mm/memory.c: properly pte_offset_map_lock/unlock in vm_insert_pages()
[linux/fpc-iii.git] / mm / memory.c
blob0e5b25c9b151ff8ba530c0cd745c16b23d81ece8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
75 #include <trace/events/kmem.h>
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
84 #include "internal.h"
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
100 * A number of key systems in x86 including ioremap() rely on the assumption
101 * that high_memory defines the upper bound on direct map memory, then end
102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 * and ZONE_HIGHMEM.
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
110 * Randomize the address space (stacks, mmaps, brk, etc.).
112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113 * as ancient (libc5 based) binaries can segfault. )
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
118 #else
120 #endif
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
126 * Those arches which don't have hw access flag feature need to
127 * implement their own helper. By default, "true" means pagefault
128 * will be hit on old pte.
130 return true;
132 #endif
134 static int __init disable_randmaps(char *s)
136 randomize_va_space = 0;
137 return 1;
139 __setup("norandmaps", disable_randmaps);
141 unsigned long zero_pfn __read_mostly;
142 EXPORT_SYMBOL(zero_pfn);
144 unsigned long highest_memmap_pfn __read_mostly;
147 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 static int __init init_zero_pfn(void)
151 zero_pfn = page_to_pfn(ZERO_PAGE(0));
152 return 0;
154 core_initcall(init_zero_pfn);
156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 trace_rss_stat(mm, member, count);
161 #if defined(SPLIT_RSS_COUNTING)
163 void sync_mm_rss(struct mm_struct *mm)
165 int i;
167 for (i = 0; i < NR_MM_COUNTERS; i++) {
168 if (current->rss_stat.count[i]) {
169 add_mm_counter(mm, i, current->rss_stat.count[i]);
170 current->rss_stat.count[i] = 0;
173 current->rss_stat.events = 0;
176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 struct task_struct *task = current;
180 if (likely(task->mm == mm))
181 task->rss_stat.count[member] += val;
182 else
183 add_mm_counter(mm, member, val);
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH (64)
190 static void check_sync_rss_stat(struct task_struct *task)
192 if (unlikely(task != current))
193 return;
194 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195 sync_mm_rss(task->mm);
197 #else /* SPLIT_RSS_COUNTING */
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 static void check_sync_rss_stat(struct task_struct *task)
206 #endif /* SPLIT_RSS_COUNTING */
209 * Note: this doesn't free the actual pages themselves. That
210 * has been handled earlier when unmapping all the memory regions.
212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213 unsigned long addr)
215 pgtable_t token = pmd_pgtable(*pmd);
216 pmd_clear(pmd);
217 pte_free_tlb(tlb, token, addr);
218 mm_dec_nr_ptes(tlb->mm);
221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222 unsigned long addr, unsigned long end,
223 unsigned long floor, unsigned long ceiling)
225 pmd_t *pmd;
226 unsigned long next;
227 unsigned long start;
229 start = addr;
230 pmd = pmd_offset(pud, addr);
231 do {
232 next = pmd_addr_end(addr, end);
233 if (pmd_none_or_clear_bad(pmd))
234 continue;
235 free_pte_range(tlb, pmd, addr);
236 } while (pmd++, addr = next, addr != end);
238 start &= PUD_MASK;
239 if (start < floor)
240 return;
241 if (ceiling) {
242 ceiling &= PUD_MASK;
243 if (!ceiling)
244 return;
246 if (end - 1 > ceiling - 1)
247 return;
249 pmd = pmd_offset(pud, start);
250 pud_clear(pud);
251 pmd_free_tlb(tlb, pmd, start);
252 mm_dec_nr_pmds(tlb->mm);
255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256 unsigned long addr, unsigned long end,
257 unsigned long floor, unsigned long ceiling)
259 pud_t *pud;
260 unsigned long next;
261 unsigned long start;
263 start = addr;
264 pud = pud_offset(p4d, addr);
265 do {
266 next = pud_addr_end(addr, end);
267 if (pud_none_or_clear_bad(pud))
268 continue;
269 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270 } while (pud++, addr = next, addr != end);
272 start &= P4D_MASK;
273 if (start < floor)
274 return;
275 if (ceiling) {
276 ceiling &= P4D_MASK;
277 if (!ceiling)
278 return;
280 if (end - 1 > ceiling - 1)
281 return;
283 pud = pud_offset(p4d, start);
284 p4d_clear(p4d);
285 pud_free_tlb(tlb, pud, start);
286 mm_dec_nr_puds(tlb->mm);
289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290 unsigned long addr, unsigned long end,
291 unsigned long floor, unsigned long ceiling)
293 p4d_t *p4d;
294 unsigned long next;
295 unsigned long start;
297 start = addr;
298 p4d = p4d_offset(pgd, addr);
299 do {
300 next = p4d_addr_end(addr, end);
301 if (p4d_none_or_clear_bad(p4d))
302 continue;
303 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304 } while (p4d++, addr = next, addr != end);
306 start &= PGDIR_MASK;
307 if (start < floor)
308 return;
309 if (ceiling) {
310 ceiling &= PGDIR_MASK;
311 if (!ceiling)
312 return;
314 if (end - 1 > ceiling - 1)
315 return;
317 p4d = p4d_offset(pgd, start);
318 pgd_clear(pgd);
319 p4d_free_tlb(tlb, p4d, start);
323 * This function frees user-level page tables of a process.
325 void free_pgd_range(struct mmu_gather *tlb,
326 unsigned long addr, unsigned long end,
327 unsigned long floor, unsigned long ceiling)
329 pgd_t *pgd;
330 unsigned long next;
333 * The next few lines have given us lots of grief...
335 * Why are we testing PMD* at this top level? Because often
336 * there will be no work to do at all, and we'd prefer not to
337 * go all the way down to the bottom just to discover that.
339 * Why all these "- 1"s? Because 0 represents both the bottom
340 * of the address space and the top of it (using -1 for the
341 * top wouldn't help much: the masks would do the wrong thing).
342 * The rule is that addr 0 and floor 0 refer to the bottom of
343 * the address space, but end 0 and ceiling 0 refer to the top
344 * Comparisons need to use "end - 1" and "ceiling - 1" (though
345 * that end 0 case should be mythical).
347 * Wherever addr is brought up or ceiling brought down, we must
348 * be careful to reject "the opposite 0" before it confuses the
349 * subsequent tests. But what about where end is brought down
350 * by PMD_SIZE below? no, end can't go down to 0 there.
352 * Whereas we round start (addr) and ceiling down, by different
353 * masks at different levels, in order to test whether a table
354 * now has no other vmas using it, so can be freed, we don't
355 * bother to round floor or end up - the tests don't need that.
358 addr &= PMD_MASK;
359 if (addr < floor) {
360 addr += PMD_SIZE;
361 if (!addr)
362 return;
364 if (ceiling) {
365 ceiling &= PMD_MASK;
366 if (!ceiling)
367 return;
369 if (end - 1 > ceiling - 1)
370 end -= PMD_SIZE;
371 if (addr > end - 1)
372 return;
374 * We add page table cache pages with PAGE_SIZE,
375 * (see pte_free_tlb()), flush the tlb if we need
377 tlb_change_page_size(tlb, PAGE_SIZE);
378 pgd = pgd_offset(tlb->mm, addr);
379 do {
380 next = pgd_addr_end(addr, end);
381 if (pgd_none_or_clear_bad(pgd))
382 continue;
383 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384 } while (pgd++, addr = next, addr != end);
387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388 unsigned long floor, unsigned long ceiling)
390 while (vma) {
391 struct vm_area_struct *next = vma->vm_next;
392 unsigned long addr = vma->vm_start;
395 * Hide vma from rmap and truncate_pagecache before freeing
396 * pgtables
398 unlink_anon_vmas(vma);
399 unlink_file_vma(vma);
401 if (is_vm_hugetlb_page(vma)) {
402 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403 floor, next ? next->vm_start : ceiling);
404 } else {
406 * Optimization: gather nearby vmas into one call down
408 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409 && !is_vm_hugetlb_page(next)) {
410 vma = next;
411 next = vma->vm_next;
412 unlink_anon_vmas(vma);
413 unlink_file_vma(vma);
415 free_pgd_range(tlb, addr, vma->vm_end,
416 floor, next ? next->vm_start : ceiling);
418 vma = next;
422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 spinlock_t *ptl;
425 pgtable_t new = pte_alloc_one(mm);
426 if (!new)
427 return -ENOMEM;
430 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 * visible before the pte is made visible to other CPUs by being
432 * put into page tables.
434 * The other side of the story is the pointer chasing in the page
435 * table walking code (when walking the page table without locking;
436 * ie. most of the time). Fortunately, these data accesses consist
437 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 * being the notable exception) will already guarantee loads are
439 * seen in-order. See the alpha page table accessors for the
440 * smp_read_barrier_depends() barriers in page table walking code.
442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 ptl = pmd_lock(mm, pmd);
445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
446 mm_inc_nr_ptes(mm);
447 pmd_populate(mm, pmd, new);
448 new = NULL;
450 spin_unlock(ptl);
451 if (new)
452 pte_free(mm, new);
453 return 0;
456 int __pte_alloc_kernel(pmd_t *pmd)
458 pte_t *new = pte_alloc_one_kernel(&init_mm);
459 if (!new)
460 return -ENOMEM;
462 smp_wmb(); /* See comment in __pte_alloc */
464 spin_lock(&init_mm.page_table_lock);
465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
466 pmd_populate_kernel(&init_mm, pmd, new);
467 new = NULL;
469 spin_unlock(&init_mm.page_table_lock);
470 if (new)
471 pte_free_kernel(&init_mm, new);
472 return 0;
475 static inline void init_rss_vec(int *rss)
477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 int i;
484 if (current->mm == mm)
485 sync_mm_rss(mm);
486 for (i = 0; i < NR_MM_COUNTERS; i++)
487 if (rss[i])
488 add_mm_counter(mm, i, rss[i]);
492 * This function is called to print an error when a bad pte
493 * is found. For example, we might have a PFN-mapped pte in
494 * a region that doesn't allow it.
496 * The calling function must still handle the error.
498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499 pte_t pte, struct page *page)
501 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502 p4d_t *p4d = p4d_offset(pgd, addr);
503 pud_t *pud = pud_offset(p4d, addr);
504 pmd_t *pmd = pmd_offset(pud, addr);
505 struct address_space *mapping;
506 pgoff_t index;
507 static unsigned long resume;
508 static unsigned long nr_shown;
509 static unsigned long nr_unshown;
512 * Allow a burst of 60 reports, then keep quiet for that minute;
513 * or allow a steady drip of one report per second.
515 if (nr_shown == 60) {
516 if (time_before(jiffies, resume)) {
517 nr_unshown++;
518 return;
520 if (nr_unshown) {
521 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522 nr_unshown);
523 nr_unshown = 0;
525 nr_shown = 0;
527 if (nr_shown++ == 0)
528 resume = jiffies + 60 * HZ;
530 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531 index = linear_page_index(vma, addr);
533 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
534 current->comm,
535 (long long)pte_val(pte), (long long)pmd_val(*pmd));
536 if (page)
537 dump_page(page, "bad pte");
538 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541 vma->vm_file,
542 vma->vm_ops ? vma->vm_ops->fault : NULL,
543 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544 mapping ? mapping->a_ops->readpage : NULL);
545 dump_stack();
546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552 * "Special" mappings do not wish to be associated with a "struct page" (either
553 * it doesn't exist, or it exists but they don't want to touch it). In this
554 * case, NULL is returned here. "Normal" mappings do have a struct page.
556 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557 * pte bit, in which case this function is trivial. Secondly, an architecture
558 * may not have a spare pte bit, which requires a more complicated scheme,
559 * described below.
561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562 * special mapping (even if there are underlying and valid "struct pages").
563 * COWed pages of a VM_PFNMAP are always normal.
565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568 * mapping will always honor the rule
570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 * And for normal mappings this is false.
574 * This restricts such mappings to be a linear translation from virtual address
575 * to pfn. To get around this restriction, we allow arbitrary mappings so long
576 * as the vma is not a COW mapping; in that case, we know that all ptes are
577 * special (because none can have been COWed).
580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583 * page" backing, however the difference is that _all_ pages with a struct
584 * page (that is, those where pfn_valid is true) are refcounted and considered
585 * normal pages by the VM. The disadvantage is that pages are refcounted
586 * (which can be slower and simply not an option for some PFNMAP users). The
587 * advantage is that we don't have to follow the strict linearity rule of
588 * PFNMAP mappings in order to support COWable mappings.
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
594 unsigned long pfn = pte_pfn(pte);
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 if (likely(!pte_special(pte)))
598 goto check_pfn;
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
603 if (is_zero_pfn(pfn))
604 return NULL;
605 if (pte_devmap(pte))
606 return NULL;
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
629 if (is_zero_pfn(pfn))
630 return NULL;
632 check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
642 out:
643 return pfn_to_page(pfn);
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648 pmd_t pmd)
650 unsigned long pfn = pmd_pfn(pmd);
653 * There is no pmd_special() but there may be special pmds, e.g.
654 * in a direct-access (dax) mapping, so let's just replicate the
655 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658 if (vma->vm_flags & VM_MIXEDMAP) {
659 if (!pfn_valid(pfn))
660 return NULL;
661 goto out;
662 } else {
663 unsigned long off;
664 off = (addr - vma->vm_start) >> PAGE_SHIFT;
665 if (pfn == vma->vm_pgoff + off)
666 return NULL;
667 if (!is_cow_mapping(vma->vm_flags))
668 return NULL;
672 if (pmd_devmap(pmd))
673 return NULL;
674 if (is_huge_zero_pmd(pmd))
675 return NULL;
676 if (unlikely(pfn > highest_memmap_pfn))
677 return NULL;
680 * NOTE! We still have PageReserved() pages in the page tables.
681 * eg. VDSO mappings can cause them to exist.
683 out:
684 return pfn_to_page(pfn);
686 #endif
689 * copy one vm_area from one task to the other. Assumes the page tables
690 * already present in the new task to be cleared in the whole range
691 * covered by this vma.
694 static inline unsigned long
695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697 unsigned long addr, int *rss)
699 unsigned long vm_flags = vma->vm_flags;
700 pte_t pte = *src_pte;
701 struct page *page;
703 /* pte contains position in swap or file, so copy. */
704 if (unlikely(!pte_present(pte))) {
705 swp_entry_t entry = pte_to_swp_entry(pte);
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
723 rss[mm_counter(page)]++;
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
728 * COW mappings require pages in both
729 * parent and child to be set to read.
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
771 goto out_set_pte;
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 ptep_set_wrprotect(src_mm, addr, src_pte);
780 pte = pte_wrprotect(pte);
784 * If it's a shared mapping, mark it clean in
785 * the child
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
792 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793 * does not have the VM_UFFD_WP, which means that the uffd
794 * fork event is not enabled.
796 if (!(vm_flags & VM_UFFD_WP))
797 pte = pte_clear_uffd_wp(pte);
799 page = vm_normal_page(vma, addr, pte);
800 if (page) {
801 get_page(page);
802 page_dup_rmap(page, false);
803 rss[mm_counter(page)]++;
806 out_set_pte:
807 set_pte_at(dst_mm, addr, dst_pte, pte);
808 return 0;
811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813 unsigned long addr, unsigned long end)
815 pte_t *orig_src_pte, *orig_dst_pte;
816 pte_t *src_pte, *dst_pte;
817 spinlock_t *src_ptl, *dst_ptl;
818 int progress = 0;
819 int rss[NR_MM_COUNTERS];
820 swp_entry_t entry = (swp_entry_t){0};
822 again:
823 init_rss_vec(rss);
825 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826 if (!dst_pte)
827 return -ENOMEM;
828 src_pte = pte_offset_map(src_pmd, addr);
829 src_ptl = pte_lockptr(src_mm, src_pmd);
830 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831 orig_src_pte = src_pte;
832 orig_dst_pte = dst_pte;
833 arch_enter_lazy_mmu_mode();
835 do {
837 * We are holding two locks at this point - either of them
838 * could generate latencies in another task on another CPU.
