
, RB_PAGE_UPDATE
);
988 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
989 struct buffer_page
*head
,
990 struct buffer_page
*prev
,
993 return rb_head_page_set(cpu_buffer
, head
, prev
,
994 old_flag
, RB_PAGE_HEAD
);
997 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
998 struct buffer_page
*head
,
999 struct buffer_page
*prev
,
1002 return rb_head_page_set(cpu_buffer
, head
, prev
,
1003 old_flag
, RB_PAGE_NORMAL
);
1006 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1007 struct buffer_page
**bpage
)
1009 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
1011 *bpage
= list_entry(p
, struct buffer_page
, list
);
1014 static struct buffer_page
*
1015 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1017 struct buffer_page
*head
;
1018 struct buffer_page
*page
;
1019 struct list_head
*list
;
1022 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
1026 list
= cpu_buffer
->pages
;
1027 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
1030 page
= head
= cpu_buffer
->head_page
;
1032 * It is possible that the writer moves the header behind
1033 * where we started, and we miss in one loop.
1034 * A second loop should grab the header, but we'll do
1035 * three loops just because I'm paranoid.
1037 for (i
= 0; i
< 3; i
++) {
1039 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
1040 cpu_buffer
->head_page
= page
;
1043 rb_inc_page(cpu_buffer
, &page
);
1044 } while (page
!= head
);
1047 RB_WARN_ON(cpu_buffer
, 1);
1052 static int rb_head_page_replace(struct buffer_page
*old
,
1053 struct buffer_page
*new)
1055 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
1059 val
= *ptr
& ~RB_FLAG_MASK
;
1060 val
|= RB_PAGE_HEAD
;
1062 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1068 * rb_tail_page_update - move the tail page forward
1070 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1071 struct buffer_page
*tail_page
,
1072 struct buffer_page
*next_page
)
1074 unsigned long old_entries
;
1075 unsigned long old_write
;
1078 * The tail page now needs to be moved forward.
1080 * We need to reset the tail page, but without messing
1081 * with possible erasing of data brought in by interrupts
1082 * that have moved the tail page and are currently on it.
1084 * We add a counter to the write field to denote this.
1086 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1087 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1089 local_inc(&cpu_buffer
->pages_touched
);
1091 * Just make sure we have seen our old_write and synchronize
1092 * with any interrupts that come in.
1097 * If the tail page is still the same as what we think
1098 * it is, then it is up to us to update the tail
1101 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1102 /* Zero the write counter */
1103 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1104 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1107 * This will only succeed if an interrupt did
1108 * not come in and change it. In which case, we
1109 * do not want to modify it.
1111 * We add (void) to let the compiler know that we do not care
1112 * about the return value of these functions. We use the
1113 * cmpxchg to only update if an interrupt did not already
1114 * do it for us. If the cmpxchg fails, we don't care.
1116 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1117 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1120 * No need to worry about races with clearing out the commit.
1121 * it only can increment when a commit takes place. But that
1122 * only happens in the outer most nested commit.
1124 local_set(&next_page
->page
->commit
, 0);
1126 /* Again, either we update tail_page or an interrupt does */
1127 (void)cmpxchg(&cpu_buffer
->tail_page
, tail_page
, next_page
);
1131 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1132 struct buffer_page
*bpage
)
1134 unsigned long val
= (unsigned long)bpage
;
1136 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1143 * rb_check_list - make sure a pointer to a list has the last bits zero
1145 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1146 struct list_head
*list
)
1148 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1150 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1156 * rb_check_pages - integrity check of buffer pages
1157 * @cpu_buffer: CPU buffer with pages to test
1159 * As a safety measure we check to make sure the data pages have not
1162 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1164 struct list_head
*head
= cpu_buffer
->pages
;
1165 struct buffer_page
*bpage
, *tmp
;
1167 /* Reset the head page if it exists */
1168 if (cpu_buffer
->head_page
)
1169 rb_set_head_page(cpu_buffer
);
1171 rb_head_page_deactivate(cpu_buffer
);
1173 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1175 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1178 if (rb_check_list(cpu_buffer
, head
))
1181 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1182 if (RB_WARN_ON(cpu_buffer
,
1183 bpage
->list
.next
->prev
!= &bpage
->list
))
1185 if (RB_WARN_ON(cpu_buffer
,
1186 bpage
->list
.prev
->next
!= &bpage
->list
))
1188 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1192 rb_head_page_activate(cpu_buffer
);
1197 static int __rb_allocate_pages(long nr_pages
, struct list_head
*pages
, int cpu
)
1199 struct buffer_page
*bpage
, *tmp
;
1200 bool user_thread
= current
->mm
!= NULL
;
1205 * Check if the available memory is there first.
1206 * Note, si_mem_available() only gives us a rough estimate of available
1207 * memory. It may not be accurate. But we don't care, we just want
1208 * to prevent doing any allocation when it is obvious that it is
1209 * not going to succeed.
1211 i
= si_mem_available();
1216 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1217 * gracefully without invoking oom-killer and the system is not
1220 mflags
= GFP_KERNEL
| __GFP_RETRY_MAYFAIL
;
1223 * If a user thread allocates too much, and si_mem_available()
1224 * reports there's enough memory, even though there is not.
1225 * Make sure the OOM killer kills this thread. This can happen
1226 * even with RETRY_MAYFAIL because another task may be doing
1227 * an allocation after this task has taken all memory.
1228 * This is the task the OOM killer needs to take out during this
1229 * loop, even if it was triggered by an allocation somewhere else.
1232 set_current_oom_origin();
1233 for (i
= 0; i
< nr_pages
; i
++) {
1236 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1237 mflags
, cpu_to_node(cpu
));
1241 list_add(&bpage
->list
, pages
);
1243 page
= alloc_pages_node(cpu_to_node(cpu
), mflags
, 0);
1246 bpage
->page
= page_address(page
);
1247 rb_init_page(bpage
->page
);
1249 if (user_thread
&& fatal_signal_pending(current
))
1253 clear_current_oom_origin();
1258 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1259 list_del_init(&bpage
->list
);
1260 free_buffer_page(bpage
);
1263 clear_current_oom_origin();
1268 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1269 unsigned long nr_pages
)
1275 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1279 * The ring buffer page list is a circular list that does not
1280 * start and end with a list head. All page list items point to
1283 cpu_buffer
->pages
= pages
.next
;
1286 cpu_buffer
->nr_pages
= nr_pages
;
1288 rb_check_pages(cpu_buffer
);
1293 static struct ring_buffer_per_cpu
*
1294 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, long nr_pages
, int cpu
)
1296 struct ring_buffer_per_cpu
*cpu_buffer
;
1297 struct buffer_page
*bpage
;
1301 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1302 GFP_KERNEL
, cpu_to_node(cpu
));
1306 cpu_buffer
->cpu
= cpu
;
1307 cpu_buffer
->buffer
= buffer
;
1308 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1309 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1310 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1311 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1312 init_completion(&cpu_buffer
->update_done
);
1313 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1314 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1315 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1317 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1318 GFP_KERNEL
, cpu_to_node(cpu
));
1320 goto fail_free_buffer
;
1322 rb_check_bpage(cpu_buffer
, bpage
);
1324 cpu_buffer
->reader_page
= bpage
;
1325 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1327 goto fail_free_reader
;
1328 bpage
->page
= page_address(page
);
1329 rb_init_page(bpage
->page
);
1331 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1332 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1334 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1336 goto fail_free_reader
;
1338 cpu_buffer
->head_page
1339 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1340 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1342 rb_head_page_activate(cpu_buffer
);
1347 free_buffer_page(cpu_buffer
->reader_page
);
1354 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1356 struct list_head
*head
= cpu_buffer
->pages
;
1357 struct buffer_page
*bpage
, *tmp
;
1359 free_buffer_page(cpu_buffer
->reader_page
);
1361 rb_head_page_deactivate(cpu_buffer
);
1364 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1365 list_del_init(&bpage
->list
);
1366 free_buffer_page(bpage
);
1368 bpage
= list_entry(head
, struct buffer_page
, list
);
1369 free_buffer_page(bpage
);
1376 * __ring_buffer_alloc - allocate a new ring_buffer
1377 * @size: the size in bytes per cpu that is needed.
1378 * @flags: attributes to set for the ring buffer.
1380 * Currently the only flag that is available is the RB_FL_OVERWRITE
1381 * flag. This flag means that the buffer will overwrite old data
1382 * when the buffer wraps. If this flag is not set, the buffer will
1383 * drop data when the tail hits the head.
1385 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1386 struct lock_class_key
*key
)
1388 struct ring_buffer
*buffer
;
1394 /* keep it in its own cache line */
1395 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1400 if (!zalloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1401 goto fail_free_buffer
;
1403 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1404 buffer
->flags
= flags
;
1405 buffer
->clock
= trace_clock_local
;
1406 buffer
->reader_lock_key
= key
;
1408 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1409 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1411 /* need at least two pages */
1415 buffer
->cpus
= nr_cpu_ids
;
1417 bsize
= sizeof(void *) * nr_cpu_ids
;
1418 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1420 if (!buffer
->buffers
)
1421 goto fail_free_cpumask
;
1423 cpu
= raw_smp_processor_id();
1424 cpumask_set_cpu(cpu
, buffer
->cpumask
);
1425 buffer
->buffers
[cpu
] = rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1426 if (!buffer
->buffers
[cpu
])
1427 goto fail_free_buffers
;
1429 ret
= cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1431 goto fail_free_buffers
;
1433 mutex_init(&buffer
->mutex
);
1438 for_each_buffer_cpu(buffer
, cpu
) {
1439 if (buffer
->buffers
[cpu
])
1440 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1442 kfree(buffer
->buffers
);
1445 free_cpumask_var(buffer
->cpumask
);
1451 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1454 * ring_buffer_free - free a ring buffer.
1455 * @buffer: the buffer to free.
1458 ring_buffer_free(struct ring_buffer
*buffer
)
1462 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1464 for_each_buffer_cpu(buffer
, cpu
)
1465 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1467 kfree(buffer
->buffers
);
1468 free_cpumask_var(buffer
->cpumask
);
1472 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1474 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1477 buffer
->clock
= clock
;
1480 void ring_buffer_set_time_stamp_abs(struct ring_buffer
*buffer
, bool abs
)
1482 buffer
->time_stamp_abs
= abs
;
1485 bool ring_buffer_time_stamp_abs(struct ring_buffer
*buffer
)
1487 return buffer
->time_stamp_abs
;
1490 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1492 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1494 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1497 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1499 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1503 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned long nr_pages
)
1505 struct list_head
*tail_page
, *to_remove
, *next_page
;
1506 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1507 struct buffer_page
*last_page
, *first_page
;
1508 unsigned long nr_removed
;
1509 unsigned long head_bit
;
1514 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1515 atomic_inc(&cpu_buffer
->record_disabled
);
1517 * We don't race with the readers since we have acquired the reader
1518 * lock. We also don't race with writers after disabling recording.
1519 * This makes it easy to figure out the first and the last page to be
1520 * removed from the list. We unlink all the pages in between including
1521 * the first and last pages. This is done in a busy loop so that we
1522 * lose the least number of traces.
1523 * The pages are freed after we restart recording and unlock readers.
1525 tail_page
= &cpu_buffer
->tail_page
->list
;
1528 * tail page might be on reader page, we remove the next page
1529 * from the ring buffer
1531 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1532 tail_page
= rb_list_head(tail_page
->next
);
1533 to_remove
= tail_page
;
1535 /* start of pages to remove */
1536 first_page
= list_entry(rb_list_head(to_remove
->next
),
1537 struct buffer_page
, list
);
1539 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1540 to_remove
= rb_list_head(to_remove
)->next
;
1541 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1544 next_page
= rb_list_head(to_remove
)->next
;
1547 * Now we remove all pages between tail_page and next_page.
1548 * Make sure that we have head_bit value preserved for the
1551 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1553 next_page
= rb_list_head(next_page
);
1554 next_page
->prev
= tail_page
;
1556 /* make sure pages points to a valid page in the ring buffer */
1557 cpu_buffer
->pages
= next_page
;
1559 /* update head page */
1561 cpu_buffer
->head_page
= list_entry(next_page
,
1562 struct buffer_page
, list
);
1565 * change read pointer to make sure any read iterators reset
1568 cpu_buffer
->read
= 0;
1570 /* pages are removed, resume tracing and then free the pages */
1571 atomic_dec(&cpu_buffer
->record_disabled
);
1572 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1574 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1576 /* last buffer page to remove */
1577 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1579 tmp_iter_page
= first_page
;
1584 to_remove_page
= tmp_iter_page
;
1585 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1587 /* update the counters */
1588 page_entries
= rb_page_entries(to_remove_page
);
1591 * If something was added to this page, it was full
1592 * since it is not the tail page. So we deduct the
1593 * bytes consumed in ring buffer from here.
