Merge tag 'byteswap-for-linus-20121219' of git://git.infradead.org/users/dwmw2/byteswap
[linux/fpc-iii.git] / fs / eventpoll.c
blobbe56b21435f8c4e5170fdb2c0963abdd24dc9291
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
45 * LOCKING:
46 * There are three level of locking required by epoll :
48 * 1) epmutex (mutex)
49 * 2) ep->mtx (mutex)
50 * 3) ep->lock (spinlock)
52 * The acquire order is the one listed above, from 1 to 3.
53 * We need a spinlock (ep->lock) because we manipulate objects
54 * from inside the poll callback, that might be triggered from
55 * a wake_up() that in turn might be called from IRQ context.
56 * So we can't sleep inside the poll callback and hence we need
57 * a spinlock. During the event transfer loop (from kernel to
58 * user space) we could end up sleeping due a copy_to_user(), so
59 * we need a lock that will allow us to sleep. This lock is a
60 * mutex (ep->mtx). It is acquired during the event transfer loop,
61 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
62 * Then we also need a global mutex to serialize eventpoll_release_file()
63 * and ep_free().
64 * This mutex is acquired by ep_free() during the epoll file
65 * cleanup path and it is also acquired by eventpoll_release_file()
66 * if a file has been pushed inside an epoll set and it is then
67 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
68 * It is also acquired when inserting an epoll fd onto another epoll
69 * fd. We do this so that we walk the epoll tree and ensure that this
70 * insertion does not create a cycle of epoll file descriptors, which
71 * could lead to deadlock. We need a global mutex to prevent two
72 * simultaneous inserts (A into B and B into A) from racing and
73 * constructing a cycle without either insert observing that it is
74 * going to.
75 * It is necessary to acquire multiple "ep->mtx"es at once in the
76 * case when one epoll fd is added to another. In this case, we
77 * always acquire the locks in the order of nesting (i.e. after
78 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
79 * before e2->mtx). Since we disallow cycles of epoll file
80 * descriptors, this ensures that the mutexes are well-ordered. In
81 * order to communicate this nesting to lockdep, when walking a tree
82 * of epoll file descriptors, we use the current recursion depth as
83 * the lockdep subkey.
84 * It is possible to drop the "ep->mtx" and to use the global
85 * mutex "epmutex" (together with "ep->lock") to have it working,
86 * but having "ep->mtx" will make the interface more scalable.
87 * Events that require holding "epmutex" are very rare, while for
88 * normal operations the epoll private "ep->mtx" will guarantee
89 * a better scalability.
92 /* Epoll private bits inside the event mask */
93 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
95 /* Maximum number of nesting allowed inside epoll sets */
96 #define EP_MAX_NESTS 4
98 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
100 #define EP_UNACTIVE_PTR ((void *) -1L)
102 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
104 struct epoll_filefd {
105 struct file *file;
106 int fd;
110 * Structure used to track possible nested calls, for too deep recursions
111 * and loop cycles.
113 struct nested_call_node {
114 struct list_head llink;
115 void *cookie;
116 void *ctx;
120 * This structure is used as collector for nested calls, to check for
121 * maximum recursion dept and loop cycles.
123 struct nested_calls {
124 struct list_head tasks_call_list;
125 spinlock_t lock;
129 * Each file descriptor added to the eventpoll interface will
130 * have an entry of this type linked to the "rbr" RB tree.
132 struct epitem {
133 /* RB tree node used to link this structure to the eventpoll RB tree */
134 struct rb_node rbn;
136 /* List header used to link this structure to the eventpoll ready list */
137 struct list_head rdllink;
140 * Works together "struct eventpoll"->ovflist in keeping the
141 * single linked chain of items.
143 struct epitem *next;
145 /* The file descriptor information this item refers to */
146 struct epoll_filefd ffd;
148 /* Number of active wait queue attached to poll operations */
149 int nwait;
151 /* List containing poll wait queues */
152 struct list_head pwqlist;
154 /* The "container" of this item */
155 struct eventpoll *ep;
157 /* List header used to link this item to the "struct file" items list */
158 struct list_head fllink;
160 /* wakeup_source used when EPOLLWAKEUP is set */
161 struct wakeup_source *ws;
163 /* The structure that describe the interested events and the source fd */
164 struct epoll_event event;
168 * This structure is stored inside the "private_data" member of the file
169 * structure and represents the main data structure for the eventpoll
170 * interface.
172 struct eventpoll {
173 /* Protect the access to this structure */
174 spinlock_t lock;
177 * This mutex is used to ensure that files are not removed
178 * while epoll is using them. This is held during the event
179 * collection loop, the file cleanup path, the epoll file exit
180 * code and the ctl operations.
182 struct mutex mtx;
184 /* Wait queue used by sys_epoll_wait() */
185 wait_queue_head_t wq;
187 /* Wait queue used by file->poll() */
188 wait_queue_head_t poll_wait;
190 /* List of ready file descriptors */
191 struct list_head rdllist;
193 /* RB tree root used to store monitored fd structs */
194 struct rb_root rbr;
197 * This is a single linked list that chains all the "struct epitem" that
198 * happened while transferring ready events to userspace w/out
199 * holding ->lock.
201 struct epitem *ovflist;
203 /* wakeup_source used when ep_scan_ready_list is running */
204 struct wakeup_source *ws;
206 /* The user that created the eventpoll descriptor */
207 struct user_struct *user;
209 struct file *file;
211 /* used to optimize loop detection check */
212 int visited;
213 struct list_head visited_list_link;
216 /* Wait structure used by the poll hooks */
217 struct eppoll_entry {
218 /* List header used to link this structure to the "struct epitem" */
219 struct list_head llink;
221 /* The "base" pointer is set to the container "struct epitem" */
222 struct epitem *base;
225 * Wait queue item that will be linked to the target file wait
226 * queue head.
228 wait_queue_t wait;
230 /* The wait queue head that linked the "wait" wait queue item */
231 wait_queue_head_t *whead;
234 /* Wrapper struct used by poll queueing */
235 struct ep_pqueue {
236 poll_table pt;
237 struct epitem *epi;
240 /* Used by the ep_send_events() function as callback private data */
241 struct ep_send_events_data {
242 int maxevents;
243 struct epoll_event __user *events;
247 * Configuration options available inside /proc/sys/fs/epoll/
249 /* Maximum number of epoll watched descriptors, per user */
250 static long max_user_watches __read_mostly;
253 * This mutex is used to serialize ep_free() and eventpoll_release_file().
255 static DEFINE_MUTEX(epmutex);
257 /* Used to check for epoll file descriptor inclusion loops */
258 static struct nested_calls poll_loop_ncalls;
260 /* Used for safe wake up implementation */
261 static struct nested_calls poll_safewake_ncalls;
263 /* Used to call file's f_op->poll() under the nested calls boundaries */
264 static struct nested_calls poll_readywalk_ncalls;
266 /* Slab cache used to allocate "struct epitem" */
267 static struct kmem_cache *epi_cache __read_mostly;
269 /* Slab cache used to allocate "struct eppoll_entry" */
270 static struct kmem_cache *pwq_cache __read_mostly;
272 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
273 static LIST_HEAD(visited_list);
276 * List of files with newly added links, where we may need to limit the number
277 * of emanating paths. Protected by the epmutex.
