2 * Driver for Cirrus Logic EP93xx SPI controller.
4 * Copyright (C) 2010-2011 Mika Westerberg
6 * Explicit FIFO handling code was inspired by amba-pl022 driver.
8 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
10 * For more information about the SPI controller see documentation on Cirrus
12 * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License version 2 as
16 * published by the Free Software Foundation.
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
34 #include <linux/platform_data/dma-ep93xx.h>
35 #include <linux/platform_data/spi-ep93xx.h>
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
66 /* timeout in milliseconds */
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
72 * struct ep93xx_spi - EP93xx SPI controller structure
73 * @lock: spinlock that protects concurrent accesses to fields @running,
74 * @current_msg and @msg_queue
75 * @pdev: pointer to platform device
76 * @clk: clock for the controller
77 * @regs_base: pointer to ioremap()'d registers
78 * @sspdr_phys: physical address of the SSPDR register
79 * @min_rate: minimum clock rate (in Hz) supported by the controller
80 * @max_rate: maximum clock rate (in Hz) supported by the controller
81 * @running: is the queue running
82 * @wq: workqueue used by the driver
83 * @msg_work: work that is queued for the driver
84 * @wait: wait here until given transfer is completed
85 * @msg_queue: queue for the messages
86 * @current_msg: message that is currently processed (or %NULL if none)
87 * @tx: current byte in transfer to transmit
88 * @rx: current byte in transfer to receive
89 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
90 * frame decreases this level and sending one frame increases it.
91 * @dma_rx: RX DMA channel
92 * @dma_tx: TX DMA channel
93 * @dma_rx_data: RX parameters passed to the DMA engine
94 * @dma_tx_data: TX parameters passed to the DMA engine
95 * @rx_sgt: sg table for RX transfers
96 * @tx_sgt: sg table for TX transfers
97 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
100 * This structure holds EP93xx SPI controller specific information. When
101 * @running is %true, driver accepts transfer requests from protocol drivers.
102 * @current_msg is used to hold pointer to the message that is currently
103 * processed. If @current_msg is %NULL, it means that no processing is going
106 * Most of the fields are only written once and they can be accessed without
107 * taking the @lock. Fields that are accessed concurrently are: @current_msg,
108 * @running, and @msg_queue.
112 const struct platform_device
*pdev
;
114 void __iomem
*regs_base
;
115 unsigned long sspdr_phys
;
116 unsigned long min_rate
;
117 unsigned long max_rate
;
119 struct workqueue_struct
*wq
;
120 struct work_struct msg_work
;
121 struct completion wait
;
122 struct list_head msg_queue
;
123 struct spi_message
*current_msg
;
127 struct dma_chan
*dma_rx
;
128 struct dma_chan
*dma_tx
;
129 struct ep93xx_dma_data dma_rx_data
;
130 struct ep93xx_dma_data dma_tx_data
;
131 struct sg_table rx_sgt
;
132 struct sg_table tx_sgt
;
137 * struct ep93xx_spi_chip - SPI device hardware settings
138 * @spi: back pointer to the SPI device
139 * @rate: max rate in hz this chip supports
140 * @div_cpsr: cpsr (pre-scaler) divider
141 * @div_scr: scr divider
142 * @dss: bits per word (4 - 16 bits)
143 * @ops: private chip operations
145 * This structure is used to store hardware register specific settings for each
146 * SPI device. Settings are written to hardware by function
147 * ep93xx_spi_chip_setup().