1594 * Increment overrun to account for the lost events.
1596 local_add(page_entries
, &cpu_buffer
->overrun
);
1597 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1601 * We have already removed references to this list item, just
1602 * free up the buffer_page and its page
1604 free_buffer_page(to_remove_page
);
1607 } while (to_remove_page
!= last_page
);
1609 RB_WARN_ON(cpu_buffer
, nr_removed
);
1611 return nr_removed
== 0;
1615 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1617 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1618 int retries
, success
;
1620 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1622 * We are holding the reader lock, so the reader page won't be swapped
1623 * in the ring buffer. Now we are racing with the writer trying to
1624 * move head page and the tail page.
1625 * We are going to adapt the reader page update process where:
1626 * 1. We first splice the start and end of list of new pages between
1627 * the head page and its previous page.
1628 * 2. We cmpxchg the prev_page->next to point from head page to the
1629 * start of new pages list.
1630 * 3. Finally, we update the head->prev to the end of new list.
1632 * We will try this process 10 times, to make sure that we don't keep
1638 struct list_head
*head_page
, *prev_page
, *r
;
1639 struct list_head
*last_page
, *first_page
;
1640 struct list_head
*head_page_with_bit
;
1642 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1645 prev_page
= head_page
->prev
;
1647 first_page
= pages
->next
;
1648 last_page
= pages
->prev
;
1650 head_page_with_bit
= (struct list_head
*)
1651 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1653 last_page
->next
= head_page_with_bit
;
1654 first_page
->prev
= prev_page
;
1656 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1658 if (r
== head_page_with_bit
) {
1660 * yay, we replaced the page pointer to our new list,
1661 * now, we just have to update to head page's prev
1662 * pointer to point to end of list
1664 head_page
->prev
= last_page
;
1671 INIT_LIST_HEAD(pages
);
1673 * If we weren't successful in adding in new pages, warn and stop
1676 RB_WARN_ON(cpu_buffer
, !success
);
1677 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1679 /* free pages if they weren't inserted */
1681 struct buffer_page
*bpage
, *tmp
;
1682 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1684 list_del_init(&bpage
->list
);
1685 free_buffer_page(bpage
);
1691 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1695 if (cpu_buffer
->nr_pages_to_update
> 0)
1696 success
= rb_insert_pages(cpu_buffer
);
1698 success
= rb_remove_pages(cpu_buffer
,
1699 -cpu_buffer
->nr_pages_to_update
);
1702 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1705 static void update_pages_handler(struct work_struct
*work
)
1707 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1708 struct ring_buffer_per_cpu
, update_pages_work
);
1709 rb_update_pages(cpu_buffer
);
1710 complete(&cpu_buffer
->update_done
);
1714 * ring_buffer_resize - resize the ring buffer
1715 * @buffer: the buffer to resize.
1716 * @size: the new size.
1717 * @cpu_id: the cpu buffer to resize
1719 * Minimum size is 2 * BUF_PAGE_SIZE.
1721 * Returns 0 on success and < 0 on failure.
1723 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1726 struct ring_buffer_per_cpu
*cpu_buffer
;
1727 unsigned long nr_pages
;
1731 * Always succeed at resizing a non-existent buffer:
1736 /* Make sure the requested buffer exists */
1737 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1738 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1741 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1743 /* we need a minimum of two pages */
1747 size
= nr_pages
* BUF_PAGE_SIZE
;
1750 * Don't succeed if resizing is disabled, as a reader might be
1751 * manipulating the ring buffer and is expecting a sane state while
1754 if (atomic_read(&buffer
->resize_disabled
))
1757 /* prevent another thread from changing buffer sizes */
1758 mutex_lock(&buffer
->mutex
);
1760 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1761 /* calculate the pages to update */
1762 for_each_buffer_cpu(buffer
, cpu
) {
1763 cpu_buffer
= buffer
->buffers
[cpu
];
1765 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1766 cpu_buffer
->nr_pages
;
1768 * nothing more to do for removing pages or no update
1770 if (cpu_buffer
->nr_pages_to_update
<= 0)
1773 * to add pages, make sure all new pages can be
1774 * allocated without receiving ENOMEM
1776 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1777 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1778 &cpu_buffer
->new_pages
, cpu
)) {
1779 /* not enough memory for new pages */
1787 * Fire off all the required work handlers
1788 * We can't schedule on offline CPUs, but it's not necessary
1789 * since we can change their buffer sizes without any race.
1791 for_each_buffer_cpu(buffer
, cpu
) {
1792 cpu_buffer
= buffer
->buffers
[cpu
];
1793 if (!cpu_buffer
->nr_pages_to_update
)
1796 /* Can't run something on an offline CPU. */
1797 if (!cpu_online(cpu
)) {
1798 rb_update_pages(cpu_buffer
);
1799 cpu_buffer
->nr_pages_to_update
= 0;
1801 schedule_work_on(cpu
,
1802 &cpu_buffer
->update_pages_work
);
1806 /* wait for all the updates to complete */
1807 for_each_buffer_cpu(buffer
, cpu
) {
1808 cpu_buffer
= buffer
->buffers
[cpu
];
1809 if (!cpu_buffer
->nr_pages_to_update
)
1812 if (cpu_online(cpu
))
1813 wait_for_completion(&cpu_buffer
->update_done
);
1814 cpu_buffer
->nr_pages_to_update
= 0;
1819 /* Make sure this CPU has been initialized */
1820 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1823 cpu_buffer
= buffer
->buffers
[cpu_id
];
1825 if (nr_pages
== cpu_buffer
->nr_pages
)
1828 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1829 cpu_buffer
->nr_pages
;
1831 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1832 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1833 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1834 &cpu_buffer
->new_pages
, cpu_id
)) {
1841 /* Can't run something on an offline CPU. */
1842 if (!cpu_online(cpu_id
))
1843 rb_update_pages(cpu_buffer
);
1845 schedule_work_on(cpu_id
,
1846 &cpu_buffer
->update_pages_work
);
1847 wait_for_completion(&cpu_buffer
->update_done
);
1850 cpu_buffer
->nr_pages_to_update
= 0;
1856 * The ring buffer resize can happen with the ring buffer
1857 * enabled, so that the update disturbs the tracing as little
1858 * as possible. But if the buffer is disabled, we do not need
1859 * to worry about that, and we can take the time to verify
1860 * that the buffer is not corrupt.
1862 if (atomic_read(&buffer
->record_disabled
)) {
1863 atomic_inc(&buffer
->record_disabled
);
1865 * Even though the buffer was disabled, we must make sure
1866 * that it is truly disabled before calling rb_check_pages.
1867 * There could have been a race between checking
1868 * record_disable and incrementing it.
1871 for_each_buffer_cpu(buffer
, cpu
) {
1872 cpu_buffer
= buffer
->buffers
[cpu
];
1873 rb_check_pages(cpu_buffer
);
1875 atomic_dec(&buffer
->record_disabled
);
1878 mutex_unlock(&buffer
->mutex
);
1882 for_each_buffer_cpu(buffer
, cpu
) {
1883 struct buffer_page
*bpage
, *tmp
;
1885 cpu_buffer
= buffer
->buffers
[cpu
];
1886 cpu_buffer
->nr_pages_to_update
= 0;
1888 if (list_empty(&cpu_buffer
->new_pages
))
1891 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1893 list_del_init(&bpage
->list
);
1894 free_buffer_page(bpage
);
1897 mutex_unlock(&buffer
->mutex
);
1900 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1902 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1904 mutex_lock(&buffer
->mutex
);
1906 buffer
->flags
|= RB_FL_OVERWRITE
;
1908 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1909 mutex_unlock(&buffer
->mutex
);
1911 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1913 static __always_inline
void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1915 return bpage
->page
->data
+ index
;
1918 static __always_inline
struct ring_buffer_event
*
1919 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1921 return __rb_page_index(cpu_buffer
->reader_page
,
1922 cpu_buffer
->reader_page
->read
);
1925 static __always_inline
struct ring_buffer_event
*
1926 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1928 return __rb_page_index(iter
->head_page
, iter
->head
);
1931 static __always_inline
unsigned rb_page_commit(struct buffer_page
*bpage
)
1933 return local_read(&bpage
->page
->commit
);
1936 /* Size is determined by what has been committed */
1937 static __always_inline
unsigned rb_page_size(struct buffer_page
*bpage
)
1939 return rb_page_commit(bpage
);
1942 static __always_inline
unsigned
1943 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1945 return rb_page_commit(cpu_buffer
->commit_page
);
1948 static __always_inline
unsigned
1949 rb_event_index(struct ring_buffer_event
*event
)
1951 unsigned long addr
= (unsigned long)event
;
1953 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1956 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1958 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1961 * The iterator could be on the reader page (it starts there).
1962 * But the head could have moved, since the reader was
1963 * found. Check for this case and assign the iterator
1964 * to the head page instead of next.
1966 if (iter
->head_page
== cpu_buffer
->reader_page
)
1967 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1969 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1971 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1976 * rb_handle_head_page - writer hit the head page
1978 * Returns: +1 to retry page
1983 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1984 struct buffer_page
*tail_page
,
1985 struct buffer_page
*next_page
)
1987 struct buffer_page
*new_head
;
1992 entries
= rb_page_entries(next_page
);
1995 * The hard part is here. We need to move the head
1996 * forward, and protect against both readers on
1997 * other CPUs and writers coming in via interrupts.
1999 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2003 * type can be one of four:
2004 * NORMAL - an interrupt already moved it for us
2005 * HEAD - we are the first to get here.
2006 * UPDATE - we are the interrupt interrupting
2008 * MOVED - a reader on another CPU moved the next
2009 * pointer to its reader page. Give up
2016 * We changed the head to UPDATE, thus
2017 * it is our responsibility to update
2020 local_add(entries
, &cpu_buffer
->overrun
);
2021 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2024 * The entries will be zeroed out when we move the
2028 /* still more to do */
2031 case RB_PAGE_UPDATE
:
2033 * This is an interrupt that interrupt the
2034 * previous update. Still more to do.
2037 case RB_PAGE_NORMAL
:
2039 * An interrupt came in before the update
2040 * and processed this for us.
2041 * Nothing left to do.
2046 * The reader is on another CPU and just did
2047 * a swap with our next_page.
2052 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2057 * Now that we are here, the old head pointer is
2058 * set to UPDATE. This will keep the reader from
2059 * swapping the head page with the reader page.
2060 * The reader (on another CPU) will spin till
2063 * We just need to protect against interrupts
2064 * doing the job. We will set the next pointer
2065 * to HEAD. After that, we set the old pointer
2066 * to NORMAL, but only if it was HEAD before.
2067 * otherwise we are an interrupt, and only
2068 * want the outer most commit to reset it.
2070 new_head
= next_page
;
2071 rb_inc_page(cpu_buffer
, &new_head
);
2073 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2077 * Valid returns are:
2078 * HEAD - an interrupt came in and already set it.
2079 * NORMAL - One of two things:
2080 * 1) We really set it.
2081 * 2) A bunch of interrupts came in and moved
2082 * the page forward again.
2086 case RB_PAGE_NORMAL
:
2090 RB_WARN_ON(cpu_buffer
, 1);
2095 * It is possible that an interrupt came in,
2096 * set the head up, then more interrupts came in
2097 * and moved it again. When we get back here,
2098 * the page would have been set to NORMAL but we
2099 * just set it back to HEAD.
2101 * How do you detect this? Well, if that happened
2102 * the tail page would have moved.
2104 if (ret
== RB_PAGE_NORMAL
) {
2105 struct buffer_page
*buffer_tail_page
;
2107 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2109 * If the tail had moved passed next, then we need
2110 * to reset the pointer.
2112 if (buffer_tail_page
!= tail_page
&&
2113 buffer_tail_page
!= next_page
)
2114 rb_head_page_set_normal(cpu_buffer
, new_head
,
2120 * If this was the outer most commit (the one that
2121 * changed the original pointer from HEAD to UPDATE),
2122 * then it is up to us to reset it to NORMAL.