279 static LIST_HEAD(tfile_check_list);
281 #ifdef CONFIG_SYSCTL
283 #include <linux/sysctl.h>
285 static long zero;
286 static long long_max = LONG_MAX;
288 ctl_table epoll_table[] = {
290 .procname = "max_user_watches",
291 .data = &max_user_watches,
292 .maxlen = sizeof(max_user_watches),
293 .mode = 0644,
294 .proc_handler = proc_doulongvec_minmax,
295 .extra1 = &zero,
296 .extra2 = &long_max,
300 #endif /* CONFIG_SYSCTL */
302 static const struct file_operations eventpoll_fops;
304 static inline int is_file_epoll(struct file *f)
306 return f->f_op == &eventpoll_fops;
309 /* Setup the structure that is used as key for the RB tree */
310 static inline void ep_set_ffd(struct epoll_filefd *ffd,
311 struct file *file, int fd)
313 ffd->file = file;
314 ffd->fd = fd;
317 /* Compare RB tree keys */
318 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
319 struct epoll_filefd *p2)
321 return (p1->file > p2->file ? +1:
322 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
325 /* Tells us if the item is currently linked */
326 static inline int ep_is_linked(struct list_head *p)
328 return !list_empty(p);
331 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
333 return container_of(p, struct eppoll_entry, wait);
336 /* Get the "struct epitem" from a wait queue pointer */
337 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
339 return container_of(p, struct eppoll_entry, wait)->base;
342 /* Get the "struct epitem" from an epoll queue wrapper */
343 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
345 return container_of(p, struct ep_pqueue, pt)->epi;
348 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
349 static inline int ep_op_has_event(int op)
351 return op != EPOLL_CTL_DEL;
354 /* Initialize the poll safe wake up structure */
355 static void ep_nested_calls_init(struct nested_calls *ncalls)
357 INIT_LIST_HEAD(&ncalls->tasks_call_list);
358 spin_lock_init(&ncalls->lock);
362 * ep_events_available - Checks if ready events might be available.
364 * @ep: Pointer to the eventpoll context.
366 * Returns: Returns a value different than zero if ready events are available,
367 * or zero otherwise.
369 static inline int ep_events_available(struct eventpoll *ep)
371 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
375 * ep_call_nested - Perform a bound (possibly) nested call, by checking
376 * that the recursion limit is not exceeded, and that
377 * the same nested call (by the meaning of same cookie) is
378 * no re-entered.
380 * @ncalls: Pointer to the nested_calls structure to be used for this call.
381 * @max_nests: Maximum number of allowed nesting calls.
382 * @nproc: Nested call core function pointer.
383 * @priv: Opaque data to be passed to the @nproc callback.
384 * @cookie: Cookie to be used to identify this nested call.
385 * @ctx: This instance context.
387 * Returns: Returns the code returned by the @nproc callback, or -1 if
388 * the maximum recursion limit has been exceeded.
390 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
391 int (*nproc)(void *, void *, int), void *priv,
392 void *cookie, void *ctx)
394 int error, call_nests = 0;
395 unsigned long flags;
396 struct list_head *lsthead = &ncalls->tasks_call_list;
397 struct nested_call_node *tncur;
398 struct nested_call_node tnode;
400 spin_lock_irqsave(&ncalls->lock, flags);
403 * Try to see if the current task is already inside this wakeup call.
404 * We use a list here, since the population inside this set is always
405 * very much limited.
407 list_for_each_entry(tncur, lsthead, llink) {
408 if (tncur->ctx == ctx &&
409 (tncur->cookie == cookie || ++call_nests > max_nests)) {
411 * Ops ... loop detected or maximum nest level reached.
412 * We abort this wake by breaking the cycle itself.
414 error = -1;
415 goto out_unlock;
419 /* Add the current task and cookie to the list */
420 tnode.ctx = ctx;
421 tnode.cookie = cookie;
422 list_add(&tnode.llink, lsthead);
424 spin_unlock_irqrestore(&ncalls->lock, flags);
426 /* Call the nested function */
427 error = (*nproc)(priv, cookie, call_nests);
429 /* Remove the current task from the list */
430 spin_lock_irqsave(&ncalls->lock, flags);
431 list_del(&tnode.llink);
432 out_unlock:
433 spin_unlock_irqrestore(&ncalls->lock, flags);
435 return error;
439 * As described in commit 0ccf831cb lockdep: annotate epoll
440 * the use of wait queues used by epoll is done in a very controlled
441 * manner. Wake ups can nest inside each other, but are never done
442 * with the same locking. For example:
444 * dfd = socket(...);
445 * efd1 = epoll_create();
446 * efd2 = epoll_create();
447 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
448 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
450 * When a packet arrives to the device underneath "dfd", the net code will
451 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
452 * callback wakeup entry on that queue, and the wake_up() performed by the
453 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
454 * (efd1) notices that it may have some event ready, so it needs to wake up
455 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
456 * that ends up in another wake_up(), after having checked about the
457 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
458 * avoid stack blasting.
460 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
461 * this special case of epoll.
463 #ifdef CONFIG_DEBUG_LOCK_ALLOC
464 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
465 unsigned long events, int subclass)
467 unsigned long flags;
469 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
470 wake_up_locked_poll(wqueue, events);
471 spin_unlock_irqrestore(&wqueue->lock, flags);
473 #else
474 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
475 unsigned long events, int subclass)
477 wake_up_poll(wqueue, events);
479 #endif
481 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
483 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
484 1 + call_nests);
485 return 0;
489 * Perform a safe wake up of the poll wait list. The problem is that
490 * with the new callback'd wake up system, it is possible that the
491 * poll callback is reentered from inside the call to wake_up() done
492 * on the poll wait queue head. The rule is that we cannot reenter the
493 * wake up code from the same task more than EP_MAX_NESTS times,
494 * and we cannot reenter the same wait queue head at all. This will
495 * enable to have a hierarchy of epoll file descriptor of no more than
496 * EP_MAX_NESTS deep.
498 static void ep_poll_safewake(wait_queue_head_t *wq)
500 int this_cpu = get_cpu();
502 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
503 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
505 put_cpu();
508 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
510 wait_queue_head_t *whead;
512 rcu_read_lock();
513 /* If it is cleared by POLLFREE, it should be rcu-safe */
514 whead = rcu_dereference(pwq->whead);
515 if (whead)
516 remove_wait_queue(whead, &pwq->wait);
517 rcu_read_unlock();
521 * This function unregisters poll callbacks from the associated file
522 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
523 * ep_free).