149 struct ep93xx_spi_chip
{
150 const struct spi_device
*spi
;
155 struct ep93xx_spi_chip_ops
*ops
;
158 /* converts bits per word to CR0.DSS value */
159 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
162 ep93xx_spi_write_u8(const struct ep93xx_spi
*espi
, u16 reg
, u8 value
)
164 __raw_writeb(value
, espi
->regs_base
+ reg
);
168 ep93xx_spi_read_u8(const struct ep93xx_spi
*spi
, u16 reg
)
170 return __raw_readb(spi
->regs_base
+ reg
);
174 ep93xx_spi_write_u16(const struct ep93xx_spi
*espi
, u16 reg
, u16 value
)
176 __raw_writew(value
, espi
->regs_base
+ reg
);
180 ep93xx_spi_read_u16(const struct ep93xx_spi
*spi
, u16 reg
)
182 return __raw_readw(spi
->regs_base
+ reg
);
185 static int ep93xx_spi_enable(const struct ep93xx_spi
*espi
)
190 err
= clk_enable(espi
->clk
);
194 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
195 regval
|= SSPCR1_SSE
;
196 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
201 static void ep93xx_spi_disable(const struct ep93xx_spi
*espi
)
205 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
206 regval
&= ~SSPCR1_SSE
;
207 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
209 clk_disable(espi
->clk
);
212 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi
*espi
)
216 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
217 regval
|= (SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
218 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
221 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi
*espi
)
225 regval
= ep93xx_spi_read_u8(espi
, SSPCR1
);
226 regval
&= ~(SSPCR1_RORIE
| SSPCR1_TIE
| SSPCR1_RIE
);
227 ep93xx_spi_write_u8(espi
, SSPCR1
, regval
);
231 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
232 * @espi: ep93xx SPI controller struct
233 * @chip: divisors are calculated for this chip
234 * @rate: desired SPI output clock rate
236 * Function calculates cpsr (clock pre-scaler) and scr divisors based on
237 * given @rate and places them to @chip->div_cpsr and @chip->div_scr. If,
238 * for some reason, divisors cannot be calculated nothing is stored and
239 * %-EINVAL is returned.
241 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi
*espi
,
242 struct ep93xx_spi_chip
*chip
,
245 unsigned long spi_clk_rate
= clk_get_rate(espi
->clk
);
249 * Make sure that max value is between values supported by the
250 * controller. Note that minimum value is already checked in
251 * ep93xx_spi_transfer().
253 rate
= clamp(rate
, espi
->min_rate
, espi
->max_rate
);
256 * Calculate divisors so that we can get speed according the
258 * rate = spi_clock_rate / (cpsr * (1 + scr))
260 * cpsr must be even number and starts from 2, scr can be any number
263 for (cpsr
= 2; cpsr
<= 254; cpsr
+= 2) {
264 for (scr
= 0; scr
<= 255; scr
++) {
265 if ((spi_clk_rate
/ (cpsr
* (scr
+ 1))) <= rate
) {
266 chip
->div_scr
= (u8
)scr
;
267 chip
->div_cpsr
= (u8
)cpsr
;
276 static void ep93xx_spi_cs_control(struct spi_device
*spi
, bool control
)
278 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(spi
);
279 int value
= (spi
->mode
& SPI_CS_HIGH
) ? control
: !control
;
281 if (chip
->ops
&& chip
->ops
->cs_control
)
282 chip
->ops
->cs_control(spi
, value
);
286 * ep93xx_spi_setup() - setup an SPI device
287 * @spi: SPI device to setup
289 * This function sets up SPI device mode, speed etc. Can be called multiple
290 * times for a single device. Returns %0 in case of success, negative error in
291 * case of failure. When this function returns success, the device is
294 static int ep93xx_spi_setup(struct spi_device
*spi
)
296 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
297 struct ep93xx_spi_chip
*chip
;
299 if (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 16) {
300 dev_err(&espi
->pdev
->dev
, "invalid bits per word %d\n",
305 chip
= spi_get_ctldata(spi
);
307 dev_dbg(&espi
->pdev
->dev
, "initial setup for %s\n",
310 chip
= kzalloc(sizeof(*chip
), GFP_KERNEL
);
315 chip
->ops
= spi
->controller_data
;
317 if (chip
->ops
&& chip
->ops
->setup
) {
318 int ret
= chip
->ops
->setup(spi
);
325 spi_set_ctldata(spi
, chip
);
328 if (spi
->max_speed_hz
!= chip
->rate
) {
331 err
= ep93xx_spi_calc_divisors(espi
, chip
, spi
->max_speed_hz
);
333 spi_set_ctldata(spi
, NULL
);
337 chip
->rate
= spi
->max_speed_hz
;
340 chip
->dss
= bits_per_word_to_dss(spi
->bits_per_word
);
342 ep93xx_spi_cs_control(spi
, false);
347 * ep93xx_spi_transfer() - queue message to be transferred
348 * @spi: target SPI device
349 * @msg: message to be transferred
351 * This function is called by SPI device drivers when they are going to transfer
352 * a new message. It simply puts the message in the queue and schedules
353 * workqueue to perform the actual transfer later on.