2124 if (type
== RB_PAGE_HEAD
) {
2125 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2128 if (RB_WARN_ON(cpu_buffer
,
2129 ret
!= RB_PAGE_UPDATE
))
2137 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2138 unsigned long tail
, struct rb_event_info
*info
)
2140 struct buffer_page
*tail_page
= info
->tail_page
;
2141 struct ring_buffer_event
*event
;
2142 unsigned long length
= info
->length
;
2145 * Only the event that crossed the page boundary
2146 * must fill the old tail_page with padding.
2148 if (tail
>= BUF_PAGE_SIZE
) {
2150 * If the page was filled, then we still need
2151 * to update the real_end. Reset it to zero
2152 * and the reader will ignore it.
2154 if (tail
== BUF_PAGE_SIZE
)
2155 tail_page
->real_end
= 0;
2157 local_sub(length
, &tail_page
->write
);
2161 event
= __rb_page_index(tail_page
, tail
);
2163 /* account for padding bytes */
2164 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2167 * Save the original length to the meta data.
2168 * This will be used by the reader to add lost event
2171 tail_page
->real_end
= tail
;
2174 * If this event is bigger than the minimum size, then
2175 * we need to be careful that we don't subtract the
2176 * write counter enough to allow another writer to slip
2178 * We put in a discarded commit instead, to make sure
2179 * that this space is not used again.
2181 * If we are less than the minimum size, we don't need to
2184 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2185 /* No room for any events */
2187 /* Mark the rest of the page with padding */
2188 rb_event_set_padding(event
);
2190 /* Set the write back to the previous setting */
2191 local_sub(length
, &tail_page
->write
);
2195 /* Put in a discarded event */
2196 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2197 event
->type_len
= RINGBUF_TYPE_PADDING
;
2198 /* time delta must be non zero */
2199 event
->time_delta
= 1;
2201 /* Set write to end of buffer */
2202 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2203 local_sub(length
, &tail_page
->write
);
2206 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
2209 * This is the slow path, force gcc not to inline it.
2211 static noinline
struct ring_buffer_event
*
2212 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2213 unsigned long tail
, struct rb_event_info
*info
)
2215 struct buffer_page
*tail_page
= info
->tail_page
;
2216 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2217 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2218 struct buffer_page
*next_page
;
2221 next_page
= tail_page
;
2223 rb_inc_page(cpu_buffer
, &next_page
);
2226 * If for some reason, we had an interrupt storm that made
2227 * it all the way around the buffer, bail, and warn
2230 if (unlikely(next_page
== commit_page
)) {
2231 local_inc(&cpu_buffer
->commit_overrun
);
2236 * This is where the fun begins!
2238 * We are fighting against races between a reader that
2239 * could be on another CPU trying to swap its reader
2240 * page with the buffer head.
2242 * We are also fighting against interrupts coming in and
2243 * moving the head or tail on us as well.
2245 * If the next page is the head page then we have filled
2246 * the buffer, unless the commit page is still on the
2249 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2252 * If the commit is not on the reader page, then
2253 * move the header page.
2255 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2257 * If we are not in overwrite mode,
2258 * this is easy, just stop here.
2260 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2261 local_inc(&cpu_buffer
->dropped_events
);
2265 ret
= rb_handle_head_page(cpu_buffer
,
2274 * We need to be careful here too. The
2275 * commit page could still be on the reader
2276 * page. We could have a small buffer, and
2277 * have filled up the buffer with events
2278 * from interrupts and such, and wrapped.
2280 * Note, if the tail page is also the on the
2281 * reader_page, we let it move out.
2283 if (unlikely((cpu_buffer
->commit_page
!=
2284 cpu_buffer
->tail_page
) &&
2285 (cpu_buffer
->commit_page
==
2286 cpu_buffer
->reader_page
))) {
2287 local_inc(&cpu_buffer
->commit_overrun
);
2293 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2297 rb_reset_tail(cpu_buffer
, tail
, info
);
2299 /* Commit what we have for now. */
2300 rb_end_commit(cpu_buffer
);
2301 /* rb_end_commit() decs committing */
2302 local_inc(&cpu_buffer
->committing
);
2304 /* fail and let the caller try again */
2305 return ERR_PTR(-EAGAIN
);
2309 rb_reset_tail(cpu_buffer
, tail
, info
);
2314 /* Slow path, do not inline */
2315 static noinline
struct ring_buffer_event
*
2316 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
, bool abs
)
2319 event
->type_len
= RINGBUF_TYPE_TIME_STAMP
;
2321 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2323 /* Not the first event on the page, or not delta? */
2324 if (abs
|| rb_event_index(event
)) {
2325 event
->time_delta
= delta
& TS_MASK
;
2326 event
->array
[0] = delta
>> TS_SHIFT
;
2328 /* nope, just zero it */
2329 event
->time_delta
= 0;
2330 event
->array
[0] = 0;
2333 return skip_time_extend(event
);
2336 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2337 struct ring_buffer_event
*event
);
2340 * rb_update_event - update event type and data
2341 * @event: the event to update
2342 * @type: the type of event
2343 * @length: the size of the event field in the ring buffer
2345 * Update the type and data fields of the event. The length
2346 * is the actual size that is written to the ring buffer,
2347 * and with this, we can determine what to place into the
2351 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2352 struct ring_buffer_event
*event
,
2353 struct rb_event_info
*info
)
2355 unsigned length
= info
->length
;
2356 u64 delta
= info
->delta
;
2358 /* Only a commit updates the timestamp */
2359 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2363 * If we need to add a timestamp, then we
2364 * add it to the start of the reserved space.
2366 if (unlikely(info
->add_timestamp
)) {
2367 bool abs
= ring_buffer_time_stamp_abs(cpu_buffer
->buffer
);
2369 event
= rb_add_time_stamp(event
, info
->delta
, abs
);
2370 length
-= RB_LEN_TIME_EXTEND
;
2374 event
->time_delta
= delta
;
2375 length
-= RB_EVNT_HDR_SIZE
;
2376 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2377 event
->type_len
= 0;
2378 event
->array
[0] = length
;
2380 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2383 static unsigned rb_calculate_event_length(unsigned length
)
2385 struct ring_buffer_event event
; /* Used only for sizeof array */
2387 /* zero length can cause confusions */
2391 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2392 length
+= sizeof(event
.array
[0]);
2394 length
+= RB_EVNT_HDR_SIZE
;
2395 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2398 * In case the time delta is larger than the 27 bits for it
2399 * in the header, we need to add a timestamp. If another
2400 * event comes in when trying to discard this one to increase
2401 * the length, then the timestamp will be added in the allocated
2402 * space of this event. If length is bigger than the size needed
2403 * for the TIME_EXTEND, then padding has to be used. The events
2404 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2405 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2406 * As length is a multiple of 4, we only need to worry if it
2407 * is 12 (RB_LEN_TIME_EXTEND + 4).
2409 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2410 length
+= RB_ALIGNMENT
;
2415 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2416 static inline bool sched_clock_stable(void)
2423 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2424 struct ring_buffer_event
*event
)
2426 unsigned long new_index
, old_index
;
2427 struct buffer_page
*bpage
;
2428 unsigned long index
;
2431 new_index
= rb_event_index(event
);
2432 old_index
= new_index
+ rb_event_ts_length(event
);
2433 addr
= (unsigned long)event
;
2436 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
2438 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2439 unsigned long write_mask
=
2440 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2441 unsigned long event_length
= rb_event_length(event
);
2443 * This is on the tail page. It is possible that
2444 * a write could come in and move the tail page
2445 * and write to the next page. That is fine
2446 * because we just shorten what is on this page.
2448 old_index
+= write_mask
;
2449 new_index
+= write_mask
;
2450 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2451 if (index
== old_index
) {
2452 /* update counters */
2453 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2458 /* could not discard */
2462 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2464 local_inc(&cpu_buffer
->committing
);
2465 local_inc(&cpu_buffer
->commits
);
2468 static __always_inline
void
2469 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2471 unsigned long max_count
;
2474 * We only race with interrupts and NMIs on this CPU.
2475 * If we own the commit event, then we can commit
2476 * all others that interrupted us, since the interruptions
2477 * are in stack format (they finish before they come
2478 * back to us). This allows us to do a simple loop to
2479 * assign the commit to the tail.
2482 max_count
= cpu_buffer
->nr_pages
* 100;
2484 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
2485 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2487 if (RB_WARN_ON(cpu_buffer
,
2488 rb_is_reader_page(cpu_buffer
->tail_page
)))
2490 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2491 rb_page_write(cpu_buffer
->commit_page
));
2492 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2493 /* Only update the write stamp if the page has an event */
2494 if (rb_page_write(cpu_buffer
->commit_page
))
2495 cpu_buffer
->write_stamp
=
2496 cpu_buffer
->commit_page
->page
->time_stamp
;
2497 /* add barrier to keep gcc from optimizing too much */
2500 while (rb_commit_index(cpu_buffer
) !=
2501 rb_page_write(cpu_buffer
->commit_page
)) {
2503 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2504 rb_page_write(cpu_buffer
->commit_page
));
2505 RB_WARN_ON(cpu_buffer
,
2506 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2511 /* again, keep gcc from optimizing */
2515 * If an interrupt came in just after the first while loop
2516 * and pushed the tail page forward, we will be left with
2517 * a dangling commit that will never go forward.
2519 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
2523 static __always_inline
void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2525 unsigned long commits
;
2527 if (RB_WARN_ON(cpu_buffer
,
2528 !local_read(&cpu_buffer
->committing
)))
2532 commits
= local_read(&cpu_buffer
->commits
);
2533 /* synchronize with interrupts */
2535 if (local_read(&cpu_buffer
->committing
) == 1)
2536 rb_set_commit_to_write(cpu_buffer
);
2538 local_dec(&cpu_buffer
->committing
);
2540 /* synchronize with interrupts */
2544 * Need to account for interrupts coming in between the
2545 * updating of the commit page and the clearing of the
2546 * committing counter.
2548 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2549 !local_read(&cpu_buffer
->committing
)) {
2550 local_inc(&cpu_buffer
->committing
);
2555 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2557 if (extended_time(event
))
2558 event
= skip_time_extend(event
);
2560 /* array[0] holds the actual length for the discarded event */
2561 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2562 event
->type_len
= RINGBUF_TYPE_PADDING
;
2563 /* time delta must be non zero */
2564 if (!event
->time_delta
)
2565 event
->time_delta
= 1;
2568 static __always_inline
bool
2569 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2570 struct ring_buffer_event
*event
)
2572 unsigned long addr
= (unsigned long)event
;
2573 unsigned long index
;
2575 index
= rb_event_index(event
);
2578 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2579 rb_commit_index(cpu_buffer
) == index
;
2582 static __always_inline
void
2583 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2584 struct ring_buffer_event
*event
)
2589 * The event first in the commit queue updates the
2592 if (rb_event_is_commit(cpu_buffer
, event
)) {
2594 * A commit event that is first on a page
2595 * updates the write timestamp with the page stamp
2597 if (!rb_event_index(event
))
2598 cpu_buffer
->write_stamp
=
2599 cpu_buffer
->commit_page
->page
->time_stamp
;
2600 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2601 delta
= ring_buffer_event_time_stamp(event
);
2602 cpu_buffer
->write_stamp
+= delta
;
2603 } else if (event
->type_len
== RINGBUF_TYPE_TIME_STAMP
) {
2604 delta
= ring_buffer_event_time_stamp(event
);
2605 cpu_buffer
->write_stamp
= delta
;
2607 cpu_buffer
->write_stamp
+= event
->time_delta
;
2611 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2612 struct ring_buffer_event
*event
)
2614 local_inc(&cpu_buffer
->entries
);
2615 rb_update_write_stamp(cpu_buffer
, event
);
2616 rb_end_commit(cpu_buffer
);
2619 static __always_inline
void
2620 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2626 if (buffer
->irq_work
.waiters_pending
) {
2627 buffer
->irq_work
.waiters_pending
= false;
2628 /* irq_work_queue() supplies it's own memory barriers */
2629 irq_work_queue(&buffer
->irq_work
.work
);
2632 if (cpu_buffer
->irq_work
.waiters_pending
) {
2633 cpu_buffer
->irq_work
.waiters_pending
= false;
2634 /* irq_work_queue() supplies it's own memory barriers */
2635 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2638 if (cpu_buffer
->last_pages_touch
== local_read(&cpu_buffer
->pages_touched
))
2641 if (cpu_buffer
->reader_page
== cpu_buffer
->commit_page
)
2644 if (!cpu_buffer
->irq_work
.full_waiters_pending
)
2647 cpu_buffer
->last_pages_touch
= local_read(&cpu_buffer
->pages_touched
);
2649 full
= cpu_buffer
->shortest_full
;
2650 nr_pages
= cpu_buffer
->nr_pages
;
2651 dirty
= ring_buffer_nr_dirty_pages(buffer
, cpu_buffer
->cpu
);
2652 if (full
&& nr_pages
&& (dirty
* 100) <= full
* nr_pages
)
2655 cpu_buffer
->irq_work
.wakeup_full
= true;
2656 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2657 /* irq_work_queue() supplies it's own memory barriers */
2658 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2662 * The lock and unlock are done within a preempt disable section.