840 if (progress >= 32) {
841 progress = 0;
842 if (need_resched() ||
843 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844 break;
846 if (pte_none(*src_pte)) {
847 progress++;
848 continue;
850 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851 vma, addr, rss);
852 if (entry.val)
853 break;
854 progress += 8;
855 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
857 arch_leave_lazy_mmu_mode();
858 spin_unlock(src_ptl);
859 pte_unmap(orig_src_pte);
860 add_mm_rss_vec(dst_mm, rss);
861 pte_unmap_unlock(orig_dst_pte, dst_ptl);
862 cond_resched();
864 if (entry.val) {
865 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866 return -ENOMEM;
867 progress = 0;
869 if (addr != end)
870 goto again;
871 return 0;
874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876 unsigned long addr, unsigned long end)
878 pmd_t *src_pmd, *dst_pmd;
879 unsigned long next;
881 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882 if (!dst_pmd)
883 return -ENOMEM;
884 src_pmd = pmd_offset(src_pud, addr);
885 do {
886 next = pmd_addr_end(addr, end);
887 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888 || pmd_devmap(*src_pmd)) {
889 int err;
890 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891 err = copy_huge_pmd(dst_mm, src_mm,
892 dst_pmd, src_pmd, addr, vma);
893 if (err == -ENOMEM)
894 return -ENOMEM;
895 if (!err)
896 continue;
897 /* fall through */
899 if (pmd_none_or_clear_bad(src_pmd))
900 continue;
901 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902 vma, addr, next))
903 return -ENOMEM;
904 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
905 return 0;
908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910 unsigned long addr, unsigned long end)
912 pud_t *src_pud, *dst_pud;
913 unsigned long next;
915 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916 if (!dst_pud)
917 return -ENOMEM;
918 src_pud = pud_offset(src_p4d, addr);
919 do {
920 next = pud_addr_end(addr, end);
921 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922 int err;
924 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925 err = copy_huge_pud(dst_mm, src_mm,
926 dst_pud, src_pud, addr, vma);
927 if (err == -ENOMEM)
928 return -ENOMEM;
929 if (!err)
930 continue;
931 /* fall through */
933 if (pud_none_or_clear_bad(src_pud))
934 continue;
935 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936 vma, addr, next))
937 return -ENOMEM;
938 } while (dst_pud++, src_pud++, addr = next, addr != end);
939 return 0;
942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944 unsigned long addr, unsigned long end)
946 p4d_t *src_p4d, *dst_p4d;
947 unsigned long next;
949 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950 if (!dst_p4d)
951 return -ENOMEM;
952 src_p4d = p4d_offset(src_pgd, addr);
953 do {
954 next = p4d_addr_end(addr, end);
955 if (p4d_none_or_clear_bad(src_p4d))
956 continue;
957 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958 vma, addr, next))
959 return -ENOMEM;
960 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
961 return 0;
964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965 struct vm_area_struct *vma)
967 pgd_t *src_pgd, *dst_pgd;
968 unsigned long next;
969 unsigned long addr = vma->vm_start;
970 unsigned long end = vma->vm_end;
971 struct mmu_notifier_range range;
972 bool is_cow;
973 int ret;
976 * Don't copy ptes where a page fault will fill them correctly.
977 * Fork becomes much lighter when there are big shared or private
978 * readonly mappings. The tradeoff is that copy_page_range is more
979 * efficient than faulting.
981 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982 !vma->anon_vma)
983 return 0;
985 if (is_vm_hugetlb_page(vma))
986 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
988 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
990 * We do not free on error cases below as remove_vma
991 * gets called on error from higher level routine
993 ret = track_pfn_copy(vma);
994 if (ret)
995 return ret;
999 * We need to invalidate the secondary MMU mappings only when
1000 * there could be a permission downgrade on the ptes of the
1001 * parent mm. And a permission downgrade will only happen if
1002 * is_cow_mapping() returns true.
1004 is_cow = is_cow_mapping(vma->vm_flags);
1006 if (is_cow) {
1007 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008 0, vma, src_mm, addr, end);
1009 mmu_notifier_invalidate_range_start(&range);
1012 ret = 0;
1013 dst_pgd = pgd_offset(dst_mm, addr);
1014 src_pgd = pgd_offset(src_mm, addr);
1015 do {
1016 next = pgd_addr_end(addr, end);
1017 if (pgd_none_or_clear_bad(src_pgd))
1018 continue;
1019 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020 vma, addr, next))) {
1021 ret = -ENOMEM;
1022 break;
1024 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1026 if (is_cow)
1027 mmu_notifier_invalidate_range_end(&range);
1028 return ret;
1031 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032 struct vm_area_struct *vma, pmd_t *pmd,
1033 unsigned long addr, unsigned long end,
1034 struct zap_details *details)
1036 struct mm_struct *mm = tlb->mm;
1037 int force_flush = 0;
1038 int rss[NR_MM_COUNTERS];
1039 spinlock_t *ptl;
1040 pte_t *start_pte;
1041 pte_t *pte;
1042 swp_entry_t entry;
1044 tlb_change_page_size(tlb, PAGE_SIZE);
1045 again:
1046 init_rss_vec(rss);
1047 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048 pte = start_pte;
1049 flush_tlb_batched_pending(mm);
1050 arch_enter_lazy_mmu_mode();
1051 do {
1052 pte_t ptent = *pte;
1053 if (pte_none(ptent))
1054 continue;
1056 if (need_resched())
1057 break;
1059 if (pte_present(ptent)) {
1060 struct page *page;
1062 page = vm_normal_page(vma, addr, ptent);
1063 if (unlikely(details) && page) {
1065 * unmap_shared_mapping_pages() wants to
1066 * invalidate cache without truncating:
1067 * unmap shared but keep private pages.
1069 if (details->check_mapping &&
1070 details->check_mapping != page_rmapping(page))
1071 continue;
1073 ptent = ptep_get_and_clear_full(mm, addr, pte,
1074 tlb->fullmm);
1075 tlb_remove_tlb_entry(tlb, pte, addr);
1076 if (unlikely(!page))
1077 continue;
1079 if (!PageAnon(page)) {
1080 if (pte_dirty(ptent)) {
1081 force_flush = 1;
1082 set_page_dirty(page);
1084 if (pte_young(ptent) &&
1085 likely(!(vma->vm_flags & VM_SEQ_READ)))
1086 mark_page_accessed(page);
1088 rss[mm_counter(page)]--;
1089 page_remove_rmap(page, false);
1090 if (unlikely(page_mapcount(page) < 0))
1091 print_bad_pte(vma, addr, ptent, page);
1092 if (unlikely(__tlb_remove_page(tlb, page))) {
1093 force_flush = 1;
1094 addr += PAGE_SIZE;
1095 break;
1097 continue;
1100 entry = pte_to_swp_entry(ptent);
1101 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102 struct page *page = device_private_entry_to_page(entry);
1104 if (unlikely(details && details->check_mapping)) {
1106 * unmap_shared_mapping_pages() wants to
1107 * invalidate cache without truncating:
1108 * unmap shared but keep private pages.
1110 if (details->check_mapping !=
1111 page_rmapping(page))
1112 continue;
1115 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116 rss[mm_counter(page)]--;
1117 page_remove_rmap(page, false);
1118 put_page(page);
1119 continue;
1122 /* If details->check_mapping, we leave swap entries. */
1123 if (unlikely(details))
1124 continue;
1126 if (!non_swap_entry(entry))
1127 rss[MM_SWAPENTS]--;
1128 else if (is_migration_entry(entry)) {
1129 struct page *page;
1131 page = migration_entry_to_page(entry);
1132 rss[mm_counter(page)]--;
1134 if (unlikely(!free_swap_and_cache(entry)))
1135 print_bad_pte(vma, addr, ptent, NULL);
1136 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137 } while (pte++, addr += PAGE_SIZE, addr != end);
1139 add_mm_rss_vec(mm, rss);
1140 arch_leave_lazy_mmu_mode();
1142 /* Do the actual TLB flush before dropping ptl */
1143 if (force_flush)
1144 tlb_flush_mmu_tlbonly(tlb);
1145 pte_unmap_unlock(start_pte, ptl);
1148 * If we forced a TLB flush (either due to running out of
1149 * batch buffers or because we needed to flush dirty TLB
1150 * entries before releasing the ptl), free the batched
1151 * memory too. Restart if we didn't do everything.
1153 if (force_flush) {
1154 force_flush = 0;
1155 tlb_flush_mmu(tlb);
1158 if (addr != end) {
1159 cond_resched();
1160 goto again;
1163 return addr;
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 struct vm_area_struct *vma, pud_t *pud,
1168 unsigned long addr, unsigned long end,
1169 struct zap_details *details)
1171 pmd_t *pmd;
1172 unsigned long next;
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 if (next - addr != HPAGE_PMD_SIZE)
1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 goto next;
1182 /* fall through */
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_lock in read
1189 * mode.
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
1198 return addr;
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 struct vm_area_struct *vma, p4d_t *p4d,
1203 unsigned long addr, unsigned long end,
1204 struct zap_details *details)
1206 pud_t *pud;
1207 unsigned long next;
1209 pud = pud_offset(p4d, addr);
1210 do {
1211 next = pud_addr_end(addr, end);
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 mmap_assert_locked(tlb->mm);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1220 if (pud_none_or_clear_bad(pud))
1221 continue;
1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 cond_resched();
1225 } while (pud++, addr = next, addr != end);
1227 return addr;
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1235 p4d_t *p4d;
1236 unsigned long next;
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1246 return addr;
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1254 pgd_t *pgd;
1255 unsigned long next;
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
1262 if (pgd_none_or_clear_bad(pgd))
1263 continue;
1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 } while (pgd++, addr = next, addr != end);
1266 tlb_end_vma(tlb, vma);
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
1272 unsigned long end_addr,
1273 struct zap_details *details)
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 untrack_pfn(vma, 0, 0);
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
1296 * cleanup path of mmap_region. When
1297 * hugetlbfs ->mmap method fails,
1298 * mmap_region() nullifies vma->vm_file
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1303 if (vma->vm_file) {
1304 i_mmap_lock_write(vma->vm_file->f_mapping);
1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
1315 * @tlb: address of the caller's struct mmu_gather
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1320 * Unmap all pages in the vma list.
1322 * Only addresses between `start' and `end' will be unmapped.
1324 * The VMA list must be sorted in ascending virtual address order.
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 struct vm_area_struct *vma, unsigned long start_addr,
1333 unsigned long end_addr)
1335 struct mmu_notifier_range range;
1337 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338 start_addr, end_addr);
1339 mmu_notifier_invalidate_range_start(&range);
1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 mmu_notifier_invalidate_range_end(&range);
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1351 * Caller must protect the VMA list
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354 unsigned long size)
1356 struct mmu_notifier_range range;
1357 struct mmu_gather tlb;
1359 lru_add_drain();
1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 start, start + size);
1362 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363 update_hiwater_rss(vma->vm_mm);
1364 mmu_notifier_invalidate_range_start(&range);
1365 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367 mmu_notifier_invalidate_range_end(&range);
1368 tlb_finish_mmu(&tlb, start, range.end);
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1378 * The range must fit into one VMA.
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 unsigned long size, struct zap_details *details)
1383 struct mmu_notifier_range range;
1384 struct mmu_gather tlb;
1386 lru_add_drain();
1387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388 address, address + size);
1389 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390 update_hiwater_rss(vma->vm_mm);
1391 mmu_notifier_invalidate_range_start(&range);
1392 unmap_single_vma(&tlb, vma, address, range.end, details);
1393 mmu_notifier_invalidate_range_end(&range);
1394 tlb_finish_mmu(&tlb, address, range.end);
1398 * zap_vma_ptes - remove ptes mapping the vma
1399 * @vma: vm_area_struct holding ptes to be zapped
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1405 * The entire address range must be fully contained within the vma.
1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size)
1411 if (address < vma->vm_start || address + size > vma->vm_end ||
1412 !(vma->vm_flags & VM_PFNMAP))
1413 return;
1415 zap_page_range_single(vma, address, size, NULL);
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1421 pgd_t *pgd;
1422 p4d_t *p4d;
1423 pud_t *pud;
1424 pmd_t *pmd;
1426 pgd = pgd_offset(mm, addr);
1427 p4d = p4d_alloc(mm, pgd, addr);
1428 if (!p4d)
1429 return NULL;
1430 pud = pud_alloc(mm, p4d, addr);
1431 if (!pud)
1432 return NULL;
1433 pmd = pmd_alloc(mm, pud, addr);
1434 if (!pmd)
1435 return NULL;
1437 VM_BUG_ON(pmd_trans_huge(*pmd));
1438 return pmd;
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 spinlock_t **ptl)
1444 pmd_t *pmd = walk_to_pmd(mm, addr);
1446 if (!pmd)
1447 return NULL;
1448 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1451 static int validate_page_before_insert(struct page *page)
1453 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454 return -EINVAL;
1455 flush_dcache_page(page);
1456 return 0;
1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460 unsigned long addr, struct page *page, pgprot_t prot)
1462 if (!pte_none(*pte))
1463 return -EBUSY;
1464 /* Ok, finally just insert the thing.. */
1465 get_page(page);
1466 inc_mm_counter_fast(mm, mm_counter_file(page));
1467 page_add_file_rmap(page, false);
1468 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469 return 0;
1473 * This is the old fallback for page remapping.
1475 * For historical reasons, it only allows reserved pages. Only
1476 * old drivers should use this, and they needed to mark their
1477 * pages reserved for the old functions anyway.
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 struct page *page, pgprot_t prot)
1482 struct mm_struct *mm = vma->vm_mm;
1483 int retval;
1484 pte_t *pte;
1485 spinlock_t *ptl;
1487 retval = validate_page_before_insert(page);
1488 if (retval)
1489 goto out;
1490 retval = -ENOMEM;
1491 pte = get_locked_pte(mm, addr, &ptl);
1492 if (!pte)
1493 goto out;
1494 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495 pte_unmap_unlock(pte, ptl);
1496 out:
1497 return retval;
1500 #ifdef pte_index
1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1502 unsigned long addr, struct page *page, pgprot_t prot)
1504 int err;
1506 if (!page_count(page))
1507 return -EINVAL;
1508 err = validate_page_before_insert(page);
1509 if (err)
1510 return err;
1511 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1514 /* insert_pages() amortizes the cost of spinlock operations
1515 * when inserting pages in a loop. Arch *must* define pte_index.
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518 struct page **pages, unsigned long *num, pgprot_t prot)
1520 pmd_t *pmd = NULL;
1521 pte_t *start_pte, *pte;
1522 spinlock_t *pte_lock;
1523 struct mm_struct *const mm = vma->vm_mm;
1524 unsigned long curr_page_idx = 0;
1525 unsigned long remaining_pages_total = *num;
1526 unsigned long pages_to_write_in_pmd;
1527 int ret;
1528 more:
1529 ret = -EFAULT;
1530 pmd = walk_to_pmd(mm, addr);
1531 if (!pmd)
1532 goto out;
1534 pages_to_write_in_pmd = min_t(unsigned long,
1535 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1537 /* Allocate the PTE if necessary; takes PMD lock once only. */
1538 ret = -ENOMEM;
1539 if (pte_alloc(mm, pmd))
1540 goto out;
1542 while (pages_to_write_in_pmd) {
1543 int pte_idx = 0;
1544 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1546 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1547 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1548 int err = insert_page_in_batch_locked(mm, pte,
1549 addr, pages[curr_page_idx], prot);
1550 if (unlikely(err)) {
1551 pte_unmap_unlock(start_pte, pte_lock);
1552 ret = err;
1553 remaining_pages_total -= pte_idx;
1554 goto out;
1556 addr += PAGE_SIZE;
1557 ++curr_page_idx;
1559 pte_unmap_unlock(start_pte, pte_lock);
1560 pages_to_write_in_pmd -= batch_size;
1561 remaining_pages_total -= batch_size;
1563 if (remaining_pages_total)
1564 goto more;
1565 ret = 0;
1566 out:
1567 *num = remaining_pages_total;
1568 return ret;
1570 #endif /* ifdef pte_index */
1573 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574 * @vma: user vma to map to
1575 * @addr: target start user address of these pages
1576 * @pages: source kernel pages
1577 * @num: in: number of pages to map. out: number of pages that were *not*
1578 * mapped. (0 means all pages were successfully mapped).