355 * Returns %0 on success and negative error in case of failure.
357 static int ep93xx_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
359 struct ep93xx_spi
*espi
= spi_master_get_devdata(spi
->master
);
360 struct spi_transfer
*t
;
363 if (!msg
|| !msg
->complete
)
366 /* first validate each transfer */
367 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
368 if (t
->bits_per_word
) {
369 if (t
->bits_per_word
< 4 || t
->bits_per_word
> 16)
372 if (t
->speed_hz
&& t
->speed_hz
< espi
->min_rate
)
377 * Now that we own the message, let's initialize it so that it is
378 * suitable for us. We use @msg->status to signal whether there was
379 * error in transfer and @msg->state is used to hold pointer to the
380 * current transfer (or %NULL if no active current transfer).
384 msg
->actual_length
= 0;
386 spin_lock_irqsave(&espi
->lock
, flags
);
387 if (!espi
->running
) {
388 spin_unlock_irqrestore(&espi
->lock
, flags
);
391 list_add_tail(&msg
->queue
, &espi
->msg_queue
);
392 queue_work(espi
->wq
, &espi
->msg_work
);
393 spin_unlock_irqrestore(&espi
->lock
, flags
);
399 * ep93xx_spi_cleanup() - cleans up master controller specific state
400 * @spi: SPI device to cleanup
402 * This function releases master controller specific state for given @spi
405 static void ep93xx_spi_cleanup(struct spi_device
*spi
)
407 struct ep93xx_spi_chip
*chip
;
409 chip
= spi_get_ctldata(spi
);
411 if (chip
->ops
&& chip
->ops
->cleanup
)
412 chip
->ops
->cleanup(spi
);
413 spi_set_ctldata(spi
, NULL
);
419 * ep93xx_spi_chip_setup() - configures hardware according to given @chip
420 * @espi: ep93xx SPI controller struct
421 * @chip: chip specific settings
423 * This function sets up the actual hardware registers with settings given in
424 * @chip. Note that no validation is done so make sure that callers validate
425 * settings before calling this.
427 static void ep93xx_spi_chip_setup(const struct ep93xx_spi
*espi
,
428 const struct ep93xx_spi_chip
*chip
)
432 cr0
= chip
->div_scr
<< SSPCR0_SCR_SHIFT
;
433 cr0
|= (chip
->spi
->mode
& (SPI_CPHA
|SPI_CPOL
)) << SSPCR0_MODE_SHIFT
;
436 dev_dbg(&espi
->pdev
->dev
, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
437 chip
->spi
->mode
, chip
->div_cpsr
, chip
->div_scr
, chip
->dss
);
438 dev_dbg(&espi
->pdev
->dev
, "setup: cr0 %#x", cr0
);
440 ep93xx_spi_write_u8(espi
, SSPCPSR
, chip
->div_cpsr
);
441 ep93xx_spi_write_u16(espi
, SSPCR0
, cr0
);
444 static inline int bits_per_word(const struct ep93xx_spi
*espi
)
446 struct spi_message
*msg
= espi
->current_msg
;
447 struct spi_transfer
*t
= msg
->state
;
449 return t
->bits_per_word
? t
->bits_per_word
: msg
->spi
->bits_per_word
;
452 static void ep93xx_do_write(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
454 if (bits_per_word(espi
) > 8) {
458 tx_val
= ((u16
*)t
->tx_buf
)[espi
->tx
];
459 ep93xx_spi_write_u16(espi
, SSPDR
, tx_val
);
460 espi
->tx
+= sizeof(tx_val
);
465 tx_val
= ((u8
*)t
->tx_buf
)[espi
->tx
];
466 ep93xx_spi_write_u8(espi
, SSPDR
, tx_val
);
467 espi
->tx
+= sizeof(tx_val
);
471 static void ep93xx_do_read(struct ep93xx_spi