2663 * The current_context per_cpu variable can only be modified
2664 * by the current task between lock and unlock. But it can
2665 * be modified more than once via an interrupt. To pass this
2666 * information from the lock to the unlock without having to
2667 * access the 'in_interrupt()' functions again (which do show
2668 * a bit of overhead in something as critical as function tracing,
2669 * we use a bitmask trick.
2671 * bit 0 = NMI context
2672 * bit 1 = IRQ context
2673 * bit 2 = SoftIRQ context
2674 * bit 3 = normal context.
2676 * This works because this is the order of contexts that can
2677 * preempt other contexts. A SoftIRQ never preempts an IRQ
2680 * When the context is determined, the corresponding bit is
2681 * checked and set (if it was set, then a recursion of that context
2684 * On unlock, we need to clear this bit. To do so, just subtract
2685 * 1 from the current_context and AND it to itself.
2689 * 101 & 100 = 100 (clearing bit zero)
2692 * 1010 & 1001 = 1000 (clearing bit 1)
2694 * The least significant bit can be cleared this way, and it
2695 * just so happens that it is the same bit corresponding to
2696 * the current context.
2699 static __always_inline
int
2700 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2702 unsigned int val
= cpu_buffer
->current_context
;
2703 unsigned long pc
= preempt_count();
2706 if (!(pc
& (NMI_MASK
| HARDIRQ_MASK
| SOFTIRQ_OFFSET
)))
2707 bit
= RB_CTX_NORMAL
;
2709 bit
= pc
& NMI_MASK
? RB_CTX_NMI
:
2710 pc
& HARDIRQ_MASK
? RB_CTX_IRQ
: RB_CTX_SOFTIRQ
;
2712 if (unlikely(val
& (1 << (bit
+ cpu_buffer
->nest
))))
2715 val
|= (1 << (bit
+ cpu_buffer
->nest
));
2716 cpu_buffer
->current_context
= val
;
2721 static __always_inline
void
2722 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2724 cpu_buffer
->current_context
&=
2725 cpu_buffer
->current_context
- (1 << cpu_buffer
->nest
);
2728 /* The recursive locking above uses 4 bits */
2729 #define NESTED_BITS 4
2732 * ring_buffer_nest_start - Allow to trace while nested
2733 * @buffer: The ring buffer to modify
2735 * The ring buffer has a safety mechanism to prevent recursion.
2736 * But there may be a case where a trace needs to be done while
2737 * tracing something else. In this case, calling this function
2738 * will allow this function to nest within a currently active
2739 * ring_buffer_lock_reserve().
2741 * Call this function before calling another ring_buffer_lock_reserve() and
2742 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2744 void ring_buffer_nest_start(struct ring_buffer
*buffer
)
2746 struct ring_buffer_per_cpu
*cpu_buffer
;
2749 /* Enabled by ring_buffer_nest_end() */
2750 preempt_disable_notrace();
2751 cpu
= raw_smp_processor_id();
2752 cpu_buffer
= buffer
->buffers
[cpu
];
2753 /* This is the shift value for the above recursive locking */
2754 cpu_buffer
->nest
+= NESTED_BITS
;
2758 * ring_buffer_nest_end - Allow to trace while nested
2759 * @buffer: The ring buffer to modify
2761 * Must be called after ring_buffer_nest_start() and after the
2762 * ring_buffer_unlock_commit().
2764 void ring_buffer_nest_end(struct ring_buffer
*buffer
)
2766 struct ring_buffer_per_cpu
*cpu_buffer
;
2769 /* disabled by ring_buffer_nest_start() */
2770 cpu
= raw_smp_processor_id();
2771 cpu_buffer
= buffer
->buffers
[cpu
];
2772 /* This is the shift value for the above recursive locking */
2773 cpu_buffer
->nest
-= NESTED_BITS
;
2774 preempt_enable_notrace();
2778 * ring_buffer_unlock_commit - commit a reserved
2779 * @buffer: The buffer to commit to
2780 * @event: The event pointer to commit.
2782 * This commits the data to the ring buffer, and releases any locks held.
2784 * Must be paired with ring_buffer_lock_reserve.
2786 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2787 struct ring_buffer_event
*event
)
2789 struct ring_buffer_per_cpu
*cpu_buffer
;
2790 int cpu
= raw_smp_processor_id();
2792 cpu_buffer
= buffer
->buffers
[cpu
];
2794 rb_commit(cpu_buffer
, event
);
2796 rb_wakeups(buffer
, cpu_buffer
);
2798 trace_recursive_unlock(cpu_buffer
);
2800 preempt_enable_notrace();
2804 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2806 static noinline
void
2807 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2808 struct rb_event_info
*info
)
2810 WARN_ONCE(info
->delta
> (1ULL << 59),
2811 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2812 (unsigned long long)info
->delta
,
2813 (unsigned long long)info
->ts
,
2814 (unsigned long long)cpu_buffer
->write_stamp
,
2815 sched_clock_stable() ? "" :
2816 "If you just came from a suspend/resume,\n"
2817 "please switch to the trace global clock:\n"
2818 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2819 "or add trace_clock=global to the kernel command line\n");
2820 info
->add_timestamp
= 1;
2823 static struct ring_buffer_event
*
2824 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2825 struct rb_event_info
*info
)
2827 struct ring_buffer_event
*event
;
2828 struct buffer_page
*tail_page
;
2829 unsigned long tail
, write
;
2832 * If the time delta since the last event is too big to
2833 * hold in the time field of the event, then we append a
2834 * TIME EXTEND event ahead of the data event.
2836 if (unlikely(info
->add_timestamp
))
2837 info
->length
+= RB_LEN_TIME_EXTEND
;
2839 /* Don't let the compiler play games with cpu_buffer->tail_page */
2840 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2841 write
= local_add_return(info
->length
, &tail_page
->write
);
2843 /* set write to only the index of the write */
2844 write
&= RB_WRITE_MASK
;
2845 tail
= write
- info
->length
;
2848 * If this is the first commit on the page, then it has the same
2849 * timestamp as the page itself.
2851 if (!tail
&& !ring_buffer_time_stamp_abs(cpu_buffer
->buffer
))
2854 /* See if we shot pass the end of this buffer page */
2855 if (unlikely(write
> BUF_PAGE_SIZE
))
2856 return rb_move_tail(cpu_buffer
, tail
, info
);
2858 /* We reserved something on the buffer */
2860 event
= __rb_page_index(tail_page
, tail
);
2861 rb_update_event(cpu_buffer
, event
, info
);
2863 local_inc(&tail_page
->entries
);
2866 * If this is the first commit on the page, then update
2870 tail_page
->page
->time_stamp
= info
->ts
;
2872 /* account for these added bytes */
2873 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2878 static __always_inline
struct ring_buffer_event
*
2879 rb_reserve_next_event(struct ring_buffer
*buffer
,
2880 struct ring_buffer_per_cpu
*cpu_buffer
,
2881 unsigned long length
)
2883 struct ring_buffer_event
*event
;
2884 struct rb_event_info info
;
2888 rb_start_commit(cpu_buffer
);
2890 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2892 * Due to the ability to swap a cpu buffer from a buffer
2893 * it is possible it was swapped before we committed.
2894 * (committing stops a swap). We check for it here and
2895 * if it happened, we have to fail the write.
2898 if (unlikely(READ_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2899 local_dec(&cpu_buffer
->committing
);
2900 local_dec(&cpu_buffer
->commits
);
2905 info
.length
= rb_calculate_event_length(length
);
2907 info
.add_timestamp
= 0;
2911 * We allow for interrupts to reenter here and do a trace.
2912 * If one does, it will cause this original code to loop
2913 * back here. Even with heavy interrupts happening, this
2914 * should only happen a few times in a row. If this happens
2915 * 1000 times in a row, there must be either an interrupt
2916 * storm or we have something buggy.
2919 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2922 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2923 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2925 /* make sure this diff is calculated here */
2928 if (ring_buffer_time_stamp_abs(buffer
)) {
2929 info
.delta
= info
.ts
;
2930 rb_handle_timestamp(cpu_buffer
, &info
);
2931 } else /* Did the write stamp get updated already? */
2932 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2934 if (unlikely(test_time_stamp(info
.delta
)))
2935 rb_handle_timestamp(cpu_buffer
, &info
);
2938 event
= __rb_reserve_next(cpu_buffer
, &info
);
2940 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2941 if (info
.add_timestamp
)
2942 info
.length
-= RB_LEN_TIME_EXTEND
;
2952 rb_end_commit(cpu_buffer
);
2957 * ring_buffer_lock_reserve - reserve a part of the buffer
2958 * @buffer: the ring buffer to reserve from
2959 * @length: the length of the data to reserve (excluding event header)
2961 * Returns a reserved event on the ring buffer to copy directly to.
2962 * The user of this interface will need to get the body to write into
2963 * and can use the ring_buffer_event_data() interface.
2965 * The length is the length of the data needed, not the event length
2966 * which also includes the event header.
2968 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2969 * If NULL is returned, then nothing has been allocated or locked.
2971 struct ring_buffer_event
*
2972 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2974 struct ring_buffer_per_cpu
*cpu_buffer
;
2975 struct ring_buffer_event
*event
;
2978 /* If we are tracing schedule, we don't want to recurse */
2979 preempt_disable_notrace();
2981 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2984 cpu
= raw_smp_processor_id();
2986 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2989 cpu_buffer
= buffer
->buffers
[cpu
];
2991 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2994 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2997 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3000 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3007 trace_recursive_unlock(cpu_buffer
);
3009 preempt_enable_notrace();
3012 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
3015 * Decrement the entries to the page that an event is on.
3016 * The event does not even need to exist, only the pointer
3017 * to the page it is on. This may only be called before the commit
3021 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
3022 struct ring_buffer_event
*event
)
3024 unsigned long addr
= (unsigned long)event
;
3025 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
3026 struct buffer_page
*start
;
3030 /* Do the likely case first */
3031 if (likely(bpage
->page
== (void *)addr
)) {
3032 local_dec(&bpage
->entries
);
3037 * Because the commit page may be on the reader page we
3038 * start with the next page and check the end loop there.
3040 rb_inc_page(cpu_buffer
, &bpage
);
3043 if (bpage
->page
== (void *)addr
) {
3044 local_dec(&bpage
->entries
);
3047 rb_inc_page(cpu_buffer
, &bpage
);
3048 } while (bpage
!= start
);
3050 /* commit not part of this buffer?? */
3051 RB_WARN_ON(cpu_buffer
, 1);
3055 * ring_buffer_commit_discard - discard an event that has not been committed
3056 * @buffer: the ring buffer
3057 * @event: non committed event to discard
3059 * Sometimes an event that is in the ring buffer needs to be ignored.
3060 * This function lets the user discard an event in the ring buffer
3061 * and then that event will not be read later.
3063 * This function only works if it is called before the item has been
3064 * committed. It will try to free the event from the ring buffer
3065 * if another event has not been added behind it.
3067 * If another event has been added behind it, it will set the event
3068 * up as discarded, and perform the commit.
3070 * If this function is called, do not call ring_buffer_unlock_commit on
3073 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
3074 struct ring_buffer_event
*event
)
3076 struct ring_buffer_per_cpu
*cpu_buffer
;
3079 /* The event is discarded regardless */
3080 rb_event_discard(event
);
3082 cpu
= smp_processor_id();
3083 cpu_buffer
= buffer
->buffers
[cpu
];
3086 * This must only be called if the event has not been
3087 * committed yet. Thus we can assume that preemption
3088 * is still disabled.