1580 * Preferred over vm_insert_page() when inserting multiple pages.
1582 * In case of error, we may have mapped a subset of the provided
1583 * pages. It is the caller's responsibility to account for this case.
1585 * The same restrictions apply as in vm_insert_page().
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588 struct page **pages, unsigned long *num)
1590 #ifdef pte_index
1591 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1593 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594 return -EFAULT;
1595 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596 BUG_ON(mmap_read_trylock(vma->vm_mm));
1597 BUG_ON(vma->vm_flags & VM_PFNMAP);
1598 vma->vm_flags |= VM_MIXEDMAP;
1600 /* Defer page refcount checking till we're about to map that page. */
1601 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603 unsigned long idx = 0, pgcount = *num;
1604 int err;
1606 for (; idx < pgcount; ++idx) {
1607 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608 if (err)
1609 break;
1611 *num = pgcount - idx;
1612 return err;
1613 #endif /* ifdef pte_index */
1615 EXPORT_SYMBOL(vm_insert_pages);
1618 * vm_insert_page - insert single page into user vma
1619 * @vma: user vma to map to
1620 * @addr: target user address of this page
1621 * @page: source kernel page
1623 * This allows drivers to insert individual pages they've allocated
1624 * into a user vma.
1626 * The page has to be a nice clean _individual_ kernel allocation.
1627 * If you allocate a compound page, you need to have marked it as
1628 * such (__GFP_COMP), or manually just split the page up yourself
1629 * (see split_page()).
1631 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632 * took an arbitrary page protection parameter. This doesn't allow
1633 * that. Your vma protection will have to be set up correctly, which
1634 * means that if you want a shared writable mapping, you'd better
1635 * ask for a shared writable mapping!
1637 * The page does not need to be reserved.
1639 * Usually this function is called from f_op->mmap() handler
1640 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1641 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642 * function from other places, for example from page-fault handler.
1644 * Return: %0 on success, negative error code otherwise.
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647 struct page *page)
1649 if (addr < vma->vm_start || addr >= vma->vm_end)
1650 return -EFAULT;
1651 if (!page_count(page))
1652 return -EINVAL;
1653 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654 BUG_ON(mmap_read_trylock(vma->vm_mm));
1655 BUG_ON(vma->vm_flags & VM_PFNMAP);
1656 vma->vm_flags |= VM_MIXEDMAP;
1658 return insert_page(vma, addr, page, vma->vm_page_prot);
1660 EXPORT_SYMBOL(vm_insert_page);
1663 * __vm_map_pages - maps range of kernel pages into user vma
1664 * @vma: user vma to map to
1665 * @pages: pointer to array of source kernel pages
1666 * @num: number of pages in page array
1667 * @offset: user's requested vm_pgoff
1669 * This allows drivers to map range of kernel pages into a user vma.
1671 * Return: 0 on success and error code otherwise.
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674 unsigned long num, unsigned long offset)
1676 unsigned long count = vma_pages(vma);
1677 unsigned long uaddr = vma->vm_start;
1678 int ret, i;
1680 /* Fail if the user requested offset is beyond the end of the object */
1681 if (offset >= num)
1682 return -ENXIO;
1684 /* Fail if the user requested size exceeds available object size */
1685 if (count > num - offset)
1686 return -ENXIO;
1688 for (i = 0; i < count; i++) {
1689 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690 if (ret < 0)
1691 return ret;
1692 uaddr += PAGE_SIZE;
1695 return 0;
1699 * vm_map_pages - maps range of kernel pages starts with non zero offset
1700 * @vma: user vma to map to
1701 * @pages: pointer to array of source kernel pages
1702 * @num: number of pages in page array
1704 * Maps an object consisting of @num pages, catering for the user's
1705 * requested vm_pgoff
1707 * If we fail to insert any page into the vma, the function will return
1708 * immediately leaving any previously inserted pages present. Callers
1709 * from the mmap handler may immediately return the error as their caller
1710 * will destroy the vma, removing any successfully inserted pages. Other
1711 * callers should make their own arrangements for calling unmap_region().
1713 * Context: Process context. Called by mmap handlers.
1714 * Return: 0 on success and error code otherwise.
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717 unsigned long num)
1719 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1721 EXPORT_SYMBOL(vm_map_pages);
1724 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725 * @vma: user vma to map to
1726 * @pages: pointer to array of source kernel pages
1727 * @num: number of pages in page array
1729 * Similar to vm_map_pages(), except that it explicitly sets the offset
1730 * to 0. This function is intended for the drivers that did not consider
1731 * vm_pgoff.
1733 * Context: Process context. Called by mmap handlers.
1734 * Return: 0 on success and error code otherwise.
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737 unsigned long num)
1739 return __vm_map_pages(vma, pages, num, 0);
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744 pfn_t pfn, pgprot_t prot, bool mkwrite)
1746 struct mm_struct *mm = vma->vm_mm;
1747 pte_t *pte, entry;
1748 spinlock_t *ptl;
1750 pte = get_locked_pte(mm, addr, &ptl);
1751 if (!pte)
1752 return VM_FAULT_OOM;
1753 if (!pte_none(*pte)) {
1754 if (mkwrite) {
1756 * For read faults on private mappings the PFN passed
1757 * in may not match the PFN we have mapped if the
1758 * mapped PFN is a writeable COW page. In the mkwrite
1759 * case we are creating a writable PTE for a shared
1760 * mapping and we expect the PFNs to match. If they
1761 * don't match, we are likely racing with block
1762 * allocation and mapping invalidation so just skip the
1763 * update.
1765 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767 goto out_unlock;
1769 entry = pte_mkyoung(*pte);
1770 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772 update_mmu_cache(vma, addr, pte);
1774 goto out_unlock;
1777 /* Ok, finally just insert the thing.. */
1778 if (pfn_t_devmap(pfn))
1779 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780 else
1781 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1783 if (mkwrite) {
1784 entry = pte_mkyoung(entry);
1785 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1788 set_pte_at(mm, addr, pte, entry);
1789 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1791 out_unlock:
1792 pte_unmap_unlock(pte, ptl);
1793 return VM_FAULT_NOPAGE;
1797 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798 * @vma: user vma to map to
1799 * @addr: target user address of this page
1800 * @pfn: source kernel pfn
1801 * @pgprot: pgprot flags for the inserted page
1803 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804 * to override pgprot on a per-page basis.
1806 * This only makes sense for IO mappings, and it makes no sense for
1807 * COW mappings. In general, using multiple vmas is preferable;
1808 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809 * impractical.
1811 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812 * a value of @pgprot different from that of @vma->vm_page_prot.
1814 * Context: Process context. May allocate using %GFP_KERNEL.
1815 * Return: vm_fault_t value.
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818 unsigned long pfn, pgprot_t pgprot)
1821 * Technically, architectures with pte_special can avoid all these
1822 * restrictions (same for remap_pfn_range). However we would like
1823 * consistency in testing and feature parity among all, so we should
1824 * try to keep these invariants in place for everybody.
1826 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828 (VM_PFNMAP|VM_MIXEDMAP));
1829 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1832 if (addr < vma->vm_start || addr >= vma->vm_end)
1833 return VM_FAULT_SIGBUS;
1835 if (!pfn_modify_allowed(pfn, pgprot))
1836 return VM_FAULT_SIGBUS;
1838 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1840 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841 false);
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1846 * vmf_insert_pfn - insert single pfn into user vma
1847 * @vma: user vma to map to
1848 * @addr: target user address of this page
1849 * @pfn: source kernel pfn
1851 * Similar to vm_insert_page, this allows drivers to insert individual pages
1852 * they've allocated into a user vma. Same comments apply.
1854 * This function should only be called from a vm_ops->fault handler, and
1855 * in that case the handler should return the result of this function.
1857 * vma cannot be a COW mapping.
1859 * As this is called only for pages that do not currently exist, we
1860 * do not need to flush old virtual caches or the TLB.
1862 * Context: Process context. May allocate using %GFP_KERNEL.
1863 * Return: vm_fault_t value.
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866 unsigned long pfn)
1868 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1874 /* these checks mirror the abort conditions in vm_normal_page */
1875 if (vma->vm_flags & VM_MIXEDMAP)
1876 return true;
1877 if (pfn_t_devmap(pfn))
1878 return true;
1879 if (pfn_t_special(pfn))
1880 return true;
1881 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882 return true;
1883 return false;
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888 bool mkwrite)
1890 int err;
1892 BUG_ON(!vm_mixed_ok(vma, pfn));
1894 if (addr < vma->vm_start || addr >= vma->vm_end)
1895 return VM_FAULT_SIGBUS;
1897 track_pfn_insert(vma, &pgprot, pfn);
1899 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900 return VM_FAULT_SIGBUS;
1903 * If we don't have pte special, then we have to use the pfn_valid()
1904 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905 * refcount the page if pfn_valid is true (hence insert_page rather
1906 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1907 * without pte special, it would there be refcounted as a normal page.
1909 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911 struct page *page;
1914 * At this point we are committed to insert_page()
1915 * regardless of whether the caller specified flags that
1916 * result in pfn_t_has_page() == false.
1918 page = pfn_to_page(pfn_t_to_pfn(pfn));
1919 err = insert_page(vma, addr, page, pgprot);
1920 } else {
1921 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1924 if (err == -ENOMEM)
1925 return VM_FAULT_OOM;
1926 if (err < 0 && err != -EBUSY)
1927 return VM_FAULT_SIGBUS;
1929 return VM_FAULT_NOPAGE;
1933 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934 * @vma: user vma to map to
1935 * @addr: target user address of this page
1936 * @pfn: source kernel pfn
1937 * @pgprot: pgprot flags for the inserted page
1939 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940 * to override pgprot on a per-page basis.
1942 * Typically this function should be used by drivers to set caching- and
1943 * encryption bits different than those of @vma->vm_page_prot, because
1944 * the caching- or encryption mode may not be known at mmap() time.
1945 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946 * to set caching and encryption bits for those vmas (except for COW pages).
1947 * This is ensured by core vm only modifying these page table entries using
1948 * functions that don't touch caching- or encryption bits, using pte_modify()
1949 * if needed. (See for example mprotect()).
1950 * Also when new page-table entries are created, this is only done using the
1951 * fault() callback, and never using the value of vma->vm_page_prot,
1952 * except for page-table entries that point to anonymous pages as the result
1953 * of COW.
1955 * Context: Process context. May allocate using %GFP_KERNEL.
1956 * Return: vm_fault_t value.
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959 pfn_t pfn, pgprot_t pgprot)
1961 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966 pfn_t pfn)
1968 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1973 * If the insertion of PTE failed because someone else already added a
1974 * different entry in the mean time, we treat that as success as we assume
1975 * the same entry was actually inserted.
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978 unsigned long addr, pfn_t pfn)
1980 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1985 * maps a range of physical memory into the requested pages. the old
1986 * mappings are removed. any references to nonexistent pages results
1987 * in null mappings (currently treated as "copy-on-access")
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990 unsigned long addr, unsigned long end,
1991 unsigned long pfn, pgprot_t prot)
1993 pte_t *pte;
1994 spinlock_t *ptl;
1995 int err = 0;
1997 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998 if (!pte)
1999 return -ENOMEM;
2000 arch_enter_lazy_mmu_mode();
2001 do {
2002 BUG_ON(!pte_none(*pte));
2003 if (!pfn_modify_allowed(pfn, prot)) {
2004 err = -EACCES;
2005 break;
2007 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008 pfn++;
2009 } while (pte++, addr += PAGE_SIZE, addr != end);
2010 arch_leave_lazy_mmu_mode();
2011 pte_unmap_unlock(pte - 1, ptl);
2012 return err;
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016 unsigned long addr, unsigned long end,
2017 unsigned long pfn, pgprot_t prot)
2019 pmd_t *pmd;
2020 unsigned long next;
2021 int err;
2023 pfn -= addr >> PAGE_SHIFT;
2024 pmd = pmd_alloc(mm, pud, addr);
2025 if (!pmd)
2026 return -ENOMEM;
2027 VM_BUG_ON(pmd_trans_huge(*pmd));
2028 do {
2029 next = pmd_addr_end(addr, end);
2030 err = remap_pte_range(mm, pmd, addr, next,
2031 pfn + (addr >> PAGE_SHIFT), prot);
2032 if (err)
2033 return err;
2034 } while (pmd++, addr = next, addr != end);
2035 return 0;
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039 unsigned long addr, unsigned long end,
2040 unsigned long pfn, pgprot_t prot)
2042 pud_t *pud;
2043 unsigned long next;
2044 int err;
2046 pfn -= addr >> PAGE_SHIFT;
2047 pud = pud_alloc(mm, p4d, addr);
2048 if (!pud)
2049 return -ENOMEM;
2050 do {
2051 next = pud_addr_end(addr, end);
2052 err = remap_pmd_range(mm, pud, addr, next,
2053 pfn + (addr >> PAGE_SHIFT), prot);
2054 if (err)
2055 return err;
2056 } while (pud++, addr = next, addr != end);
2057 return 0;
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061 unsigned long addr, unsigned long end,
2062 unsigned long pfn, pgprot_t prot)
2064 p4d_t *p4d;
2065 unsigned long next;
2066 int err;
2068 pfn -= addr >> PAGE_SHIFT;
2069 p4d = p4d_alloc(mm, pgd, addr);
2070 if (!p4d)
2071 return -ENOMEM;
2072 do {
2073 next = p4d_addr_end(addr, end);
2074 err = remap_pud_range(mm, p4d, addr, next,
2075 pfn + (addr >> PAGE_SHIFT), prot);
2076 if (err)
2077 return err;
2078 } while (p4d++, addr = next, addr != end);
2079 return 0;
2083 * remap_pfn_range - remap kernel memory to userspace
2084 * @vma: user vma to map to
2085 * @addr: target user address to start at
2086 * @pfn: page frame number of kernel physical memory address
2087 * @size: size of mapping area
2088 * @prot: page protection flags for this mapping
2090 * Note: this is only safe if the mm semaphore is held when called.
2092 * Return: %0 on success, negative error code otherwise.
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095 unsigned long pfn, unsigned long size, pgprot_t prot)
2097 pgd_t *pgd;
2098 unsigned long next;
2099 unsigned long end = addr + PAGE_ALIGN(size);
2100 struct mm_struct *mm = vma->vm_mm;
2101 unsigned long remap_pfn = pfn;
2102 int err;
2105 * Physically remapped pages are special. Tell the
2106 * rest of the world about it:
2107 * VM_IO tells people not to look at these pages
2108 * (accesses can have side effects).
2109 * VM_PFNMAP tells the core MM that the base pages are just
2110 * raw PFN mappings, and do not have a "struct page" associated
2111 * with them.
2112 * VM_DONTEXPAND
2113 * Disable vma merging and expanding with mremap().
2114 * VM_DONTDUMP
2115 * Omit vma from core dump, even when VM_IO turned off.