525 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
527 struct list_head *lsthead = &epi->pwqlist;
528 struct eppoll_entry *pwq;
530 while (!list_empty(lsthead)) {
531 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
533 list_del(&pwq->llink);
534 ep_remove_wait_queue(pwq);
535 kmem_cache_free(pwq_cache, pwq);
540 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
541 * the scan code, to call f_op->poll(). Also allows for
542 * O(NumReady) performance.
544 * @ep: Pointer to the epoll private data structure.
545 * @sproc: Pointer to the scan callback.
546 * @priv: Private opaque data passed to the @sproc callback.
547 * @depth: The current depth of recursive f_op->poll calls.
549 * Returns: The same integer error code returned by the @sproc callback.
551 static int ep_scan_ready_list(struct eventpoll *ep,
552 int (*sproc)(struct eventpoll *,
553 struct list_head *, void *),
554 void *priv,
555 int depth)
557 int error, pwake = 0;
558 unsigned long flags;
559 struct epitem *epi, *nepi;
560 LIST_HEAD(txlist);
563 * We need to lock this because we could be hit by
564 * eventpoll_release_file() and epoll_ctl().
566 mutex_lock_nested(&ep->mtx, depth);
569 * Steal the ready list, and re-init the original one to the
570 * empty list. Also, set ep->ovflist to NULL so that events
571 * happening while looping w/out locks, are not lost. We cannot
572 * have the poll callback to queue directly on ep->rdllist,
573 * because we want the "sproc" callback to be able to do it
574 * in a lockless way.
576 spin_lock_irqsave(&ep->lock, flags);
577 list_splice_init(&ep->rdllist, &txlist);
578 ep->ovflist = NULL;
579 spin_unlock_irqrestore(&ep->lock, flags);
582 * Now call the callback function.
584 error = (*sproc)(ep, &txlist, priv);
586 spin_lock_irqsave(&ep->lock, flags);
588 * During the time we spent inside the "sproc" callback, some
589 * other events might have been queued by the poll callback.
590 * We re-insert them inside the main ready-list here.
592 for (nepi = ep->ovflist; (epi = nepi) != NULL;
593 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
595 * We need to check if the item is already in the list.
596 * During the "sproc" callback execution time, items are
597 * queued into ->ovflist but the "txlist" might already
598 * contain them, and the list_splice() below takes care of them.
600 if (!ep_is_linked(&epi->rdllink)) {
601 list_add_tail(&epi->rdllink, &ep->rdllist);
602 __pm_stay_awake(epi->ws);
606 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
607 * releasing the lock, events will be queued in the normal way inside
608 * ep->rdllist.
610 ep->ovflist = EP_UNACTIVE_PTR;
613 * Quickly re-inject items left on "txlist".
615 list_splice(&txlist, &ep->rdllist);
616 __pm_relax(ep->ws);
618 if (!list_empty(&ep->rdllist)) {
620 * Wake up (if active) both the eventpoll wait list and
621 * the ->poll() wait list (delayed after we release the lock).
623 if (waitqueue_active(&ep->wq))
624 wake_up_locked(&ep->wq);
625 if (waitqueue_active(&ep->poll_wait))
626 pwake++;
628 spin_unlock_irqrestore(&ep->lock, flags);
630 mutex_unlock(&ep->mtx);
632 /* We have to call this outside the lock */
633 if (pwake)
634 ep_poll_safewake(&ep->poll_wait);
636 return error;
640 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
641 * all the associated resources. Must be called with "mtx" held.
643 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
645 unsigned long flags;
646 struct file *file = epi->ffd.file;
649 * Removes poll wait queue hooks. We _have_ to do this without holding
650 * the "ep->lock" otherwise a deadlock might occur. This because of the
651 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
652 * queue head lock when unregistering the wait queue. The wakeup callback
653 * will run by holding the wait queue head lock and will call our callback
654 * that will try to get "ep->lock".
656 ep_unregister_pollwait(ep, epi);
658 /* Remove the current item from the list of epoll hooks */
659 spin_lock(&file->f_lock);
660 if (ep_is_linked(&epi->fllink))
661 list_del_init(&epi->fllink);
662 spin_unlock(&file->f_lock);
664 rb_erase(&epi->rbn, &ep->rbr);
666 spin_lock_irqsave(&ep->lock, flags);
667 if (ep_is_linked(&epi->rdllink))
668 list_del_init(&epi->rdllink);
669 spin_unlock_irqrestore(&ep->lock, flags);
671 wakeup_source_unregister(epi->ws);
673 /* At this point it is safe to free the eventpoll item */
674 kmem_cache_free(epi_cache, epi);
676 atomic_long_dec(&ep->user->epoll_watches);
678 return 0;
681 static void ep_free(struct eventpoll *ep)
683 struct rb_node *rbp;
684 struct epitem *epi;
686 /* We need to release all tasks waiting for these file */
687 if (waitqueue_active(&ep->poll_wait))
688 ep_poll_safewake(&ep->poll_wait);
691 * We need to lock this because we could be hit by
692 * eventpoll_release_file() while we're freeing the "struct eventpoll".
693 * We do not need to hold "ep->mtx" here because the epoll file
694 * is on the way to be removed and no one has references to it
695 * anymore. The only hit might come from eventpoll_release_file() but
696 * holding "epmutex" is sufficient here.
698 mutex_lock(&epmutex);
701 * Walks through the whole tree by unregistering poll callbacks.
703 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
704 epi = rb_entry(rbp, struct epitem, rbn);
706 ep_unregister_pollwait(ep, epi);
710 * Walks through the whole tree by freeing each "struct epitem". At this
711 * point we are sure no poll callbacks will be lingering around, and also by
712 * holding "epmutex" we can be sure that no file cleanup code will hit
713 * us during this operation. So we can avoid the lock on "ep->lock".
715 while ((rbp = rb_first(&ep->rbr)) != NULL) {
716 epi = rb_entry(rbp, struct epitem, rbn);
717 ep_remove(ep, epi);
720 mutex_unlock(&epmutex);
721 mutex_destroy(&ep->mtx);
722 free_uid(ep->user);
723 wakeup_source_unregister(ep->ws);
724 kfree(ep);
727 static int ep_eventpoll_release(struct inode *inode, struct file *file)
729 struct eventpoll *ep = file->private_data;
731 if (ep)
732 ep_free(ep);
734 return 0;
737 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
738 void *priv)
740 struct epitem *epi, *tmp;
741 poll_table pt;
743 init_poll_funcptr(&pt, NULL);
744 list_for_each_entry_safe(epi, tmp, head, rdllink) {
745 pt._key = epi->event.events;
746 if (epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
747 epi->event.events)
748 return POLLIN | POLLRDNORM;
749 else {
751 * Item has been dropped into the ready list by the poll
752 * callback, but it's not actually ready, as far as
753 * caller requested events goes. We can remove it here.