3090 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
3092 rb_decrement_entry(cpu_buffer
, event
);
3093 if (rb_try_to_discard(cpu_buffer
, event
))
3097 * The commit is still visible by the reader, so we
3098 * must still update the timestamp.
3100 rb_update_write_stamp(cpu_buffer
, event
);
3102 rb_end_commit(cpu_buffer
);
3104 trace_recursive_unlock(cpu_buffer
);
3106 preempt_enable_notrace();
3109 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
3112 * ring_buffer_write - write data to the buffer without reserving
3113 * @buffer: The ring buffer to write to.
3114 * @length: The length of the data being written (excluding the event header)
3115 * @data: The data to write to the buffer.
3117 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3118 * one function. If you already have the data to write to the buffer, it
3119 * may be easier to simply call this function.
3121 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3122 * and not the length of the event which would hold the header.
3124 int ring_buffer_write(struct ring_buffer
*buffer
,
3125 unsigned long length
,
3128 struct ring_buffer_per_cpu
*cpu_buffer
;
3129 struct ring_buffer_event
*event
;
3134 preempt_disable_notrace();
3136 if (atomic_read(&buffer
->record_disabled
))
3139 cpu
= raw_smp_processor_id();
3141 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3144 cpu_buffer
= buffer
->buffers
[cpu
];
3146 if (atomic_read(&cpu_buffer
->record_disabled
))
3149 if (length
> BUF_MAX_DATA_SIZE
)
3152 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3155 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3159 body
= rb_event_data(event
);
3161 memcpy(body
, data
, length
);
3163 rb_commit(cpu_buffer
, event
);
3165 rb_wakeups(buffer
, cpu_buffer
);
3170 trace_recursive_unlock(cpu_buffer
);
3173 preempt_enable_notrace();
3177 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3179 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3181 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3182 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3183 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3185 /* In case of error, head will be NULL */
3186 if (unlikely(!head
))
3189 return reader
->read
== rb_page_commit(reader
) &&
3190 (commit
== reader
||
3192 head
->read
== rb_page_commit(commit
)));
3196 * ring_buffer_record_disable - stop all writes into the buffer
3197 * @buffer: The ring buffer to stop writes to.
3199 * This prevents all writes to the buffer. Any attempt to write
3200 * to the buffer after this will fail and return NULL.
3202 * The caller should call synchronize_rcu() after this.
3204 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3206 atomic_inc(&buffer
->record_disabled
);
3208 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3211 * ring_buffer_record_enable - enable writes to the buffer
3212 * @buffer: The ring buffer to enable writes
3214 * Note, multiple disables will need the same number of enables
3215 * to truly enable the writing (much like preempt_disable).
3217 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3219 atomic_dec(&buffer
->record_disabled
);
3221 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3224 * ring_buffer_record_off - stop all writes into the buffer
3225 * @buffer: The ring buffer to stop writes to.
3227 * This prevents all writes to the buffer. Any attempt to write
3228 * to the buffer after this will fail and return NULL.
3230 * This is different than ring_buffer_record_disable() as
3231 * it works like an on/off switch, where as the disable() version
3232 * must be paired with a enable().
3234 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3237 unsigned int new_rd
;
3240 rd
= atomic_read(&buffer
->record_disabled
);
3241 new_rd
= rd
| RB_BUFFER_OFF
;
3242 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3244 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3247 * ring_buffer_record_on - restart writes into the buffer
3248 * @buffer: The ring buffer to start writes to.
3250 * This enables all writes to the buffer that was disabled by
3251 * ring_buffer_record_off().
3253 * This is different than ring_buffer_record_enable() as
3254 * it works like an on/off switch, where as the enable() version
3255 * must be paired with a disable().
3257 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3260 unsigned int new_rd
;
3263 rd
= atomic_read(&buffer
->record_disabled
);
3264 new_rd
= rd
& ~RB_BUFFER_OFF
;
3265 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3267 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3270 * ring_buffer_record_is_on - return true if the ring buffer can write
3271 * @buffer: The ring buffer to see if write is enabled
3273 * Returns true if the ring buffer is in a state that it accepts writes.
3275 bool ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3277 return !atomic_read(&buffer
->record_disabled
);
3281 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3282 * @buffer: The ring buffer to see if write is set enabled
3284 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3285 * Note that this does NOT mean it is in a writable state.
3287 * It may return true when the ring buffer has been disabled by
3288 * ring_buffer_record_disable(), as that is a temporary disabling of
3291 bool ring_buffer_record_is_set_on(struct ring_buffer
*buffer
)
3293 return !(atomic_read(&buffer
->record_disabled
) & RB_BUFFER_OFF
);
3297 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3298 * @buffer: The ring buffer to stop writes to.
3299 * @cpu: The CPU buffer to stop
3301 * This prevents all writes to the buffer. Any attempt to write
3302 * to the buffer after this will fail and return NULL.
3304 * The caller should call synchronize_rcu() after this.
3306 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3308 struct ring_buffer_per_cpu
*cpu_buffer
;
3310 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3313 cpu_buffer
= buffer
->buffers
[cpu
];
3314 atomic_inc(&cpu_buffer
->record_disabled
);
3316 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3319 * ring_buffer_record_enable_cpu - enable writes to the buffer
3320 * @buffer: The ring buffer to enable writes
3321 * @cpu: The CPU to enable.
3323 * Note, multiple disables will need the same number of enables
3324 * to truly enable the writing (much like preempt_disable).
3326 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3328 struct ring_buffer_per_cpu
*cpu_buffer
;
3330 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3333 cpu_buffer
= buffer
->buffers
[cpu
];
3334 atomic_dec(&cpu_buffer
->record_disabled
);
3336 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3339 * The total entries in the ring buffer is the running counter
3340 * of entries entered into the ring buffer, minus the sum of
3341 * the entries read from the ring buffer and the number of
3342 * entries that were overwritten.
3344 static inline unsigned long
3345 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3347 return local_read(&cpu_buffer
->entries
) -
3348 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3352 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3353 * @buffer: The ring buffer
3354 * @cpu: The per CPU buffer to read from.
3356 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3358 unsigned long flags
;
3359 struct ring_buffer_per_cpu
*cpu_buffer
;
3360 struct buffer_page
*bpage
;
3363 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3366 cpu_buffer
= buffer
->buffers
[cpu
];
3367 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3369 * if the tail is on reader_page, oldest time stamp is on the reader
3372 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3373 bpage
= cpu_buffer
->reader_page
;
3375 bpage
= rb_set_head_page(cpu_buffer
);
3377 ret
= bpage
->page
->time_stamp
;
3378 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3382 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3385 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3386 * @buffer: The ring buffer
3387 * @cpu: The per CPU buffer to read from.
3389 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3391 struct ring_buffer_per_cpu
*cpu_buffer
;
3394 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3397 cpu_buffer
= buffer
->buffers
[cpu
];
3398 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3402 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3405 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3406 * @buffer: The ring buffer
3407 * @cpu: The per CPU buffer to get the entries from.
3409 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3411 struct ring_buffer_per_cpu
*cpu_buffer
;
3413 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3416 cpu_buffer
= buffer
->buffers
[cpu
];
3418 return rb_num_of_entries(cpu_buffer
);
3420 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3423 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3424 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3425 * @buffer: The ring buffer
3426 * @cpu: The per CPU buffer to get the number of overruns from
3428 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3430 struct ring_buffer_per_cpu
*cpu_buffer
;
3433 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3436 cpu_buffer
= buffer
->buffers
[cpu
];
3437 ret
= local_read(&cpu_buffer
->overrun
);
3441 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3444 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3445 * commits failing due to the buffer wrapping around while there are uncommitted
3446 * events, such as during an interrupt storm.
3447 * @buffer: The ring buffer
3448 * @cpu: The per CPU buffer to get the number of overruns from
3451 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3453 struct ring_buffer_per_cpu
*cpu_buffer
;
3456 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3459 cpu_buffer
= buffer
->buffers
[cpu
];
3460 ret
= local_read(&cpu_buffer
->commit_overrun
);
3464 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3467 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3468 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3469 * @buffer: The ring buffer
3470 * @cpu: The per CPU buffer to get the number of overruns from
3473 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3475 struct ring_buffer_per_cpu
*cpu_buffer
;
3478 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3481 cpu_buffer
= buffer
->buffers
[cpu
];
3482 ret
= local_read(&cpu_buffer
->dropped_events
);
3486 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3489 * ring_buffer_read_events_cpu - get the number of events successfully read
3490 * @buffer: The ring buffer
3491 * @cpu: The per CPU buffer to get the number of events read
3494 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3496 struct ring_buffer_per_cpu
*cpu_buffer
;
3498 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3501 cpu_buffer
= buffer
->buffers
[cpu
];
3502 return cpu_buffer
->read
;
3504 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3507 * ring_buffer_entries - get the number of entries in a buffer
3508 * @buffer: The ring buffer
3510 * Returns the total number of entries in the ring buffer
3513 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3515 struct ring_buffer_per_cpu
*cpu_buffer
;
3516 unsigned long entries
= 0;
3519 /* if you care about this being correct, lock the buffer */
3520 for_each_buffer_cpu(buffer
, cpu
) {
3521 cpu_buffer
= buffer
->buffers
[cpu
];
3522 entries
+= rb_num_of_entries(cpu_buffer
);
3527 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3530 * ring_buffer_overruns - get the number of overruns in buffer
3531 * @buffer: The ring buffer
3533 * Returns the total number of overruns in the ring buffer
3536 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3538 struct ring_buffer_per_cpu
*cpu_buffer
;
3539 unsigned long overruns
= 0;
3542 /* if you care about this being correct, lock the buffer */
3543 for_each_buffer_cpu(buffer
, cpu
) {
3544 cpu_buffer
= buffer
->buffers
[cpu
];
3545 overruns
+= local_read(&cpu_buffer
->overrun
);
3550 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3552 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3554 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3556 /* Iterator usage is expected to have record disabled */
3557 iter
->head_page
= cpu_buffer
->reader_page
;
3558 iter
->head
= cpu_buffer
->reader_page
->read
;
3560 iter
->cache_reader_page
= iter
->head_page
;
3561 iter
->cache_read
= cpu_buffer
->read
;
3564 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3566 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3570 * ring_buffer_iter_reset - reset an iterator
3571 * @iter: The iterator to reset
3573 * Resets the iterator, so that it will start from the beginning
3576 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3578 struct ring_buffer_per_cpu
*cpu_buffer
;
3579 unsigned long flags
;
3584 cpu_buffer
= iter
->cpu_buffer
;
3586 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3587 rb_iter_reset(iter
);
3588 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3590 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3593 * ring_buffer_iter_empty - check if an iterator has no more to read
3594 * @iter: The iterator to check
3596 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3598 struct ring_buffer_per_cpu
*cpu_buffer
;
3599 struct buffer_page
*reader
;
3600 struct buffer_page
*head_page
;
3601 struct buffer_page
*commit_page
;
3604 cpu_buffer
= iter
->cpu_buffer
;
3606 /* Remember, trace recording is off when iterator is in use */
3607 reader
= cpu_buffer
->reader_page
;
3608 head_page
= cpu_buffer
->head_page
;
3609 commit_page
= cpu_buffer
->commit_page
;
3610 commit
= rb_page_commit(commit_page
);
3612 return ((iter
->head_page
== commit_page
&& iter
->head
== commit
) ||
3613 (iter
->head_page
== reader
&& commit_page
== head_page
&&
3614 head_page
->read
== commit
&&
3615 iter
->head
== rb_page_commit(cpu_buffer
->reader_page
)));
3617 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3620 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3621 struct ring_buffer_event
*event
)
3625 switch (event
->type_len
) {
3626 case RINGBUF_TYPE_PADDING
:
3629 case RINGBUF_TYPE_TIME_EXTEND
:
3630 delta
= ring_buffer_event_time_stamp(event
);
3631 cpu_buffer
->read_stamp
+= delta
;
3634 case RINGBUF_TYPE_TIME_STAMP
:
3635 delta
= ring_buffer_event_time_stamp(event
);
3636 cpu_buffer
->read_stamp
= delta
;
3639 case RINGBUF_TYPE_DATA
:
3640 cpu_buffer
->read_stamp
+= event
->time_delta
;
3650 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3651 struct ring_buffer_event
*event
)
3655 switch (event
->type_len
) {
3656 case RINGBUF_TYPE_PADDING
:
3659 case RINGBUF_TYPE_TIME_EXTEND
:
3660 delta
= ring_buffer_event_time_stamp(event
);
3661 iter
->read_stamp
+= delta
;
3664 case RINGBUF_TYPE_TIME_STAMP
:
3665 delta
= ring_buffer_event_time_stamp(event
);
3666 iter
->read_stamp
= delta
;
3669 case RINGBUF_TYPE_DATA
:
3670 iter
->read_stamp
+= event
->time_delta
;
3679 static struct buffer_page
*
3680 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3682 struct buffer_page
*reader
= NULL
;
3683 unsigned long overwrite
;
3684 unsigned long flags
;
3688 local_irq_save(flags
);
3689 arch_spin_lock(&cpu_buffer
->lock
);
3693 * This should normally only loop twice. But because the
3694 * start of the reader inserts an empty page, it causes
3695 * a case where we will loop three times. There should be no
3696 * reason to loop four times (that I know of).