2117 * There's a horrible special case to handle copy-on-write
2118 * behaviour that some programs depend on. We mark the "original"
2119 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120 * See vm_normal_page() for details.
2122 if (is_cow_mapping(vma->vm_flags)) {
2123 if (addr != vma->vm_start || end != vma->vm_end)
2124 return -EINVAL;
2125 vma->vm_pgoff = pfn;
2128 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2129 if (err)
2130 return -EINVAL;
2132 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2134 BUG_ON(addr >= end);
2135 pfn -= addr >> PAGE_SHIFT;
2136 pgd = pgd_offset(mm, addr);
2137 flush_cache_range(vma, addr, end);
2138 do {
2139 next = pgd_addr_end(addr, end);
2140 err = remap_p4d_range(mm, pgd, addr, next,
2141 pfn + (addr >> PAGE_SHIFT), prot);
2142 if (err)
2143 break;
2144 } while (pgd++, addr = next, addr != end);
2146 if (err)
2147 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2149 return err;
2151 EXPORT_SYMBOL(remap_pfn_range);
2154 * vm_iomap_memory - remap memory to userspace
2155 * @vma: user vma to map to
2156 * @start: start of the physical memory to be mapped
2157 * @len: size of area
2159 * This is a simplified io_remap_pfn_range() for common driver use. The
2160 * driver just needs to give us the physical memory range to be mapped,
2161 * we'll figure out the rest from the vma information.
2163 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164 * whatever write-combining details or similar.
2166 * Return: %0 on success, negative error code otherwise.
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2170 unsigned long vm_len, pfn, pages;
2172 /* Check that the physical memory area passed in looks valid */
2173 if (start + len < start)
2174 return -EINVAL;
2176 * You *really* shouldn't map things that aren't page-aligned,
2177 * but we've historically allowed it because IO memory might
2178 * just have smaller alignment.
2180 len += start & ~PAGE_MASK;
2181 pfn = start >> PAGE_SHIFT;
2182 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183 if (pfn + pages < pfn)
2184 return -EINVAL;
2186 /* We start the mapping 'vm_pgoff' pages into the area */
2187 if (vma->vm_pgoff > pages)
2188 return -EINVAL;
2189 pfn += vma->vm_pgoff;
2190 pages -= vma->vm_pgoff;
2192 /* Can we fit all of the mapping? */
2193 vm_len = vma->vm_end - vma->vm_start;
2194 if (vm_len >> PAGE_SHIFT > pages)
2195 return -EINVAL;
2197 /* Ok, let it rip */
2198 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2200 EXPORT_SYMBOL(vm_iomap_memory);
2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203 unsigned long addr, unsigned long end,
2204 pte_fn_t fn, void *data, bool create)
2206 pte_t *pte;
2207 int err = 0;
2208 spinlock_t *uninitialized_var(ptl);
2210 if (create) {
2211 pte = (mm == &init_mm) ?
2212 pte_alloc_kernel(pmd, addr) :
2213 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 if (!pte)
2215 return -ENOMEM;
2216 } else {
2217 pte = (mm == &init_mm) ?
2218 pte_offset_kernel(pmd, addr) :
2219 pte_offset_map_lock(mm, pmd, addr, &ptl);
2222 BUG_ON(pmd_huge(*pmd));
2224 arch_enter_lazy_mmu_mode();
2226 do {
2227 if (create || !pte_none(*pte)) {
2228 err = fn(pte++, addr, data);
2229 if (err)
2230 break;
2232 } while (addr += PAGE_SIZE, addr != end);
2234 arch_leave_lazy_mmu_mode();
2236 if (mm != &init_mm)
2237 pte_unmap_unlock(pte-1, ptl);
2238 return err;
2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 unsigned long addr, unsigned long end,
2243 pte_fn_t fn, void *data, bool create)
2245 pmd_t *pmd;
2246 unsigned long next;
2247 int err = 0;
2249 BUG_ON(pud_huge(*pud));
2251 if (create) {
2252 pmd = pmd_alloc(mm, pud, addr);
2253 if (!pmd)
2254 return -ENOMEM;
2255 } else {
2256 pmd = pmd_offset(pud, addr);
2258 do {
2259 next = pmd_addr_end(addr, end);
2260 if (create || !pmd_none_or_clear_bad(pmd)) {
2261 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262 create);
2263 if (err)
2264 break;
2266 } while (pmd++, addr = next, addr != end);
2267 return err;
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271 unsigned long addr, unsigned long end,
2272 pte_fn_t fn, void *data, bool create)
2274 pud_t *pud;
2275 unsigned long next;
2276 int err = 0;
2278 if (create) {
2279 pud = pud_alloc(mm, p4d, addr);
2280 if (!pud)
2281 return -ENOMEM;
2282 } else {
2283 pud = pud_offset(p4d, addr);
2285 do {
2286 next = pud_addr_end(addr, end);
2287 if (create || !pud_none_or_clear_bad(pud)) {
2288 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289 create);
2290 if (err)
2291 break;
2293 } while (pud++, addr = next, addr != end);
2294 return err;
2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298 unsigned long addr, unsigned long end,
2299 pte_fn_t fn, void *data, bool create)
2301 p4d_t *p4d;
2302 unsigned long next;
2303 int err = 0;
2305 if (create) {
2306 p4d = p4d_alloc(mm, pgd, addr);
2307 if (!p4d)
2308 return -ENOMEM;
2309 } else {
2310 p4d = p4d_offset(pgd, addr);
2312 do {
2313 next = p4d_addr_end(addr, end);
2314 if (create || !p4d_none_or_clear_bad(p4d)) {
2315 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316 create);
2317 if (err)
2318 break;
2320 } while (p4d++, addr = next, addr != end);
2321 return err;
2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325 unsigned long size, pte_fn_t fn,
2326 void *data, bool create)
2328 pgd_t *pgd;
2329 unsigned long next;
2330 unsigned long end = addr + size;
2331 int err = 0;
2333 if (WARN_ON(addr >= end))
2334 return -EINVAL;
2336 pgd = pgd_offset(mm, addr);
2337 do {
2338 next = pgd_addr_end(addr, end);
2339 if (!create && pgd_none_or_clear_bad(pgd))
2340 continue;
2341 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2342 if (err)
2343 break;
2344 } while (pgd++, addr = next, addr != end);
2346 return err;
2350 * Scan a region of virtual memory, filling in page tables as necessary
2351 * and calling a provided function on each leaf page table.
2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354 unsigned long size, pte_fn_t fn, void *data)
2356 return __apply_to_page_range(mm, addr, size, fn, data, true);
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2361 * Scan a region of virtual memory, calling a provided function on
2362 * each leaf page table where it exists.
2364 * Unlike apply_to_page_range, this does _not_ fill in page tables
2365 * where they are absent.
2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368 unsigned long size, pte_fn_t fn, void *data)
2370 return __apply_to_page_range(mm, addr, size, fn, data, false);
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2375 * handle_pte_fault chooses page fault handler according to an entry which was
2376 * read non-atomically. Before making any commitment, on those architectures
2377 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378 * parts, do_swap_page must check under lock before unmapping the pte and
2379 * proceeding (but do_wp_page is only called after already making such a check;
2380 * and do_anonymous_page can safely check later on).
2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2383 pte_t *page_table, pte_t orig_pte)
2385 int same = 1;
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387 if (sizeof(pte_t) > sizeof(unsigned long)) {
2388 spinlock_t *ptl = pte_lockptr(mm, pmd);
2389 spin_lock(ptl);
2390 same = pte_same(*page_table, orig_pte);
2391 spin_unlock(ptl);
2393 #endif
2394 pte_unmap(page_table);
2395 return same;
2398 static inline bool cow_user_page(struct page *dst, struct page *src,
2399 struct vm_fault *vmf)
2401 bool ret;
2402 void *kaddr;
2403 void __user *uaddr;
2404 bool locked = false;
2405 struct vm_area_struct *vma = vmf->vma;
2406 struct mm_struct *mm = vma->vm_mm;
2407 unsigned long addr = vmf->address;
2409 debug_dma_assert_idle(src);
2411 if (likely(src)) {
2412 copy_user_highpage(dst, src, addr, vma);
2413 return true;
2417 * If the source page was a PFN mapping, we don't have
2418 * a "struct page" for it. We do a best-effort copy by
2419 * just copying from the original user address. If that
2420 * fails, we just zero-fill it. Live with it.
2422 kaddr = kmap_atomic(dst);
2423 uaddr = (void __user *)(addr & PAGE_MASK);
2426 * On architectures with software "accessed" bits, we would
2427 * take a double page fault, so mark it accessed here.
2429 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2430 pte_t entry;
2432 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2433 locked = true;
2434 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2436 * Other thread has already handled the fault
2437 * and update local tlb only
2439 update_mmu_tlb(vma, addr, vmf->pte);
2440 ret = false;
2441 goto pte_unlock;
2444 entry = pte_mkyoung(vmf->orig_pte);
2445 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2446 update_mmu_cache(vma, addr, vmf->pte);
2450 * This really shouldn't fail, because the page is there
2451 * in the page tables. But it might just be unreadable,
2452 * in which case we just give up and fill the result with
2453 * zeroes.
2455 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2456 if (locked)
2457 goto warn;
2459 /* Re-validate under PTL if the page is still mapped */
2460 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2461 locked = true;
2462 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2463 /* The PTE changed under us, update local tlb */
2464 update_mmu_tlb(vma, addr, vmf->pte);
2465 ret = false;
2466 goto pte_unlock;
2470 * The same page can be mapped back since last copy attempt.
2471 * Try to copy again under PTL.
2473 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2475 * Give a warn in case there can be some obscure
2476 * use-case
2478 warn:
2479 WARN_ON_ONCE(1);
2480 clear_page(kaddr);
2484 ret = true;
2486 pte_unlock:
2487 if (locked)
2488 pte_unmap_unlock(vmf->pte, vmf->ptl);
2489 kunmap_atomic(kaddr);
2490 flush_dcache_page(dst);
2492 return ret;
2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2497 struct file *vm_file = vma->vm_file;
2499 if (vm_file)
2500 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2503 * Special mappings (e.g. VDSO) do not have any file so fake
2504 * a default GFP_KERNEL for them.
2506 return GFP_KERNEL;
2510 * Notify the address space that the page is about to become writable so that
2511 * it can prohibit this or wait for the page to get into an appropriate state.
2513 * We do this without the lock held, so that it can sleep if it needs to.
2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2517 vm_fault_t ret;
2518 struct page *page = vmf->page;
2519 unsigned int old_flags = vmf->flags;
2521 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2523 if (vmf->vma->vm_file &&
2524 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525 return VM_FAULT_SIGBUS;
2527 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2528 /* Restore original flags so that caller is not surprised */
2529 vmf->flags = old_flags;
2530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531 return ret;
2532 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533 lock_page(page);
2534 if (!page->mapping) {
2535 unlock_page(page);
2536 return 0; /* retry */
2538 ret |= VM_FAULT_LOCKED;
2539 } else
2540 VM_BUG_ON_PAGE(!PageLocked(page), page);
2541 return ret;
2545 * Handle dirtying of a page in shared file mapping on a write fault.
2547 * The function expects the page to be locked and unlocks it.
2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2551 struct vm_area_struct *vma = vmf->vma;
2552 struct address_space *mapping;
2553 struct page *page = vmf->page;
2554 bool dirtied;
2555 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2557 dirtied = set_page_dirty(page);
2558 VM_BUG_ON_PAGE(PageAnon(page), page);
2560 * Take a local copy of the address_space - page.mapping may be zeroed
2561 * by truncate after unlock_page(). The address_space itself remains
2562 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2563 * release semantics to prevent the compiler from undoing this copying.
2565 mapping = page_rmapping(page);
2566 unlock_page(page);
2568 if (!page_mkwrite)
2569 file_update_time(vma->vm_file);
2572 * Throttle page dirtying rate down to writeback speed.
2574 * mapping may be NULL here because some device drivers do not
2575 * set page.mapping but still dirty their pages
2577 * Drop the mmap_lock before waiting on IO, if we can. The file
2578 * is pinning the mapping, as per above.
2580 if ((dirtied || page_mkwrite) && mapping) {
2581 struct file *fpin;
2583 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2584 balance_dirty_pages_ratelimited(mapping);
2585 if (fpin) {
2586 fput(fpin);
2587 return VM_FAULT_RETRY;
2591 return 0;
2595 * Handle write page faults for pages that can be reused in the current vma
2597 * This can happen either due to the mapping being with the VM_SHARED flag,
2598 * or due to us being the last reference standing to the page. In either
2599 * case, all we need to do here is to mark the page as writable and update
2600 * any related book-keeping.
2602 static inline void wp_page_reuse(struct vm_fault *vmf)
2603 __releases(vmf->ptl)
2605 struct vm_area_struct *vma = vmf->vma;
2606 struct page *page = vmf->page;
2607 pte_t entry;
2609 * Clear the pages cpupid information as the existing
2610 * information potentially belongs to a now completely
2611 * unrelated process.
2613 if (page)
2614 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2616 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617 entry = pte_mkyoung(vmf->orig_pte);
2618 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2619 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620 update_mmu_cache(vma, vmf->address, vmf->pte);
2621 pte_unmap_unlock(vmf->pte, vmf->ptl);
2625 * Handle the case of a page which we actually need to copy to a new page.
2627 * Called with mmap_lock locked and the old page referenced, but
2628 * without the ptl held.
2630 * High level logic flow:
2632 * - Allocate a page, copy the content of the old page to the new one.
2633 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634 * - Take the PTL. If the pte changed, bail out and release the allocated page
2635 * - If the pte is still the way we remember it, update the page table and all
2636 * relevant references. This includes dropping the reference the page-table
2637 * held to the old page, as well as updating the rmap.
2638 * - In any case, unlock the PTL and drop the reference we took to the old page.
2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2642 struct vm_area_struct *vma = vmf->vma;
2643 struct mm_struct *mm = vma->vm_mm;
2644 struct page *old_page = vmf->page;
2645 struct page *new_page = NULL;
2646 pte_t entry;
2647 int page_copied = 0;
2648 struct mmu_notifier_range range;
2650 if (unlikely(anon_vma_prepare(vma)))
2651 goto oom;
2653 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2654 new_page = alloc_zeroed_user_highpage_movable(vma,
2655 vmf->address);
2656 if (!new_page)
2657 goto oom;
2658 } else {
2659 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2660 vmf->address);
2661 if (!new_page)
2662 goto oom;
2664 if (!cow_user_page(new_page, old_page, vmf)) {
2666 * COW failed, if the fault was solved by other,
2667 * it's fine. If not, userspace would re-fault on
2668 * the same address and we will handle the fault
2669 * from the second attempt.
2671 put_page(new_page);
2672 if (old_page)
2673 put_page(old_page);
2674 return 0;
2678 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2679 goto oom_free_new;
2680 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2682 __SetPageUptodate(new_page);
2684 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2685 vmf->address & PAGE_MASK,
2686 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2687 mmu_notifier_invalidate_range_start(&range);
2690 * Re-check the pte - we dropped the lock
2692 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2693 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2694 if (old_page) {
2695 if (!PageAnon(old_page)) {
2696 dec_mm_counter_fast(mm,
2697 mm_counter_file(old_page));
2698 inc_mm_counter_fast(mm, MM_ANONPAGES);
2700 } else {
2701 inc_mm_counter_fast(mm, MM_ANONPAGES);
2703 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2704 entry = mk_pte(new_page, vma->vm_page_prot);
2705 entry = pte_sw_mkyoung(entry);
2706 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2708 * Clear the pte entry and flush it first, before updating the
2709 * pte with the new entry. This will avoid a race condition
2710 * seen in the presence of one thread doing SMC and another
2711 * thread doing COW.