*espi
, struct spi_transfer
*t
)
473 if (bits_per_word(espi
) > 8) {
476 rx_val
= ep93xx_spi_read_u16(espi
, SSPDR
);
478 ((u16
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
479 espi
->rx
+= sizeof(rx_val
);
483 rx_val
= ep93xx_spi_read_u8(espi
, SSPDR
);
485 ((u8
*)t
->rx_buf
)[espi
->rx
] = rx_val
;
486 espi
->rx
+= sizeof(rx_val
);
491 * ep93xx_spi_read_write() - perform next RX/TX transfer
492 * @espi: ep93xx SPI controller struct
494 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
495 * called several times, the whole transfer will be completed. Returns
496 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
498 * When this function is finished, RX FIFO should be empty and TX FIFO should be
501 static int ep93xx_spi_read_write(struct ep93xx_spi
*espi
)
503 struct spi_message
*msg
= espi
->current_msg
;
504 struct spi_transfer
*t
= msg
->state
;
506 /* read as long as RX FIFO has frames in it */
507 while ((ep93xx_spi_read_u8(espi
, SSPSR
) & SSPSR_RNE
)) {
508 ep93xx_do_read(espi
, t
);
512 /* write as long as TX FIFO has room */
513 while (espi
->fifo_level
< SPI_FIFO_SIZE
&& espi
->tx
< t
->len
) {
514 ep93xx_do_write(espi
, t
);
518 if (espi
->rx
== t
->len
)
524 static void ep93xx_spi_pio_transfer(struct ep93xx_spi
*espi
)
527 * Now everything is set up for the current transfer. We prime the TX
528 * FIFO, enable interrupts, and wait for the transfer to complete.
530 if (ep93xx_spi_read_write(espi
)) {
531 ep93xx_spi_enable_interrupts(espi
);
532 wait_for_completion(&espi
->wait
);
537 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
538 * @espi: ep93xx SPI controller struct
539 * @dir: DMA transfer direction
541 * Function configures the DMA, maps the buffer and prepares the DMA
542 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
543 * in case of failure.
545 static struct dma_async_tx_descriptor
*
546 ep93xx_spi_dma_prepare(struct ep93xx_spi
*espi
, enum dma_transfer_direction dir
)
548 struct spi_transfer
*t
= espi
->current_msg
->state
;
549 struct dma_async_tx_descriptor
*txd
;
550 enum dma_slave_buswidth buswidth
;
551 struct dma_slave_config conf
;
552 struct scatterlist
*sg
;
553 struct sg_table
*sgt
;
554 struct dma_chan
*chan
;
555 const void *buf
, *pbuf
;
559 if (bits_per_word(espi
) > 8)
560 buswidth
= DMA_SLAVE_BUSWIDTH_2_BYTES
;
562 buswidth
= DMA_SLAVE_BUSWIDTH_1_BYTE
;
564 memset(&conf
, 0, sizeof(conf
));
565 conf
.direction
= dir
;
567 if (dir
== DMA_DEV_TO_MEM
) {
572 conf
.src_addr
= espi
->sspdr_phys
;
573 conf
.src_addr_width
= buswidth
;
579 conf
.dst_addr
= espi
->sspdr_phys
;
580 conf
.dst_addr_width
= buswidth
;
583 ret
= dmaengine_slave_config(chan
, &conf
);
588 * We need to split the transfer into PAGE_SIZE'd chunks. This is
589 * because we are using @espi->zeropage to provide a zero RX buffer
590 * for the TX transfers and we have only allocated one page for that.
592 * For performance reasons we allocate a new sg_table only when
593 * needed. Otherwise we will re-use the current one. Eventually the
594 * last sg_table is released in ep93xx_spi_release_dma().