3698 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3703 reader
= cpu_buffer
->reader_page
;
3705 /* If there's more to read, return this page */
3706 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3709 /* Never should we have an index greater than the size */
3710 if (RB_WARN_ON(cpu_buffer
,
3711 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3714 /* check if we caught up to the tail */
3716 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3719 /* Don't bother swapping if the ring buffer is empty */
3720 if (rb_num_of_entries(cpu_buffer
) == 0)
3724 * Reset the reader page to size zero.
3726 local_set(&cpu_buffer
->reader_page
->write
, 0);
3727 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3728 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3729 cpu_buffer
->reader_page
->real_end
= 0;
3733 * Splice the empty reader page into the list around the head.
3735 reader
= rb_set_head_page(cpu_buffer
);
3738 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3739 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3742 * cpu_buffer->pages just needs to point to the buffer, it
3743 * has no specific buffer page to point to. Lets move it out
3744 * of our way so we don't accidentally swap it.
3746 cpu_buffer
->pages
= reader
->list
.prev
;
3748 /* The reader page will be pointing to the new head */
3749 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3752 * We want to make sure we read the overruns after we set up our
3753 * pointers to the next object. The writer side does a
3754 * cmpxchg to cross pages which acts as the mb on the writer
3755 * side. Note, the reader will constantly fail the swap
3756 * while the writer is updating the pointers, so this
3757 * guarantees that the overwrite recorded here is the one we
3758 * want to compare with the last_overrun.
3761 overwrite
= local_read(&(cpu_buffer
->overrun
));
3764 * Here's the tricky part.
3766 * We need to move the pointer past the header page.
3767 * But we can only do that if a writer is not currently
3768 * moving it. The page before the header page has the
3769 * flag bit '1' set if it is pointing to the page we want.
3770 * but if the writer is in the process of moving it
3771 * than it will be '2' or already moved '0'.
3774 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3777 * If we did not convert it, then we must try again.
3783 * Yay! We succeeded in replacing the page.
3785 * Now make the new head point back to the reader page.
3787 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3788 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3790 local_inc(&cpu_buffer
->pages_read
);
3792 /* Finally update the reader page to the new head */
3793 cpu_buffer
->reader_page
= reader
;
3794 cpu_buffer
->reader_page
->read
= 0;
3796 if (overwrite
!= cpu_buffer
->last_overrun
) {
3797 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3798 cpu_buffer
->last_overrun
= overwrite
;
3804 /* Update the read_stamp on the first event */
3805 if (reader
&& reader
->read
== 0)
3806 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3808 arch_spin_unlock(&cpu_buffer
->lock
);
3809 local_irq_restore(flags
);
3814 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3816 struct ring_buffer_event
*event
;
3817 struct buffer_page
*reader
;
3820 reader
= rb_get_reader_page(cpu_buffer
);
3822 /* This function should not be called when buffer is empty */
3823 if (RB_WARN_ON(cpu_buffer
, !reader
))
3826 event
= rb_reader_event(cpu_buffer
);
3828 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3831 rb_update_read_stamp(cpu_buffer
, event
);
3833 length
= rb_event_length(event
);
3834 cpu_buffer
->reader_page
->read
+= length
;
3837 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3839 struct ring_buffer_per_cpu
*cpu_buffer
;
3840 struct ring_buffer_event
*event
;
3843 cpu_buffer
= iter
->cpu_buffer
;
3846 * Check if we are at the end of the buffer.
3848 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3849 /* discarded commits can make the page empty */
3850 if (iter
->head_page
== cpu_buffer
->commit_page
)
3856 event
= rb_iter_head_event(iter
);
3858 length
= rb_event_length(event
);
3861 * This should not be called to advance the header if we are
3862 * at the tail of the buffer.
3864 if (RB_WARN_ON(cpu_buffer
,
3865 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3866 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3869 rb_update_iter_read_stamp(iter
, event
);
3871 iter
->head
+= length
;
3873 /* check for end of page padding */
3874 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3875 (iter
->head_page
!= cpu_buffer
->commit_page
))
3879 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3881 return cpu_buffer
->lost_events
;
3884 static struct ring_buffer_event
*
3885 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3886 unsigned long *lost_events
)
3888 struct ring_buffer_event
*event
;
3889 struct buffer_page
*reader
;
3896 * We repeat when a time extend is encountered.
3897 * Since the time extend is always attached to a data event,
3898 * we should never loop more than once.
3899 * (We never hit the following condition more than twice).
3901 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3904 reader
= rb_get_reader_page(cpu_buffer
);
3908 event
= rb_reader_event(cpu_buffer
);
3910 switch (event
->type_len
) {
3911 case RINGBUF_TYPE_PADDING
:
3912 if (rb_null_event(event
))
3913 RB_WARN_ON(cpu_buffer
, 1);
3915 * Because the writer could be discarding every
3916 * event it creates (which would probably be bad)
3917 * if we were to go back to "again" then we may never
3918 * catch up, and will trigger the warn on, or lock
3919 * the box. Return the padding, and we will release
3920 * the current locks, and try again.
3924 case RINGBUF_TYPE_TIME_EXTEND
:
3925 /* Internal data, OK to advance */
3926 rb_advance_reader(cpu_buffer
);
3929 case RINGBUF_TYPE_TIME_STAMP
:
3931 *ts
= ring_buffer_event_time_stamp(event
);
3932 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3933 cpu_buffer
->cpu
, ts
);
3935 /* Internal data, OK to advance */
3936 rb_advance_reader(cpu_buffer
);
3939 case RINGBUF_TYPE_DATA
:
3941 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3942 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3943 cpu_buffer
->cpu
, ts
);
3946 *lost_events
= rb_lost_events(cpu_buffer
);
3955 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3957 static struct ring_buffer_event
*
3958 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3960 struct ring_buffer
*buffer
;
3961 struct ring_buffer_per_cpu
*cpu_buffer
;
3962 struct ring_buffer_event
*event
;
3968 cpu_buffer
= iter
->cpu_buffer
;
3969 buffer
= cpu_buffer
->buffer
;
3972 * Check if someone performed a consuming read to
3973 * the buffer. A consuming read invalidates the iterator
3974 * and we need to reset the iterator in this case.
3976 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3977 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3978 rb_iter_reset(iter
);
3981 if (ring_buffer_iter_empty(iter
))
3985 * We repeat when a time extend is encountered or we hit
3986 * the end of the page. Since the time extend is always attached
3987 * to a data event, we should never loop more than three times.
3988 * Once for going to next page, once on time extend, and
3989 * finally once to get the event.
3990 * (We never hit the following condition more than thrice).
3992 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3995 if (rb_per_cpu_empty(cpu_buffer
))
3998 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
4003 event
= rb_iter_head_event(iter
);
4005 switch (event
->type_len
) {
4006 case RINGBUF_TYPE_PADDING
:
4007 if (rb_null_event(event
)) {
4011 rb_advance_iter(iter
);
4014 case RINGBUF_TYPE_TIME_EXTEND
:
4015 /* Internal data, OK to advance */
4016 rb_advance_iter(iter
);
4019 case RINGBUF_TYPE_TIME_STAMP
:
4021 *ts
= ring_buffer_event_time_stamp(event
);
4022 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
4023 cpu_buffer
->cpu
, ts
);
4025 /* Internal data, OK to advance */
4026 rb_advance_iter(iter
);
4029 case RINGBUF_TYPE_DATA
:
4031 *ts
= iter
->read_stamp
+ event
->time_delta
;
4032 ring_buffer_normalize_time_stamp(buffer
,
4033 cpu_buffer
->cpu
, ts
);
4043 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
4045 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
4047 if (likely(!in_nmi())) {
4048 raw_spin_lock(&cpu_buffer
->reader_lock
);
4053 * If an NMI die dumps out the content of the ring buffer
4054 * trylock must be used to prevent a deadlock if the NMI
4055 * preempted a task that holds the ring buffer locks. If
4056 * we get the lock then all is fine, if not, then continue
4057 * to do the read, but this can corrupt the ring buffer,
4058 * so it must be permanently disabled from future writes.
4059 * Reading from NMI is a oneshot deal.
4061 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
4064 /* Continue without locking, but disable the ring buffer */
4065 atomic_inc(&cpu_buffer
->record_disabled
);
4070 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
4073 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4078 * ring_buffer_peek - peek at the next event to be read
4079 * @buffer: The ring buffer to read
4080 * @cpu: The cpu to peak at
4081 * @ts: The timestamp counter of this event.
4082 * @lost_events: a variable to store if events were lost (may be NULL)
4084 * This will return the event that will be read next, but does
4085 * not consume the data.
4087 struct ring_buffer_event
*
4088 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
4089 unsigned long *lost_events
)
4091 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4092 struct ring_buffer_event
*event
;
4093 unsigned long flags
;
4096 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4100 local_irq_save(flags
);
4101 dolock
= rb_reader_lock(cpu_buffer
);
4102 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4103 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4104 rb_advance_reader(cpu_buffer
);
4105 rb_reader_unlock(cpu_buffer
, dolock
);
4106 local_irq_restore(flags
);
4108 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4115 * ring_buffer_iter_peek - peek at the next event to be read
4116 * @iter: The ring buffer iterator
4117 * @ts: The timestamp counter of this event.
4119 * This will return the event that will be read next, but does
4120 * not increment the iterator.
4122 struct ring_buffer_event
*
4123 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
4125 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4126 struct ring_buffer_event
*event
;
4127 unsigned long flags
;
4130 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4131 event
= rb_iter_peek(iter
, ts
);
4132 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4134 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4141 * ring_buffer_consume - return an event and consume it
4142 * @buffer: The ring buffer to get the next event from
4143 * @cpu: the cpu to read the buffer from
4144 * @ts: a variable to store the timestamp (may be NULL)
4145 * @lost_events: a variable to store if events were lost (may be NULL)
4147 * Returns the next event in the ring buffer, and that event is consumed.
4148 * Meaning, that sequential reads will keep returning a different event,
4149 * and eventually empty the ring buffer if the producer is slower.
4151 struct ring_buffer_event
*
4152 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
4153 unsigned long *lost_events
)
4155 struct ring_buffer_per_cpu
*cpu_buffer
;
4156 struct ring_buffer_event
*event
= NULL
;
4157 unsigned long flags
;
4161 /* might be called in atomic */
4164 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4167 cpu_buffer
= buffer
->buffers
[cpu
];
4168 local_irq_save(flags
);
4169 dolock
= rb_reader_lock(cpu_buffer
);
4171 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4173 cpu_buffer
->lost_events
= 0;
4174 rb_advance_reader(cpu_buffer
);
4177 rb_reader_unlock(cpu_buffer
, dolock
);
4178 local_irq_restore(flags
);
4183 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4188 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4191 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4192 * @buffer: The ring buffer to read from
4193 * @cpu: The cpu buffer to iterate over
4194 * @flags: gfp flags to use for memory allocation
4196 * This performs the initial preparations necessary to iterate
4197 * through the buffer. Memory is allocated, buffer recording
4198 * is disabled, and the iterator pointer is returned to the caller.
4200 * Disabling buffer recording prevents the reading from being
4201 * corrupted. This is not a consuming read, so a producer is not
4204 * After a sequence of ring_buffer_read_prepare calls, the user is
4205 * expected to make at least one call to ring_buffer_read_prepare_sync.