2713 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2714 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2715 lru_cache_add_active_or_unevictable(new_page, vma);
2717 * We call the notify macro here because, when using secondary
2718 * mmu page tables (such as kvm shadow page tables), we want the
2719 * new page to be mapped directly into the secondary page table.
2721 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2722 update_mmu_cache(vma, vmf->address, vmf->pte);
2723 if (old_page) {
2725 * Only after switching the pte to the new page may
2726 * we remove the mapcount here. Otherwise another
2727 * process may come and find the rmap count decremented
2728 * before the pte is switched to the new page, and
2729 * "reuse" the old page writing into it while our pte
2730 * here still points into it and can be read by other
2731 * threads.
2733 * The critical issue is to order this
2734 * page_remove_rmap with the ptp_clear_flush above.
2735 * Those stores are ordered by (if nothing else,)
2736 * the barrier present in the atomic_add_negative
2737 * in page_remove_rmap.
2739 * Then the TLB flush in ptep_clear_flush ensures that
2740 * no process can access the old page before the
2741 * decremented mapcount is visible. And the old page
2742 * cannot be reused until after the decremented
2743 * mapcount is visible. So transitively, TLBs to
2744 * old page will be flushed before it can be reused.
2746 page_remove_rmap(old_page, false);
2749 /* Free the old page.. */
2750 new_page = old_page;
2751 page_copied = 1;
2752 } else {
2753 update_mmu_tlb(vma, vmf->address, vmf->pte);
2756 if (new_page)
2757 put_page(new_page);
2759 pte_unmap_unlock(vmf->pte, vmf->ptl);
2761 * No need to double call mmu_notifier->invalidate_range() callback as
2762 * the above ptep_clear_flush_notify() did already call it.
2764 mmu_notifier_invalidate_range_only_end(&range);
2765 if (old_page) {
2767 * Don't let another task, with possibly unlocked vma,
2768 * keep the mlocked page.
2770 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2771 lock_page(old_page); /* LRU manipulation */
2772 if (PageMlocked(old_page))
2773 munlock_vma_page(old_page);
2774 unlock_page(old_page);
2776 put_page(old_page);
2778 return page_copied ? VM_FAULT_WRITE : 0;
2779 oom_free_new:
2780 put_page(new_page);
2781 oom:
2782 if (old_page)
2783 put_page(old_page);
2784 return VM_FAULT_OOM;
2788 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2789 * writeable once the page is prepared
2791 * @vmf: structure describing the fault
2793 * This function handles all that is needed to finish a write page fault in a
2794 * shared mapping due to PTE being read-only once the mapped page is prepared.
2795 * It handles locking of PTE and modifying it.
2797 * The function expects the page to be locked or other protection against
2798 * concurrent faults / writeback (such as DAX radix tree locks).
2800 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2801 * we acquired PTE lock.
2803 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2805 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2806 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2807 &vmf->ptl);
2809 * We might have raced with another page fault while we released the
2810 * pte_offset_map_lock.
2812 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2813 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2814 pte_unmap_unlock(vmf->pte, vmf->ptl);
2815 return VM_FAULT_NOPAGE;
2817 wp_page_reuse(vmf);
2818 return 0;
2822 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2823 * mapping
2825 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2827 struct vm_area_struct *vma = vmf->vma;
2829 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2830 vm_fault_t ret;
2832 pte_unmap_unlock(vmf->pte, vmf->ptl);
2833 vmf->flags |= FAULT_FLAG_MKWRITE;
2834 ret = vma->vm_ops->pfn_mkwrite(vmf);
2835 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2836 return ret;
2837 return finish_mkwrite_fault(vmf);
2839 wp_page_reuse(vmf);
2840 return VM_FAULT_WRITE;
2843 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2844 __releases(vmf->ptl)
2846 struct vm_area_struct *vma = vmf->vma;
2847 vm_fault_t ret = VM_FAULT_WRITE;
2849 get_page(vmf->page);
2851 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2852 vm_fault_t tmp;
2854 pte_unmap_unlock(vmf->pte, vmf->ptl);
2855 tmp = do_page_mkwrite(vmf);
2856 if (unlikely(!tmp || (tmp &
2857 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2858 put_page(vmf->page);
2859 return tmp;
2861 tmp = finish_mkwrite_fault(vmf);
2862 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2863 unlock_page(vmf->page);
2864 put_page(vmf->page);
2865 return tmp;
2867 } else {
2868 wp_page_reuse(vmf);
2869 lock_page(vmf->page);
2871 ret |= fault_dirty_shared_page(vmf);
2872 put_page(vmf->page);
2874 return ret;
2878 * This routine handles present pages, when users try to write
2879 * to a shared page. It is done by copying the page to a new address
2880 * and decrementing the shared-page counter for the old page.
2882 * Note that this routine assumes that the protection checks have been
2883 * done by the caller (the low-level page fault routine in most cases).
2884 * Thus we can safely just mark it writable once we've done any necessary
2885 * COW.
2887 * We also mark the page dirty at this point even though the page will
2888 * change only once the write actually happens. This avoids a few races,
2889 * and potentially makes it more efficient.
2891 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2892 * but allow concurrent faults), with pte both mapped and locked.
2893 * We return with mmap_lock still held, but pte unmapped and unlocked.
2895 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2896 __releases(vmf->ptl)
2898 struct vm_area_struct *vma = vmf->vma;
2900 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2901 pte_unmap_unlock(vmf->pte, vmf->ptl);
2902 return handle_userfault(vmf, VM_UFFD_WP);
2905 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2906 if (!vmf->page) {
2908 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2909 * VM_PFNMAP VMA.
2911 * We should not cow pages in a shared writeable mapping.
2912 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2914 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2915 (VM_WRITE|VM_SHARED))
2916 return wp_pfn_shared(vmf);
2918 pte_unmap_unlock(vmf->pte, vmf->ptl);
2919 return wp_page_copy(vmf);
2923 * Take out anonymous pages first, anonymous shared vmas are
2924 * not dirty accountable.
2926 if (PageAnon(vmf->page)) {
2927 int total_map_swapcount;
2928 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2929 page_count(vmf->page) != 1))
2930 goto copy;
2931 if (!trylock_page(vmf->page)) {
2932 get_page(vmf->page);
2933 pte_unmap_unlock(vmf->pte, vmf->ptl);
2934 lock_page(vmf->page);
2935 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2936 vmf->address, &vmf->ptl);
2937 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2938 update_mmu_tlb(vma, vmf->address, vmf->pte);
2939 unlock_page(vmf->page);
2940 pte_unmap_unlock(vmf->pte, vmf->ptl);
2941 put_page(vmf->page);
2942 return 0;
2944 put_page(vmf->page);
2946 if (PageKsm(vmf->page)) {
2947 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2948 vmf->address);
2949 unlock_page(vmf->page);
2950 if (!reused)
2951 goto copy;
2952 wp_page_reuse(vmf);
2953 return VM_FAULT_WRITE;
2955 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2956 if (total_map_swapcount == 1) {
2958 * The page is all ours. Move it to
2959 * our anon_vma so the rmap code will
2960 * not search our parent or siblings.
2961 * Protected against the rmap code by
2962 * the page lock.
2964 page_move_anon_rmap(vmf->page, vma);
2966 unlock_page(vmf->page);
2967 wp_page_reuse(vmf);
2968 return VM_FAULT_WRITE;
2970 unlock_page(vmf->page);
2971 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2972 (VM_WRITE|VM_SHARED))) {
2973 return wp_page_shared(vmf);
2975 copy:
2977 * Ok, we need to copy. Oh, well..
2979 get_page(vmf->page);
2981 pte_unmap_unlock(vmf->pte, vmf->ptl);
2982 return wp_page_copy(vmf);
2985 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2986 unsigned long start_addr, unsigned long end_addr,
2987 struct zap_details *details)
2989 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2992 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2993 struct zap_details *details)
2995 struct vm_area_struct *vma;
2996 pgoff_t vba, vea, zba, zea;
2998 vma_interval_tree_foreach(vma, root,
2999 details->first_index, details->last_index) {
3001 vba = vma->vm_pgoff;
3002 vea = vba + vma_pages(vma) - 1;
3003 zba = details->first_index;
3004 if (zba < vba)
3005 zba = vba;
3006 zea = details->last_index;
3007 if (zea > vea)
3008 zea = vea;
3010 unmap_mapping_range_vma(vma,
3011 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3012 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3013 details);
3018 * unmap_mapping_pages() - Unmap pages from processes.
3019 * @mapping: The address space containing pages to be unmapped.
3020 * @start: Index of first page to be unmapped.
3021 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3022 * @even_cows: Whether to unmap even private COWed pages.
3024 * Unmap the pages in this address space from any userspace process which
3025 * has them mmaped. Generally, you want to remove COWed pages as well when
3026 * a file is being truncated, but not when invalidating pages from the page
3027 * cache.
3029 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3030 pgoff_t nr, bool even_cows)
3032 struct zap_details details = { };
3034 details.check_mapping = even_cows ? NULL : mapping;
3035 details.first_index = start;
3036 details.last_index = start + nr - 1;
3037 if (details.last_index < details.first_index)
3038 details.last_index = ULONG_MAX;
3040 i_mmap_lock_write(mapping);
3041 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3042 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3043 i_mmap_unlock_write(mapping);
3047 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3048 * address_space corresponding to the specified byte range in the underlying
3049 * file.
3051 * @mapping: the address space containing mmaps to be unmapped.
3052 * @holebegin: byte in first page to unmap, relative to the start of
3053 * the underlying file. This will be rounded down to a PAGE_SIZE
3054 * boundary. Note that this is different from truncate_pagecache(), which
3055 * must keep the partial page. In contrast, we must get rid of
3056 * partial pages.
3057 * @holelen: size of prospective hole in bytes. This will be rounded
3058 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3059 * end of the file.
3060 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061 * but 0 when invalidating pagecache, don't throw away private data.
3063 void unmap_mapping_range(struct address_space *mapping,
3064 loff_t const holebegin, loff_t const holelen, int even_cows)
3066 pgoff_t hba = holebegin >> PAGE_SHIFT;
3067 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3069 /* Check for overflow. */
3070 if (sizeof(holelen) > sizeof(hlen)) {
3071 long long holeend =
3072 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073 if (holeend & ~(long long)ULONG_MAX)
3074 hlen = ULONG_MAX - hba + 1;
3077 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3079 EXPORT_SYMBOL(unmap_mapping_range);
3082 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3083 * but allow concurrent faults), and pte mapped but not yet locked.
3084 * We return with pte unmapped and unlocked.
3086 * We return with the mmap_lock locked or unlocked in the same cases
3087 * as does filemap_fault().
3089 vm_fault_t do_swap_page(struct vm_fault *vmf)
3091 struct vm_area_struct *vma = vmf->vma;
3092 struct page *page = NULL, *swapcache;
3093 swp_entry_t entry;
3094 pte_t pte;
3095 int locked;
3096 int exclusive = 0;
3097 vm_fault_t ret = 0;
3099 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3100 goto out;
3102 entry = pte_to_swp_entry(vmf->orig_pte);
3103 if (unlikely(non_swap_entry(entry))) {
3104 if (is_migration_entry(entry)) {
3105 migration_entry_wait(vma->vm_mm, vmf->pmd,
3106 vmf->address);
3107 } else if (is_device_private_entry(entry)) {
3108 vmf->page = device_private_entry_to_page(entry);
3109 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3110 } else if (is_hwpoison_entry(entry)) {
3111 ret = VM_FAULT_HWPOISON;
3112 } else {
3113 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3114 ret = VM_FAULT_SIGBUS;
3116 goto out;
3120 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3121 page = lookup_swap_cache(entry, vma, vmf->address);
3122 swapcache = page;
3124 if (!page) {
3125 struct swap_info_struct *si = swp_swap_info(entry);
3127 if (si->flags & SWP_SYNCHRONOUS_IO &&
3128 __swap_count(entry) == 1) {
3129 /* skip swapcache */
3130 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3131 vmf->address);
3132 if (page) {
3133 int err;
3135 __SetPageLocked(page);
3136 __SetPageSwapBacked(page);
3137 set_page_private(page, entry.val);
3139 /* Tell memcg to use swap ownership records */
3140 SetPageSwapCache(page);
3141 err = mem_cgroup_charge(page, vma->vm_mm,
3142 GFP_KERNEL);
3143 ClearPageSwapCache(page);
3144 if (err) {
3145 ret = VM_FAULT_OOM;
3146 goto out_page;
3149 lru_cache_add(page);
3150 swap_readpage(page, true);
3152 } else {
3153 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3154 vmf);
3155 swapcache = page;
3158 if (!page) {
3160 * Back out if somebody else faulted in this pte
3161 * while we released the pte lock.
3163 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3164 vmf->address, &vmf->ptl);
3165 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3166 ret = VM_FAULT_OOM;
3167 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3168 goto unlock;
3171 /* Had to read the page from swap area: Major fault */
3172 ret = VM_FAULT_MAJOR;
3173 count_vm_event(PGMAJFAULT);
3174 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3175 } else if (PageHWPoison(page)) {
3177 * hwpoisoned dirty swapcache pages are kept for killing
3178 * owner processes (which may be unknown at hwpoison time)
3180 ret = VM_FAULT_HWPOISON;
3181 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3182 goto out_release;
3185 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3187 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3188 if (!locked) {
3189 ret |= VM_FAULT_RETRY;
3190 goto out_release;
3194 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3195 * release the swapcache from under us. The page pin, and pte_same
3196 * test below, are not enough to exclude that. Even if it is still
3197 * swapcache, we need to check that the page's swap has not changed.
3199 if (unlikely((!PageSwapCache(page) ||
3200 page_private(page) != entry.val)) && swapcache)
3201 goto out_page;
3203 page = ksm_might_need_to_copy(page, vma, vmf->address);
3204 if (unlikely(!page)) {
3205 ret = VM_FAULT_OOM;
3206 page = swapcache;
3207 goto out_page;
3210 cgroup_throttle_swaprate(page, GFP_KERNEL);
3213 * Back out if somebody else already faulted in this pte.
3215 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3216 &vmf->ptl);
3217 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3218 goto out_nomap;
3220 if (unlikely(!PageUptodate(page))) {
3221 ret = VM_FAULT_SIGBUS;
3222 goto out_nomap;
3226 * The page isn't present yet, go ahead with the fault.
3228 * Be careful about the sequence of operations here.
3229 * To get its accounting right, reuse_swap_page() must be called
3230 * while the page is counted on swap but not yet in mapcount i.e.
3231 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3232 * must be called after the swap_free(), or it will never succeed.
3235 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3236 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3237 pte = mk_pte(page, vma->vm_page_prot);
3238 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3239 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3240 vmf->flags &= ~FAULT_FLAG_WRITE;
3241 ret |= VM_FAULT_WRITE;
3242 exclusive = RMAP_EXCLUSIVE;
3244 flush_icache_page(vma, page);
3245 if (pte_swp_soft_dirty(vmf->orig_pte))
3246 pte = pte_mksoft_dirty(pte);
3247 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3248 pte = pte_mkuffd_wp(pte);
3249 pte = pte_wrprotect(pte);
3251 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3252 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3253 vmf->orig_pte = pte;
3255 /* ksm created a completely new copy */
3256 if (unlikely(page != swapcache && swapcache)) {
3257 page_add_new_anon_rmap(page, vma, vmf->address, false);
3258 lru_cache_add_active_or_unevictable(page, vma);
3259 } else {
3260 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3261 activate_page(page);
3264 swap_free(entry);
3265 if (mem_cgroup_swap_full(page) ||
3266 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3267 try_to_free_swap(page);
3268 unlock_page(page);
3269 if (page != swapcache && swapcache) {
3271 * Hold the lock to avoid the swap entry to be reused
3272 * until we take the PT lock for the pte_same() check
3273 * (to avoid false positives from pte_same). For
3274 * further safety release the lock after the swap_free
3275 * so that the swap count won't change under a
3276 * parallel locked swapcache.