755 __pm_relax(epi->ws);
756 list_del_init(&epi->rdllink);
760 return 0;
763 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
765 return ep_scan_ready_list(priv, ep_read_events_proc, NULL, call_nests + 1);
768 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
770 int pollflags;
771 struct eventpoll *ep = file->private_data;
773 /* Insert inside our poll wait queue */
774 poll_wait(file, &ep->poll_wait, wait);
777 * Proceed to find out if wanted events are really available inside
778 * the ready list. This need to be done under ep_call_nested()
779 * supervision, since the call to f_op->poll() done on listed files
780 * could re-enter here.
782 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
783 ep_poll_readyevents_proc, ep, ep, current);
785 return pollflags != -1 ? pollflags : 0;
788 #ifdef CONFIG_PROC_FS
789 static int ep_show_fdinfo(struct seq_file *m, struct file *f)
791 struct eventpoll *ep = f->private_data;
792 struct rb_node *rbp;
793 int ret = 0;
795 mutex_lock(&ep->mtx);
796 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
797 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
799 ret = seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
800 epi->ffd.fd, epi->event.events,
801 (long long)epi->event.data);
802 if (ret)
803 break;
805 mutex_unlock(&ep->mtx);
807 return ret;
809 #endif
811 /* File callbacks that implement the eventpoll file behaviour */
812 static const struct file_operations eventpoll_fops = {
813 #ifdef CONFIG_PROC_FS
814 .show_fdinfo = ep_show_fdinfo,
815 #endif
816 .release = ep_eventpoll_release,
817 .poll = ep_eventpoll_poll,
818 .llseek = noop_llseek,
822 * This is called from eventpoll_release() to unlink files from the eventpoll
823 * interface. We need to have this facility to cleanup correctly files that are
824 * closed without being removed from the eventpoll interface.
826 void eventpoll_release_file(struct file *file)
828 struct list_head *lsthead = &file->f_ep_links;
829 struct eventpoll *ep;
830 struct epitem *epi;
833 * We don't want to get "file->f_lock" because it is not
834 * necessary. It is not necessary because we're in the "struct file"
835 * cleanup path, and this means that no one is using this file anymore.
836 * So, for example, epoll_ctl() cannot hit here since if we reach this
837 * point, the file counter already went to zero and fget() would fail.
838 * The only hit might come from ep_free() but by holding the mutex
839 * will correctly serialize the operation. We do need to acquire
840 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
841 * from anywhere but ep_free().
843 * Besides, ep_remove() acquires the lock, so we can't hold it here.
845 mutex_lock(&epmutex);
847 while (!list_empty(lsthead)) {
848 epi = list_first_entry(lsthead, struct epitem, fllink);
850 ep = epi->ep;
851 list_del_init(&epi->fllink);
852 mutex_lock_nested(&ep->mtx, 0);
853 ep_remove(ep, epi);
854 mutex_unlock(&ep->mtx);
857 mutex_unlock(&epmutex);
860 static int ep_alloc(struct eventpoll **pep)
862 int error;
863 struct user_struct *user;
864 struct eventpoll *ep;
866 user = get_current_user();
867 error = -ENOMEM;
868 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
869 if (unlikely(!ep))
870 goto free_uid;
872 spin_lock_init(&ep->lock);
873 mutex_init(&ep->mtx);
874 init_waitqueue_head(&ep->wq);
875 init_waitqueue_head(&ep->poll_wait);
876 INIT_LIST_HEAD(&ep->rdllist);
877 ep->rbr = RB_ROOT;
878 ep->ovflist = EP_UNACTIVE_PTR;
879 ep->user = user;
881 *pep = ep;
883 return 0;
885 free_uid:
886 free_uid(user);
887 return error;
891 * Search the file inside the eventpoll tree. The RB tree operations
892 * are protected by the "mtx" mutex, and ep_find() must be called with
893 * "mtx" held.
895 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
897 int kcmp;
898 struct rb_node *rbp;
899 struct epitem *epi, *epir = NULL;
900 struct epoll_filefd ffd;
902 ep_set_ffd(&ffd, file, fd);
903 for (rbp = ep->rbr.rb_node; rbp; ) {
904 epi = rb_entry(rbp, struct epitem, rbn);
905 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
906 if (kcmp > 0)
907 rbp = rbp->rb_right;
908 else if (kcmp < 0)
909 rbp = rbp->rb_left;
910 else {
911 epir = epi;
912 break;
916 return epir;
920 * This is the callback that is passed to the wait queue wakeup
921 * mechanism. It is called by the stored file descriptors when they
922 * have events to report.
924 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
926 int pwake = 0;
927 unsigned long flags;
928 struct epitem *epi = ep_item_from_wait(wait);
929 struct eventpoll *ep = epi->ep;
931 if ((unsigned long)key & POLLFREE) {
932 ep_pwq_from_wait(wait)->whead = NULL;
934 * whead = NULL above can race with ep_remove_wait_queue()
935 * which can do another remove_wait_queue() after us, so we
936 * can't use __remove_wait_queue(). whead->lock is held by
937 * the caller.
939 list_del_init(&wait->task_list);
942 spin_lock_irqsave(&ep->lock, flags);
945 * If the event mask does not contain any poll(2) event, we consider the
946 * descriptor to be disabled. This condition is likely the effect of the
947 * EPOLLONESHOT bit that disables the descriptor when an event is received,
948 * until the next EPOLL_CTL_MOD will be issued.
950 if (!(epi->event.events & ~EP_PRIVATE_BITS))
951 goto out_unlock;
954 * Check the events coming with the callback. At this stage, not
955 * every device reports the events in the "key" parameter of the
956 * callback. We need to be able to handle both cases here, hence the
957 * test for "key" != NULL before the event match test.
959 if (key && !((unsigned long) key & epi->event.events))
960 goto out_unlock;
963 * If we are transferring events to userspace, we can hold no locks
964 * (because we're accessing user memory, and because of linux f_op->poll()
965 * semantics). All the events that happen during that period of time are
966 * chained in ep->ovflist and requeued later on.
968 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
969 if (epi->next == EP_UNACTIVE_PTR) {
970 epi->next = ep->ovflist;
971 ep->ovflist = epi;
972 if (epi->ws) {
974 * Activate ep->ws since epi->ws may get
975 * deactivated at any time.
977 __pm_stay_awake(ep->ws);
981 goto out_unlock;
984 /* If this file is already in the ready list we exit soon */
985 if (!ep_is_linked(&epi->rdllink)) {
986 list_add_tail(&epi->rdllink, &ep->rdllist);
987 __pm_stay_awake(epi->ws);
991 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
992 * wait list.
994 if (waitqueue_active(&ep->wq))
995 wake_up_locked(&ep->wq);
996 if (waitqueue_active(&ep->poll_wait))
997 pwake++;
999 out_unlock:
1000 spin_unlock_irqrestore(&ep->lock, flags);
1002 /* We have to call this outside the lock */
1003 if (pwake)
1004 ep_poll_safewake(&ep->poll_wait);
1006 return 1;
1010 * This is the callback that is used to add our wait queue to the
1011 * target file wakeup lists.
1013 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1014 poll_table *pt)
1016 struct epitem *epi = ep_item_from_epqueue(pt);
1017 struct eppoll_entry *pwq;
1019 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1020 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1021 pwq->whead = whead;
1022 pwq->base = epi;
1023 add_wait_queue(whead, &pwq->wait);
1024 list_add_tail(&pwq->llink, &epi->pwqlist);
1025 epi->nwait++;
1026 } else {
1027 /* We have to signal that an error occurred */
1028 epi->nwait = -1;
1032 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1034 int kcmp;
1035 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1036 struct epitem *epic;
1038 while (*p) {
1039 parent = *p;
1040 epic = rb_entry(parent, struct epitem, rbn);
1041 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1042 if (kcmp > 0)
1043 p = &parent->rb_right;
1044 else
1045 p = &parent->rb_left;
1047 rb_link_node(&epi->rbn, parent, p);
1048 rb_insert_color(&epi->rbn, &ep->rbr);
1053 #define PATH_ARR_SIZE 5
1055 * These are the number paths of length 1 to 5, that we are allowing to emanate
1056 * from a single file of interest. For example, we allow 1000 paths of length
1057 * 1, to emanate from each file of interest. This essentially represents the
1058 * potential wakeup paths, which need to be limited in order to avoid massive
1059 * uncontrolled wakeup storms. The common use case should be a single ep which
1060 * is connected to n file sources. In this case each file source has 1 path
1061 * of length 1. Thus, the numbers below should be more than sufficient. These
1062 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1063 * and delete can't add additional paths. Protected by the epmutex.
1065 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1066 static int path_count[PATH_ARR_SIZE];
1068 static int path_count_inc(int nests)
1070 /* Allow an arbitrary number of depth 1 paths */
1071 if (nests == 0)
1072 return 0;
1074 if (++path_count[nests] > path_limits[nests])
1075 return -1;
1076 return 0;
1079 static void path_count_init(void)
1081 int i;
1083 for (i = 0; i < PATH_ARR_SIZE; i++)
1084 path_count[i] = 0;
1087 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1089 int error = 0;
1090 struct file *file = priv;
1091 struct file *child_file;
1092 struct epitem *epi;
1094 list_for_each_entry(epi, &file->f_ep_links, fllink) {
1095 child_file = epi->ep->file;
1096 if (is_file_epoll(child_file)) {
1097 if (list_empty(&child_file->f_ep_links)) {
1098 if (path_count_inc(call_nests)) {
1099 error = -1;
1100 break;
1102 } else {
1103 error = ep_call_nested(&poll_loop_ncalls,
1104 EP_MAX_NESTS,
1105 reverse_path_check_proc,
1106 child_file, child_file,
1107 current);
1109 if (error != 0)
1110 break;
1111 } else {
1112 printk(KERN_ERR "reverse_path_check_proc: "
1113 "file is not an ep!\n");
1116 return error;
1120 * reverse_path_check - The tfile_check_list is list of file *, which have
1121 * links that are proposed to be newly added. We need to
1122 * make sure that those added links don't add too many
1123 * paths such that we will spend all our time waking up
1124 * eventpoll objects.
1126 * Returns: Returns zero if the proposed links don't create too many paths,
1127 * -1 otherwise.
1129 static int reverse_path_check(void)
1131 int error = 0;
1132 struct file *current_file;
1134 /* let's call this for all tfiles */
1135 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1136 path_count_init();
1137 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1138 reverse_path_check_proc, current_file,
1139 current_file, current);
1140 if (error)
1141 break;
1143 return error;
1146 static int ep_create_wakeup_source(struct epitem *epi)
1148 const char *name;
1150 if (!epi->ep->ws) {
1151 epi->ep->ws = wakeup_source_register("eventpoll");
1152 if (!epi->ep->ws)
1153 return -ENOMEM;
1156 name = epi->ffd.file->f_path.dentry->d_name.name;
1157 epi->ws = wakeup_source_register(name);
1158 if (!epi->ws)
1159 return -ENOMEM;
1161 return 0;
1164 static void ep_destroy_wakeup_source(struct epitem *epi)
1166 wakeup_source_unregister(epi->ws);
1167 epi->ws = NULL;
1171 * Must be called with "mtx" held.
1173 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1174 struct file *tfile, int fd)
1176 int error, revents, pwake = 0;
1177 unsigned long flags;
1178 long user_watches;
1179 struct epitem *epi;
1180 struct ep_pqueue epq;
1182 user_watches = atomic_long_read(&ep->user->epoll_watches);
1183 if (unlikely(user_watches >= max_user_watches))
1184 return -ENOSPC;
1185 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1186 return -ENOMEM;
1188 /* Item initialization follow here ... */
1189 INIT_LIST_HEAD(&epi->rdllink);
1190 INIT_LIST_HEAD(&epi->fllink);
1191 INIT_LIST_HEAD(&epi->pwqlist);
1192 epi->ep = ep;
1193 ep_set_ffd(&epi->ffd, tfile, fd);
1194 epi->event = *event;
1195 epi->nwait = 0;
1196 epi->next = EP_UNACTIVE_PTR;
1197 if (epi->event.events & EPOLLWAKEUP) {
1198 error = ep_create_wakeup_source(epi);
1199 if (error)
1200 goto error_create_wakeup_source;
1201 } else {
1202 epi->ws = NULL;
1205 /* Initialize the poll table using the queue callback */
1206 epq.epi = epi;
1207 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1208 epq.pt._key = event->events;
1211 * Attach the item to the poll hooks and get current event bits.
1212 * We can safely use the file* here because its usage count has
1213 * been increased by the caller of this function. Note that after
1214 * this operation completes, the poll callback can start hitting
1215 * the new item.
1217 revents = tfile->f_op->poll(tfile, &epq.pt);
1220 * We have to check if something went wrong during the poll wait queue
1221 * install process. Namely an allocation for a wait queue failed due
1222 * high memory pressure.
1224 error = -ENOMEM;
1225 if (epi->nwait < 0)
1226 goto error_unregister;
1228 /* Add the current item to the list of active epoll hook for this file */
1229 spin_lock(&tfile->f_lock);
1230 list_add_tail(&epi->fllink, &tfile->f_ep_links);
1231 spin_unlock(&tfile->f_lock);
1234 * Add the current item to the RB tree. All RB tree operations are
1235 * protected by "mtx", and ep_insert() is called with "mtx" held.
1237 ep_rbtree_insert(ep, epi);
1239 /* now check if we've created too many backpaths */
1240 error = -EINVAL;
1241 if (reverse_path_check())
1242 goto error_remove_epi;
1244 /* We have to drop the new item inside our item list to keep track of it */
1245 spin_lock_irqsave(&ep->lock, flags);
1247 /* If the file is already "ready" we drop it inside the ready list */
1248 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1249 list_add_tail(&epi->rdllink, &ep->rdllist);
1250 __pm_stay_awake(epi->ws);
1252 /* Notify waiting tasks that events are available */
1253 if (waitqueue_active(&ep->wq))
1254 wake_up_locked(&ep->wq);
1255 if (waitqueue_active(&ep->poll_wait))
1256 pwake++;
1259 spin_unlock_irqrestore(&ep->lock, flags);
1261 atomic_long_inc(&ep->user->epoll_watches);
1263 /* We have to call this outside the lock */
1264 if (pwake)
1265 ep_poll_safewake(&ep->poll_wait);
1267 return 0;
1269 error_remove_epi:
1270 spin_lock(&tfile->f_lock);
1271 if (ep_is_linked(&epi->fllink))
1272 list_del_init(&epi->fllink);
1273 spin_unlock(&tfile->f_lock);
1275 rb_erase(&epi->rbn, &ep->rbr);
1277 error_unregister:
1278 ep_unregister_pollwait(ep, epi);
1281 * We need to do this because an event could have been arrived on some
1282 * allocated wait queue. Note that we don't care about the ep->ovflist
1283 * list, since that is used/cleaned only inside a section bound by "mtx".
1284 * And ep_insert() is called with "mtx" held.
1286 spin_lock_irqsave(&ep->lock, flags);
1287 if (ep_is_linked(&epi->rdllink))
1288 list_del_init(&epi->rdllink);
1289 spin_unlock_irqrestore(&ep->lock, flags);
1291 wakeup_source_unregister(epi->ws);
1293 error_create_wakeup_source:
1294 kmem_cache_free(epi_cache, epi);
1296 return error;
1300 * Modify the interest event mask by dropping an event if the new mask
1301 * has a match in the current file status. Must be called with "mtx" held.
1303 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1305 int pwake = 0;
1306 unsigned int revents;
1307 poll_table pt;
1309 init_poll_funcptr(&pt, NULL);
1312 * Set the new event interest mask before calling f_op->poll();
1313 * otherwise we might miss an event that happens between the
1314 * f_op->poll() call and the new event set registering.
1316 epi->event.events = event->events;
1317 pt._key = event->events;
1318 epi->event.data = event->data; /* protected by mtx */
1319 if (epi->event.events & EPOLLWAKEUP) {
1320 if (!epi->ws)
1321 ep_create_wakeup_source(epi);
1322 } else if (epi->ws) {
1323 ep_destroy_wakeup_source(epi);
1327 * Get current event bits. We can safely use the file* here because
1328 * its usage count has been increased by the caller of this function.
1330 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt);
1333 * If the item is "hot" and it is not registered inside the ready
1334 * list, push it inside.
1336 if (revents & event->events) {
1337 spin_lock_irq(&ep->lock);
1338 if (!ep_is_linked(&epi->rdllink)) {
1339 list_add_tail(&epi->rdllink, &ep->rdllist);
1340 __pm_stay_awake(epi->ws);
1342 /* Notify waiting tasks that events are available */
1343 if (waitqueue_active(&ep->wq))
1344 wake_up_locked(&ep->wq);
1345 if (waitqueue_active(&ep->poll_wait))
1346 pwake++;
1348 spin_unlock_irq(&ep->lock);
1351 /* We have to call this outside the lock */
1352 if (pwake)
1353 ep_poll_safewake(&ep->poll_wait);
1355 return 0;
1358 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1359 void *priv)
1361 struct ep_send_events_data *esed = priv;
1362 int eventcnt;
1363 unsigned int revents;
1364 struct epitem *epi;
1365 struct epoll_event __user *uevent;
1366 poll_table pt;
1368 init_poll_funcptr(&pt, NULL);
1371 * We can loop without lock because we are passed a task private list.
1372 * Items cannot vanish during the loop because ep_scan_ready_list() is
1373 * holding "mtx" during this call.
1375 for (eventcnt = 0, uevent = esed->events;
1376 !list_empty(head) && eventcnt < esed->maxevents;) {
1377 epi = list_first_entry(head, struct epitem, rdllink);
1380 * Activate ep->ws before deactivating epi->ws to prevent
1381 * triggering auto-suspend here (in case we reactive epi->ws
1382 * below).
1384 * This could be rearranged to delay the deactivation of epi->ws
1385 * instead, but then epi->ws would temporarily be out of sync
1386 * with ep_is_linked().
1388 if (epi->ws && epi->ws->active)
1389 __pm_stay_awake(ep->ws);
1390 __pm_relax(epi->ws);
1391 list_del_init(&epi->rdllink);
1393 pt._key = epi->event.events;
1394 revents = epi->ffd.file->f_op->poll(epi->ffd.file, &pt) &
1395 epi->event.events;
1398 * If the event mask intersect the caller-requested one,
1399 * deliver the event to userspace. Again, ep_scan_ready_list()
1400 * is holding "mtx", so no operations coming from userspace
1401 * can change the item.
1403 if (revents) {
1404 if (__put_user(revents, &uevent->events) ||
1405 __put_user(epi->event.data, &uevent->data)) {
1406 list_add(&epi->rdllink, head);
1407 __pm_stay_awake(epi->ws);
1408 return eventcnt ? eventcnt : -EFAULT;
1410 eventcnt++;
1411 uevent++;
1412 if (epi->event.events & EPOLLONESHOT)
1413 epi->event.events &= EP_PRIVATE_BITS;
1414 else if (!(epi->event.events & EPOLLET)) {
1416 * If this file has been added with Level
1417 * Trigger mode, we need to insert back inside
1418 * the ready list, so that the next call to
1419 * epoll_wait() will check again the events
1420 * availability. At this point, no one can insert
1421 * into ep->rdllist besides us. The epoll_ctl()
1422 * callers are locked out by
1423 * ep_scan_ready_list() holding "mtx" and the
1424 * poll callback will queue them in ep->ovflist.
1426 list_add_tail(&epi->rdllink, &ep->rdllist);
1427 __pm_stay_awake(epi->ws);
1432 return eventcnt;
1435 static int ep_send_events(struct eventpoll *ep,
1436 struct epoll_event __user *events, int maxevents)
1438 struct ep_send_events_data esed;
1440 esed.maxevents = maxevents;
1441 esed.events = events;
1443 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0);
1446 static inline struct timespec ep_set_mstimeout(long ms)
1448 struct timespec now, ts = {
1449 .tv_sec = ms / MSEC_PER_SEC,
1450 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1453 ktime_get_ts(&now);
1454 return timespec_add_safe(now, ts);
1458 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1459 * event buffer.
1461 * @ep: Pointer to the eventpoll context.
1462 * @events: Pointer to the userspace buffer where the ready events should be
1463 * stored.
1464 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1465 * @timeout: Maximum timeout for the ready events fetch operation, in
1466 * milliseconds. If the @timeout is zero, the function will not block,
1467 * while if the @timeout is less than zero, the function will block
1468 * until at least one event has been retrieved (or an error
1469 * occurred).
1471 * Returns: Returns the number of ready events which have been fetched, or an
1472 * error code, in case of error.
1474 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1475 int maxevents, long timeout)
1477 int res = 0, eavail, timed_out = 0;
1478 unsigned long flags;
1479 long slack = 0;
1480 wait_queue_t wait;
1481 ktime_t expires, *to = NULL;
1483 if (timeout > 0) {
1484 struct timespec end_time = ep_set_mstimeout(timeout);
1486 slack = select_estimate_accuracy(&end_time);
1487 to = &expires;
1488 *to = timespec_to_ktime(end_time);
1489 } else if (timeout == 0) {
1491 * Avoid the unnecessary trip to the wait queue loop, if the
1492 * caller specified a non blocking operation.
1494 timed_out = 1;
1495 spin_lock_irqsave(&ep->lock, flags);
1496 goto check_events;
1499 fetch_events:
1500 spin_lock_irqsave(&ep->lock, flags);
1502 if (!ep_events_available(ep)) {
1504 * We don't have any available event to return to the caller.
1505 * We need to sleep here, and we will be wake up by
1506 * ep_poll_callback() when events will become available.
1508 init_waitqueue_entry(&wait, current);
1509 __add_wait_queue_exclusive(&ep->wq, &wait);
1511 for (;;) {
1513 * We don't want to sleep if the ep_poll_callback() sends us
1514 * a wakeup in between. That's why we set the task state
1515 * to TASK_INTERRUPTIBLE before doing the checks.
1517 set_current_state(TASK_INTERRUPTIBLE);
1518 if (ep_events_available(ep) || timed_out)
1519 break;
1520 if (signal_pending(current)) {
1521 res = -EINTR;
1522 break;
1525 spin_unlock_irqrestore(&ep->lock, flags);
1526 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1527 timed_out = 1;
1529 spin_lock_irqsave(&ep->lock, flags);
1531 __remove_wait_queue(&ep->wq, &wait);
1533 set_current_state(TASK_RUNNING);
1535 check_events:
1536 /* Is it worth to try to dig for events ? */
1537 eavail = ep_events_available(ep);
1539 spin_unlock_irqrestore(&ep->lock, flags);
1542 * Try to transfer events to user space. In case we get 0 events and
1543 * there's still timeout left over, we go trying again in search of
1544 * more luck.
1546 if (!res && eavail &&
1547 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1548 goto fetch_events;
1550 return res;
1554 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1555 * API, to verify that adding an epoll file inside another
1556 * epoll structure, does not violate the constraints, in
1557 * terms of closed loops, or too deep chains (which can
1558 * result in excessive stack usage).
1560 * @priv: Pointer to the epoll file to be currently checked.
1561 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1562 * data structure pointer.
1563 * @call_nests: Current dept of the @ep_call_nested() call stack.
1565 * Returns: Returns zero if adding the epoll @file inside current epoll
1566 * structure @ep does not violate the constraints, or -1 otherwise.
1568 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1570 int error = 0;
1571 struct file *file = priv;
1572 struct eventpoll *ep = file->private_data;
1573 struct eventpoll *ep_tovisit;
1574 struct rb_node *rbp;
1575 struct epitem *epi;
1577 mutex_lock_nested(&ep->mtx, call_nests + 1);
1578 ep->visited = 1;
1579 list_add(&ep->visited_list_link, &visited_list);
1580 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1581 epi = rb_entry(rbp, struct epitem, rbn);
1582 if (unlikely(is_file_epoll(epi->ffd.file))) {
1583 ep_tovisit = epi->ffd.file->private_data;
1584 if (ep_tovisit->visited)
1585 continue;
1586 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1587 ep_loop_check_proc, epi->ffd.file,
1588 ep_tovisit, current);
1589 if (error != 0)
1590 break;
1591 } else {
1593 * If we've reached a file that is not associated with
1594 * an ep, then we need to check if the newly added
1595 * links are going to add too many wakeup paths. We do
1596 * this by adding it to the tfile_check_list, if it's
1597 * not already there, and calling reverse_path_check()
1598 * during ep_insert().
1600 if (list_empty(&epi->ffd.file->f_tfile_llink))
1601 list_add(&epi->ffd.file->f_tfile_llink,
1602 &tfile_check_list);
1605 mutex_unlock(&ep->mtx);
1607 return error;
1611 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1612 * another epoll file (represented by @ep) does not create
1613 * closed loops or too deep chains.
1615 * @ep: Pointer to the epoll private data structure.
1616 * @file: Pointer to the epoll file to be checked.
1618 * Returns: Returns zero if adding the epoll @file inside current epoll
1619 * structure @ep does not violate the constraints, or -1 otherwise.
1621 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1623 int ret;
1624 struct eventpoll *ep_cur, *ep_next;
1626 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1627 ep_loop_check_proc, file, ep, current);
1628 /* clear visited list */
1629 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1630 visited_list_link) {
1631 ep_cur->visited = 0;
1632 list_del(&ep_cur->visited_list_link);
1634 return ret;
1637 static void clear_tfile_check_list(void)
1639 struct file *file;
1641 /* first clear the tfile_check_list */
1642 while (!list_empty(&tfile_check_list)) {
1643 file = list_first_entry(&tfile_check_list, struct file,
1644 f_tfile_llink);
1645 list_del_init(&file->f_tfile_llink);
1647 INIT_LIST_HEAD(&tfile_check_list);
1651 * Open an eventpoll file descriptor.
1653 SYSCALL_DEFINE1(epoll_create1, int, flags)
1655 int error, fd;
1656 struct eventpoll *ep = NULL;
1657 struct file *file;
1659 /* Check the EPOLL_* constant for consistency. */
1660 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1662 if (flags & ~EPOLL_CLOEXEC)
1663 return -EINVAL;
1665 * Create the internal data structure ("struct eventpoll").
1667 error = ep_alloc(&ep);
1668 if (error < 0)
1669 return error;
1671 * Creates all the items needed to setup an eventpoll file. That is,
1672 * a file structure and a free file descriptor.
1674 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1675 if (fd < 0) {
1676 error = fd;
1677 goto out_free_ep;
1679 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1680 O_RDWR | (flags & O_CLOEXEC));
1681 if (IS_ERR(file)) {
1682 error = PTR_ERR(file);
1683 goto out_free_fd;
1685 ep->file = file;
1686 fd_install(fd, file);
1687 return fd;
1689 out_free_fd:
1690 put_unused_fd(fd);
1691 out_free_ep:
1692 ep_free(ep);
1693 return error;
1696 SYSCALL_DEFINE1(epoll_create, int, size)
1698 if (size <= 0)
1699 return -EINVAL;
1701 return sys_epoll_create1(0);
1705 * The following function implements the controller interface for
1706 * the eventpoll file that enables the insertion/removal/change of
1707 * file descriptors inside the interest set.
1709 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1710 struct epoll_event __user *, event)
1712 int error;
1713 int did_lock_epmutex = 0;
1714 struct file *file, *tfile;
1715 struct eventpoll *ep;
1716 struct epitem *epi;
1717 struct epoll_event epds;
1719 error = -EFAULT;
1720 if (ep_op_has_event(op) &&
1721 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1722 goto error_return;
1724 /* Get the "struct file *" for the eventpoll file */
1725 error = -EBADF;
1726 file = fget(epfd);
1727 if (!file)
1728 goto error_return;
1730 /* Get the "struct file *" for the target file */
1731 tfile = fget(fd);
1732 if (!tfile)
1733 goto error_fput;
1735 /* The target file descriptor must support poll */
1736 error = -EPERM;
1737 if (!tfile->f_op || !tfile->f_op->poll)
1738 goto error_tgt_fput;
1740 /* Check if EPOLLWAKEUP is allowed */
1741 if ((epds.events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
1742 epds.events &= ~EPOLLWAKEUP;
1745 * We have to check that the file structure underneath the file descriptor
1746 * the user passed to us _is_ an eventpoll file. And also we do not permit
1747 * adding an epoll file descriptor inside itself.
1749 error = -EINVAL;
1750 if (file == tfile || !is_file_epoll(file))
1751 goto error_tgt_fput;
1754 * At this point it is safe to assume that the "private_data" contains
1755 * our own data structure.
1757 ep = file->private_data;
1760 * When we insert an epoll file descriptor, inside another epoll file
1761 * descriptor, there is the change of creating closed loops, which are
1762 * better be handled here, than in more critical paths. While we are
1763 * checking for loops we also determine the list of files reachable
1764 * and hang them on the tfile_check_list, so we can check that we
1765 * haven't created too many possible wakeup paths.
1767 * We need to hold the epmutex across both ep_insert and ep_remove
1768 * b/c we want to make sure we are looking at a coherent view of
1769 * epoll network.
1771 if (op == EPOLL_CTL_ADD || op == EPOLL_CTL_DEL) {
1772 mutex_lock(&epmutex);
1773 did_lock_epmutex = 1;
1775 if (op == EPOLL_CTL_ADD) {
1776 if (is_file_epoll(tfile)) {
1777 error = -ELOOP;
1778 if (ep_loop_check(ep, tfile) != 0) {
1779 clear_tfile_check_list();
1780 goto error_tgt_fput;
1782 } else
1783 list_add(&tfile->f_tfile_llink, &tfile_check_list);
1786 mutex_lock_nested(&ep->mtx, 0);
1789 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1790 * above, we can be sure to be able to use the item looked up by
1791 * ep_find() till we release the mutex.
1793 epi = ep_find(ep, tfile, fd);
1795 error = -EINVAL;
1796 switch (op) {
1797 case EPOLL_CTL_ADD:
1798 if (!epi) {
1799 epds.events |= POLLERR | POLLHUP;
1800 error = ep_insert(ep, &epds, tfile, fd);
1801 } else
1802 error = -EEXIST;
1803 clear_tfile_check_list();
1804 break;
1805 case EPOLL_CTL_DEL:
1806 if (epi)
1807 error = ep_remove(ep, epi);
1808 else
1809 error = -ENOENT;
1810 break;
1811 case EPOLL_CTL_MOD:
1812 if (epi) {
1813 epds.events |= POLLERR | POLLHUP;
1814 error = ep_modify(ep, epi, &epds);
1815 } else
1816 error = -ENOENT;
1817 break;
1819 mutex_unlock(&ep->mtx);
1821 error_tgt_fput:
1822 if (did_lock_epmutex)
1823 mutex_unlock(&epmutex);
1825 fput(tfile);
1826 error_fput:
1827 fput(file);
1828 error_return:
1830 return error;
1834 * Implement the event wait interface for the eventpoll file. It is the kernel
1835 * part of the user space epoll_wait(2).
1837 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1838 int, maxevents, int, timeout)
1840 int error;
1841 struct fd f;
1842 struct eventpoll *ep;
1844 /* The maximum number of event must be greater than zero */
1845 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1846 return -EINVAL;
1848 /* Verify that the area passed by the user is writeable */
1849 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1850 return -EFAULT;
1852 /* Get the "struct file *" for the eventpoll file */
1853 f = fdget(epfd);
1854 if (!f.file)
1855 return -EBADF;
1858 * We have to check that the file structure underneath the fd
1859 * the user passed to us _is_ an eventpoll file.
1861 error = -EINVAL;
1862 if (!is_file_epoll(f.file))
1863 goto error_fput;
1866 * At this point it is safe to assume that the "private_data" contains
1867 * our own data structure.
1869 ep = f.file->private_data;
1871 /* Time to fish for events ... */
1872 error = ep_poll(ep, events, maxevents, timeout);
1874 error_fput:
1875 fdput(f);
1876 return error;
1880 * Implement the event wait interface for the eventpoll file. It is the kernel
1881 * part of the user space epoll_pwait(2).
1883 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
1884 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
1885 size_t, sigsetsize)
1887 int error;
1888 sigset_t ksigmask, sigsaved;
1891 * If the caller wants a certain signal mask to be set during the wait,
1892 * we apply it here.
1894 if (sigmask) {
1895 if (sigsetsize != sizeof(sigset_t))
1896 return -EINVAL;
1897 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
1898 return -EFAULT;
1899 sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
1900 sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
1903 error = sys_epoll_wait(epfd, events, maxevents, timeout);
1906 * If we changed the signal mask, we need to restore the original one.
1907 * In case we've got a signal while waiting, we do not restore the
1908 * signal mask yet, and we allow do_signal() to deliver the signal on
1909 * the way back to userspace, before the signal mask is restored.
1911 if (sigmask) {
1912 if (error == -EINTR) {
1913 memcpy(&current->saved_sigmask, &sigsaved,
1914 sizeof(sigsaved));
1915 set_restore_sigmask();
1916 } else
1917 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1920 return error;
1923 static int __init eventpoll_init(void)
1925 struct sysinfo si;
1927 si_meminfo(&si);
1929 * Allows top 4% of lomem to be allocated for epoll watches (per user).
1931 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
1932 EP_ITEM_COST;
1933 BUG_ON(max_user_watches < 0);
1936 * Initialize the structure used to perform epoll file descriptor
1937 * inclusion loops checks.
1939 ep_nested_calls_init(&poll_loop_ncalls);
1941 /* Initialize the structure used to perform safe poll wait head wake ups */
1942 ep_nested_calls_init(&poll_safewake_ncalls);
1944 /* Initialize the structure used to perform file's f_op->poll() calls */
1945 ep_nested_calls_init(&poll_readywalk_ncalls);
1947 /* Allocates slab cache used to allocate "struct epitem" items */
1948 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
1949 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1951 /* Allocates slab cache used to allocate "struct eppoll_entry" */
1952 pwq_cache = kmem_cache_create("eventpoll_pwq",
1953 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
1955 return 0;
1957 fs_initcall(eventpoll_init);