597 nents
= DIV_ROUND_UP(len
, PAGE_SIZE
);
598 if (nents
!= sgt
->nents
) {
601 ret
= sg_alloc_table(sgt
, nents
, GFP_KERNEL
);
607 for_each_sg(sgt
->sgl
, sg
, sgt
->nents
, i
) {
608 size_t bytes
= min_t(size_t, len
, PAGE_SIZE
);
611 sg_set_page(sg
, virt_to_page(pbuf
), bytes
,
612 offset_in_page(pbuf
));
614 sg_set_page(sg
, virt_to_page(espi
->zeropage
),
623 dev_warn(&espi
->pdev
->dev
, "len = %d expected 0!", len
);
624 return ERR_PTR(-EINVAL
);
627 nents
= dma_map_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
629 return ERR_PTR(-ENOMEM
);
631 txd
= dmaengine_prep_slave_sg(chan
, sgt
->sgl
, nents
, dir
, DMA_CTRL_ACK
);
633 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
634 return ERR_PTR(-ENOMEM
);
640 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
641 * @espi: ep93xx SPI controller struct
642 * @dir: DMA transfer direction
644 * Function finishes with the DMA transfer. After this, the DMA buffer is
647 static void ep93xx_spi_dma_finish(struct ep93xx_spi
*espi
,
648 enum dma_transfer_direction dir
)
650 struct dma_chan
*chan
;
651 struct sg_table
*sgt
;
653 if (dir
== DMA_DEV_TO_MEM
) {
661 dma_unmap_sg(chan
->device
->dev
, sgt
->sgl
, sgt
->nents
, dir
);
664 static void ep93xx_spi_dma_callback(void *callback_param
)
666 complete(callback_param
);
669 static void ep93xx_spi_dma_transfer(struct ep93xx_spi
*espi
)
671 struct spi_message
*msg
= espi
->current_msg
;
672 struct dma_async_tx_descriptor
*rxd
, *txd
;
674 rxd
= ep93xx_spi_dma_prepare(espi
, DMA_DEV_TO_MEM
);
676 dev_err(&espi
->pdev
->dev
, "DMA RX failed: %ld\n", PTR_ERR(rxd
));
677 msg
->status
= PTR_ERR(rxd
);
681 txd
= ep93xx_spi_dma_prepare(espi
, DMA_MEM_TO_DEV
);
683 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
684 dev_err(&espi
->pdev
->dev
, "DMA TX failed: %ld\n", PTR_ERR(rxd
));
685 msg
->status
= PTR_ERR(txd
);
689 /* We are ready when RX is done */
690 rxd
->callback
= ep93xx_spi_dma_callback
;
691 rxd
->callback_param
= &espi
->wait
;
693 /* Now submit both descriptors and wait while they finish */
694 dmaengine_submit(rxd
);
695 dmaengine_submit(txd
);
697 dma_async_issue_pending(espi
->dma_rx
);
698 dma_async_issue_pending(espi
->dma_tx
);
700 wait_for_completion(&espi
->wait
);
702 ep93xx_spi_dma_finish(espi
, DMA_MEM_TO_DEV
);
703 ep93xx_spi_dma_finish(espi
, DMA_DEV_TO_MEM
);
707 * ep93xx_spi_process_transfer() - processes one SPI transfer
708 * @espi: ep93xx SPI controller struct
709 * @msg: current message
710 * @t: transfer to process
712 * This function processes one SPI transfer given in @t. Function waits until
713 * transfer is complete (may sleep) and updates @msg->status based on whether
714 * transfer was successfully processed or not.
716 static void ep93xx_spi_process_transfer(struct ep93xx_spi
*espi
,
717 struct spi_message
*msg
,
718 struct spi_transfer
*t
)
720 struct ep93xx_spi_chip
*chip
= spi_get_ctldata(msg
->spi
);
725 * Handle any transfer specific settings if needed. We use
726 * temporary chip settings here and restore original later when
727 * the transfer is finished.
729 if (t
->speed_hz
|| t
->bits_per_word
) {
730 struct ep93xx_spi_chip tmp_chip
= *chip
;
735 err
= ep93xx_spi_calc_divisors(espi
, &tmp_chip
,
738 dev_err(&espi
->pdev
->dev
,
739 "failed to adjust speed\n");
745 if (t
->bits_per_word
)
746 tmp_chip
.dss
= bits_per_word_to_dss(t
->bits_per_word
);
749 * Set up temporary new hw settings for this transfer.
751 ep93xx_spi_chip_setup(espi
, &tmp_chip
);
758 * There is no point of setting up DMA for the transfers which will
759 * fit into the FIFO and can be transferred with a single interrupt.
760 * So in these cases we will be using PIO and don't bother for DMA.
762 if (espi
->dma_rx
&& t
->len
> SPI_FIFO_SIZE
)
763 ep93xx_spi_dma_transfer(espi
);
765 ep93xx_spi_pio_transfer(espi
);
768 * In case of error during transmit, we bail out from processing
774 msg
->actual_length
+= t
->len
;
777 * After this transfer is finished, perform any possible
778 * post-transfer actions requested by the protocol driver.