4206 * Afterwards, ring_buffer_read_start is invoked to get things going
4209 * This overall must be paired with ring_buffer_read_finish.
4211 struct ring_buffer_iter
*
4212 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
, gfp_t flags
)
4214 struct ring_buffer_per_cpu
*cpu_buffer
;
4215 struct ring_buffer_iter
*iter
;
4217 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4220 iter
= kmalloc(sizeof(*iter
), flags
);
4224 cpu_buffer
= buffer
->buffers
[cpu
];
4226 iter
->cpu_buffer
= cpu_buffer
;
4228 atomic_inc(&buffer
->resize_disabled
);
4229 atomic_inc(&cpu_buffer
->record_disabled
);
4233 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4236 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4238 * All previously invoked ring_buffer_read_prepare calls to prepare
4239 * iterators will be synchronized. Afterwards, read_buffer_read_start
4240 * calls on those iterators are allowed.
4243 ring_buffer_read_prepare_sync(void)
4247 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4250 * ring_buffer_read_start - start a non consuming read of the buffer
4251 * @iter: The iterator returned by ring_buffer_read_prepare
4253 * This finalizes the startup of an iteration through the buffer.
4254 * The iterator comes from a call to ring_buffer_read_prepare and
4255 * an intervening ring_buffer_read_prepare_sync must have been
4258 * Must be paired with ring_buffer_read_finish.
4261 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4263 struct ring_buffer_per_cpu
*cpu_buffer
;
4264 unsigned long flags
;
4269 cpu_buffer
= iter
->cpu_buffer
;
4271 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4272 arch_spin_lock(&cpu_buffer
->lock
);
4273 rb_iter_reset(iter
);
4274 arch_spin_unlock(&cpu_buffer
->lock
);
4275 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4277 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4280 * ring_buffer_read_finish - finish reading the iterator of the buffer
4281 * @iter: The iterator retrieved by ring_buffer_start
4283 * This re-enables the recording to the buffer, and frees the
4287 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4289 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4290 unsigned long flags
;
4293 * Ring buffer is disabled from recording, here's a good place
4294 * to check the integrity of the ring buffer.
4295 * Must prevent readers from trying to read, as the check
4296 * clears the HEAD page and readers require it.
4298 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4299 rb_check_pages(cpu_buffer
);
4300 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4302 atomic_dec(&cpu_buffer
->record_disabled
);
4303 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4306 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4309 * ring_buffer_read - read the next item in the ring buffer by the iterator
4310 * @iter: The ring buffer iterator
4311 * @ts: The time stamp of the event read.
4313 * This reads the next event in the ring buffer and increments the iterator.
4315 struct ring_buffer_event
*
4316 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4318 struct ring_buffer_event
*event
;
4319 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4320 unsigned long flags
;
4322 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4324 event
= rb_iter_peek(iter
, ts
);
4328 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4331 rb_advance_iter(iter
);
4333 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4337 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4340 * ring_buffer_size - return the size of the ring buffer (in bytes)
4341 * @buffer: The ring buffer.
4343 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4346 * Earlier, this method returned
4347 * BUF_PAGE_SIZE * buffer->nr_pages
4348 * Since the nr_pages field is now removed, we have converted this to
4349 * return the per cpu buffer value.
4351 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4354 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4356 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4359 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4361 rb_head_page_deactivate(cpu_buffer
);
4363 cpu_buffer
->head_page
4364 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4365 local_set(&cpu_buffer
->head_page
->write
, 0);
4366 local_set(&cpu_buffer
->head_page
->entries
, 0);
4367 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4369 cpu_buffer
->head_page
->read
= 0;
4371 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4372 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4374 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4375 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4376 local_set(&cpu_buffer
->reader_page
->write
, 0);
4377 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4378 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4379 cpu_buffer
->reader_page
->read
= 0;
4381 local_set(&cpu_buffer
->entries_bytes
, 0);
4382 local_set(&cpu_buffer
->overrun
, 0);
4383 local_set(&cpu_buffer
->commit_overrun
, 0);
4384 local_set(&cpu_buffer
->dropped_events
, 0);
4385 local_set(&cpu_buffer
->entries
, 0);
4386 local_set(&cpu_buffer
->committing
, 0);
4387 local_set(&cpu_buffer
->commits
, 0);
4388 local_set(&cpu_buffer
->pages_touched
, 0);
4389 local_set(&cpu_buffer
->pages_read
, 0);
4390 cpu_buffer
->last_pages_touch
= 0;
4391 cpu_buffer
->shortest_full
= 0;
4392 cpu_buffer
->read
= 0;
4393 cpu_buffer
->read_bytes
= 0;
4395 cpu_buffer
->write_stamp
= 0;
4396 cpu_buffer
->read_stamp
= 0;
4398 cpu_buffer
->lost_events
= 0;
4399 cpu_buffer
->last_overrun
= 0;
4401 rb_head_page_activate(cpu_buffer
);
4405 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4406 * @buffer: The ring buffer to reset a per cpu buffer of
4407 * @cpu: The CPU buffer to be reset
4409 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4411 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4412 unsigned long flags
;
4414 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4417 atomic_inc(&buffer
->resize_disabled
);
4418 atomic_inc(&cpu_buffer
->record_disabled
);
4420 /* Make sure all commits have finished */
4423 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4425 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4428 arch_spin_lock(&cpu_buffer
->lock
);
4430 rb_reset_cpu(cpu_buffer
);
4432 arch_spin_unlock(&cpu_buffer
->lock
);
4435 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4437 atomic_dec(&cpu_buffer
->record_disabled
);
4438 atomic_dec(&buffer
->resize_disabled
);
4440 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4443 * ring_buffer_reset - reset a ring buffer
4444 * @buffer: The ring buffer to reset all cpu buffers
4446 void ring_buffer_reset(struct ring_buffer
*buffer
)
4450 for_each_buffer_cpu(buffer
, cpu
)
4451 ring_buffer_reset_cpu(buffer
, cpu
);
4453 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4456 * rind_buffer_empty - is the ring buffer empty?
4457 * @buffer: The ring buffer to test
4459 bool ring_buffer_empty(struct ring_buffer
*buffer
)
4461 struct ring_buffer_per_cpu
*cpu_buffer
;
4462 unsigned long flags
;
4467 /* yes this is racy, but if you don't like the race, lock the buffer */
4468 for_each_buffer_cpu(buffer
, cpu
) {
4469 cpu_buffer
= buffer
->buffers
[cpu
];
4470 local_irq_save(flags
);
4471 dolock
= rb_reader_lock(cpu_buffer
);
4472 ret
= rb_per_cpu_empty(cpu_buffer
);
4473 rb_reader_unlock(cpu_buffer
, dolock
);
4474 local_irq_restore(flags
);
4482 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4485 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4486 * @buffer: The ring buffer
4487 * @cpu: The CPU buffer to test
4489 bool ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4491 struct ring_buffer_per_cpu
*cpu_buffer
;
4492 unsigned long flags
;
4496 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4499 cpu_buffer
= buffer
->buffers
[cpu
];
4500 local_irq_save(flags
);
4501 dolock
= rb_reader_lock(cpu_buffer
);
4502 ret
= rb_per_cpu_empty(cpu_buffer
);
4503 rb_reader_unlock(cpu_buffer
, dolock
);
4504 local_irq_restore(flags
);
4508 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4510 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4512 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4513 * @buffer_a: One buffer to swap with
4514 * @buffer_b: The other buffer to swap with
4516 * This function is useful for tracers that want to take a "snapshot"
4517 * of a CPU buffer and has another back up buffer lying around.
4518 * it is expected that the tracer handles the cpu buffer not being
4519 * used at the moment.
4521 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4522 struct ring_buffer
*buffer_b
, int cpu
)
4524 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4525 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4528 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4529 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4532 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4533 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4535 /* At least make sure the two buffers are somewhat the same */
4536 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4541 if (atomic_read(&buffer_a
->record_disabled
))
4544 if (atomic_read(&buffer_b
->record_disabled
))
4547 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4550 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4554 * We can't do a synchronize_rcu here because this
4555 * function can be called in atomic context.
4556 * Normally this will be called from the same CPU as cpu.
4557 * If not it's up to the caller to protect this.
4559 atomic_inc(&cpu_buffer_a
->record_disabled
);
4560 atomic_inc(&cpu_buffer_b
->record_disabled
);
4563 if (local_read(&cpu_buffer_a
->committing
))
4565 if (local_read(&cpu_buffer_b
->committing
))
4568 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4569 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4571 cpu_buffer_b
->buffer
= buffer_a
;
4572 cpu_buffer_a
->buffer
= buffer_b
;
4577 atomic_dec(&cpu_buffer_a
->record_disabled
);
4578 atomic_dec(&cpu_buffer_b
->record_disabled
);
4582 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4583 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4586 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4587 * @buffer: the buffer to allocate for.
4588 * @cpu: the cpu buffer to allocate.
4590 * This function is used in conjunction with ring_buffer_read_page.
4591 * When reading a full page from the ring buffer, these functions
4592 * can be used to speed up the process. The calling function should
4593 * allocate a few pages first with this function. Then when it
4594 * needs to get pages from the ring buffer, it passes the result
4595 * of this function into ring_buffer_read_page, which will swap
4596 * the page that was allocated, with the read page of the buffer.
4599 * The page allocated, or ERR_PTR
4601 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4603 struct ring_buffer_per_cpu
*cpu_buffer
;
4604 struct buffer_data_page
*bpage
= NULL
;
4605 unsigned long flags
;
4608 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4609 return ERR_PTR(-ENODEV
);
4611 cpu_buffer
= buffer
->buffers
[cpu
];
4612 local_irq_save(flags
);
4613 arch_spin_lock(&cpu_buffer
->lock
);
4615 if (cpu_buffer
->free_page
) {
4616 bpage
= cpu_buffer
->free_page
;
4617 cpu_buffer
->free_page
= NULL
;
4620 arch_spin_unlock(&cpu_buffer
->lock
);
4621 local_irq_restore(flags
);
4626 page
= alloc_pages_node(cpu_to_node(cpu
),
4627 GFP_KERNEL
| __GFP_NORETRY
, 0);
4629 return ERR_PTR(-ENOMEM
);
4631 bpage
= page_address(page
);
4634 rb_init_page(bpage
);
4638 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4641 * ring_buffer_free_read_page - free an allocated read page
4642 * @buffer: the buffer the page was allocate for
4643 * @cpu: the cpu buffer the page came from
4644 * @data: the page to free
4646 * Free a page allocated from ring_buffer_alloc_read_page.
4648 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, int cpu
, void *data
)
4650 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4651 struct buffer_data_page
*bpage
= data
;
4652 struct page
*page
= virt_to_page(bpage
);
4653 unsigned long flags
;
4655 /* If the page is still in use someplace else, we can't reuse it */
4656 if (page_ref_count(page
) > 1)
4659 local_irq_save(flags
);
4660 arch_spin_lock(&cpu_buffer
->lock
);
4662 if (!cpu_buffer
->free_page
) {
4663 cpu_buffer
->free_page
= bpage
;
4667 arch_spin_unlock(&cpu_buffer
->lock
);
4668 local_irq_restore(flags
);
4671 free_page((unsigned long)bpage
);
4673 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4676 * ring_buffer_read_page - extract a page from the ring buffer
4677 * @buffer: buffer to extract from
4678 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4679 * @len: amount to extract
4680 * @cpu: the cpu of the buffer to extract
4681 * @full: should the extraction only happen when the page is full.
4683 * This function will pull out a page from the ring buffer and consume it.
4684 * @data_page must be the address of the variable that was returned
4685 * from ring_buffer_alloc_read_page. This is because the page might be used
4686 * to swap with a page in the ring buffer.
4689 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4690 * if (IS_ERR(rpage))
4691 * return PTR_ERR(rpage);
4692 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4694 * process_page(rpage, ret);
4696 * When @full is set, the function will not return true unless
4697 * the writer is off the reader page.
4699 * Note: it is up to the calling functions to handle sleeps and wakeups.
4700 * The ring buffer can be used anywhere in the kernel and can not
4701 * blindly call wake_up. The layer that uses the ring buffer must be
4702 * responsible for that.
4705 * >=0 if data has been transferred, returns the offset of consumed data.
4706 * <0 if no data has been transferred.