3278 unlock_page(swapcache);
3279 put_page(swapcache);
3282 if (vmf->flags & FAULT_FLAG_WRITE) {
3283 ret |= do_wp_page(vmf);
3284 if (ret & VM_FAULT_ERROR)
3285 ret &= VM_FAULT_ERROR;
3286 goto out;
3289 /* No need to invalidate - it was non-present before */
3290 update_mmu_cache(vma, vmf->address, vmf->pte);
3291 unlock:
3292 pte_unmap_unlock(vmf->pte, vmf->ptl);
3293 out:
3294 return ret;
3295 out_nomap:
3296 pte_unmap_unlock(vmf->pte, vmf->ptl);
3297 out_page:
3298 unlock_page(page);
3299 out_release:
3300 put_page(page);
3301 if (page != swapcache && swapcache) {
3302 unlock_page(swapcache);
3303 put_page(swapcache);
3305 return ret;
3309 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3310 * but allow concurrent faults), and pte mapped but not yet locked.
3311 * We return with mmap_lock still held, but pte unmapped and unlocked.
3313 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3315 struct vm_area_struct *vma = vmf->vma;
3316 struct page *page;
3317 vm_fault_t ret = 0;
3318 pte_t entry;
3320 /* File mapping without ->vm_ops ? */
3321 if (vma->vm_flags & VM_SHARED)
3322 return VM_FAULT_SIGBUS;
3325 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3326 * pte_offset_map() on pmds where a huge pmd might be created
3327 * from a different thread.
3329 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3330 * parallel threads are excluded by other means.
3332 * Here we only have mmap_read_lock(mm).
3334 if (pte_alloc(vma->vm_mm, vmf->pmd))
3335 return VM_FAULT_OOM;
3337 /* See the comment in pte_alloc_one_map() */
3338 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3339 return 0;
3341 /* Use the zero-page for reads */
3342 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3343 !mm_forbids_zeropage(vma->vm_mm)) {
3344 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3345 vma->vm_page_prot));
3346 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3347 vmf->address, &vmf->ptl);
3348 if (!pte_none(*vmf->pte)) {
3349 update_mmu_tlb(vma, vmf->address, vmf->pte);
3350 goto unlock;
3352 ret = check_stable_address_space(vma->vm_mm);
3353 if (ret)
3354 goto unlock;
3355 /* Deliver the page fault to userland, check inside PT lock */
3356 if (userfaultfd_missing(vma)) {
3357 pte_unmap_unlock(vmf->pte, vmf->ptl);
3358 return handle_userfault(vmf, VM_UFFD_MISSING);
3360 goto setpte;
3363 /* Allocate our own private page. */
3364 if (unlikely(anon_vma_prepare(vma)))
3365 goto oom;
3366 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3367 if (!page)
3368 goto oom;
3370 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3371 goto oom_free_page;
3372 cgroup_throttle_swaprate(page, GFP_KERNEL);
3375 * The memory barrier inside __SetPageUptodate makes sure that
3376 * preceding stores to the page contents become visible before
3377 * the set_pte_at() write.
3379 __SetPageUptodate(page);
3381 entry = mk_pte(page, vma->vm_page_prot);
3382 entry = pte_sw_mkyoung(entry);
3383 if (vma->vm_flags & VM_WRITE)
3384 entry = pte_mkwrite(pte_mkdirty(entry));
3386 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3387 &vmf->ptl);
3388 if (!pte_none(*vmf->pte)) {
3389 update_mmu_cache(vma, vmf->address, vmf->pte);
3390 goto release;
3393 ret = check_stable_address_space(vma->vm_mm);
3394 if (ret)
3395 goto release;
3397 /* Deliver the page fault to userland, check inside PT lock */
3398 if (userfaultfd_missing(vma)) {
3399 pte_unmap_unlock(vmf->pte, vmf->ptl);
3400 put_page(page);
3401 return handle_userfault(vmf, VM_UFFD_MISSING);
3404 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3405 page_add_new_anon_rmap(page, vma, vmf->address, false);
3406 lru_cache_add_active_or_unevictable(page, vma);
3407 setpte:
3408 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3410 /* No need to invalidate - it was non-present before */
3411 update_mmu_cache(vma, vmf->address, vmf->pte);
3412 unlock:
3413 pte_unmap_unlock(vmf->pte, vmf->ptl);
3414 return ret;
3415 release:
3416 put_page(page);
3417 goto unlock;
3418 oom_free_page:
3419 put_page(page);
3420 oom:
3421 return VM_FAULT_OOM;
3425 * The mmap_lock must have been held on entry, and may have been
3426 * released depending on flags and vma->vm_ops->fault() return value.
3427 * See filemap_fault() and __lock_page_retry().
3429 static vm_fault_t __do_fault(struct vm_fault *vmf)
3431 struct vm_area_struct *vma = vmf->vma;
3432 vm_fault_t ret;
3435 * Preallocate pte before we take page_lock because this might lead to
3436 * deadlocks for memcg reclaim which waits for pages under writeback:
3437 * lock_page(A)
3438 * SetPageWriteback(A)
3439 * unlock_page(A)
3440 * lock_page(B)
3441 * lock_page(B)
3442 * pte_alloc_pne
3443 * shrink_page_list
3444 * wait_on_page_writeback(A)
3445 * SetPageWriteback(B)
3446 * unlock_page(B)
3447 * # flush A, B to clear the writeback
3449 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3450 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3451 if (!vmf->prealloc_pte)
3452 return VM_FAULT_OOM;
3453 smp_wmb(); /* See comment in __pte_alloc() */
3456 ret = vma->vm_ops->fault(vmf);
3457 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3458 VM_FAULT_DONE_COW)))
3459 return ret;
3461 if (unlikely(PageHWPoison(vmf->page))) {
3462 if (ret & VM_FAULT_LOCKED)
3463 unlock_page(vmf->page);
3464 put_page(vmf->page);
3465 vmf->page = NULL;
3466 return VM_FAULT_HWPOISON;
3469 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3470 lock_page(vmf->page);
3471 else
3472 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3474 return ret;
3478 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3479 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3480 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3481 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3483 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3485 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3488 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3490 struct vm_area_struct *vma = vmf->vma;
3492 if (!pmd_none(*vmf->pmd))
3493 goto map_pte;
3494 if (vmf->prealloc_pte) {
3495 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3496 if (unlikely(!pmd_none(*vmf->pmd))) {
3497 spin_unlock(vmf->ptl);
3498 goto map_pte;
3501 mm_inc_nr_ptes(vma->vm_mm);
3502 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3503 spin_unlock(vmf->ptl);
3504 vmf->prealloc_pte = NULL;
3505 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3506 return VM_FAULT_OOM;
3508 map_pte:
3510 * If a huge pmd materialized under us just retry later. Use
3511 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3512 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3513 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3514 * running immediately after a huge pmd fault in a different thread of
3515 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3516 * All we have to ensure is that it is a regular pmd that we can walk
3517 * with pte_offset_map() and we can do that through an atomic read in
3518 * C, which is what pmd_trans_unstable() provides.
3520 if (pmd_devmap_trans_unstable(vmf->pmd))
3521 return VM_FAULT_NOPAGE;
3524 * At this point we know that our vmf->pmd points to a page of ptes
3525 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3526 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3527 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3528 * be valid and we will re-check to make sure the vmf->pte isn't
3529 * pte_none() under vmf->ptl protection when we return to
3530 * alloc_set_pte().
3532 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3533 &vmf->ptl);
3534 return 0;
3537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3538 static void deposit_prealloc_pte(struct vm_fault *vmf)
3540 struct vm_area_struct *vma = vmf->vma;
3542 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3544 * We are going to consume the prealloc table,
3545 * count that as nr_ptes.
3547 mm_inc_nr_ptes(vma->vm_mm);
3548 vmf->prealloc_pte = NULL;
3551 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3553 struct vm_area_struct *vma = vmf->vma;
3554 bool write = vmf->flags & FAULT_FLAG_WRITE;
3555 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3556 pmd_t entry;
3557 int i;
3558 vm_fault_t ret;
3560 if (!transhuge_vma_suitable(vma, haddr))
3561 return VM_FAULT_FALLBACK;
3563 ret = VM_FAULT_FALLBACK;
3564 page = compound_head(page);
3567 * Archs like ppc64 need additonal space to store information
3568 * related to pte entry. Use the preallocated table for that.
3570 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3571 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3572 if (!vmf->prealloc_pte)
3573 return VM_FAULT_OOM;
3574 smp_wmb(); /* See comment in __pte_alloc() */
3577 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3578 if (unlikely(!pmd_none(*vmf->pmd)))
3579 goto out;
3581 for (i = 0; i < HPAGE_PMD_NR; i++)
3582 flush_icache_page(vma, page + i);
3584 entry = mk_huge_pmd(page, vma->vm_page_prot);
3585 if (write)
3586 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3588 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3589 page_add_file_rmap(page, true);
3591 * deposit and withdraw with pmd lock held
3593 if (arch_needs_pgtable_deposit())
3594 deposit_prealloc_pte(vmf);
3596 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3598 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3600 /* fault is handled */
3601 ret = 0;
3602 count_vm_event(THP_FILE_MAPPED);
3603 out:
3604 spin_unlock(vmf->ptl);
3605 return ret;
3607 #else
3608 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3610 BUILD_BUG();
3611 return 0;
3613 #endif
3616 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3617 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3619 * @vmf: fault environment
3620 * @page: page to map
3622 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3623 * return.
3625 * Target users are page handler itself and implementations of
3626 * vm_ops->map_pages.
3628 * Return: %0 on success, %VM_FAULT_ code in case of error.
3630 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3632 struct vm_area_struct *vma = vmf->vma;
3633 bool write = vmf->flags & FAULT_FLAG_WRITE;
3634 pte_t entry;
3635 vm_fault_t ret;
3637 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3638 ret = do_set_pmd(vmf, page);
3639 if (ret != VM_FAULT_FALLBACK)
3640 return ret;
3643 if (!vmf->pte) {
3644 ret = pte_alloc_one_map(vmf);
3645 if (ret)
3646 return ret;
3649 /* Re-check under ptl */
3650 if (unlikely(!pte_none(*vmf->pte))) {
3651 update_mmu_tlb(vma, vmf->address, vmf->pte);
3652 return VM_FAULT_NOPAGE;
3655 flush_icache_page(vma, page);
3656 entry = mk_pte(page, vma->vm_page_prot);
3657 entry = pte_sw_mkyoung(entry);
3658 if (write)
3659 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3660 /* copy-on-write page */
3661 if (write && !(vma->vm_flags & VM_SHARED)) {
3662 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3663 page_add_new_anon_rmap(page, vma, vmf->address, false);
3664 lru_cache_add_active_or_unevictable(page, vma);
3665 } else {
3666 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3667 page_add_file_rmap(page, false);
3669 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3671 /* no need to invalidate: a not-present page won't be cached */
3672 update_mmu_cache(vma, vmf->address, vmf->pte);
3674 return 0;
3679 * finish_fault - finish page fault once we have prepared the page to fault
3681 * @vmf: structure describing the fault
3683 * This function handles all that is needed to finish a page fault once the
3684 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3685 * given page, adds reverse page mapping, handles memcg charges and LRU
3686 * addition.
3688 * The function expects the page to be locked and on success it consumes a
3689 * reference of a page being mapped (for the PTE which maps it).
3691 * Return: %0 on success, %VM_FAULT_ code in case of error.
3693 vm_fault_t finish_fault(struct vm_fault *vmf)
3695 struct page *page;
3696 vm_fault_t ret = 0;
3698 /* Did we COW the page? */
3699 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3700 !(vmf->vma->vm_flags & VM_SHARED))
3701 page = vmf->cow_page;
3702 else
3703 page = vmf->page;
3706 * check even for read faults because we might have lost our CoWed
3707 * page
3709 if (!(vmf->vma->vm_flags & VM_SHARED))
3710 ret = check_stable_address_space(vmf->vma->vm_mm);
3711 if (!ret)
3712 ret = alloc_set_pte(vmf, page);
3713 if (vmf->pte)
3714 pte_unmap_unlock(vmf->pte, vmf->ptl);
3715 return ret;
3718 static unsigned long fault_around_bytes __read_mostly =
3719 rounddown_pow_of_two(65536);
3721 #ifdef CONFIG_DEBUG_FS
3722 static int fault_around_bytes_get(void *data, u64 *val)
3724 *val = fault_around_bytes;
3725 return 0;
3729 * fault_around_bytes must be rounded down to the nearest page order as it's
3730 * what do_fault_around() expects to see.
3732 static int fault_around_bytes_set(void *data, u64 val)
3734 if (val / PAGE_SIZE > PTRS_PER_PTE)
3735 return -EINVAL;
3736 if (val > PAGE_SIZE)
3737 fault_around_bytes = rounddown_pow_of_two(val);
3738 else
3739 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3740 return 0;
3742 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3743 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3745 static int __init fault_around_debugfs(void)
3747 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3748 &fault_around_bytes_fops);
3749 return 0;
3751 late_initcall(fault_around_debugfs);
3752 #endif
3755 * do_fault_around() tries to map few pages around the fault address. The hope
3756 * is that the pages will be needed soon and this will lower the number of
3757 * faults to handle.
3759 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3760 * not ready to be mapped: not up-to-date, locked, etc.
3762 * This function is called with the page table lock taken. In the split ptlock
3763 * case the page table lock only protects only those entries which belong to
3764 * the page table corresponding to the fault address.
3766 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3767 * only once.
3769 * fault_around_bytes defines how many bytes we'll try to map.
3770 * do_fault_around() expects it to be set to a power of two less than or equal
3771 * to PTRS_PER_PTE.
3773 * The virtual address of the area that we map is naturally aligned to
3774 * fault_around_bytes rounded down to the machine page size
3775 * (and therefore to page order). This way it's easier to guarantee
3776 * that we don't cross page table boundaries.
3778 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3780 unsigned long address = vmf->address, nr_pages, mask;
3781 pgoff_t start_pgoff = vmf->pgoff;
3782 pgoff_t end_pgoff;
3783 int off;
3784 vm_fault_t ret = 0;
3786 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3787 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3789 vmf->address = max(address & mask, vmf->vma->vm_start);
3790 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3791 start_pgoff -= off;
3794 * end_pgoff is either the end of the page table, the end of
3795 * the vma or nr_pages from start_pgoff, depending what is nearest.
3797 end_pgoff = start_pgoff -
3798 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3799 PTRS_PER_PTE - 1;
3800 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3801 start_pgoff + nr_pages - 1);
3803 if (pmd_none(*vmf->pmd)) {
3804 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3805 if (!vmf->prealloc_pte)
3806 goto out;
3807 smp_wmb(); /* See comment in __pte_alloc() */
3810 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3812 /* Huge page is mapped? Page fault is solved */
3813 if (pmd_trans_huge(*vmf->pmd)) {
3814 ret = VM_FAULT_NOPAGE;
3815 goto out;
3818 /* ->map_pages() haven't done anything useful. Cold page cache? */
3819 if (!vmf->pte)
3820 goto out;
3822 /* check if the page fault is solved */
3823 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3824 if (!pte_none(*vmf->pte))
3825 ret = VM_FAULT_NOPAGE;
3826 pte_unmap_unlock(vmf->pte, vmf->ptl);
3827 out:
3828 vmf->address = address;
3829 vmf->pte = NULL;
3830 return ret;
3833 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3835 struct vm_area_struct *vma = vmf->vma;
3836 vm_fault_t ret = 0;
3839 * Let's call ->map_pages() first and use ->fault() as fallback
3840 * if page by the offset is not ready to be mapped (cold cache or
3841 * something).
3843 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3844 ret = do_fault_around(vmf);
3845 if (ret)
3846 return ret;
3849 ret = __do_fault(vmf);
3850 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3851 return ret;
3853 ret |= finish_fault(vmf);
3854 unlock_page(vmf->page);
3855 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3856 put_page(vmf->page);
3857 return ret;
3860 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3862 struct vm_area_struct *vma = vmf->vma;
3863 vm_fault_t ret;
3865 if (unlikely(anon_vma_prepare(vma)))
3866 return VM_FAULT_OOM;
3868 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3869 if (!vmf->cow_page)
3870 return VM_FAULT_OOM;
3872 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3873 put_page(vmf->cow_page);
3874 return VM_FAULT_OOM;
3876 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3878 ret = __do_fault(vmf);
3879 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3880 goto uncharge_out;
3881 if (ret & VM_FAULT_DONE_COW)
3882 return ret;
3884 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3885 __SetPageUptodate(vmf->cow_page);
3887 ret |= finish_fault(vmf);
3888 unlock_page(vmf->page);
3889 put_page(vmf->page);
3890 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3891 goto uncharge_out;
3892 return ret;
3893 uncharge_out:
3894 put_page(vmf->cow_page);
3895 return ret;
3898 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3900 struct vm_area_struct *vma = vmf->vma;
3901 vm_fault_t ret, tmp;
3903 ret = __do_fault(vmf);
3904 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3905 return ret;
3908 * Check if the backing address space wants to know that the page is
3909 * about to become writable
3911 if (vma->vm_ops->page_mkwrite) {
3912 unlock_page(vmf->page);
3913 tmp = do_page_mkwrite(vmf);
3914 if (unlikely(!tmp ||
3915 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3916 put_page(vmf->page);
3917 return tmp;
3921 ret |= finish_fault(vmf);
3922 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3923 VM_FAULT_RETRY))) {
3924 unlock_page(vmf->page);
3925 put_page(vmf->page);
3926 return ret;
3929 ret |= fault_dirty_shared_page(vmf);
3930 return ret;
3934 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3935 * but allow concurrent faults).
3936 * The mmap_lock may have been released depending on flags and our
3937 * return value. See filemap_fault() and __lock_page_or_retry().
3938 * If mmap_lock is released, vma may become invalid (for example
3939 * by other thread calling munmap()).
3941 static vm_fault_t do_fault(struct vm_fault *vmf)
3943 struct vm_area_struct *vma = vmf->vma;
3944 struct mm_struct *vm_mm = vma->vm_mm;
3945 vm_fault_t ret;
3948 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3950 if (!vma->vm_ops->fault) {
3952 * If we find a migration pmd entry or a none pmd entry, which
3953 * should never happen, return SIGBUS
3955 if (unlikely(!pmd_present(*vmf->pmd)))
3956 ret = VM_FAULT_SIGBUS;
3957 else {
3958 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3959 vmf->pmd,
3960 vmf->address,
3961 &vmf->ptl);
3963 * Make sure this is not a temporary clearing of pte
3964 * by holding ptl and checking again. A R/M/W update
3965 * of pte involves: take ptl, clearing the pte so that
3966 * we don't have concurrent modification by hardware
3967 * followed by an update.
3969 if (unlikely(pte_none(*vmf->pte)))
3970 ret = VM_FAULT_SIGBUS;
3971 else
3972 ret = VM_FAULT_NOPAGE;
3974 pte_unmap_unlock(vmf->pte, vmf->ptl);
3976 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3977 ret = do_read_fault(vmf);
3978 else if (!(vma->vm_flags & VM_SHARED))
3979 ret = do_cow_fault(vmf);
3980 else
3981 ret = do_shared_fault(vmf);
3983 /* preallocated pagetable is unused: free it */
3984 if (vmf->prealloc_pte) {
3985 pte_free(vm_mm, vmf->prealloc_pte);
3986 vmf->prealloc_pte = NULL;
3988 return ret;
3991 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3992 unsigned long addr, int page_nid,
3993 int *flags)
3995 get_page(page);
3997 count_vm_numa_event(NUMA_HINT_FAULTS);
3998 if (page_nid == numa_node_id()) {
3999 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4000 *flags |= TNF_FAULT_LOCAL;
4003 return mpol_misplaced(page, vma, addr);
4006 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4008 struct vm_area_struct *vma = vmf->vma;
4009 struct page *page = NULL;
4010 int page_nid = NUMA_NO_NODE;
4011 int last_cpupid;
4012 int target_nid;
4013 bool migrated = false;
4014 pte_t pte, old_pte;
4015 bool was_writable = pte_savedwrite(vmf->orig_pte);
4016 int flags = 0;
4019 * The "pte" at this point cannot be used safely without
4020 * validation through pte_unmap_same(). It's of NUMA type but
4021 * the pfn may be screwed if the read is non atomic.
4023 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4024 spin_lock(vmf->ptl);
4025 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4026 pte_unmap_unlock(vmf->pte, vmf->ptl);
4027 goto out;
4031 * Make it present again, Depending on how arch implementes non
4032 * accessible ptes, some can allow access by kernel mode.
4034 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4035 pte = pte_modify(old_pte, vma->vm_page_prot);
4036 pte = pte_mkyoung(pte);
4037 if (was_writable)
4038 pte = pte_mkwrite(pte);
4039 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4040 update_mmu_cache(vma, vmf->address, vmf->pte);
4042 page = vm_normal_page(vma, vmf->address, pte);
4043 if (!page) {
4044 pte_unmap_unlock(vmf->pte, vmf->ptl);
4045 return 0;
4048 /* TODO: handle PTE-mapped THP */
4049 if (PageCompound(page)) {
4050 pte_unmap_unlock(vmf->pte, vmf->ptl);
4051 return 0;
4055 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4056 * much anyway since they can be in shared cache state. This misses
4057 * the case where a mapping is writable but the process never writes
4058 * to it but pte_write gets cleared during protection updates and
4059 * pte_dirty has unpredictable behaviour between PTE scan updates,
4060 * background writeback, dirty balancing and application behaviour.
4062 if (!pte_write(pte))
4063 flags |= TNF_NO_GROUP;
4066 * Flag if the page is shared between multiple address spaces. This
4067 * is later used when determining whether to group tasks together
4069 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4070 flags |= TNF_SHARED;
4072 last_cpupid = page_cpupid_last(page);
4073 page_nid = page_to_nid(page);
4074 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4075 &flags);
4076 pte_unmap_unlock(vmf->pte, vmf->ptl);
4077 if (target_nid == NUMA_NO_NODE) {
4078 put_page(page);
4079 goto out;
4082 /* Migrate to the requested node */
4083 migrated = migrate_misplaced_page(page, vma, target_nid);
4084 if (migrated) {
4085 page_nid = target_nid;
4086 flags |= TNF_MIGRATED;
4087 } else
4088 flags |= TNF_MIGRATE_FAIL;
4090 out:
4091 if (page_nid != NUMA_NO_NODE)
4092 task_numa_fault(last_cpupid, page_nid, 1, flags);
4093 return 0;
4096 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4098 if (vma_is_anonymous(vmf->vma))
4099 return do_huge_pmd_anonymous_page(vmf);
4100 if (vmf->vma->vm_ops->huge_fault)
4101 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4102 return VM_FAULT_FALLBACK;
4105 /* `inline' is required to avoid gcc 4.1.2 build error */
4106 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4108 if (vma_is_anonymous(vmf->vma)) {
4109 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4110 return handle_userfault(vmf, VM_UFFD_WP);
4111 return do_huge_pmd_wp_page(vmf, orig_pmd);
4113 if (vmf->vma->vm_ops->huge_fault) {
4114 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4116 if (!(ret & VM_FAULT_FALLBACK))
4117 return ret;
4120 /* COW or write-notify handled on pte level: split pmd. */
4121 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4123 return VM_FAULT_FALLBACK;
4126 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4128 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4129 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4130 /* No support for anonymous transparent PUD pages yet */
4131 if (vma_is_anonymous(vmf->vma))
4132 goto split;
4133 if (vmf->vma->vm_ops->huge_fault) {
4134 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4136 if (!(ret & VM_FAULT_FALLBACK))
4137 return ret;
4139 split:
4140 /* COW or write-notify not handled on PUD level: split pud.*/
4141 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4143 return VM_FAULT_FALLBACK;
4146 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4149 /* No support for anonymous transparent PUD pages yet */
4150 if (vma_is_anonymous(vmf->vma))
4151 return VM_FAULT_FALLBACK;
4152 if (vmf->vma->vm_ops->huge_fault)
4153 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4154 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4155 return VM_FAULT_FALLBACK;
4159 * These routines also need to handle stuff like marking pages dirty
4160 * and/or accessed for architectures that don't do it in hardware (most
4161 * RISC architectures). The early dirtying is also good on the i386.
4163 * There is also a hook called "update_mmu_cache()" that architectures
4164 * with external mmu caches can use to update those (ie the Sparc or
4165 * PowerPC hashed page tables that act as extended TLBs).
4167 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4168 * concurrent faults).
4170 * The mmap_lock may have been released depending on flags and our return value.
4171 * See filemap_fault() and __lock_page_or_retry().
4173 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4175 pte_t entry;
4177 if (unlikely(pmd_none(*vmf->pmd))) {
4179 * Leave __pte_alloc() until later: because vm_ops->fault may
4180 * want to allocate huge page, and if we expose page table
4181 * for an instant, it will be difficult to retract from
4182 * concurrent faults and from rmap lookups.
4184 vmf->pte = NULL;
4185 } else {
4186 /* See comment in pte_alloc_one_map() */
4187 if (pmd_devmap_trans_unstable(vmf->pmd))
4188 return 0;
4190 * A regular pmd is established and it can't morph into a huge
4191 * pmd from under us anymore at this point because we hold the
4192 * mmap_lock read mode and khugepaged takes it in write mode.
4193 * So now it's safe to run pte_offset_map().
4195 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4196 vmf->orig_pte = *vmf->pte;
4199 * some architectures can have larger ptes than wordsize,
4200 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4201 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4202 * accesses. The code below just needs a consistent view
4203 * for the ifs and we later double check anyway with the
4204 * ptl lock held. So here a barrier will do.
4206 barrier();
4207 if (pte_none(vmf->orig_pte)) {
4208 pte_unmap(vmf->pte);
4209 vmf->pte = NULL;
4213 if (!vmf->pte) {
4214 if (vma_is_anonymous(vmf->vma))
4215 return do_anonymous_page(vmf);
4216 else
4217 return do_fault(vmf);
4220 if (!pte_present(vmf->orig_pte))
4221 return do_swap_page(vmf);
4223 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4224 return do_numa_page(vmf);
4226 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4227 spin_lock(vmf->ptl);
4228 entry = vmf->orig_pte;
4229 if (unlikely(!pte_same(*vmf->pte, entry))) {
4230 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4231 goto unlock;
4233 if (vmf->flags & FAULT_FLAG_WRITE) {
4234 if (!pte_write(entry))
4235 return do_wp_page(vmf);
4236 entry = pte_mkdirty(entry);
4238 entry = pte_mkyoung(entry);
4239 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4240 vmf->flags & FAULT_FLAG_WRITE)) {
4241 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4242 } else {
4244 * This is needed only for protection faults but the arch code
4245 * is not yet telling us if this is a protection fault or not.
4246 * This still avoids useless tlb flushes for .text page faults
4247 * with threads.
4249 if (vmf->flags & FAULT_FLAG_WRITE)
4250 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4252 unlock:
4253 pte_unmap_unlock(vmf->pte, vmf->ptl);
4254 return 0;
4258 * By the time we get here, we already hold the mm semaphore
4260 * The mmap_lock may have been released depending on flags and our
4261 * return value. See filemap_fault() and __lock_page_or_retry().
4263 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4264 unsigned long address, unsigned int flags)
4266 struct vm_fault vmf = {
4267 .vma = vma,
4268 .address = address & PAGE_MASK,
4269 .flags = flags,
4270 .pgoff = linear_page_index(vma, address),
4271 .gfp_mask = __get_fault_gfp_mask(vma),
4273 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4274 struct mm_struct *mm = vma->vm_mm;
4275 pgd_t *pgd;
4276 p4d_t *p4d;
4277 vm_fault_t ret;
4279 pgd = pgd_offset(mm, address);
4280 p4d = p4d_alloc(mm, pgd, address);
4281 if (!p4d)
4282 return VM_FAULT_OOM;
4284 vmf.pud = pud_alloc(mm, p4d, address);
4285 if (!vmf.pud)
4286 return VM_FAULT_OOM;
4287 retry_pud:
4288 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4289 ret = create_huge_pud(&vmf);
4290 if (!(ret & VM_FAULT_FALLBACK))
4291 return ret;
4292 } else {
4293 pud_t orig_pud = *vmf.pud;
4295 barrier();
4296 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4298 /* NUMA case for anonymous PUDs would go here */
4300 if (dirty && !pud_write(orig_pud)) {
4301 ret = wp_huge_pud(&vmf, orig_pud);
4302 if (!(ret & VM_FAULT_FALLBACK))
4303 return ret;
4304 } else {
4305 huge_pud_set_accessed(&vmf, orig_pud);
4306 return 0;
4311 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4312 if (!vmf.pmd)
4313 return VM_FAULT_OOM;
4315 /* Huge pud page fault raced with pmd_alloc? */
4316 if (pud_trans_unstable(vmf.pud))
4317 goto retry_pud;
4319 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4320 ret = create_huge_pmd(&vmf);
4321 if (!(ret & VM_FAULT_FALLBACK))
4322 return ret;
4323 } else {
4324 pmd_t orig_pmd = *vmf.pmd;
4326 barrier();
4327 if (unlikely(is_swap_pmd(orig_pmd))) {
4328 VM_BUG_ON(thp_migration_supported() &&
4329 !is_pmd_migration_entry(orig_pmd));
4330 if (is_pmd_migration_entry(orig_pmd))
4331 pmd_migration_entry_wait(mm, vmf.pmd);
4332 return 0;
4334 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4335 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4336 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4338 if (dirty && !pmd_write(orig_pmd)) {
4339 ret = wp_huge_pmd(&vmf, orig_pmd);
4340 if (!(ret & VM_FAULT_FALLBACK))
4341 return ret;
4342 } else {
4343 huge_pmd_set_accessed(&vmf, orig_pmd);
4344 return 0;
4349 return handle_pte_fault(&vmf);
4353 * By the time we get here, we already hold the mm semaphore
4355 * The mmap_lock may have been released depending on flags and our
4356 * return value. See filemap_fault() and __lock_page_or_retry().
4358 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4359 unsigned int flags)
4361 vm_fault_t ret;
4363 __set_current_state(TASK_RUNNING);
4365 count_vm_event(PGFAULT);
4366 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4368 /* do counter updates before entering really critical section. */
4369 check_sync_rss_stat(current);
4371 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4372 flags & FAULT_FLAG_INSTRUCTION,
4373 flags & FAULT_FLAG_REMOTE))
4374 return VM_FAULT_SIGSEGV;
4377 * Enable the memcg OOM handling for faults triggered in user
4378 * space. Kernel faults are handled more gracefully.
4380 if (flags & FAULT_FLAG_USER)
4381 mem_cgroup_enter_user_fault();
4383 if (unlikely(is_vm_hugetlb_page(vma)))
4384 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4385 else
4386 ret = __handle_mm_fault(vma, address, flags);
4388 if (flags & FAULT_FLAG_USER) {
4389 mem_cgroup_exit_user_fault();
4391 * The task may have entered a memcg OOM situation but
4392 * if the allocation error was handled gracefully (no
4393 * VM_FAULT_OOM), there is no need to kill anything.
4394 * Just clean up the OOM state peacefully.
4396 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4397 mem_cgroup_oom_synchronize(false);
4400 return ret;
4402 EXPORT_SYMBOL_GPL(handle_mm_fault);
4404 #ifndef __PAGETABLE_P4D_FOLDED
4406 * Allocate p4d page table.
4407 * We've already handled the fast-path in-line.
4409 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4411 p4d_t *new = p4d_alloc_one(mm, address);
4412 if (!new)
4413 return -ENOMEM;
4415 smp_wmb(); /* See comment in __pte_alloc */
4417 spin_lock(&mm->page_table_lock);
4418 if (pgd_present(*pgd)) /* Another has populated it */
4419 p4d_free(mm, new);
4420 else
4421 pgd_populate(mm, pgd, new);
4422 spin_unlock(&mm->page_table_lock);
4423 return 0;
4425 #endif /* __PAGETABLE_P4D_FOLDED */
4427 #ifndef __PAGETABLE_PUD_FOLDED
4429 * Allocate page upper directory.
4430 * We've already handled the fast-path in-line.
4432 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4434 pud_t *new = pud_alloc_one(mm, address);
4435 if (!new)
4436 return -ENOMEM;
4438 smp_wmb(); /* See comment in __pte_alloc */
4440 spin_lock(&mm->page_table_lock);
4441 if (!p4d_present(*p4d)) {
4442 mm_inc_nr_puds(mm);
4443 p4d_populate(mm, p4d, new);
4444 } else /* Another has populated it */
4445 pud_free(mm, new);
4446 spin_unlock(&mm->page_table_lock);
4447 return 0;
4449 #endif /* __PAGETABLE_PUD_FOLDED */
4451 #ifndef __PAGETABLE_PMD_FOLDED
4453 * Allocate page middle directory.
4454 * We've already handled the fast-path in-line.
4456 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4458 spinlock_t *ptl;
4459 pmd_t *new = pmd_alloc_one(mm, address);
4460 if (!new)
4461 return -ENOMEM;
4463 smp_wmb(); /* See comment in __pte_alloc */
4465 ptl = pud_lock(mm, pud);
4466 if (!pud_present(*pud)) {
4467 mm_inc_nr_pmds(mm);
4468 pud_populate(mm, pud, new);
4469 } else /* Another has populated it */
4470 pmd_free(mm, new);
4471 spin_unlock(ptl);
4472 return 0;
4474 #endif /* __PAGETABLE_PMD_FOLDED */
4476 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4477 struct mmu_notifier_range *range,
4478 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4480 pgd_t *pgd;
4481 p4d_t *p4d;
4482 pud_t *pud;
4483 pmd_t *pmd;
4484 pte_t *ptep;
4486 pgd = pgd_offset(mm, address);
4487 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4488 goto out;
4490 p4d = p4d_offset(pgd, address);
4491 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4492 goto out;
4494 pud = pud_offset(p4d, address);
4495 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4496 goto out;
4498 pmd = pmd_offset(pud, address);
4499 VM_BUG_ON(pmd_trans_huge(*pmd));
4501 if (pmd_huge(*pmd)) {
4502 if (!pmdpp)
4503 goto out;
4505 if (range) {
4506 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4507 NULL, mm, address & PMD_MASK,
4508 (address & PMD_MASK) + PMD_SIZE);
4509 mmu_notifier_invalidate_range_start(range);
4511 *ptlp = pmd_lock(mm, pmd);
4512 if (pmd_huge(*pmd)) {
4513 *pmdpp = pmd;
4514 return 0;
4516 spin_unlock(*ptlp);
4517 if (range)
4518 mmu_notifier_invalidate_range_end(range);
4521 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4522 goto out;
4524 if (range) {
4525 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4526 address & PAGE_MASK,
4527 (address & PAGE_MASK) + PAGE_SIZE);
4528 mmu_notifier_invalidate_range_start(range);
4530 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4531 if (!pte_present(*ptep))
4532 goto unlock;
4533 *ptepp = ptep;
4534 return 0;
4535 unlock:
4536 pte_unmap_unlock(ptep, *ptlp);
4537 if (range)
4538 mmu_notifier_invalidate_range_end(range);
4539 out:
4540 return -EINVAL;
4543 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4544 pte_t **ptepp, spinlock_t **ptlp)
4546 int res;
4548 /* (void) is needed to make gcc happy */
4549 (void) __cond_lock(*ptlp,
4550 !(res = __follow_pte_pmd(mm, address, NULL,
4551 ptepp, NULL, ptlp)));
4552 return res;
4555 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4556 struct mmu_notifier_range *range,
4557 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4559 int res;
4561 /* (void) is needed to make gcc happy */
4562 (void) __cond_lock(*ptlp,
4563 !(res = __follow_pte_pmd(mm, address, range,
4564 ptepp, pmdpp, ptlp)));
4565 return res;
4567 EXPORT_SYMBOL(follow_pte_pmd);
4570 * follow_pfn - look up PFN at a user virtual address
4571 * @vma: memory mapping
4572 * @address: user virtual address
4573 * @pfn: location to store found PFN
4575 * Only IO mappings and raw PFN mappings are allowed.
4577 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4579 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4580 unsigned long *pfn)
4582 int ret = -EINVAL;
4583 spinlock_t *ptl;
4584 pte_t *ptep;
4586 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4587 return ret;
4589 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4590 if (ret)
4591 return ret;
4592 *pfn = pte_pfn(*ptep);
4593 pte_unmap_unlock(ptep, ptl);
4594 return 0;
4596 EXPORT_SYMBOL(follow_pfn);
4598 #ifdef CONFIG_HAVE_IOREMAP_PROT
4599 int follow_phys(struct vm_area_struct *vma,
4600 unsigned long address, unsigned int flags,
4601 unsigned long *prot, resource_size_t *phys)
4603 int ret = -EINVAL;
4604 pte_t *ptep, pte;
4605 spinlock_t *ptl;
4607 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4608 goto out;
4610 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4611 goto out;
4612 pte = *ptep;
4614 if ((flags & FOLL_WRITE) && !pte_write(pte))
4615 goto unlock;
4617 *prot = pgprot_val(pte_pgprot(pte));
4618 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4620 ret = 0;
4621 unlock:
4622 pte_unmap_unlock(ptep, ptl);
4623 out:
4624 return ret;
4627 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4628 void *buf, int len, int write)
4630 resource_size_t phys_addr;
4631 unsigned long prot = 0;
4632 void __iomem *maddr;
4633 int offset = addr & (PAGE_SIZE-1);
4635 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4636 return -EINVAL;
4638 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4639 if (!maddr)
4640 return -ENOMEM;
4642 if (write)
4643 memcpy_toio(maddr + offset, buf, len);
4644 else
4645 memcpy_fromio(buf, maddr + offset, len);
4646 iounmap(maddr);
4648 return len;
4650 EXPORT_SYMBOL_GPL(generic_access_phys);
4651 #endif
4654 * Access another process' address space as given in mm. If non-NULL, use the
4655 * given task for page fault accounting.
4657 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4658 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4660 struct vm_area_struct *vma;
4661 void *old_buf = buf;
4662 int write = gup_flags & FOLL_WRITE;
4664 if (mmap_read_lock_killable(mm))
4665 return 0;
4667 /* ignore errors, just check how much was successfully transferred */
4668 while (len) {
4669 int bytes, ret, offset;
4670 void *maddr;
4671 struct page *page = NULL;
4673 ret = get_user_pages_remote(tsk, mm, addr, 1,
4674 gup_flags, &page, &vma, NULL);
4675 if (ret <= 0) {
4676 #ifndef CONFIG_HAVE_IOREMAP_PROT
4677 break;
4678 #else
4680 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4681 * we can access using slightly different code.
4683 vma = find_vma(mm, addr);
4684 if (!vma || vma->vm_start > addr)
4685 break;
4686 if (vma->vm_ops && vma->vm_ops->access)
4687 ret = vma->vm_ops->access(vma, addr, buf,
4688 len, write);
4689 if (ret <= 0)
4690 break;
4691 bytes = ret;
4692 #endif
4693 } else {
4694 bytes = len;
4695 offset = addr & (PAGE_SIZE-1);
4696 if (bytes > PAGE_SIZE-offset)
4697 bytes = PAGE_SIZE-offset;
4699 maddr = kmap(page);
4700 if (write) {
4701 copy_to_user_page(vma, page, addr,
4702 maddr + offset, buf, bytes);
4703 set_page_dirty_lock(page);
4704 } else {
4705 copy_from_user_page(vma, page, addr,
4706 buf, maddr + offset, bytes);
4708 kunmap(page);
4709 put_page(page);
4711 len -= bytes;
4712 buf += bytes;
4713 addr += bytes;
4715 mmap_read_unlock(mm);
4717 return buf - old_buf;
4721 * access_remote_vm - access another process' address space
4722 * @mm: the mm_struct of the target address space
4723 * @addr: start address to access
4724 * @buf: source or destination buffer
4725 * @len: number of bytes to transfer
4726 * @gup_flags: flags modifying lookup behaviour
4728 * The caller must hold a reference on @mm.
4730 * Return: number of bytes copied from source to destination.
4732 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4733 void *buf, int len, unsigned int gup_flags)
4735 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4739 * Access another process' address space.
4740 * Source/target buffer must be kernel space,
4741 * Do not walk the page table directly, use get_user_pages
4743 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4744 void *buf, int len, unsigned int gup_flags)
4746 struct mm_struct *mm;
4747 int ret;
4749 mm = get_task_mm(tsk);
4750 if (!mm)
4751 return 0;
4753 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4755 mmput(mm);
4757 return ret;
4759 EXPORT_SYMBOL_GPL(access_process_vm);
4762 * Print the name of a VMA.
4764 void print_vma_addr(char *prefix, unsigned long ip)
4766 struct mm_struct *mm = current->mm;
4767 struct vm_area_struct *vma;
4770 * we might be running from an atomic context so we cannot sleep
4772 if (!mmap_read_trylock(mm))
4773 return;
4775 vma = find_vma(mm, ip);
4776 if (vma && vma->vm_file) {
4777 struct file *f = vma->vm_file;
4778 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4779 if (buf) {
4780 char *p;
4782 p = file_path(f, buf, PAGE_SIZE);
4783 if (IS_ERR(p))
4784 p = "?";
4785 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4786 vma->vm_start,
4787 vma->vm_end - vma->vm_start);
4788 free_page((unsigned long)buf);
4791 mmap_read_unlock(mm);
4794 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4795 void __might_fault(const char *file, int line)
4798 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4799 * holding the mmap_lock, this is safe because kernel memory doesn't
4800 * get paged out, therefore we'll never actually fault, and the
4801 * below annotations will generate false positives.
4803 if (uaccess_kernel())
4804 return;
4805 if (pagefault_disabled())
4806 return;
4807 __might_sleep(file, line, 0);
4808 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4809 if (current->mm)
4810 might_lock_read(&current->mm->mmap_lock);
4811 #endif
4813 EXPORT_SYMBOL(__might_fault);
4814 #endif
4816 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4818 * Process all subpages of the specified huge page with the specified
4819 * operation. The target subpage will be processed last to keep its
4820 * cache lines hot.
4822 static inline void process_huge_page(
4823 unsigned long addr_hint, unsigned int pages_per_huge_page,
4824 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4825 void *arg)
4827 int i, n, base, l;
4828 unsigned long addr = addr_hint &
4829 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4831 /* Process target subpage last to keep its cache lines hot */
4832 might_sleep();
4833 n = (addr_hint - addr) / PAGE_SIZE;
4834 if (2 * n <= pages_per_huge_page) {
4835 /* If target subpage in first half of huge page */
4836 base = 0;
4837 l = n;
4838 /* Process subpages at the end of huge page */
4839 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4840 cond_resched();
4841 process_subpage(addr + i * PAGE_SIZE, i, arg);
4843 } else {
4844 /* If target subpage in second half of huge page */
4845 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4846 l = pages_per_huge_page - n;
4847 /* Process subpages at the begin of huge page */
4848 for (i = 0; i < base; i++) {
4849 cond_resched();
4850 process_subpage(addr + i * PAGE_SIZE, i, arg);
4854 * Process remaining subpages in left-right-left-right pattern
4855 * towards the target subpage
4857 for (i = 0; i < l; i++) {
4858 int left_idx = base + i;
4859 int right_idx = base + 2 * l - 1 - i;
4861 cond_resched();
4862 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4863 cond_resched();
4864 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4868 static void clear_gigantic_page(struct page *page,
4869 unsigned long addr,
4870 unsigned int pages_per_huge_page)
4872 int i;
4873 struct page *p = page;
4875 might_sleep();
4876 for (i = 0; i < pages_per_huge_page;
4877 i++, p = mem_map_next(p, page, i)) {
4878 cond_resched();
4879 clear_user_highpage(p, addr + i * PAGE_SIZE);
4883 static void clear_subpage(unsigned long addr, int idx, void *arg)
4885 struct page *page = arg;
4887 clear_user_highpage(page + idx, addr);
4890 void clear_huge_page(struct page *page,
4891 unsigned long addr_hint, unsigned int pages_per_huge_page)
4893 unsigned long addr = addr_hint &
4894 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4896 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4897 clear_gigantic_page(page, addr, pages_per_huge_page);
4898 return;
4901 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4904 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4905 unsigned long addr,
4906 struct vm_area_struct *vma,
4907 unsigned int pages_per_huge_page)
4909 int i;
4910 struct page *dst_base = dst;
4911 struct page *src_base = src;
4913 for (i = 0; i < pages_per_huge_page; ) {
4914 cond_resched();
4915 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4917 i++;
4918 dst = mem_map_next(dst, dst_base, i);
4919 src = mem_map_next(src, src_base, i);
4923 struct copy_subpage_arg {
4924 struct page *dst;
4925 struct page *src;
4926 struct vm_area_struct *vma;
4929 static void copy_subpage(unsigned long addr, int idx, void *arg)
4931 struct copy_subpage_arg *copy_arg = arg;
4933 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4934 addr, copy_arg->vma);
4937 void copy_user_huge_page(struct page *dst, struct page *src,
4938 unsigned long addr_hint, struct vm_area_struct *vma,
4939 unsigned int pages_per_huge_page)
4941 unsigned long addr = addr_hint &
4942 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4943 struct copy_subpage_arg arg = {
4944 .dst = dst,
4945 .src = src,
4946 .vma = vma,
4949 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4950 copy_user_gigantic_page(dst, src, addr, vma,
4951 pages_per_huge_page);
4952 return;
4955 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4958 long copy_huge_page_from_user(struct page *dst_page,
4959 const void __user *usr_src,
4960 unsigned int pages_per_huge_page,
4961 bool allow_pagefault)
4963 void *src = (void *)usr_src;
4964 void *page_kaddr;
4965 unsigned long i, rc = 0;
4966 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4968 for (i = 0; i < pages_per_huge_page; i++) {
4969 if (allow_pagefault)
4970 page_kaddr = kmap(dst_page + i);
4971 else
4972 page_kaddr = kmap_atomic(dst_page + i);
4973 rc = copy_from_user(page_kaddr,
4974 (const void __user *)(src + i * PAGE_SIZE),
4975 PAGE_SIZE);
4976 if (allow_pagefault)
4977 kunmap(dst_page + i);
4978 else
4979 kunmap_atomic(page_kaddr);
4981 ret_val -= (PAGE_SIZE - rc);
4982 if (rc)
4983 break;
4985 cond_resched();
4987 return ret_val;
4989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4991 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4993 static struct kmem_cache *page_ptl_cachep;
4995 void __init ptlock_cache_init(void)
4997 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4998 SLAB_PANIC, NULL);
5001 bool ptlock_alloc(struct page *page)
5003 spinlock_t *ptl;
5005 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5006 if (!ptl)
5007 return false;
5008 page->ptl = ptl;
5009 return true;
5012 void ptlock_free(struct page *page)
5014 kmem_cache_free(page_ptl_cachep, page->ptl);
5016 #endif