780 if (t
->delay_usecs
) {
781 set_current_state(TASK_UNINTERRUPTIBLE
);
782 schedule_timeout(usecs_to_jiffies(t
->delay_usecs
));
785 if (!list_is_last(&t
->transfer_list
, &msg
->transfers
)) {
787 * In case protocol driver is asking us to drop the
788 * chipselect briefly, we let the scheduler to handle
791 ep93xx_spi_cs_control(msg
->spi
, false);
793 ep93xx_spi_cs_control(msg
->spi
, true);
797 if (t
->speed_hz
|| t
->bits_per_word
)
798 ep93xx_spi_chip_setup(espi
, chip
);
802 * ep93xx_spi_process_message() - process one SPI message
803 * @espi: ep93xx SPI controller struct
804 * @msg: message to process
806 * This function processes a single SPI message. We go through all transfers in
807 * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
808 * asserted during the whole message (unless per transfer cs_change is set).
810 * @msg->status contains %0 in case of success or negative error code in case of
813 static void ep93xx_spi_process_message(struct ep93xx_spi
*espi
,
814 struct spi_message
*msg
)
816 unsigned long timeout
;
817 struct spi_transfer
*t
;
821 * Enable the SPI controller and its clock.
823 err
= ep93xx_spi_enable(espi
);
825 dev_err(&espi
->pdev
->dev
, "failed to enable SPI controller\n");
831 * Just to be sure: flush any data from RX FIFO.
833 timeout
= jiffies
+ msecs_to_jiffies(SPI_TIMEOUT
);
834 while (ep93xx_spi_read_u16(espi
, SSPSR
) & SSPSR_RNE
) {
835 if (time_after(jiffies
, timeout
)) {
836 dev_warn(&espi
->pdev
->dev
,
837 "timeout while flushing RX FIFO\n");
838 msg
->status
= -ETIMEDOUT
;
841 ep93xx_spi_read_u16(espi
, SSPDR
);
845 * We explicitly handle FIFO level. This way we don't have to check TX
846 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
848 espi
->fifo_level
= 0;
851 * Update SPI controller registers according to spi device and assert
854 ep93xx_spi_chip_setup(espi
, spi_get_ctldata(msg
->spi
));
855 ep93xx_spi_cs_control(msg
->spi
, true);
857 list_for_each_entry(t
, &msg
->transfers
, transfer_list
) {
858 ep93xx_spi_process_transfer(espi
, msg
, t
);
864 * Now the whole message is transferred (or failed for some reason). We
865 * deselect the device and disable the SPI controller.
867 ep93xx_spi_cs_control(msg
->spi
, false);
868 ep93xx_spi_disable(espi
);
871 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
874 * ep93xx_spi_work() - EP93xx SPI workqueue worker function
877 * Workqueue worker function. This function is called when there are new
878 * SPI messages to be processed. Message is taken out from the queue and then
879 * passed to ep93xx_spi_process_message().
881 * After message is transferred, protocol driver is notified by calling
882 * @msg->complete(). In case of error, @msg->status is set to negative error
883 * number, otherwise it contains zero (and @msg->actual_length is updated).
885 static void ep93xx_spi_work(struct work_struct
*work
)
887 struct ep93xx_spi
*espi
= work_to_espi(work
);
888 struct spi_message
*msg
;
890 spin_lock_irq(&espi
->lock
);
891 if (!espi
->running
|| espi
->current_msg
||
892 list_empty(&espi
->msg_queue
)) {
893 spin_unlock_irq(&espi
->lock
);
896 msg
= list_first_entry(&espi
->msg_queue
, struct spi_message
, queue
);
897 list_del_init(&msg
->queue
);
898 espi
->current_msg
= msg
;
899 spin_unlock_irq(&espi
->lock
);
901 ep93xx_spi_process_message(espi
, msg
);
904 * Update the current message and re-schedule ourselves if there are
905 * more messages in the queue.
907 spin_lock_irq(&espi
->lock
);
908 espi
->current_msg
= NULL
;
909 if (espi
->running
&& !list_empty(&espi
->msg_queue
))
910 queue_work(espi
->wq
, &espi
->msg_work
);
911 spin_unlock_irq(&espi
->lock
);
913 /* notify the protocol driver that we are done with this message */
914 msg
->complete(msg
->context
);
917 static irqreturn_t
ep93xx_spi_interrupt(int irq
, void *dev_id
)
919 struct ep93xx_spi
*espi
= dev_id
;
920 u8 irq_status
= ep93xx_spi_read_u8(espi
, SSPIIR
);
923 * If we got ROR (receive overrun) interrupt we know that something is
924 * wrong. Just abort the message.
926 if (unlikely(irq_status
& SSPIIR_RORIS
)) {
927 /* clear the overrun interrupt */
928 ep93xx_spi_write_u8(espi
, SSPICR
, 0);
929 dev_warn(&espi
->pdev
->dev
,
930 "receive overrun, aborting the message\n");
931 espi
->current_msg
->status
= -EIO
;
934 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
935 * simply execute next data transfer.
937 if (ep93xx_spi_read_write(espi
)) {
939 * In normal case, there still is some processing left
940 * for current transfer. Let's wait for the next
948 * Current transfer is finished, either with error or with success. In
949 * any case we disable interrupts and notify the worker to handle
950 * any post-processing of the message.
952 ep93xx_spi_disable_interrupts(espi
);
953 complete(&espi
->wait
);
957 static bool ep93xx_spi_dma_filter(struct dma_chan
*chan
, void *filter_param
)
959 if (ep93xx_dma_chan_is_m2p(chan
))
962 chan
->private = filter_param
;
966 static int ep93xx_spi_setup_dma(struct ep93xx_spi
*espi
)
971 espi
->zeropage
= (void *)get_zeroed_page(GFP_KERNEL
);
976 dma_cap_set(DMA_SLAVE
, mask
);
978 espi
->dma_rx_data
.port
= EP93XX_DMA_SSP
;
979 espi
->dma_rx_data
.direction
= DMA_DEV_TO_MEM
;
980 espi
->dma_rx_data
.name
= "ep93xx-spi-rx";
982 espi
->dma_rx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
989 espi
->dma_tx_data
.port
= EP93XX_DMA_SSP
;
990 espi
->dma_tx_data
.direction
= DMA_MEM_TO_DEV
;
991 espi
->dma_tx_data
.name
= "ep93xx-spi-tx";
993 espi
->dma_tx
= dma_request_channel(mask
, ep93xx_spi_dma_filter
,
997 goto fail_release_rx
;
1003 dma_release_channel(espi
->dma_rx
);
1004 espi
->dma_rx
= NULL
;
1006 free_page((unsigned long)espi
->zeropage
);
1011 static void ep93xx_spi_release_dma(struct ep93xx_spi
*espi
)
1014 dma_release_channel(espi
->dma_rx
);
1015 sg_free_table(&espi
->rx_sgt
);
1018 dma_release_channel(espi
->dma_tx
);
1019 sg_free_table(&espi
->tx_sgt
);
1023 free_page((unsigned long)espi
->zeropage
);
1026 static int ep93xx_spi_probe(struct platform_device
*pdev
)
1028 struct spi_master
*master
;
1029 struct ep93xx_spi_info
*info
;
1030 struct ep93xx_spi
*espi
;
1031 struct resource
*res
;
1035 info
= pdev
->dev
.platform_data
;
1037 master
= spi_alloc_master(&pdev
->dev
, sizeof(*espi
));
1039 dev_err(&pdev
->dev
, "failed to allocate spi master\n");
1043 master
->setup
= ep93xx_spi_setup
;
1044 master
->transfer
= ep93xx_spi_transfer
;
1045 master
->cleanup
= ep93xx_spi_cleanup
;
1046 master
->bus_num
= pdev
->id
;
1047 master
->num_chipselect
= info
->num_chipselect
;
1048 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
1050 platform_set_drvdata(pdev
, master
);
1052 espi
= spi_master_get_devdata(master
);
1054 espi
->clk
= clk_get(&pdev
->dev
, NULL
);
1055 if (IS_ERR(espi
->clk
)) {
1056 dev_err(&pdev
->dev
, "unable to get spi clock\n");
1057 error
= PTR_ERR(espi
->clk
);
1058 goto fail_release_master
;
1061 spin_lock_init(&espi
->lock
);
1062 init_completion(&espi
->wait
);
1065 * Calculate maximum and minimum supported clock rates
1066 * for the controller.
1068 espi
->max_rate
= clk_get_rate(espi
->clk
) / 2;
1069 espi
->min_rate
= clk_get_rate(espi
->clk
) / (254 * 256);
1072 irq
= platform_get_irq(pdev
, 0);
1075 dev_err(&pdev
->dev
, "failed to get irq resources\n");
1076 goto fail_put_clock
;
1079 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1081 dev_err(&pdev
->dev
, "unable to get iomem resource\n");
1083 goto fail_put_clock
;
1086 espi
->sspdr_phys
= res
->start
+ SSPDR
;
1088 espi
->regs_base
= devm_request_and_ioremap(&pdev
->dev
, res
);
1089 if (!espi
->regs_base
) {
1090 dev_err(&pdev
->dev
, "failed to map resources\n");
1092 goto fail_put_clock
;
1095 error
= devm_request_irq(&pdev
->dev
, irq
, ep93xx_spi_interrupt
,
1096 0, "ep93xx-spi", espi
);
1098 dev_err(&pdev
->dev
, "failed to request irq\n");
1099 goto fail_put_clock
;
1102 if (info
->use_dma
&& ep93xx_spi_setup_dma(espi
))
1103 dev_warn(&pdev
->dev
, "DMA setup failed. Falling back to PIO\n");
1105 espi
->wq
= create_singlethread_workqueue("ep93xx_spid");
1107 dev_err(&pdev
->dev
, "unable to create workqueue\n");
1110 INIT_WORK(&espi
->msg_work
, ep93xx_spi_work
);
1111 INIT_LIST_HEAD(&espi
->msg_queue
);
1112 espi
->running
= true;
1114 /* make sure that the hardware is disabled */
1115 ep93xx_spi_write_u8(espi
, SSPCR1
, 0);
1117 error
= spi_register_master(master
);
1119 dev_err(&pdev
->dev
, "failed to register SPI master\n");
1120 goto fail_free_queue
;
1123 dev_info(&pdev
->dev
, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1124 (unsigned long)res
->start
, irq
);
1129 destroy_workqueue(espi
->wq
);
1131 ep93xx_spi_release_dma(espi
);
1134 fail_release_master
:
1135 spi_master_put(master
);
1136 platform_set_drvdata(pdev
, NULL
);
1141 static int ep93xx_spi_remove(struct platform_device
*pdev
)
1143 struct spi_master
*master
= platform_get_drvdata(pdev
);
1144 struct ep93xx_spi
*espi
= spi_master_get_devdata(master
);
1146 spin_lock_irq(&espi
->lock
);
1147 espi
->running
= false;
1148 spin_unlock_irq(&espi
->lock
);
1150 destroy_workqueue(espi
->wq
);
1153 * Complete remaining messages with %-ESHUTDOWN status.
1155 spin_lock_irq(&espi
->lock
);
1156 while (!list_empty(&espi
->msg_queue
)) {
1157 struct spi_message
*msg
;
1159 msg
= list_first_entry(&espi
->msg_queue
,
1160 struct spi_message
, queue
);
1161 list_del_init(&msg
->queue
);
1162 msg
->status
= -ESHUTDOWN
;
1163 spin_unlock_irq(&espi
->lock
);
1164 msg
->complete(msg
->context
);
1165 spin_lock_irq(&espi
->lock
);
1167 spin_unlock_irq(&espi
->lock
);
1169 ep93xx_spi_release_dma(espi
);
1171 platform_set_drvdata(pdev
, NULL
);
1173 spi_unregister_master(master
);
1177 static struct platform_driver ep93xx_spi_driver
= {
1179 .name
= "ep93xx-spi",
1180 .owner
= THIS_MODULE
,
1182 .probe
= ep93xx_spi_probe
,
1183 .remove
= ep93xx_spi_remove
,
1185 module_platform_driver(ep93xx_spi_driver
);
1187 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1188 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1189 MODULE_LICENSE("GPL");
1190 MODULE_ALIAS("platform:ep93xx-spi");