4708 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4709 void **data_page
, size_t len
, int cpu
, int full
)
4711 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4712 struct ring_buffer_event
*event
;
4713 struct buffer_data_page
*bpage
;
4714 struct buffer_page
*reader
;
4715 unsigned long missed_events
;
4716 unsigned long flags
;
4717 unsigned int commit
;
4722 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4726 * If len is not big enough to hold the page header, then
4727 * we can not copy anything.
4729 if (len
<= BUF_PAGE_HDR_SIZE
)
4732 len
-= BUF_PAGE_HDR_SIZE
;
4741 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4743 reader
= rb_get_reader_page(cpu_buffer
);
4747 event
= rb_reader_event(cpu_buffer
);
4749 read
= reader
->read
;
4750 commit
= rb_page_commit(reader
);
4752 /* Check if any events were dropped */
4753 missed_events
= cpu_buffer
->lost_events
;
4756 * If this page has been partially read or
4757 * if len is not big enough to read the rest of the page or
4758 * a writer is still on the page, then
4759 * we must copy the data from the page to the buffer.
4760 * Otherwise, we can simply swap the page with the one passed in.
4762 if (read
|| (len
< (commit
- read
)) ||
4763 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4764 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4765 unsigned int rpos
= read
;
4766 unsigned int pos
= 0;
4772 if (len
> (commit
- read
))
4773 len
= (commit
- read
);
4775 /* Always keep the time extend and data together */
4776 size
= rb_event_ts_length(event
);
4781 /* save the current timestamp, since the user will need it */
4782 save_timestamp
= cpu_buffer
->read_stamp
;
4784 /* Need to copy one event at a time */
4786 /* We need the size of one event, because
4787 * rb_advance_reader only advances by one event,
4788 * whereas rb_event_ts_length may include the size of
4789 * one or two events.
4790 * We have already ensured there's enough space if this
4791 * is a time extend. */
4792 size
= rb_event_length(event
);
4793 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4797 rb_advance_reader(cpu_buffer
);
4798 rpos
= reader
->read
;
4804 event
= rb_reader_event(cpu_buffer
);
4805 /* Always keep the time extend and data together */
4806 size
= rb_event_ts_length(event
);
4807 } while (len
>= size
);
4810 local_set(&bpage
->commit
, pos
);
4811 bpage
->time_stamp
= save_timestamp
;
4813 /* we copied everything to the beginning */
4816 /* update the entry counter */
4817 cpu_buffer
->read
+= rb_page_entries(reader
);
4818 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4820 /* swap the pages */
4821 rb_init_page(bpage
);
4822 bpage
= reader
->page
;
4823 reader
->page
= *data_page
;
4824 local_set(&reader
->write
, 0);
4825 local_set(&reader
->entries
, 0);
4830 * Use the real_end for the data size,
4831 * This gives us a chance to store the lost events
4834 if (reader
->real_end
)
4835 local_set(&bpage
->commit
, reader
->real_end
);
4839 cpu_buffer
->lost_events
= 0;
4841 commit
= local_read(&bpage
->commit
);
4843 * Set a flag in the commit field if we lost events
4845 if (missed_events
) {
4846 /* If there is room at the end of the page to save the
4847 * missed events, then record it there.
4849 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4850 memcpy(&bpage
->data
[commit
], &missed_events
,
4851 sizeof(missed_events
));
4852 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4853 commit
+= sizeof(missed_events
);
4855 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4859 * This page may be off to user land. Zero it out here.
4861 if (commit
< BUF_PAGE_SIZE
)
4862 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4865 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4870 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4873 * We only allocate new buffers, never free them if the CPU goes down.
4874 * If we were to free the buffer, then the user would lose any trace that was in
4877 int trace_rb_cpu_prepare(unsigned int cpu
, struct hlist_node
*node
)
4879 struct ring_buffer
*buffer
;
4882 unsigned long nr_pages
;
4884 buffer
= container_of(node
, struct ring_buffer
, node
);
4885 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4890 /* check if all cpu sizes are same */
4891 for_each_buffer_cpu(buffer
, cpu_i
) {
4892 /* fill in the size from first enabled cpu */
4894 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4895 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4900 /* allocate minimum pages, user can later expand it */
4903 buffer
->buffers
[cpu
] =
4904 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4905 if (!buffer
->buffers
[cpu
]) {
4906 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4911 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4915 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4917 * This is a basic integrity check of the ring buffer.
4918 * Late in the boot cycle this test will run when configured in.
4919 * It will kick off a thread per CPU that will go into a loop
4920 * writing to the per cpu ring buffer various sizes of data.
4921 * Some of the data will be large items, some small.
4923 * Another thread is created that goes into a spin, sending out
4924 * IPIs to the other CPUs to also write into the ring buffer.
4925 * this is to test the nesting ability of the buffer.
4927 * Basic stats are recorded and reported. If something in the
4928 * ring buffer should happen that's not expected, a big warning
4929 * is displayed and all ring buffers are disabled.
4931 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4933 struct rb_test_data
{
4934 struct ring_buffer
*buffer
;
4935 unsigned long events
;
4936 unsigned long bytes_written
;
4937 unsigned long bytes_alloc
;
4938 unsigned long bytes_dropped
;
4939 unsigned long events_nested
;
4940 unsigned long bytes_written_nested
;
4941 unsigned long bytes_alloc_nested
;
4942 unsigned long bytes_dropped_nested
;
4943 int min_size_nested
;
4944 int max_size_nested
;
4951 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4954 #define RB_TEST_BUFFER_SIZE 1048576
4956 static char rb_string
[] __initdata
=
4957 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4958 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4959 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4961 static bool rb_test_started __initdata
;
4968 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4970 struct ring_buffer_event
*event
;
4971 struct rb_item
*item
;
4978 /* Have nested writes different that what is written */
4979 cnt
= data
->cnt
+ (nested
? 27 : 0);
4981 /* Multiply cnt by ~e, to make some unique increment */
4982 size
= (cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4984 len
= size
+ sizeof(struct rb_item
);
4986 started
= rb_test_started
;
4987 /* read rb_test_started before checking buffer enabled */
4990 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4992 /* Ignore dropped events before test starts. */
4995 data
->bytes_dropped
+= len
;
4997 data
->bytes_dropped_nested
+= len
;
5002 event_len
= ring_buffer_event_length(event
);
5004 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
5007 item
= ring_buffer_event_data(event
);
5009 memcpy(item
->str
, rb_string
, size
);
5012 data
->bytes_alloc_nested
+= event_len
;
5013 data
->bytes_written_nested
+= len
;
5014 data
->events_nested
++;
5015 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
5016 data
->min_size_nested
= len
;
5017 if (len
> data
->max_size_nested
)
5018 data
->max_size_nested
= len
;
5020 data
->bytes_alloc
+= event_len
;
5021 data
->bytes_written
+= len
;
5023 if (!data
->min_size
|| len
< data
->min_size
)
5024 data
->max_size
= len
;
5025 if (len
> data
->max_size
)
5026 data
->max_size
= len
;
5030 ring_buffer_unlock_commit(data
->buffer
, event
);
5035 static __init
int rb_test(void *arg
)
5037 struct rb_test_data
*data
= arg
;
5039 while (!kthread_should_stop()) {
5040 rb_write_something(data
, false);
5043 set_current_state(TASK_INTERRUPTIBLE
);
5044 /* Now sleep between a min of 100-300us and a max of 1ms */
5045 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
5051 static __init
void rb_ipi(void *ignore
)
5053 struct rb_test_data
*data
;
5054 int cpu
= smp_processor_id();
5056 data
= &rb_data
[cpu
];
5057 rb_write_something(data
, true);
5060 static __init
int rb_hammer_test(void *arg
)
5062 while (!kthread_should_stop()) {
5064 /* Send an IPI to all cpus to write data! */
5065 smp_call_function(rb_ipi
, NULL
, 1);
5066 /* No sleep, but for non preempt, let others run */
5073 static __init
int test_ringbuffer(void)
5075 struct task_struct
*rb_hammer
;
5076 struct ring_buffer
*buffer
;
5080 pr_info("Running ring buffer tests...\n");
5082 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
5083 if (WARN_ON(!buffer
))
5086 /* Disable buffer so that threads can't write to it yet */
5087 ring_buffer_record_off(buffer
);
5089 for_each_online_cpu(cpu
) {
5090 rb_data
[cpu
].buffer
= buffer
;
5091 rb_data
[cpu
].cpu
= cpu
;
5092 rb_data
[cpu
].cnt
= cpu
;
5093 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
5094 "rbtester/%d", cpu
);
5095 if (WARN_ON(IS_ERR(rb_threads
[cpu
]))) {
5096 pr_cont("FAILED\n");
5097 ret
= PTR_ERR(rb_threads
[cpu
]);
5101 kthread_bind(rb_threads
[cpu
], cpu
);
5102 wake_up_process(rb_threads
[cpu
]);
5105 /* Now create the rb hammer! */
5106 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
5107 if (WARN_ON(IS_ERR(rb_hammer
))) {
5108 pr_cont("FAILED\n");
5109 ret
= PTR_ERR(rb_hammer
);
5113 ring_buffer_record_on(buffer
);
5115 * Show buffer is enabled before setting rb_test_started.
5116 * Yes there's a small race window where events could be
5117 * dropped and the thread wont catch it. But when a ring
5118 * buffer gets enabled, there will always be some kind of
5119 * delay before other CPUs see it. Thus, we don't care about
5120 * those dropped events. We care about events dropped after
5121 * the threads see that the buffer is active.
5124 rb_test_started
= true;
5126 set_current_state(TASK_INTERRUPTIBLE
);
5127 /* Just run for 10 seconds */;
5128 schedule_timeout(10 * HZ
);
5130 kthread_stop(rb_hammer
);
5133 for_each_online_cpu(cpu
) {
5134 if (!rb_threads
[cpu
])
5136 kthread_stop(rb_threads
[cpu
]);
5139 ring_buffer_free(buffer
);
5144 pr_info("finished\n");
5145 for_each_online_cpu(cpu
) {
5146 struct ring_buffer_event
*event
;
5147 struct rb_test_data
*data
= &rb_data
[cpu
];
5148 struct rb_item
*item
;
5149 unsigned long total_events
;
5150 unsigned long total_dropped
;
5151 unsigned long total_written
;
5152 unsigned long total_alloc
;
5153 unsigned long total_read
= 0;
5154 unsigned long total_size
= 0;
5155 unsigned long total_len
= 0;
5156 unsigned long total_lost
= 0;
5159 int small_event_size
;
5163 total_events
= data
->events
+ data
->events_nested
;
5164 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
5165 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
5166 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
5168 big_event_size
= data
->max_size
+ data
->max_size_nested
;
5169 small_event_size
= data
->min_size
+ data
->min_size_nested
;
5171 pr_info("CPU %d:\n", cpu
);
5172 pr_info(" events: %ld\n", total_events
);
5173 pr_info(" dropped bytes: %ld\n", total_dropped
);
5174 pr_info(" alloced bytes: %ld\n", total_alloc
);
5175 pr_info(" written bytes: %ld\n", total_written
);
5176 pr_info(" biggest event: %d\n", big_event_size
);
5177 pr_info(" smallest event: %d\n", small_event_size
);
5179 if (RB_WARN_ON(buffer
, total_dropped
))
5184 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
5186 item
= ring_buffer_event_data(event
);
5187 total_len
+= ring_buffer_event_length(event
);
5188 total_size
+= item
->size
+ sizeof(struct rb_item
);
5189 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
5190 pr_info("FAILED!\n");
5191 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
5192 pr_info("expected: %.*s\n", item
->size
, rb_string
);
5193 RB_WARN_ON(buffer
, 1);
5204 pr_info(" read events: %ld\n", total_read
);
5205 pr_info(" lost events: %ld\n", total_lost
);
5206 pr_info(" total events: %ld\n", total_lost
+ total_read
);
5207 pr_info(" recorded len bytes: %ld\n", total_len
);
5208 pr_info(" recorded size bytes: %ld\n", total_size
);
5210 pr_info(" With dropped events, record len and size may not match\n"
5211 " alloced and written from above\n");
5213 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
5214 total_size
!= total_written
))
5217 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5223 pr_info("Ring buffer PASSED!\n");
5225 ring_buffer_free(buffer
);
5229 late_initcall(test_ringbuffer
);
5230 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */